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ABSTRACT

Predictive uncertainties can be characterized by two properties—calibration and
sharpness. This paper introduces algorithms that ensure the calibration of any
model while maintaining sharpness. They apply in both classification and regres-
sion and guarantee the strong property of distribution calibration, while being sim-
pler and more broadly applicable than previous methods (especially in the context
of neural networks, which are often miscalibrated). Importantly, these algorithms
achieve long-standing statistical principle that forecasts should maximize sharp-
ness subject to being fully calibrated. Using our algorithms, machine learning
models can under some assumptions be calibrated without sacrificing accuracy:
in a sense, calibration can be a free lunch. Empirically, we find that our methods
improve predictive uncertainties on several tasks with minimal computational and
implementation overhead.

1 INTRODUCTION

Probabilistic forecasts can be characterized by two properties—calibration and sharpness (Gneiting
et al., 2007). Intuitively, calibration means that a 90% confidence interval contains the true outcome
90% of the time. Sharpness means that these confidence intervals are narrow. These qualities are
grounded in the statistics literature on proper scoring rules, and are widely used to evaluate forecasts
(Gneiting and Raftery, 2005; 2007) in domains such as medicine (Saria, 2018), robotic control
(Malik et al., 2019), and human-in-the-loop learning (Werling et al., 2015).

This paper introduces algorithms that ensure the calibration of any predictive machine learning
model while maintaining sharpness. They apply to both classification and regression tasks and
guarantee the strong property of distribution calibration (which generalizes standard quantile and
classification-based calibration; Song et al. (2019)) in any model, including deep learning models,
which are often miscalibrated (Guo et al., 2017). Unlike existing methods for distribution calibration
(Song et al., 2019), ours can be used with any model (not just ones that output Gaussians), are very
simple to implement in differentiable programming frameworks, and have theoretical guarantees.

Importantly, our algorithms achieve for the first time a long-standing statistical principle that fore-
casts should “maximize sharpness subject to being calibrated” proposed by Gneiting et al. (2007).
We prove that under some assumptions this principle is achievable in modern machine learning mod-
els in a black-box manner and without sacrificing overall performance. This lends strong support
for this principle as a way of reasoning about uncertainty in machine learning.

In a sense, calibration is a rare free lunch in machine learning, and we argue that it should be enforced
in predictive models and taken advantage of in downstream applications. Empirically, we find that
our method consistently outputs well-calibrated predictions across a wide range of experiments,
while improving performance on downstream tasks with minimal implementation overhead.

Contributions. In summary, we make three contributions. We propose a new recalibration tech-
nique that (a) is among the only to guarantee distribution calibration besides Song et al. (2019).
Unlike Song et al. (2019) we can (b) recalibrate any parametric distribution (not just Gaussians) and
(c) our method is simpler. While theirs is based on variational inference in Gaussian processes, ours
uses a neural network that can be implemented in a few lines of code, which encourages adoption.
Our method (d) applies to both classification and regression and (e) outperforms methods by Song
et al. (2019) and Kuleshov et al. (2018) as well as Platt and temperature scaling.
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We also formally prove that our technique produces asymptotically distributionally calibrated fore-
casts while minimizing regret. Most methods (e.g., Platt, Kuleshov scaling, Song et al., etc.) do not
have a correctness proof, except for conformal prediction, which is significantly more complex.

Finally, our analysis formalizes the well-known paradigm of Gneiting et al. (2007) and provides the
first method that provably achieves it. This lends strong support for this principle and influences how
one should reason about uncertainty in machine learning. An important takeaway is that calibration
can be achieved in most applications of machine learning with very little cost. As such, calibration
can be a rare free lunch that we believe should be leveraged throughout machine learning.

2 BACKGROUND

2.1 PREDICTIVE UNCERTAINTY IN MACHINE LEARNING

Supervised machine learning models commonly predict a probability distribution over the output
variables — e.g. class membership probabilities or the parameters of an exponential family distribu-
tion. These predictive uncertainties are useful for interpretability, safety, and downstream decision-
making. Aleatoric uncertainty captures the inherent noise in the data, while epistemic uncertainty
arises from not having a large enough dataset to estimate model parameters (Kendall and Gal, 2017).

