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ABSTRACT

After learning a new object category from image-level annotations (with no
object bounding boxes), humans are remarkably good at precisely localizing
those objects. However, building good object localizers (i.e., detectors) currently
requires expensive instance-level annotations. While some work has been done
on learning detectors from weakly labeled samples (with only class labels), these
detectors do poorly at localization. In this work, we show how to build better
object detectors from weakly labeled images of new categories by leveraging
knowledge learned from fully labeled base categories. We call this learning
paradigm cross-supervised object detection. While earlier works investigated
this paradigm, they did not apply it to realistic complex images (e.g., COCO),
and their performance was poor. We propose a unified framework that combines
a detection head trained from instance-level annotations and a recognition head
learned from image-level annotations, together with a spatial correlation module
that bridges the gap between detection and recognition. These contributions
enable us to better detect novel objects with image-level annotations in complex
multi-object scenes such as the COCO dataset.

1 INTRODUCTION

Deep architectures have achieved great success in many computer vision tasks including object
recognition and the closely related problem of object detection. Modern detectors, such as the
Faster RCNN (Ren et al., 2015), YOLO (Redmon et al., 2016), and RetinaNet (Lin et al., 2017), use
the same network backbone as popular recognition models. However, even with the same backbone
architectures, detection and recognition models require different types of supervision. A good detec-
tor relies heavily on precise bounding boxes and labels for each instance (we shall refer to these as
instance-level annotations), whereas a recognition model needs only image-level labels. Needless
to say, it is more time consuming and expensive to obtain high quality bounding box annotations
than class labels. As a result, current detectors are limited to a small set of categories relative to
their object recognition counterparts. To address this limitation, it is natural to ask, “Is it possible to
learn detectors with only class labels?” This problem is commonly referred to as weakly supervised
object detection (WSOD).

Early WSOD work (Hoffman et al., 2014) showed fair performance by directly applying recogni-
tion networks to object detection. More recently, researchers have used multiple instance learning
methods (Dietterich et al., 1997) to recast WSOD as a multi-label classification problem (Bilen &
Vedaldi, 2016). However, these weakly supervised detectors perform poorly at localization. Most
WSOD experiments have been conducted on the ILSVRC (Russakovsky et al., 2015) data set, in
which images have only a single object, or on the PASCAL VOC (Everingham et al., 2010) data
set, which has only 20 categories. The simplicity of these data sets limits the number and types of
distractors in an image, making localization substantially easier. Learning from only class labels,
it is challenging to detect objects at different scales in an image that contains many distractors. In
particular, as shown in our experiments, weakly supervised object detectors do not work well in
complex multi-object scenes, such as the COCO dataset (Lin et al., 2014).

To address this challenge, we focus on a form of learning in which the localization of classes with
only object labels (weakly labeled classes) can benefit from other classes that have ground truth
bounding boxes (fully labeled classes). We refer to this interesting learning paradigm as cross-
supervised object detection (CSOD). While several works (Hoffman et al., 2014; Tang et al., 2016;
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Yang et al., 2019a; Redmon & Farhadi, 2017) have explored this problem before, they still have the
same limitation as the WSOD work we mentioned above. Those cross-supervised object detectors
work under simplified scenarios (e.g., ILSVRC data set) where images contain single objects and
are object-centered. They struggle to learn under more complex and realistic scenarios, where there
are multiple objects from potentially very different classes, and objects could be small and appear
anywhere in the images. In this work, we show that by doing multi-task learning on both weakly-
supervised base classes and fully-supervised novel classes, our model is able to learn a good detector
under the CSOD setting.

More formally, we define CSOD as follows. At training time, we are given 1) images contain
objects from both base and novel classes, 2) both class labels and ground truth bounding boxes
for base objects, and 3) only class labels for novel objects. Our goal is to detect novel objects.
In CSOD, base classes and novel classes are disjoint. Thus, it can be seen as performing fully-
supervised detection on the base classes and weakly supervised detection on the novel classes. It
has similarities to both transfer learning and semi-supervised learning, since it transfer knowledge
from base class to novel class and have more information about some instances than other instances.
However, CSOD represents a distinct and novel paradigm for learning.

