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Abstract

Differentially Private Federated Learning (DPFL) is an emerging field with many1

applications. Gradient averaging based DPFL methods require costly commu-2

nication rounds and hardly work with large-capacity models, due to the explicit3

dimension dependence in its added noise. In this paper, inspired by the non-4

federated knowledge transfer privacy learning methods, we design two DPFL5

algorithms (AE-DPFL and kNN-DPFL) that provide provable DP guarantees for6

both instance-level and agent-level privacy regimes. By voting among the data7

labels returned from each local model, instead of averaging the gradients, our8

algorithms avoid the dimension dependence and significantly reduces the commu-9

nication cost. Theoretically, by applying secure multi-party computation, we could10

exponentially amplify the (data-dependent) privacy guarantees when the margin11

of the voting scores are distinctive. Empirical evaluation on both instance and12

agent level DP is conducted across five datasets. When aligning privacy cost the13

same, we show 2% to 12% higher accuracy compared to DP-FedAvg, or aligning14

accuracy the same, we show that less than 65% privacy cost is achieved.15

1 Introduction16

Federated learning (FL) [McMahan et al., 2017, Bonawitz et al., 2017b, Mohassel and Zhang, 2017,17

Smith et al., 2017] is an emerging paradigm of distributed machine learning with a wide range of18

applications [Kairouz et al., 2019]. FL allows distributed agents to collaboratively train a centralized19

machine learning model without sharing each of their local data, thereby sidestepping the ethical and20

legal concerns that arise in collecting private user data for the purpose of building machine-learning21

based products and services.22

The workflow of FL is often enhanced by secure multi-party computation [Bonawitz et al., 2017b]23

(MPC) so as to handle various threat models in the communication protocols, which provably ensures24

that agents can receive the output of the computation (e.g., the sum of the gradients) but nothing in25

between (e.g., other agents’ gradients).26

However, MPC alone does not protect the agents or their users from inference attacks that use only27

the output, or combine the output with auxiliary information. Extensive studies demonstrate that28

these attacks may lead to a blatant reconstruction of proprietary datasets [Dinur and Nissim, 2003],29

high-confidence identification of individuals (a legal liability for the participating agents) [Shokri30

et al., 2017], or even completion of social security numbers [Carlini et al., 2019]. Motivated by31

these challenges, there have been a number of recent efforts [Truex et al., 2019, Geyer et al., 2017,32

McMahan et al., 2018] in developing federated learning methods with differential privacy (DP)33

[Dwork et al., 2006], which is a well-established definition of privacy that provably prevents such34

attacks.35

Existing methods in differentially private federated learning (DPFL), e.g., DP-FedAvg [Geyer et al.,36

2017, McMahan et al., 2018] and the recent state-of-the-art DP-FedSGD [Truex et al., 2019], are37
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predominantly noisy gradient based methods, which build upon the NoisySGD method, a classical38

algorithm in (non-federated) DP learning [Song et al., 2013, Bassily et al., 2014, Abadi et al.,39

2016]. They work by iteratively aggregating (multi-)gradient updates from individual agents using a40

differentially private mechanism. A notable limitation for this approach is that they require clipping41

the ℓ2 magnitude of gradients to a threshold S and adding noise proportional to S to every coordinate42

of the high dimensional parameters from the shared global model. The clipping and perturbation steps43

introduce either large bias (when S is small) or large variance (when S is large), which interferes with44

convergence of SGD, which makes scaling to large-capacity models difficult. In Sec. A, we concretely45

demonstrate these limitations with examples and theory. Particularly, we show that FedAvg may46

fail to decrease the loss function using gradient clipping, and DP-FedAvg requires many outer-loop47

iterations (i.e., many rounds of communication to synchronize model parameters) to converge under48

differential privacy.49

In this paper, we consider a fundamentally different DP learning setting known as the Knowledge50

Transfer model [Papernot et al., 2017] (a.k.a. the Model-Agnostic Private learning model [Bassily51

et al., 2018]). This model requires an unlabeled dataset to be available in the clear, which makes52

this setting slightly more restrictive. However, when such a public dataset is indeed available (it53

often is in federated learning with domain adaptation, see, e.g., Peterson et al. [2019], Mohri et al.54

[2019], Peng et al. [2019b]), it could substantially improve the privacy-utility tradeoff in DP learning55

[Papernot et al., 2017, 2018, Zhu et al., 2020].56

The goal of this paper is to develop DPFL algorithms under the knowledge transfer model, for which57

we propose two algorithms (AE-DPFL and kNN-DPFL ), that further develop from the non-distributed58