Notation. Formally, we say that a machine learning forecaster H : X → ∆(Y) outputs a proba-
bility distribution F (y) : Y → [0, 1] in the space ∆(Y) of distributions over y. We use f to denote
the probability density or probability mass function associated with F . The model H is trained on a
labeled dataset xt, yt ∈ X ×Y for t = 1, 2, ..., T of i.i.d. realizations of random variablesX,Y ∼ P,
where P is the data distribution.

2.2 WHAT DEFINES GOOD PREDICTIVE UNCERTAINTIES?

The standard tool in statistics for evaluating the quality of predictive uncertainties is a proper scoring
rule (Gneiting and Raftery, 2007). Formally, a scoring rule S : ∆(Y) × Y → R assigns a “score”
to a probabilistic forecast F ∈ ∆(Y) and a realized outcome y ∈ Y . Given a true distribution
G ∈ ∆(Y) for y, we use the notation S(F,G) for the expected score S(F,G) = Ey∼GS(F, y).

We say that a score S is proper if it is minimized by G when G is the true distribution for y:
S(F,G) ≥ S(G,G) for all F . When S is proper, we also refer to it as a proper loss. An example
of a proper loss is the log-likelihood S(F, y) = log f(y), where f is the probability density or
probability mass function of F . Another common loss is the check score ρτ (y, f) = τ(y − f) if
y ≥ f and (1 − τ)(f − y) otherwise; it can be used to estimate the τ -th quantile of a distribution.
See Table 1 for additional examples.

What are the qualities of a good probabilistic prediction, as measured by a proper scoring rule? It
can be shown that every proper score is a sum of the following terms (Gneiting et al., 2007):

proper loss = calibration−sharpness + irreducible term︸ ︷︷ ︸
refinement term

.

Thus, there are precisely two qualities that define an ideal forecast: calibration and sharpness. We
examine each of them next.

2.3 CALIBRATION AND SHARPNESS — TWO QUALITIES OF AN IDEAL PREDICTION

Formally, calibration can be defined by the equation

P(Y = y | FX = F ) = f(y) for all y ∈ Y , F ∈ ∆(Y), (1)

where X,Y ∼ P are random variables corresponding to the input features and targets, and FX =
H(X) is the forecast at X , itself a random variable that takes values in ∆(Y). We use f to denote
the probability density or probability mass function associated with F .

When Y = {0, 1} and FX is a Bernoulli distribution with parameter p, we can write (1) as
P(Y = 1 | FX = p) = p. This has a simple intuition: the true probability of Y = 1 is p conditioned
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Proper Score Loss Calibration Refinement
L(F,G) Lc(F,Q) Lr(Q)

Logarithmic Ey∼G log f(y) KL(q||f) H(q)
CRPS Ey∼G (F (y)−G(y))2

∫∞
−∞(F (y)−Q(y))2dy

∫∞
−∞Q(y)(1−Q(y))dy

Quantile Eτ∈U [0,1]
y∼G ρτ (y − F−1(τ))

∫ 1

0

∫ F−1(τ)

Q−1(τ)
(Q(y)− τ)dydτ Eτ∈U [0,1]

y∼Q ρτ (y −Q−1(τ))

Table 1: Proper loss functions. A proper loss is a function L(F,G) over a forecast F targeting a
variable y ∈ Y whose true distribution is G and for which S(F,G) ≥ S(G,G) for all F . Each
L(F,G) decomposes into the sum of a calibration loss term Lc(F,Q) (also known as reliability)
and a refinement loss term Lr(Q) (which itself decomposes into a sharpness and an uncertainty
term). Here,Q(y) denotes the cumulative distribution function of the conditional distribution P(Y =
y | FX = F ) of Y given a forecast F , and q(y), f(y) are the probability density functions of Q
and F , respectively. We give three examples of proper losses: the log-loss, the continuous ranked
probability score (CRPS), and the quantile loss.

on predicting it as p. Equation 1 extends beyond binary classification to arbitrary distributions. For
example, if F is a Gaussian with variance σ2, this definition asks that the data distribution condi-
tioned on predicting F also has variance σ2. This recently proposed definition is called distribution
calibration (Song et al., 2019).

A closely related, but weaker concept is quantile calibration (Kuleshov et al., 2018), which asks
that a 90% confidence interval contains the true value 90% of the time. Formally, it can be written
as: P(Y ≤ CDF−1FX

(p)) = p for all p ∈ [0, 1], Quantile calibration is implied by distributional
calibration (Song et al., 2019).