The current weakly-supervised method has several drawbacks to learn from a multi objects image.
As shown in Fig. 1, a weakly supervised object detector tends to detect only the most discriminating
part of novel objects instead of the whole object. Notice how only the head of the person, and not
the whole body, is detected. Another issue is that the localizer for one object (e.g., the horse) may
be confused by the occurrence of another object, such as the person on the horse. This example
illustrates the gap between detection and recognition: without ground truth bounding boxes, the
detector acts like a standard recognition model – focusing on discriminating rather than detecting.

In this paper, we explore two major mechanisms for improving on this. Our first mechanism is
unifying detection and recognition. Using the same network backbone architecture, recognition and
detection can be seen as image-level classification and region-level classification respectively, sug-
gesting a strong relation between them. In particular, it suggests a shared training framework in
which the same backbone is used with different heads for detection and recognition. Thus, we com-
bine a detection head learned from ground truth bounding boxes, and a recognition head learned in a
weakly supervised fashion from class labels. Unlike a traditional recognition head, our recognition
head produces a class score for multiple proposals and is capable of detecting objects. The second
mechanism is learning a spatial correlation module to reduce the gap between detection and recog-
nition. It takes several high-confidence bounding boxes produced by the recognition head as input,
and learns to regress ground truth bounding boxes. By combining these mechanisms together, our
model outperforms all previous models when all novel objects are weakly labeled.

In summary, our contributions are three-fold. First, we define a new task—cross-supervised object
detection, which enables us to leverage knowledge from fully labeled base categories to help learn
a robust detector from novel object class labels only. Second, we propose a unified framework in
which two heads are learned from class labels and detection labels respectively, along with a spatial
correlation module bridging the gap between recognition and detection. Third, we significantly
outperform existing methods (Zhang et al. (2018a); Tang et al. (2017; 2018)) on PASCAL VOC and
COCO, suggesting that CSOD could be a promising approach for expanding object detection to a
much larger number of categories.

2 RELATED WORK

Weakly supervised object detection. WSOD (Kosugi et al. (2019); Zeng et al. (2019); Yang et al.
(2019b); Wan et al. (2019); Arun et al. (2019); Wan et al. (2018); Zhang et al. (2018b); Ren et al.
(2020); Zhang et al. (2018c); Li et al. (2019); Gao et al. (2019b); Kosugi et al. (2019)) attempts to
learn a detector with only image category labels. Most of these methods adopt the idea of Multiple
Instance Learning (Dietterich et al. (1997)) to recast WSOD as a multi-label classification task. Bilen
& Vedaldi (2016) propose an end-to-end network by modifying a classifier to operate at the level of
image regions, serving as a region selector and a classifier simultaneously. Tang et al. (2017) and
Tang et al. (2018) find that several iterations of online refinement based on the outputs of previous
iterations boosts performance. Wei et al. (2018) and Diba et al. (2017) use semantic segmentation
based on class activation maps (Zhou et al. (2016)) to help generate tight bounding boxes. However,
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Figure 1: A comparison between weakly supervised object detector and our detector. Weakly
supervised object detector only detects the most discriminating part of an object, e.g., focus on head
of a person when detecting a person; or being distracted by co-occurring instances, e.g., distracted
by the person on the horse when detecting a horse. Our detector can address these issues.

WSOD methods tend to focus on the most discriminating part of an object and are prone to distrac-
tions from co-occurring objects. Detecting a part of the object or distractors represents convergence
to a local optimum. Thus, their performance depends heavily on initialization. In comparison, our
proposed cross-supervised object detector alleviates the issue of getting trapped in a local optimum
by leveraging knowledge learned from fully labeled base categories.