Private-Aggregation-of-Teacher-Ensembles (PATE) [Papernot et al., 2018] and Private-kNN [Zhu59

et al., 2020] to the FL setting. We discover that the distinctive characteristics of these algorithms60

make them natural and highly desirable for DPFL tasks. Specifically, the private aggregation is now61

essentially privately releasing “ballot counts” in the (one-hot) label space, instead of the parameter62

(gradient) space. This naturally avoids the aforementioned issues associated with high dimensionality63

and gradient clipping. Instead of transmitting the gradient update, transmitting the vote of the “ballot64

counts” tremendously reduce the communication cost. Moreover, many iterations of the model update65

using noise addition with SGD, leads to poor privacy guarantee, where our methods exactly avoid66

this and use voting on labels, thus significantly outperform the state-of-the-art DPFL methods.67

Our contributions are summarized in four folds.68

1. We construct examples to demonstrate that DP-FedAvg (a) may fail due to gradient clipping69

and (b) requires many rounds of communications (see Section Challenge in the appendix);70

while our approach naturally avoids both limitations.71

2. We design two voting-based distributed algorithms that provide provable DP guarantees on72

both agent-level and instance (of-each-agent)-level granularity, which makes them suitable for73

both well-studied regimes of FL: (a) distributed learning from on-device data; (b) collaboration74

of a few large organizations.75

3. We demonstrate “privacy-amplification by ArgMax” by a new MPC technique [Dery et al.,76

2019] — our proposed private voting mechanism enjoys an exponentially stronger (data-77

dependent) privacy guarantee when the “winner” wins by a large margin.78

4. Extensive evaluation demonstrates that our method systematically improves the privacy-utility79

trade-off over DP-FedAvg and DP-FedSGD, and that our methods are more robust towards80

distribution-shifts across agents.81

A remark of our novelty. Though AE-DPFL and kNN-DPFL are algorithmically similar to the82

original PATE [Papernot et al., 2018] and Private-KNN [Zhu et al., 2020], they are not the same and83

we facilitate them to a new problem — federated learning. The facilitation itself is nontrivial and84

requires substantial technical innovations. We highlight three challenges below.85

To begin with, several key DP techniques that contribute to the success of PATE and Private-kNN86

in the standard settings are no longer applicable (e.g., privacy amplification by sampling and noisy87

screening). This is partially because in standard private learning, the attacker only sees the final88

models; but in FL, the attacker can eavesdrop in all network traffic and could be a subset of the agents89

themselves.90

Moreover, PATE and Private-kNN only provide instance-level DP. We show AE-DPFL and kNN-91

DPFL also satisfy the stronger agent-level DP. AE-DPFL’s agent-level DP parameter is, interestingly,92
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Figure 1: The structural difference of our methods to DP-FedAvg and DP-FedSGD. DP-FedAvg and
AE-DPFL are for agent-level DP. DP-FedSGD and kNN-DPFL are for instance-level DP.

a factor of 2 better than its instance-level DP parameter. kNN-DPFL in addition enjoys a factor of k93

amplification for the instance-level DP.94

Thirdly, a key challenge of FL is data heterogeneity of individual agents. Methods like PATE95

randomly split the dataset so each teacher is identically distributed, but this assumption is violated96

with heterogeneous agents. Similarly, methods like Private-kNN have also been demonstrated only97

under homogeneous settings. In contrast, our proposed methods – AE-DPFL and kNN-DPFL –98

exhibit robustness to data heterogeneity and domain shifts, as demonstrated in our experiments. Note99

that techniques like domain adaptation may lead to further complementary benefits, but we defer its100

exploration to future work, while focusing our scope here on novel techniques for DPFL.101

2 Preliminary102

Differential privacy [Dwork et al., 2006] is a quantifiable definition of privacy that provides provable103

guarantees against identification of individuals in a private dataset.104

Definition 1. Differential Privacy: A randomized mechanismM : D → R with a domain D and105

rangeR satisfies (ϵ, δ)-differential privacy, if for any two adjacent datasets D,D′ ∈ D and for any106

subset of outputs O ⊆ R, it holds that Pr[M(D) ∈ O] ≤ eϵPr[M(D′) ∈ O] + δ.107

The definition indicates that one could not distinguish between D and D′ therefore protecting the108

“delta” between D,D′. Depending on how adjacency is defined, this “delta” comes with different109

semantic meaning. We consider two levels of granularity:110

Definition 2. Agent-level DP: When D′ is constructed by adding or removing an agent from D (with111

all data points from that agent).112

Definition 3. Instance-level DP: When D′ is constructed by adding or removing one data point from113

any of the agents.114

The above two definitions are each important in particular situations. For example, when a smart115

phone app jointly learns from its users’ text messages, it is more appropriate to protect each user as a116

unit, which is agent-level DP. In another situation, when a few hospitals would like to collaborate117

on a patient study through federated learning, obfuscating the entire dataset from one hospital is118

meaningless, which makes instance-level DP better-suited to protect an individual patient from being119

identified.120

DPFL Baselines: DP-FedAvg [Geyer et al., 2017, McMahan et al., 2018] (Figure 1), a representative121