Calibration by itself is not sufficient to produce a useful forecast. For example, it is easy to see that a
binary classifier that always outputs P(Y = 1) as the probability that Y = 1 is calibrated; however
it does not even use the features X and thus cannot be accurate.

In order to be useful, forecasts must also be sharp. Intuitively, this means that predicted confidence
intervals should be as tight as possible around a single value. This is captured by proper scoring
rules as part of a refinement term (see Table 1), which equals an irreducible term minus a sharpness
term (Murphy, 1973; Brocker, 2009). The latter is maximized when we minimize the scoring rule.

Are Modern Machine Learning Models Calibrated And Sharp? Most machine learning mod-
els are not calibrated out-of-the-box (Niculescu-Mizil and Caruana, 2005; Guo et al., 2017). Two
reason for this are the limited expressivity of the model H—we cannot perfectly fit the entirety
of the level curves of the data distribution—and computational approximations—computing extract
predictive uncertainties may be intractable, and approximations are not entirely accurate.

A final reason stems from how models are trained—since we cannot fit a perfect H , standard objec-
tive functions induce a tradeoff between sharp and calibrated forecasts. Next, we will show that by
training models differently, we can achieve calibration without sacrificing performance.

3 ENSURING DISTRIBUTION CALIBRATION IN ANY MODEL

This section introduces algorithms that ensure the distirbutional calibration of any predictive ma-
chine learning model while maintaining sharpness. Unlike existing methods for distribution cali-
bration, ours can be used with any model (not just ones that output Gaussians), are very simple to
implement in differentiable programming frameworks, and have theoretical guarantees.

We first assume there exists a parameterization Φ1 of the probabilities returned by forecaster H: for
each p ∈ ∆(Y) returned by H , there exist parameters φ ∈ Φ1 that describe p. The φ can be the
natural parameters of an exponential family distribution, such as (µ, σ2) describing a Gaussian.

We consider a class of algorithms based on a classic approach called recalibration. First, we train
a base forecaster H to minimize a proper loss L. Then, we train an auxiliary model R : Φ1 → Φ2

(called the recalibrator) over the outputs of H that outputs the parameters φ2 ∈ Φ2 of another
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distribution such that L is minimized. Here Φ2 is a second parameterization of ∆(Y) (possibly the
same). As a result, the forecasts (R ◦H)(X) will be calibrated. We provide details in Algorithm 1.

Algorithm 1 Calibrated Learning of Probabilistic Models.
Input: Model H : X → Φ1, recalibrator R : Φ1 → Φ2, training set D, recalibration set C
Output: Recalibrated model R ◦H : X → Φ2.

1. Fit the base model on D: minH
∑

(x,y)∈D L(H(x), y)

2. Fit the recalibration model R on the output of H on C: minR
∑

(x,y)∈C L ((R ◦H)(x), y)

Implementing this approach requires choosing parameterizations of probabilities Φ1,Φ2, a recali-
bration model R, and an objective L. We discuss these choices below; then we clarify how 1 differs
from existing recalibration algorithms.

Parameterizing Probability Distributions. When fitting a classification model, each distribution
∆(Y) is a categorical and can be parameterized via its K ≥ 2 class membership probabilities. In
regression, most widely used models such as neural networks already output parameterized proba-
bilities, in which the φ are usually the natural parameters of an exponential family model.

In the most general case, if we only have black-box access to a density function or a cumulative
distribution function, we may form a d-dimensional representation by evaluating the distribution at
a grid of d points. For example, if we have black-box access to a quantile function F−1, we may
featurize F via its sequence of quantiles φ(F ) = (F−1(αi))

d
i=1 for some sequence of d levels αi,

possibly chosen uniformly in [0, 1].

In addition to the above techniques, the representation of output probabilities in Φ2 coming from R
can leverage flexible invertible models of the CDF, following methods developed in the normalizing
flow literature, including monotonic neural networks, sum-of-squares polynomials (Wehenkel and
Louppe, 2019; Jaini et al., 2019) spline functions (Muller et al., 2019; Durkan et al., 2019), piece-
wise separable models (Wehenkel and Louppe, 2019), and others.

Choosing a Recalibrator. Ideal recalibrators are highly effective at optimizing the proper loss L
(see Section 4). In a simple setting like binary classification, our task reduces to one-dimensional
density estimation; in such cases we can provably achieve calibration asymptotically by using kernel
density estimation for the recalibrator R, while controlling the kernel width as a function of the
dataset size to trade off overfitting and underfitting (Wasserman, 2006). In regression settings, we
may rely on other non-parametric techniques such as Gaussian processes.