Cross-supervised object detection. There are several previous works using both image-level and
instance-level annotations. Kuen et al. (2019) learned a parameter transferring function between a
classifier and a detector, enabling an image-based classification network to be adapted to a region-
based classification network. Hoffman et al. (2014) and Tang et al. (2016) propose methods of
adaptation for knowledge transfer from classification features to detection features. Uijlings et al.
(2018) use a proposal generator trained on base classes to transfer knowledge by leveraging a MIL
framework, organized in a semantic hierarchy. Hoffman et al. (2015) design a three-step framework
to learn a feature representation from weakly supervised classes and strongly supervised classes
jointly. However, these methods can only perform object localization in single object scenes such
as ILSVRC, whereas our method can perform object detection in complex multi-object scenes as
well, e.g. COCO. Also, it is worth noting that we are doing multi-task learning, which means that
we jointly learn from base and novel classes. In comparison, some works (Uijlings et al., 2018)
are doing transfer learning. They first learn a model on base classes and then transfer and fine-tune
the model on novel classes. Gao et al. (2019a) use a few instance-level labels and a large scale of
image-level labels for each category in a training-mining framework, which is referred to as semi-
supervised detection. Zhang et al. (2018a) propose a framework named MSD that learn objectness
on base categories and use it to reject distractors when learning novel objects. In comparison,
our spatial correlation module not only learns objectness, but also refines coarse bounding boxes.
Further, our model learns from both base and novel classes instead of only novel classes.

3 CROSS-SUPERVISED OBJECT DETECTION

CSOD requires us to learn from instance-level annotations (detection labels) and image-level anno-
tations (recognition labels). In this section, we explain the unification of detection and recognition
and introduce our framework. In the next section, we describe our novel spatial correlation module.

3.1 UNIFYING DETECTION AND RECOGNITION

How to learn a detector from both instance-level and image-level annotations? Since detection
and recognition can be seen as region-level and image-level classification respectively, a natural
choice is to design a unified framework that combines a detection head and a recognition head that
can learn from image-level and instance-level annotations respectively. Here we exploit several
baselines to unify the detection and recognition head. (1) Finetune. We first learn through the
detection head on base classes with fully labeled samples. Then, we finetune our model using the
recognition head on novel classes with only class labels. (2) Two Head. We simultaneously learn
the detection and recognition head on base and novel classes, respectively. The weights of the
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Figure 2: Our Detection-Recognition Network (DRN) without the spatial correlation module.
In this illustration, Person belongs to novel classes and Boat belongs to base classes. The recogni-
tion head learns from the class label Person and outputs the top-scoring bounding box to help the
detection head learn to detect the person. The spatial correlation module, discussed in § 4, can be
added to further refine the top-scoring bounding boxes.

backbones are updated using the loss backpropagated from both heads jointly. (3) Two head +.
Instead of learning only on novel classes, we learn the recognition head from class labels of both
base and novel classes whereas the recognition head remain the same. (4) Two Branch. Instead
of having two shared fully-connected layers after RoI pooling layer (see Fig. 2), we make these
two fully-connected layers seperated, allowing the detection and recognition head to have separate
unshared pair of fully-connected layers each. Everything else is the same as the Two Head baseline.
Experiments are conducted to compare these baselines in § 5.1 and § 5.2. Our proposed model is
based on Two Head. We will discuss the details in § 3.2.

The connection between the recognition and detection head. The baselines mentioned above
only use the recognition head to detect novel objects, ignoring the fact that a detection head can play
the same role even better. A majority of WSOD methods (Tang et al. (2017); Wan et al. (2019); Wei
et al. (2018)) find that re-train a new detector taking the top-scoring bounding boxes from a weakly
supervised object detector as ground truth marginally improve the performance. Even with coarse
and noisy pseudo bounding boxes, a standard object detector produces better detection results than a
weakly supervised object detector. Keeping this hypothesis in mind, we introduce a guidance from
the recognition head to the detection head. For each of the novel categories existing in a training
sample, the recognition head outputs the top-scoring bounding box, which are then used by the
detection head as supervision in that sample.

3.2 DETECTION-RECOGNITION NETWORK

The structure of our Detection-Recognition Network (DRN) is shown in Fig. 2. Given an image, we
first generate 2000 object proposals by Selective Search (Uijlings et al. (2013)) or RPN (Ren et al.
(2015)) trained on base classes. The image and proposals are fed into several convolutional (conv)
layers followed by a region-of-interest (RoI) pooling layer (Girshick (2015)) to output fixed-size
feature maps. Then, these feature maps are fed into two fully connected (fc) layers to produce a
collection of proposal features, which are further branched into the recognition and detection head.