DPFL algorithm, when compared to FedAvg, it enforces clipping of per-agent model gradient to a122

threshold S and adds noise to the scaled gradient before it is averaged at the server, which ensures123

agent-level DP. DP-FedSGD [Truex et al., 2019, Peterson et al., 2019], is one of the state-of-the-arts124

that focus on instance-level DP. It performs NoisySGD [Abadi et al., 2016] for a fixed number of125

iterations at each agent. The gradient updates are averaged on each communication round at the126

server, as shown in Figure 1.127

3 Our Approach128

We propose two voting-base algorithms, termed aggregation ensemble DPFL “AE-DPFL” and k129

Nearest Neighbor DPFL “kNN-DPFL”. Each algorithm first privately labels a subset of data from the130

server and then trains a global model using pseudo-labeled data.131
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3.1 Aggregation Ensemble - DPFL132

In AE-DPFL (Algorithm 1), each agent i trains a local agent model fi using its own private local data.133

The local model is never revealed to the server but only used to make predictions for unlabeled data134

(queries). For each query xt, every agent i adds Gaussian Noise to the prediction (i.e., C-dimensional135

histogram where each bin is zero except the fi(xt)-th bin is 1). The “pseudo label” is achieved with136

the majority vote returned by aggregating the noisy predictions from the local agents.137

For instance-level DP, the spirit of our method shares with PATE, in the aspect of by adding or138

removing one instance, it can change at most one agent’s prediction. The same argument also139

naturally applies to adding or removing one agent. In fact we gain a factor of 2 in the stronger140

agent-level DP due to a smaller sensitivity in our approach (see Theorem 4).141

Another important difference is that in the original PATE, the teacher models are trained on I.I.D data142

(random splits of the whole private data), while in our case, the agents are naturally present with143

different distributions. We propose to optionally use domain adaptation techniques to mitigate these144

differences when training the agents.145

3.2 kNN - DPFL146

From Definition 2 and 3, preserving agent-level DP is generally more difficult than the instance-147

level DP. We find that for AE-DPFL, the privacy guarantee for instance-level DP is weaker than its148

agent-level DP guarantee (see Theorem 4). To amplify the instance-level DP, we now introduce our149

kNN-DPFL.150

As in Algorithm 2, each agent maintains a data-independent feature extractor ϕ, i.e., an Ima-151

geNet [Deng et al., 2009] pre-trained network without the classifier layer. For each unlabeled152

query xt, agent i first finds the ki nearest neighbors to xt from its local data by measuring the153

Euclidean distance in the feature spaceRdϕ . Then, fi(xt) outputs the frequency vector of the votes154

from the nearest neighbors, which equals to 1
k (
∑k

j=1 yj), where yj ∈ RC indicates the one-hot155

vector of the ground-truth label. Subsequently, f̃i(xt) from all agents are privately aggregated with156

the argmax of the noisy voting scores returned to the server.157

Our kNN-DPFL differs from Private-kNN in that we apply kNN on each agent’s local data instead of158

the entire private dataset. This distinction together with MPC allows us to receive up to kN neighbors159

while bounding the contribution of individual agents by k. Comparing to AE-DPFL, this approach160

enjoys a stronger instance-level DP guarantee since the sensitivity from adding or removing one161

instance is a factor of k/2 times smaller than that of the agent-level (see the proof in Theorem 4).162

How to implement MPC-vote? Dery et al. [2019] assumes a set of (honest and non-colluding)163

external entities, named talliers, T = {T1, ..., TJ}. Then, each agent applies secret sharing for164

creating J shares of the private ballots (f̃i(xt) in our case), and distributing them among the J talliers.165

After receiving the ballot shares from all agents, the tallier will compute the sum of share vectors166

and find the index y ∈ {1, ..., C} with the highest scores and send that to the server. We refer the167

reader to Protocol 1 in Dery et al. [2019] for a detailed procedure. We highlight that using MPC-vote168

(only the top-one index is revealed to the server) instead of MPC-sum results in a stronger differential169

privacy guarantee, as discussed in the next section.170

3.3 Privacy Analysis171

Our privacy analysis is based on Renyi differential privacy (RDP) [Mironov, 2017]. We defer the172

background about RDP, its connection to DP and all proofs of our technical results to the appendix173

RDP section.174

Theorem 4 (Privacy guarantee). Let AE-DPFL and kNN-DPFL answer Q queries with noise scale σ.175