An alternative approach is to rely on expressive neural networks; although their optimization is a
non-convex, they are very effective at fitting proper losses L, feature mature regularization tech-
niques, and can be implemented easily within deep learning frameworks, possibly within the same
computation graph as a neural forecaster H , which can simplify deployment.

In the classification setting, a natural architecture for R is a sequence of dense layers mapping
the simplex ∆K into ∆K . In regression settings, R needs to output a density function: a natural
architecture for this is a mixture density network (MDN; Bishop (1994)).

Choosing a Proper Loss A natural choice of proper loss is the log-loss. It applies in both calibra-
tion and regression; optimizing it is a standard supervised learning problem.

In regression settings, we found that using the quantile loss L = Eτ∈U [0,1]Ey∼Gρτ (y − F−1(τ))
(see Table 1) was numerically stable and produced the best performance. This objective fits a model
Rθ(τ ;φ) to estimate the τ -th conditional quantile F−1(τ) at φ. When Rθ(τ ;φ) is a neural network
that takes in τ and x, we minimize the quantile loss Eτ∈U [0,1]Ey∼Gρτ (y − F−1(τ)) using gradient
descent, approximating both expectations using Monte Carlo (details are in the experiments section).

Comparing Against Song et al. Interestingly, the method of Song et al. (2019) is a special case of
ours when Φ1 consists of Gaussian natural parameters, Φ2 consists of parameters for the Beta link
function, R is a Gaussian process, and L is the log-likelihood. However, the resulting problem can
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only be solved using variational inference, which is slow and complex to implement. Our framework
instead admits simple solutions based on gradient descent.

Comparing Against Other Approaches. Algorithm 1 performs recalibration like many previous
methods (e.g., Platt, Kuleshov et al., Song et al., etc.); it may thus appear to be the same as these
methods. However, that is not the case. First, existing recalibration approaches operate over the
space of probabilities (class probabilities or CDF values); ours operates over functional parameters.
This is what enables it to achieve distribution rather than quantile calibration (Kuleshov et al., 2018).

Our approach also involves novel recalibration objectives (e.g., the quantile divergence in regression)
which differ from the calibration error of Kuleshov et al. (2018). We also use different types of
models (small neural networks instead of isotonic regression) and different optimization procedures
used (stochastic gradient descent instead of variational inference). Thus, our recalibration strategy
is distinct from previous work.

4 THEORETICAL ANALYSIS

Next, we now show that under some assumptions calibration is provably achievable in modern ma-
chine learning models in a black-box manner and without sacrificing overall performance. In that
sense, calibration is a rare free lunch in machine learning.

We start with some notation. We have a recalibration dataset of size T sampled from P and train
a recalibrator R : ∆(Y) → ∆(Y) over the outputs of a base model H to minimize a proper loss
L. We denote the Bayes-optimal recalibrator by B := P(Y = y | H(X)); the distribution of Y
conditioned on the forecast (R ◦ H)(X) is Q := P(Y = y | (R ◦ H)(X)). We are interested
in expectations of various losses over X,Y ; to simplify notation, we omit the variable X , e.g.
E[L(R ◦H,Y )] = E[L(R(H(X)), Y )].

Next, we will assume the following condition under which Algorithm 1 works.
Assumption 1. The model R can minimize expected risk such that w.h.p. we have

E[L(B ◦H,Y )] ≤ E[L(R ◦H,Y )] < E[L(B ◦H,Y )] + δ

where δ > 0, δ = o(T ) is a bound that decreases with T and E[L(B ◦H,Y )] is the irreducible loss.

This assumption implies that the recalibrator can perform density estimation in what is usually a
small number of dimensions (one or two). For some recalibrators, e.g., neural nets, it may not
provably hold (e.g., because of non-convexity). However, neural networks are effective density
estimators in practice, and we can quantify whether they estimate density well on a hold-out set.
This assumption provably holds for many non-parametric density estimation methods.
Fact 1 (Wasserman (2006)). When R implements kernel density estimation and L is the log-loss,
Assumption 1 holds with δ = o(1/T 2/3).