Recognition Head. We followed previous WSOD methods to design our recognition head. Since
OICR (Tang et al. (2017)) is simple, neat, and commonly being used, we make our recognition head
the same as OICR, but with fewer refinement branches to reduce the computation cost. However,
our recognition head can be replaced by any WSOD structure as shown in § 5.3.

Within the recognition head as shown in Fig. 2, the proposal features are branched into three streams
producing three matrices xc,xd,xe ∈ RC×|R|, where C is the number of novel classes and |R| is
the number of proposals. Then the two matrices xc and xd are passed through a softmax function

4



Under review as a conference paper at ICLR 2021

Figure 3: Our spatial correlation module (SCM). Our SCM learns to capture spatial correlation
among high-confidence bounding boxes, generating a class-agnostic heatmap for the whole image.
A heatmap detector is then trained to learn ground truth bounding boxes.

over classes and proposals respectively: σ(xc) and σ(xd). A proposal score xR
cr, indicating the

score of cth novel class for rth proposal, corresponds to the respective element of the matrix xR =
σ(xc)�σ(xd), where� refers to an element-wise product. Finally, we obtain the image score of cth

class φc by summing over all proposals: φc =
∑|R|

r=1 x
R
cr. Then we calculate a standard multi-class

cross-entropy loss as shown in the first term of Eq.1. Another matrix xe is passed through a softmax
function over classes, the result of which is expresses as a weighted multi-class cross entropy loss
as shown in the second term of Eq.1. We set the pseudo label for each proposal r based on its IoU
(or overlap) with the top-scoring proposal of cth class, ycr = 1 if IoU > 0.5 and ycr = 0 otherwise.
The weight wr for each proposal r is its IoU with the top-scoring proposal. The total loss for the
recognition head is

Lrec = [−
C∑

c=1

yclogφc + (1− yc)log(1− φc)] + [− 1

|R|

|R|∑
r=1

C+1∑
c=1

wrycrlogx
e
cr] (1)

Supervision from our recognition head. We use the matrix xe to propose pseudos bounding boxes
to guide the detection head. Specifically, we select one top-scoring proposal for each object category
that appears in the image as a pseudo bounding box, as done in OICR. We introduce the spatial
correlation module in § 4, to further refine this pseudo ground truth.

Detection Head. Now that we have pseudo bounding boxes for novel objects and ground truth
bounding boxes for base objects, we train our detection head like a standard detector. For simplicity
and efficiency, our detection head use the same structure of Faster R-CNN (Ren et al. (2015)). At
inference time, the detection head produces detection results for both base categories and novel
categories.

4 LEARNING TO MODEL SPATIAL CORRELATION

Our intuition is that there exists spatial correlation among high-confidence bounding boxes, and
such spatial correlation can be captured to predict ground truth bounding boxes. By representing
the spatial correlation in a class-agnostic heatmap, we can easily learn a mapping from recognition-
based bounding boxes to ground truth bounding boxes for base categories, and then transfer this
mapping to novel categories.

Thus, we propose a spatial correlation module (SCM). SCM is used as a guidance refinement
technique, taking sets of high-confidence bounding boxes from the recognition head, and corre-
spondingly returning pseudo ground truth bounding boxes to the detection head. These pseudo
ground truth boxes act as supervision while training on novel categories. The framework of SCM
is showed in Fig. 3. Within this module, we first generate a class agnostic heatmap based on the
high-confidence bounding boxes predicted by our recognition head, and then we perform detection
on top of the heatmap.