For agent-level protection, both algorithms guarantee (α, Qα
2σ2 )-RDP for all α ≥ 1. For instance-level176

protection, AE-DPFL and kNN-DPFL obey (α, Qα
σ2 ) and (α, Qα

kσ2 )-RDP respectively.177

Remark 1. Theorem 4 suggests that both algorithms achieve agent-level and instance-level differ-178

ential privacy. With the same noise injection to the agent’s output, kNN-DPFL enjoys a stronger179

instance-level DP (by a factor of k/2) compared to its agent-level guarantee, while AE-DPFL’s180

instance-level DP is weaker by a factor of 2. Since AE-DPFL allows an easy-extension with the do-181

main adaptation technique, we choose to use AE-DPFL for the agent-level DP and apply kNN-DPFL182

for the instance-level DP in the experiments.183
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Algorithm 1 AE-DPFL with MPC-Vote
input Noise level σ, unlabeled public data DG,

integer Q.
1: Train local model fi using Di or using

(Di,DG) with any domain adaptation tech-
niques.

2: for t = 0, 1, ..., Q, pick xt ∈ DG do
3: for each agent i in 1, ..., N (in parallel)

do
4: f̃i(xt) = fi(xt) +N (0, σ2

N IC).
5: end for
6: ỹt = argmaxy∈{1,...,C}[

∑N
i=1 f̃i(xt)]y

via MPC.
7: end for

output A global model θ trained using
(xt, ỹt)

Q
t=1

Algorithm 2 kNN-DPFL with MPC-Vote
input Noise level σ, unlabeled public data DG,

integer Q, feature map ϕ.
1: for t = 0, 1, ..., Q, pick xt ∈ DG do
2: for each agent i in 1, ..., N (in parallel)

do
3: Apply ϕ on Di and xt

4: y1, ..., yk ← labels of the k nearest
neighbor.

5: f̃i(xt) =
1
k (
∑k

j=1 yj) +N (0, σ2

N IC)
6: end for
7: ỹt = argmaxy∈{1,...,C}[

∑N
i=1 f̃i(xt)]y

via MPC.
8: end for

output A global model θ trained using
(xt, ỹt)

Q
t=1

Communication Cost: Finally, we find that our methods are embarrassingly parallel as each agent184

work independently without any synchronization. Overall, we reduce the (per-agent) up-stream185

communication cost from d · T floats (model size times T rounds) to C · Q, where C is number186

of classes and Q is the number of data points. Moreover, the communication overheads due to187

MPC protocols approach a multiplicative constant over the transmitted data for both MPC-sum and188

MPC-vote ([Bonawitz et al., 2017a, Dery et al., 2019]).189

4 Experimental Results190

In this section, we apply our AE-DPFL for agent-level DP and kNN-DPFL for instance-level DP191

based on their distinctive characteristics in privacy guarantee.192

4.1 Agent-level DP Evaluation193

To investigate various heterogeneous scenarios, we consider: (1) non-I.I.D partition of local data194

(MNIST); (2) data across agents and the server are drawn from different domains (Digit Datasets).195

Datasets # Agents Methods Accuracy (%) ϵ

MNIST (non-I.I.D) 100
FedAvg 97.8± 0.1 -

DP-FedAvg 84.2± 0.2 4.3
AE-DPFL (Ours) 86.1± 0.2 4.3

SVHN, MNIST 200
FedAvg 87.6± 0.1 -

FedAvg+DA 86.9± 0.1 -
DP-FedAvg 76.3± 0.3 3.7

DP-FedAvg+DA 71.2± 0.4 3.6
→ USPS (non-I.I.D) AE-DPFL (Ours) 83.8± 0.2 3.6

AE-DPFL+DA (Ours) 92.5± 0.2 2.8

Table 1: Agent-level DP Evaluation. We set δ = 10−3 for all datasets. For MNIST, each local agent
is with 6 digits. Different local agents do not share exactly the same 6 digits, which is a non-I.I.D
setting. Further, we assign SVHN and MIST for local agents and USPS for the server, which is a
typical non-I.I.D with domain shift setting.

MNIST Dataset with Non-I.I.D Partition: We choose a similar experimental setup as the original196

FedAvg [McMahan et al., 2017] and DP-FedAvg [Geyer et al., 2017] did. We divide the training set197

of the sorted MNIST into 100 agents, such that each agent will have samples from 6 digits only. This198

way, each agent gets 600 data points from 6 classes. We split 30% of the testing set in MNIST as the199

available unlabeled public data and the remaining testing set used for testing.200

Digit Datasets Evaluation: MNIST, SVHN and USPS are put together termed as Digit datasets201

[LeCun et al., 1998, Netzer et al., 2011]. It is a controlled setting to mimic the real situations, where202

distribution of agent-to-server or agent-to-agent can be different. Based on the size of each dataset,203
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Network Methods A,C,D →W (Acc. %) ϵ A,C,W → D(Acc.) ϵ