We now prove two key lemmas. We show that Algorithm 1 outputs calibrated forecasts without
reducing the performance of the base model, as measured by regret relative to loss L.
Lemma 1. The model R ◦H is asymptotically calibrated, in the sense that E[Lc(R ◦H,Q)] < δ
for δ = o(T ) w.h.p.

Proof. Recall that the loss E[L(R ◦ H,Y )] decomposes into a sum of calibration and refinement
terms E[Lc(R ◦H,Q)] + E[Lr(Q)] where Q(y) := P(Y = y | (R ◦H)(X)).

As shown by Kull and Flach (2015), refinement further decomposes into a group loss and an irre-
ducible term: E[Lr(Q)] = E[Lg(Q,B ◦H)] + E[L(B ◦H,Y )], where B(Y = y | H(X)) is the
Bayes-optimal recalibrator. The form of the group loss Lg is the same as that of Lc. We may then
write:

E[L(B ◦H,Y )]

Bayes-Optimal Loss

≤ E[Lc(R ◦H,Q)]

Calibration Loss

+E[Lg(Q,B ◦H)]

Group Loss

+E[L(B ◦H,Y )]

Bayes-Opt Loss

= E[L(R ◦H,Y )]

Proper Loss

< E[L(B ◦H,Y )]

Bayes-Optimal Loss

+δ
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where δ > 0, δ = o(T ). In the first equality we used the decomposition of Kull and Flach (2015)
and in the last inequality we used Assumption 1. It follows that E[Lc(R ◦ H,Q)] < δ, i.e. the
calibration loss is small.

Lemma 2. The recalibrated model is asymptotically as good as the base model: E[L(R ◦H,Y )] ≤
E[L(H,Y )] + γ, where γ > 0, γ = o(T ) is a bound that decreases with T .

Proof. The claim holds by empirical risk minimization, since R ◦ H minimizes L, but is more
expressive than H and R can represent the identity map (by Assumption 1).

We now combine these two lemmas to show Algorithm 1 ensures calibration and low regret.

Theorem 3. Algorithm 1 produces a model that minimizes expected risk, while w.h.p. achieving
asymptotically optimal calibration.

Proof. The base model H is trained using empirical risk minimization (ERM). The model R ◦ H
minimizes the same objective L, hence minimizes the same expected risk by ERM theory. Also, by
Lemma 2, the expected risk of R ◦H also asymptotically approaches a lower value as that of H .

By Lemma 1, the model R ◦H produces asymptotically calibrated forecasts w.h.p.

Thus, given enough data, we are guaranteed to produce calibrated forecasts and preserve base model
performance (as measured by L). Thus, calibration is a property that can be achieved in most
applications of machine learning with almost no cost. As such, calibration is a rare free lunch in
machine learning.

Finite-Sample Bounds. Note that our analysis provides finite-sample and not only asymptotic
bounds on the regret and calibration error—the bounds are stated in terms of variables δ, and γ that
are each o(T ). The bound δ on the calibration error directly depends on the finite-sample bound on
the generalization error of the algorithm used as the recalibrator.

Practical Considerations. Assumption 1 suggests that we want to use a model family that can
minimize the expected risk E[L(H(X), Y )] well. Thus, in practice we want to select a highly
flexible algorithms for which we can control overfitting and underfitting. This motivates our ear-
lier advice of using density estimation algorithms—which have provable guarantees—and neural
networks—which are expressive and feature effective regularization techniques

5 WHAT UNCERTAINTIES ARE NEEDED IN MODERN DEEP LEARNING?

Good predictive uncertainties are calibrated and sharp and these two properties yield optimal values
of the log-likelihood and other proper loss functions. Thus, they characterize an ideal forecast. In
practice, however, modern machine learning models do not output such ideal predictions. What then
is the ideal type of forecast that we should aim to obtain from our models?

Gneiting et al. (2007) argue that predictive uncertainties should be maximally sharp subject to being
calibrated. They propose a diagnostic approach based on this principle; this approach is commonly
used in statistics for evaluating the predictive performance of probabilistic models.

In this paper, we also argue for this general principle, but approach it in a prescriptive way — we
claim that this principle should be enforced in modern ML systems, and we show how to do so.
Specifically, we show that any model can be modified to output calibrated uncertainties, and this
property can be provably achieved without sacrificing performance.