Heatmap synthesis. We want to capture the information about how the high-confidence bounding
boxes interact amongst themselves. Here, we introduce a simple way of achieving this using a
class-agnostic heatmap. For each category existing in the image yc = 1, c ∈ C, we first threshold
and select high-confidence bounding boxes of class c. Then we synthesize a corresponding class-
agnostic heatmap, which is essentially a two-channel feature map of the same size as the original
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Base Novel
Method mean table dog horse mbike person plant sheep sofa train tv mean
OICR 42.1 33.4 29.3 56.3 64.6 8.0 23.5 47.2 47.2 48.3 61.7 42.0
PCL 49.2 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.3

MSD-VGG16 50.6 14.3 69.3 65.4 69.6 2.4 20.5 54.6 34.3 58.3 54.6 44.3
MSD-Ens 53.4 18.3 70.6 66.7 69.8 3.7 24.7 55.0 37.4 58.3 57.3 46.1

MSD-Ens+FRCN 53.9 15.3 72.0 74.4 65.2 15.4 25.1 53.6 54.4 45.6 61.4 48.2
Weight Transfer 68.4 10.4 61.0 58.0 65.1 19.8 19.5 58.0 50.8 58.6 52.7 45.4

Finetune∗ 71.8 17.8 22.9 15.2 71.2 10.2 15.1 61.7 36.6 21.9 61.3 33.4
Two Head∗ 72.9 60.6 33.2 47.7 70.2 3.9 25.5 52.6 58.4 54.7 64.4 47.1

Two Head+∗ 72.4 44.5 29.5 52.4 68.4 5.1 22.6 53.0 55.5 58.6 64.8 45.4
Two Branch∗ 72.7 57.3 30.2 44.2 68.1 3.0 21.4 52.2 53.5 51.2 59.7 44.1

Ours w/o SCM 71.6 62.3 41.9 38.2 73.0 11.3 26.0 60.6 63.8 70.5 65.3 51.3
Ours 72.9 61.0 57.1 63.5 72.0 19.5 24.2 60.9 58.6 68.5 65.5 55.1+3.8

Ours∗ w/o SCM 72.7 66.8 50.4 57.0 71.5 12.1 27.6 57.1 62.7 54.2 64.2 52.4
Ours∗ 72.7 60.9 59.4 70.5 71.0 17.5 24.1 62.0 60.5 62.4 69.1 55.7+3.3

Table 1: Object Detection performance (mAP %) on PASCAL VOC 2007 test set. ∗ indicates
using the structure of OICR in the recognition head. ”MSD-Ens” is the ensemble of AlexNet and
VGG16. ”MSD-Ens+FRCN” indicates using an ensemble model to predict pseudo ground truths
and then learn a Fast-RCNN (Girshick (2015)) using VGG-16.

image. The value at each pixel is the sum and the maximum of confidence over all selected bounding
boxes covering that pixel.

Heatmap detection. We consider each class-agnostic heatmap as a two-channel image, and perform
detection on it. Specifically, we learn a class-agnostic detector on base classes, that we further use
to produce pseudo ground truth bounding boxes for novel objects.

For this task, we use a lightweight one-stage detector, consisting of only five convolutional lay-
ers. We follow the same network architecture and loss as FCOS (Tian et al. (2019)), replacing the
backbone and feature pyramid network with five max pooling layers. In our experiments, we also
compare this tiny detector to a baseline: using three fully-connected layers to regress the ground-
truth location taking the coordinates of high-confidence bounding boxes as input.

Loss of DRN. After introducing our SCM, we can formulate the full loss function for DRN. We use
Lrec, Ldet, and Lscm to indicate the losses from our recognition head, detection head, and spatial
correlation module respectively. λrec, λdet, and λscm are the regularization hyperparameters used
to balance the three separate loss functions. We train our DRN using the following loss:

L = λrecLrec + λdetLdet + λscmLscm (2)

5 EXPERIMENTS

5.1 PASCAL VOC

Setup. PASCAL VOC 2007 and 2012 datasets contain 9, 962 and 22, 531 images respectively for
20 object classes. They are divided into train, val, and test sets. Here we follow previous work
(Tang et al. (2017)) to choose the trainval set (5, 011 images from 2007 and 11, 540 images from
2012). We divide the first 10 classes into base classes and the other 10 classes into novel classes.
To evaluate our methods, we calculate mean of Average Precision (mAP) based on the PASCAL
criteria, i.e., IOU>0.5 between predicted boxes and ground truths.