AlexNet

FedAvg 90.5± 0.1 - 96.8± 0.1 -
DP-FedAvg 28.1± 0.7 46.6 48.2± 0.8 47.1
DP-FedSGD 32.6± 0.9 4.1 48.3± 0.9 4.0
DP-FedSGD 75.2± 0.5 12.4 83.7± 0.6 7.9

kNN-DPFL (σ = 15, Ours) 75.4± 0.3 3.9 84.3± 0.3 3.7

ResNet50
FedAvg 96.5± 0.1 - 97.8± 0.1 -

DP-FedSGD 25.8± 0.6 4.0 42.7± 0.5 3.9
kNN-DPFL (σ = 25, Ours) 86.3± 0.4 2.8 91.9± 0.2 2.0

Table 2: Instance-level DP on Office-Caltech dataset for non-I.I.D setting. Total number of local
agents is 3. We set δ = 10−4.

we simulate 140 agents using SVHN with 3000 records each and 60 agents using MNIST with 1000204

records each. We split 3000 unlabeled records from USPS at server and the rest data is used for205

testing.206

We notice that DP-FedAvg and FedAvg never see the server distribution. To boost those two algo-207

rithms, we further apply a standard domain adaptation (DA) technique — adversarial training [Ganin208

et al., 2016] on top, denoted as DP-FedAvg+DA and FedAvg+DA, respectively. As a consequence,209

their local training involves both local data and unlabeled data from the server. Similarly, we define210

AE-DPFL+DA as the DA extension of AE-DPFL, where each teacher (agent) model is trained with211

the same DA technique as that in DP-FedAvg+DA.212

In Table 1, we observe that when the privacy cost ϵ of DP-FedAvg and AE-DPFL is close, our method213

significantly improves the accuracy from 76.3% to 83.8%. (2) The further improved accuracy 92.5%214

of AE-DPFL+DA demonstrates that our framework can orthogonally benefit from DA techniques,215

where it is highly uncertain yet for the gradient-based methods. (3) Both FedAvg and DP-FedAvg216

perform better than their DA variants; therefore we will only use DP-FedAvg in the following217

experiments. This result is well expected, as FL with domain adaptation is more closely related to218

the multi-source domain adaptation [Peng et al., 2019a]. Combining FedAvg with the one-source219

DA methods implies averaging different trajectories towards the server’s distribution, which may220

not work in practice. Similar learning bound based observation has been investigated in Peng et al.221

[2019b] and it remains unclear how to privatize the multi-source domain adaptation approach. On the222

other hand, leveraging the majority vote is more stable against the distribution shift. We conjecture223

this is because whenever there is a high consensus among the vote counts, the returned label remains224

unchanged if the distribution of some agents is slightly perturbed. In contrast, averaging trajectories225

in such case may diverge the optimization procedure directly.226

4.2 Instance-level DP Evaluation227

We investigate the instance-level DP using datasets Office-Caltech10 [Gong et al., 2012] to further228

highlight that our method can facilitate to the extreme challenging domain shift scenario, while not229

explicitly applying any of the domain adaptation technique. Office-Caltech consists of data from four230

domains: Caltech (C), Amazon (A), Webcam(W) and DSLR (D). We iteratively pick one domain231

as the server domain each time and the rest ones are for local agents (e.g., in A,C,D → W , W is232

treated as the server). For kNN-DPFL, we instantiate the public feature extractor using the network233

backbone without the classifier layer. The DP-FedSGD method provides the DP baseline where we234

use mostly the same parameters as Abadi et al. [2016]. In each experiment, we split 70% data from235

the server domain as the public available unlabeled data, which is also the data to be labeled for236

kNN-DPFL, while the remaining 30% data is used for testing.237

In Table 2, we observe: (1) DP-FedSGD degrades when the backbone changes from the light238

load AlexNet to the heavy load ResNet50, while ours is improved by 10%. It is because larger239

model capacity leads to more sensitive response to gradient clipping or noise injection, which has240

been surveyed in Abadi et al. [2016]. In contrast, our kNN-DPFL avoids the gradient operation241

by label aggregation and can still benefit from the larger model capacity. Again, our method242

achieves consistently better utility-privacy trade-off as maintaining same privacy cost and can achieve243

significantly better utility, or maintaining same utility and can achieve much lower privacy cost.244
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A Challenges in Gradient-based Federated Learning343

In this section, before introducing our approaches, we motivate them by highlighting the main344

challenges in the conventional DPFL methods in terms of gradient estimation, convergence, and data345

heterogeneity. For other challenges, we refer the readers to a survey [Kairouz et al., 2019].346

Challenge 1: Biased Gradient Estimation. Recent works [Li et al., 2018] have shown that the347