5.1 CALIBRATED RISK MINIMIZATION

We formalize the intuition behind ”maximizing sharpness subject to being calibrated” as follows.
We argue that we should be training models to minimize expected risk (as measured by a proper
loss) subject to being perfectly calibrated. We call this principle calibrated risk minimization.
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Definition 5.1 (Calibrated Risk Minimization). We select a modelH that minimizes the constrained
expected risk

min
H

E[L(H(X), Y )] subject to E[Lc(H(X), Q))] = 0,

where L is a proper scoring rule, Lc is its associated calibration loss derived from the calibration-
reliability decomposition of L, and Q(y) := P(Y = y | FX = F ).

Recall that a proper loss L(F,G) decomposes into a sum of calibration Lc(H(X), Q) and reliability
Lr(Q); the latter equals an irreducible term minus sharpness. Thus, by minimizing L(F,G) subject
to Lc(H(X) = 0, we are maximizing sharpness subject to calibration (Gneiting et al., 2007).

Note that a special case of the above principle is calibrated maximum likelihood, in which we seek a
model that maximizes the expected log-likelihood EX,Y logFX(Y ) under the calibration constraint
that EX,Y KL(Q || F ) = 0.

Machine learning models are normally trained to minimize expected risk; our principle asks that
in addition they should be calibrated. Our main result (Theorem 3) shows that this criterion is
achievable.

5.2 WHY DO WE NEED CALIBRATED AND SHARP UNCERTAINTIES?

Probabilistic models are important building blocks of machine learning systems in many domains—
including medicine, robotics, industrial automation, and others. Calibration is not difficult to achieve
in many of these domains; hence, we argue that it should be enforced in predictive models, which
will unlock the following set of benefits in downstream applications.

Safety and Interpretability. Good predictive uncertainties are important for model interpretabil-
ity: in user-facing applications, humans make decisions based on model outputs and need to assess
the confidence of the model, for example when interpreting an automated medical diagnosis. Cal-
ibration is also important for model safety: in areas such as robotics, we want to minimize the
probability of adverse outcomes (e.g., a crash), and estimating these outcomes’ probabilities is an
important step for that (Berkenkamp et al., 2017).

Model-Based Planning. More generally, good predictive uncertainties also improve downstream
decision-making applications such as model-based planning (Malik et al., 2019), a setting in which
agents learn a model of the world to plan future decisions (Deisenroth and Rasmussen, 2011). Plan-
ning with a probabilistic model improves performance and sample complexity, especially when
representing the model using a deep neural network. and improves the cumulative reward and the
sample complexity of model-based agents (Rajeswaran et al., 2016; Chua et al., 2018).

Efficient Exploration. Balancing exploration and exploitation is a common challenge in many
applications on machine learning such as reinforcement learning, Bayesian optimization, and ac-
tive learning. When probabilistic models are uncalibrated, inaccurate confidence intervals might
incentivize the model to explore ineffective actions, degrading performance. Calibrated uncertain-
ties have been shown to improve decision-making in bandits (Malik et al., 2019) and likely to extend
to Bayesian optimization and active learning as well.

Other Applications. The importance of accurate confidence estimates has been highlighted by
practitioners in many fields, including medicine (Saria, 2018), meteorology (Raftery et al., 2005),
and natural language processing (Nguyen and O’Connor, 2015). Accurate confidence estimates also
play an important in computer vision applications, such as depth estimation (Kendall and Gal, 2017).

6 EXPERIMENTS

6.1 SETUP

Datasets. We use a number of UCI regression datasets varying in size from 194 to 8192 training
instances; each training input may have between 6 and 159 continuous features. We randomly use
25% of each dataset for testing, and use the rest for training. We also perform image classification
on the following standard datasets: MNIST, SVHN, CIFAR10.
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Bayesian Linear Regression
Uncalibrated Kuleshov et al. Song et al. Ours

MAE MAPE CHK MAE MAPE CHK MAE MAPE CHK MAE MAPE CHK
dataset

mpg 2.456 0.114 0.921 2.465 0.114 0.916 2.498 0.113 0.915 2.398 0.113 0.902
boston 3.459 0.171 1.392 3.399 0.165 1.365 3.387 0.164 1.372 3.349 0.169 1.312
yacht 6.171 3.800 2.438 5.964 4.802 2.379 1.502 1.326 1.271 0.908 0.336 0.352
wine 0.628 0.106 0.240 0.627 0.105 0.239 0.637 0.106 0.241 0.628 0.106 0.240
crime 0.516 0.087 0.202 0.514 0.086 0.202 0.526 0.092 0.205 0.516 0.086 0.198
auto 0.635 0.058 0.251 0.629 0.057 0.250 0.635 0.062 0.258 0.636 0.058 0.250
cpu 39.896 0.647 15.871 39.086 0.636 15.463 35.166 0.462 13.915 28.160 0.324 13.615
bank 39.508 0.590 17.478 39.148 0.568 16.639 34.115 0.424 15.426 29.314 0.387 14.274