Implementation details. All our baselines, competitors and our framework are based on VGG16
(Simonyan & Zisserman (2015)) followed most of weakly supervised object detection methods. We
set λrec = 1, λdet = 10, and λscm = 10. We train the whole framework for 20 epochs using SGD
with a momentum of 0.9, a weight decay of 0.0005 and a learning rate of 0.001, which is reduced
by a factor of 10 at 14th epoch. For a stable learning process, we don’t provide supervision from
recognition head to detection head in the first 9 epochs.
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non-voc → voc: test on B = {voc} sixty → twenty: test on B = {twenty}
method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Rec. Head 4.0 15.4 0.9 1.2 5.7 5.8 4.7 16.4 1.3 1.7 8.0 6.9
OICR 4.2 15.7 1.0 1.3 5.5 5.9 4.5 16.6 1.4 2.0 8.2 7.1
PCL 9.2 19.6 - - - - 9.2 19.6 - - - -

Weight T. 9.3 26.4 5.7 5.8 11.7 12.4 8.7 25.5 5.5 5.4 11.5 11.7
Finetune 2.3 7.4 0.3 0.7 3.1 3.3 2.4 7.7 0.2 0.5 2.8 3.0

Two Head 11.0 30.2 6.1 6.2 15.4 15.4 11.3 29.5 5.8 6.3 14.8 15.0
Two Head+ 9.1 26.7 5.4 5.5 12.1 12.3 9.0 27.1 5.4 5.7 11.7 11.6
Two Branch 9.4 26.6 5.6 5.7 12.3 12.4 8.5 24.4 4.5 4.3 11.9 11.9

Ours w/o SCM 12.5 33.6 6.6 7.3 19.2 16.4 12.6 32.3 7.8 7.0 19.4 17.4
Ours 13.9+1.4 36.2+2.6 7.7 6.9 18.8 19.9 14.0+1.4 34.5+2.2 8.9 7.1 19.2 20.6

Table 2: The results on COCO. We compare our method with several strong baselines in § 3.1
and competitors. Our method significantly outperforms these approaches, showing that our cross-
supervised object detector is capable of detecting novel objects in complex multi-object scenes.

Baselines and competitors. We compare against several baselines as mentioned in § 3.1, two
WSOD methods: OICR (Tang et al. (2017)) and PCL (Tang et al. (2018)), and two cross-supervised
object detector: MSD (Zhang et al. (2018a)), weight transfer (Kuen et al. (2019)).

Results. As shown in Table 1, our method outperforms all other approaches by a large margin
(over 7% relative increase in mAP on novel classes). The results are consistent with our discussion
in § 3.1. We note that (1) sharing backbone for the recognition and detection head learns a more
discriminative embedding for novel objects. In Table 1, Two Head∗ boosts the performance by 5
points as compared to only using the recognition head (OICR). (2) A supervision from recognition
head to detection head exploits the full potential of a detection model. By adding the supervision
(Ours∗ w/o SCM ), the result is improved by 5 points as compared to Two Head. (3) Our spatial
correlation module successfully captures the spatial correlation between high-confidence proposals.
It further boosts the performance by 3 points.

non-voc→voc sixty→twenty
method AP50 on B AP50 on B
max 35.5 33.8
sum 36.0 34.0
num 31.5 29.5

max+sum 36.2 34.5
max+num 35.7 34.1
sum+num 35.9 34.2

max+sum+num 36.1 34.2

(a) Ablation on Heatmap synthesis. The re-
sult suggests using two-channel heatmap consists of
maximum confidence and sum of confidence over
proposals covering that position.

non-voc→voc sixty→twenty
method AP50 on B AP50 on B

Fc layer
2 layer 31.0 28.7
3 layer 30.8 28.3
4 layer 30.5 28.5

R-50-FPN 36.4 34.8
4 conv 35.8 33.8FCOS
5 conv 36.2 34.5

w/o SCM 33.6 32.3

(b) Ablation on the structure of SCM. FCOS with
5 conv layers has nearly the best performance and
very few parameters compared to a ResNet-50 back-
bone.

non-voc→voc sixty→twenty
method AP50 on B AP50 on B

WSDDN 35.7 33.8
OICR 36.6 34.7
Ours 36.4 34.5

(c) Ablation on the structure of the recognition
head. OICR has more refinement branches so it be-
haves a little better than our recognition head but
takes double the computation time.

base→novel
dataset method AP50 on A AP50 on B

RPN 76.2 46.1PASCAL VOC SS 72.7 55.7

non-voc→voc RPN 46.3 36.2
SS 42.5 34.5

(d) Ablation on the proposal generator. On PAS-
CAL VOC, there are not enough categories to learn
a good RPN. So, we use selective search and RPN
to generate proposals for PASCAL VOC and COCO
respectively.