FedAvg may not converge well under data heterogeneity. We provide a simple example to show that348

the clipping step of DP-FedAvg may exacerbate the issue.349

Example 5. Let N = 2, each agent i’s local update is △i (E iterations of SGD). We enforce350

clipping of per-agent update△i by performing△i/max(1, ||△i||2
S ), where S is the clipping threshold.351

Consider the special case when ||△1||2 = S + α and ||△2||2 ≤ S. Then the global update will be352
1
2 (

S△1

||△1||2 +△2), which is biased.353

Comparing to the FedAvg updates 1
2 (△1 + △2), the biased update could be 0 (not moving) or354

pointing towards the opposite direction. Such a simple example can be embedded in more realistic355

problems, causing substantial bias that leads to non-convergence.356

Challenge 2: Slow Convergence. Following works on FL convergence analysis [Li et al., 2019,357

Wang et al., 2019], we derive the convergence analysis on DP-FedAvg and demonstrate that using358

many outer-loop iterations (T ) could result in similar convergence issue under differential privacy.359

The appeal of FedAvg is to set E to be larger so that each agent performs E iterations to update its360

own parameters before synchronizing the parameters to the global model, hence reducing the number361

of rounds in communication. We show that the effect of increasing E is essentially increasing the362

learning rate for a large family of optimization problems with piece-wise linear objective functions,363

which does not change the convergence rate. The detailed analysis is in appendix convergence section364

due to space limit. Specifically, it is known that for the family of G−Lipschitz functions supported365

on a B-bounded domain, any Krylov-space method 1 has convergence rate that is lower bounded366

by Ω(BG/
√
T ) [Nesterov, 2003, Section 3.2.1]. This indicates that the variant of FedAvg requires367

Ω(1/α2) rounds of outer loop (i.e., communication), in order to converge to an α stationary point,368

i.e., increasing E does not help, even if no noise is added.369

It also indicates that DP-FedAvg is essentially the same as stochastic sub-gradient method in almost370

all locations of a piece-wise linear objective function with gradient noise being N (0, σ2/NId).371

The additional noise in DP-FedAvg imposes more challenges to the convergence. If we plan to372

run T rounds and achieve (ϵ, δ)-DP, we need to choose σ =
ηEG
√

2T log(1.25/δ)

Nϵ [McMahan et al.,373

2018, Theorem 1], which results in a convergence rate upper bound of
GB(

√
1+

2Td log(1.25/δ)

N2ϵ2
)

√
T

=374

O

(
GB√

T
+

√
d log(1.25/δ)

Nϵ

)
, for an optimal choice of the learning rate Eη.375

The above bound is tight for stochastic sub-gradient methods, and in fact also information-theoretically376

optimal. The GB/
√
T part of upper bound matches the information-theoretical lower bound for all377

methods that have access to T -calls of stochastic sub-gradient oracle [Agarwal et al., 2009, Theorem378

1]. While the second matches the information-theoretical lower bound for all (ϵ, δ)-differentially379

private methods on the agent level [Bassily et al., 2014, Theorem 5.3]. That is, the first term indicates380

that there must be many rounds of communications, while the second term says that the dependence in381

ambient dimension d is unavoidable for DP-FedAvg. Clearly, our method also has such dependence382

in the worst case. But it is easier for our approach to adapt to the structure that exists in the data383

(i.e., high consensus among voting), as we will illustrate later. In contrast, it has larger impact on384

1One that outputs a solution in the subspace spanned by a sequence of sub-gradients.
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DP-FedAvg, since it needs to explicitly add noise with variance Ω(d). Another observation is when385

N is small, no DP method with reasonable ϵ, δ parameters is able to achieve high accuracy for386

agent-level DP. This partially motivates us to consider the other regime that deals with instance-level387

DP.388

Challenge 3: Data Heterogeneity. Federated learning with domain adaptation has been studied389

in Peng et al. [2019b], where they propose a dynamic attention model to adjust the contribution390

from each source (agent) collaboratively. However, most multi-source domain adaptation algorithms,391

including this approach, require sharing local feature vectors to the target domain, which is not392

compatible with the DP setting. Enhancing DP-FedAvg with the effective domain adaptation technique393

remains an open problem.394

B Other properties of differential privacy395

Definition 6 (Renyi Differential Privacy [Mironov, 2017]). We say a randomized algorithmM is
(α, ϵ(α))-RDP with order α ≥ 1 if for neighboring datasets D,D′,

Dα(M(D)||M(D′)) :=
1

α− 1
logEo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ ϵ(α).