Bayesian Neural Network
Uncalibrated Kuleshov et al. Song et al. Ours

MAE MAPE CHK MAE MAPE CHK MAE MAPE CHK MAE MAPE CHK
dataset

mpg 2.736 0.122 1.198 2.973 0.127 1.176 2.678 0.118 1.101 2.601 0.119 1.083
boston 2.966 0.147 1.237 3.003 0.141 1.206 3.305 0.171 1.181 2.983 0.144 1.404
yacht 3.539 0.592 1.535 3.772 0.516 1.519 3.375 0.498 1.511 3.175 0.470 1.510
wine 0.625 0.105 0.252 0.630 0.104 0.241 0.623 0.109 0.239 0.621 0.103 0.238
crime 0.498 0.085 0.195 0.487 0.083 0.192 0.488 0.082 0.192 0.491 0.083 0.192
auto 0.625 0.059 0.250 0.623 0.058 0.246 0.640 0.060 0.248 0.644 0.061 0.248
cpu 74.001 0.518 35.528 71.033 0.633 28.683 68.428 0.641 31.810 66.428 0.630 31.318
bank 96.088 0.722 46.022 90.887 1.105 44.101 87.096 1.103 41.192 85.096 0.822 39.257

Deep Ensemble
Uncalibrated Kuleshov et al. Song et al. Ours

MAE MAPE CHK MAE MAPE CHK MAE MAPE CHK MAE MAPE CHK
dataset

mpg 7.667 0.288 3.556 11.858 0.471 5.207 9.573 0.364 3.639 9.010 0.358 3.538
boston 8.427 0.328 3.820 12.860 0.508 5.495 8.132 0.321 3.712 8.004 0.318 3.623
yacht 9.406 0.774 4.604 10.836 1.684 4.932 9.459 2.211 4.312 9.359 2.012 4.278
wine 0.715 0.132 0.308 0.701 0.122 0.276 0.695 0.128 0.269 0.690 0.123 0.268
crime 0.685 0.115 0.255 0.779 0.124 0.344 0.684 0.113 0.251 0.686 0.115 0.252
auto 0.862 0.084 0.309 0.862 0.084 0.314 0.878 0.091 0.352 0.868 0.088 0.301
cpu 58.101 0.505 20.095 57.333 0.543 18.352 57.982 0.540 18.810 55.428 0.520 17.448
bank 59.088 0.512 21.216 58.731 0.509 21.087 57.493 0.498 20.596 55.869 0.482 19.196

Table 2: Calibration and accuracy on UCI regression datasets. We evaluate Bayesian linear regression,
Bayesian neural networks, and deep ensembles using mean average error (MAE), mean absolute percent er-
ror (MAPE), and the check score (CHK); we compare against Kuleshov et al. (2018) and Song et al. (2019).

Models. Our first model is Bayesian Ridge Regression (MacKay, 1992). It uses a spherical Gaus-
sian prior over the weights and a Gamma prior over the precision parameter. Posterior inference is
performed in closed form as the prior is conjugate.

We also test a number of deep neural networks. We use variational dropout (Gal and Ghahramani,
2016) to produce probabilistic predictions. In our UCI experiments, we use fully-connected feedfor-
ward neural networks with two layers of 128 hidden units with a dropout rate of 0.5 and parametric
ReLU non-linearities. We use convolutional neural networks (CNNs) on the image classification
tasks. These are formed by fine-tuning a ResNet50 architecture on the training split for each dataset.

We also compare against a popular uncertainty estimation method recently developed specifically for
deep learning models: deep ensembles (Lakshminarayanan et al., 2017). Deep ensembles average
the predictive distributions of multiple models; we ensembled 5 neural networks, each having the
same architecture as our standard model.