Table 3: Ablation study of our method.
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Figure 4: Detection results on novel objects. The results are from our proposed model but with
different heads. The first row shows the results of the recognition head. The second row lists the
results from SCM. The third row displays the results from the detection head.

5.2 COCO

Setup. We train on the COCO train2017 split and test on val2017 split. We simulate the cross-
supervised object detection scenario on COCO by splitting the 80 classes into base and novel classes.
We use a 20/60 split same as Hu et al. (2018), dividing the COCO categories into all the 20 classes
contained in PASCAL VOC and the 60 that are not. We refer to these as the ‘voc’ and ‘non-voc’
category sets. ‘voc→non-voc’ indicates that we take ‘voc’ as our base classes and ‘non-voc’ as our
novel classes. Similarly, we split the first 20 classes into ‘twenty’ and the last 60 classes into ’sixty’.

Implementation details. The implementation details are the same as § 5.1 by default. We train the
whole framework for 13 epochs. There is no supervision from recognition head to detection head in
the first 5 epochs. The learning rate is reduced by a factor of 10 at 8th, and 12th epochs.

Baselines and competitors. Most baselines and competitors are the same as § 5.1. ’Rec. Head’
represents only using our recognition head structure as a weakly supervised object detector.

Results. The results on COCO still support our discussion in § 5.1. Even in complex multi objects
scenes, our DRN outperforms all baselines and competitors by a large margin.

5.3 ABLATION EXPERIMENTS

Heatmap synthesis. In Table 3a, we compare the different methods to synthesize the heatmaps
in the spatial correlation module. For each position in the heatmap, we consider three kinds of
values: the maximum of confidence, the sum of confidence, and the number of proposals covering
the position. This result informs us to use max and sum to create a two-channel heatmap.

Structure of SCM. In Table 3b, we compare different implementations of SCM. We compare the
FCOS (Tian et al. (2019)) with 5 convolutional layers and the standard FCOS with a ResNet-50 (He
et al. (2016)) backbone. We also compare to the regression baseline mentioned in § 4. Considering
the computation cost, we choose FCOS with 5 convolutional layer as our heatmap detector.

Structure of the Recognition head. In Table 3c, we compare different structures for the recognition
head. WSDDN (Bilen & Vedaldi (2016)) and OICR are compared to our structure. The results
support that our model can benefit from a stronger recognition head.

Different proposal generation methods. Table 3d shows the ablation of different ways to generate
proposals. In PASCAL VOC with only 10 base classes, RPN performs worse than selective search.
In COCO with 60 base classes, RPN performs better than selective search.
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Visualization. Fig. 4 shows detection results on novel objects. Images in the first row, the second
row, and the third row are detected by our model from the recognition head, the SCM, and the
detection head respectively. The images in the first row tend to focus on the discriminating parts of
the objects, e.g. the first and the second images contain only a part of the person. It also tends to
detect co-occurring objects, e.g. the fourth image not only detects horse but also a large part of the
person. Our SCM alleviates these problems. It tends to focus on the whole object, e.g. the first and
the third samples detect the whole person instead of only the head. Also, it can correct unsatisfactory
bounding boxes distracted by co-occurring objects, e.g. SCM correctly localizes the horse instead
of localizing both the person and the horse in the fourth example. Obviously, bounding boxes in the
third row are the best, indicating the efficacy of our framework.

6 CONCLUSION

In this paper, we have focused on cross-supervised object detection in realistic settings with complex
imagery. We explore two major ways to build a good cross-supervised object detector: sharing net-
work backbone between a recognition head and a detection head, and learning a spatial correlation
module to bridge the gap between recognition and detection. Significant improvement on PASCAL
VOC and COCO suggests a novel and promising approach for expanding object detection to a much
larger number of categories.
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