RDP inherits and generalizes the information-theoretical properties of DP.396

Lemma 7 (Selected Properties of RDP [Mironov, 2017]). IfM obey ϵM(·)-RDP, then397

1. [Indistinguishability] For any measurable set S ⊂ Range(M), and any neighboring D,D′

e−ϵ(α)Pr[M(D′) ∈ S]
α

α−1 ≤ Pr[M(D) ∈ S] ≤ eϵ(α)Pr[M(D′) ∈ S]
α−1
α .

2. [Post-processing] For all function f , ϵf◦M(·) ≤ ϵM(·).398

3. [Composition] ϵ(M1,M2)(·) = ϵM1
(·) + ϵM2

(·).399

This composition rule often allows for tighter calculations of (ϵ, δ)-DP for the composed mechanism400

than the strong composition theorem in [Kairouz et al., 2015]. Moreover, we can covert RDP to401

(ϵ, δ)-DP for any δ > 0 using:402

Lemma 8 (From RDP to DP). If a randomized algorithmM satisfies (α, ϵ(α))-RDP, thenM also403

satisfies (ϵ(α) + log(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1).404

Threat models and Multi-Party Computation (MPC) However, the privacy guarantee of DP-405

FedAvg only applies to the global model and does not apply to the inference made by curious parties406

who can eavesdrop in the network traffics. Cryptographic techniques such as Multi-Party Computation407

(MPC) [Yao, 1982] securely aggregates local updates and ensures privacy against inferences made408

during the communication process. Specifically, if each party adds a small independent noise to409

the part they contribute, MPC ensures that an attacker can only observe the total, even if he taps410

the network messages and hacks into the server. Unfortunately, it is challenging to apply MPC in411

either DP-FedAvg or DP-FedSGD due to high computational overheads. As shown in Bonawitz412

et al. [2017a], the computational cost of security aggregation (used as MPC-Sum in Figure 1) is413

O(N2 + dN) for users and O(dN2) for the server, where d is the model size and N is the number of414

agents. In this paper, we consider a new MPC technique due to [Dery et al., 2019] that allows only415

the voted winner to be released while keeping the voting scores completely hidden. This allows us to416

further amplify the DP guarantees. In our experiment, we assume the aggregation is conducted by417

MPC for all privacy-preserving algorithms that we consider (see Figure 1).418

C More Discussions of Challenges for Gradient-Based FL419

Definition 9. A function ℓ is Lipschitz continuous with constant G > 0, if

|ℓ(x)− ℓ(y)| ≤ G||x− y||2
for all x, y.420
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Proposition 10. Let the objective function of agents f1, ..., fN obeys that fi is piecewise linear421

(which implies that the global objective F = 1
N

∑N
i=1 fi is piecewise linear) and G-Lipschitz. Let η422

be the learning rate taken by individual agents. Then the outer loop FedAvg update is equivalent to423

θ+ = θ − Eηg for some g ∈ Rd, where (a) g = ∇F (θ) if θ is in the ν interior of the linear region424

of f1, ..., fN and E < ν/(ηG); (2) g is a Clarke-subgradient 2 of F at θ, if θ is on the boundary of425

at least two linear regions and at least ν away in Euclidean distance from another boundary and426

E < ν/(ηG); (c) otherwise, we have that ∥g −∇F (θ)∥2 ≤ EηG. Moreover, statement (c) is true427

even if we drop the piecewise linear assumption.428

Proof. For the Statement (a), observe that for all θ′ such that ∥θ′ − θ∥ ≤ ν neighborhood, we have
that∇fi(θ′) = ∇fi(θ). When E < ν/(ηG), the cumulative gradients of agent i is equal to E∇fi(θ).
For Statement (b), notice that the Clarke subdifferential at θ is the convex hull of the one-sided
gradient, thus as we move along the negative gradient direction in the inner loop, we enter and
remains in the linear region. Thus the update direction is

1

N

 ∑
i s.t. fi is differentiable at θ

Eη∇fi(θ) +
∑

i s.t. fi is not differentiable at θ

ηgi + (E − 1)∇fi(θ − ηgi)


for all gi such that it is a Clarke-subgradient of fi it can be written as a convex combination. The429

proof is complete by observing that the 1/N
∑

i is also a convex combination and by multiplying430

and dividing by E. Statement (c) is a straightforward application of the Lipschitz property which431

says that E steps can at most get you away for ηEG and clearly piecewise linear assumption is not432

required.433

This proposition says that in almost all θ, increasing E has the effect of increasing the learning434

rate of the subgradient “descent” method for piecewise linear objective functions; and increasing435

the learning rate of an approximate gradient method in general for Lipschitz objective functions.436

It is known that for the family of G−Lipschitz function supported on a B-bounded domain, any437

Krylov-space method 3 has a rate of convergence that is lower bounded by O(BG/
√
T ) if running for438