Our recalibrator R was also a densely connected neural network with two fully connected hidden
layers of 20 units each and parametric ReLU non-linearities. We added dense skip connections be-
tween the layers. In regression experiments, we featurized input distributions F using nine quantiles
[0.1, ..., 0.9]. We trained R using the quantile regression version of Algorithm 1; we concatenated
the quantile parameter τ ∈ [0, 1] to the featurization of F . In classification experiments, the inputs
and the ouputs of R are class probabilities, and R is trained using the log-likelihood maximization
version of Algorithm 1. All other architectural details are unchanged.

We did not observe significant overfitting in our experiments. We believe overfitting is mitigated by
the fact that we perform quantile regression and thus learn a complex distribution function that is
not easy to overfit.
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6.2 REGRESSION EXPERIMENTS ON UCI DATA

We report the results of our regression experiments on the UCI datasets in Table 2. We evaluate the
quality of forecasts using a check score ρτ (y, f) = τ(y − f) if y ≥ f and (1 − τ)(f − y) as in
Song et al. (2019); we average it over nine quantile levels τ ∈ 0.1, ..., 0.9. We measure regression
performance using the mean absolute percent error and mean average error.

Our method improves over the accuracies and uncertainties of Kuleshov et al. (2018), and in many
cases over those of Song et al. (2019) on Bayesian linear regression, Bayesian neural networks, and
deep ensembles, without ever being worse. Note that also that out method is simpler and easier to
implement than that of Song et al. (2019) (it does not require implementing variational inference),
and applies to any input distribution, not just Gaussians.

6.3 CLASSIFICATION EXPERIMENTS ON MNIST, SVHN, CIFAR10

MNIST SVHN CIFAR10

Base Model
Accuracy 0.9952 0.9508 0.9179
Calibration 0.3166 0.5975 0.5848

Platt Scaling
Accuracy 0.9952 0.9508 0.9181
Calibration 0.2212 0.3278 0.2233

Ours
Accuracy 0.9951 0.9509 0.9163
Calibration 0.1030 0.2674 0.1091

Table 3: Performance on Image Classification

We report the results of the image classification
experiments in Table 3. We measure perfor-
mance using accuracy and calibration error of
Kuleshov et al. (2018) on the test set. We report
these metrics for baseline and calibrated ver-
sions of convolutional neural network classifier.
We perform recalibration with a simple soft-
max regression (a multi-class generalization of
Platt scaling) and with the neural network re-
calibrator. The best uncertainties are produced
by our method. Recalibrated and base models
achieve similar levels of accuracy.

7 PREVIOUS WORK

Probabilistic Forecasting. More modern discussions of probabilistic forecasting can be found in
the literature on meteorology (Gneiting and Raftery, 2005). This influential work appears in meth-
ods weather forecasting applications systems (Raftery et al., 2005). Most previous work focuses
on classification, but recent work (Gneiting et al., 2007; Kuleshov et al., 2018) extends classical
methods to regression.

Probabilistic forecasting has been studied extensively in the statistics literature (Murphy, 1973;
Dawid, 1984), mainly in the context of evaluation using proper scoring rules (Gneiting and Raftery,
2007). Proper scores measure calibration and sharpness in classification (Murphy, 1973) and regres-
sion (Hersbach, 2000).

Calibration. Recalibration is a widely used approach for improving probabilistic forecasts. It
takes it roots in the classification setting, where Platt scaling (Platt, 1999) and isotonic regression
(Niculescu-Mizil and Caruana, 2005) are two widely used algorithms. The have been extended to
multi-class (Zadrozny and Elkan, 2002), structured (Kuleshov and Liang, 2015), and online predic-
tion Kuleshov and Ermon (2017). There is significant recent interest in calibration in deep learning
(Guo et al., 2017; Lakshminarayanan et al., 2017; Gal et al., 2017; Kuleshov et al., 2018).

8 CONCLUSION

We take inspiration from the statistics literature and argue that predictive uncertainties should be
evaluated by proper scoring rules, which measure two specific qualities of probabilistic predictions:
calibration and sharpness. Gneiting et al. (2007) argued that predictive uncertainties should maxi-
mize calibration subject to sharpness and used this paradigm to evaluate forecasts. We formalize the
paradigm of Gneiting et al. (2007) into a novel learning principle called calibrated risk minimization
and propose a general algorithm that meets the requirements of this paradigm. Overall, we show
that calibration is a property that can be achieved in predictive models with almost no cost. As such,
calibration is a rare free lunch that should be enforced throughout applications of machine learning.
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