T iterations. A close inspection of the lower bound construction reveals that the worst-case problem439

is minθ∈RT maxi θi + ∥θ∥2, namely, a regularized piecewise linear function. This is saying that the440

variant of FedAvg that aggregates only the loss-function part of the gradient or projects only when441

synchronizing essentially requires Ω(1/α2) rounds of outer loop iterations (thus communication) in442

order to converge to an α stationary point, i.e., increasing E does not help, even if no noise is added.443

Lemma 11 (Restatement of Lemma ??). Conditioning on the teachers, for each public data point444

x, the noise added to each coordinate is drawn from N (0, σ2/N2), then with probability ≥ 1 −445

C exp{−N2γ(x)2/8σ2}, the privately released label matches the majority vote without adding446

noise.447

Proof. The proof is a straightforward application of Gaussian tail bounds and a union bound over C448

coordinates. Specifically, P[Zj∗ < −γ(x)/2] ≤ e−
N2γ(x)2

8σ2 for the argmax j∗. For j ̸= j∗, P[Zj >449

γ(x)/2] ≤ e−
N2γ(x)2

8σ2 . By a union bound over all coordinates C, we get that there perturbation from450

the boundedness is smaller than γ(x)/2, which implies correct release of the majority votes.451

This lemma implies that for all public data point x such that γ(x) ≥ 2
√

2 log(C/δ)

N , the output label452

matches noiseless majority votes with probability exponentially close to 1.453

D Data-dependent Privacy Analysis454

455

2Clarke-subgradient is a generalization of the subgradient to non-convex functions. It reduces to the standard
(Moreau) subgradient when F is convex.

3One that outputs a solution in the subspace spanned by a sequence of subgradients.
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D.1 Privacy Analysis456

Theorem 12 (Restatement of Theorem 4). Let AE-DPFL and kNN-DPFL answer Q queries with noise457

scale σ. For agent-level protection, both algorithms guarantee (α,Qα/(2σ2))-RDP for all α ≥ 1.458

For instance-level protection, AE-DPFL and kNN-DPFL obey (α,Qα/σ2) and (α,Qα/(kσ2))-RDP459

respectively.460

Proof. In AE-DPFL, for query x, by the independence of the noise added, the noisy sum is identically461

distributed to
∑N

i=1 fi(x) + N (0, σ2). Adding or removing one data instance from will change462 ∑N
i=1 fi(x) by at most

√
2 in L2. The Gaussian mechanism thus satisfies (α, αs2/2σ2)-RDP on the463

instance-level for all α ≥ 1 with an L2-sensitivity s =
√
2. This is identical to the analysis in the464

original PATE [Papernot et al., 2018].465

For the agent-level, the L2 and L1 sensitivities are both 1 for adding or removing one agent.466

In kNN-DPFL, the noisy sum is identically distributed to 1
k

∑N
i=1

∑k
j=1 yi,j +N (0, σ2). The change467

of adding or removing one agent will change the sum by at most 1, which implies the same L2468

sensitivity and same agent-level protection as AE-DPFL. The L2-sensitivity from adding or removing469

one instance, on the other hand changes the score by at most
√
2/k in L2 due to that the instance470

being replaced by another instance, this leads to an an improved instance-level DP that reduces ϵ by a471

factor of
√

k
2 .472

The overall RDP guarantee follows by the composition over Q queries. The approximate-DP473

guarantee follows from the standard RDP to DP conversion formula ϵ(α) + log(1/δ)
α−1 and optimally474

choosing α.475

D.2 Improved accuracy and privacy with large margin476

Let f1, ..., fN : X → △C−1 where△C−1 denotes the probability simplex — the soft-label space.477

Note that both algorithms we propose can be viewed as voting of these teachers which outputs a478

probability distribution in△C−1. First let us define the margin parameter γ(x) which measures the479

difference between the largest and second largest coordinate of 1
N

∑N
i=1 fi(x).480

Lemma 13. Conditioning on the teachers, for each public data point x, the noise added to each481

coordinate is drawn from N (0, σ2/N2), then with probability ≥ 1− C exp{−N2γ(x)2/8σ2}, the482

privately released label matches the majority vote without adding noise.483

Proof. The proof is a straightforward application of Gaussian tail bounds and a union bound over C484

coordinates. Specifically, P[Zj∗ < −γ(x)/2] ≤ e−
N2γ(x)2

8σ2 for the argmax j∗. For j ̸= j∗, P[Zj >485

γ(x)/2] ≤ e−
N2γ(x)2

8σ2 . By a union bound over all coordinates C, we get that there perturbation from486

the boundedness is smaller than γ(x)/2, which implies correct release of the majority votes.487

This lemma implies that for all public data point x such that γ(x) ≥ 2
√

2 log(C/δ)

N , the output label488

matches noiseless majority votes with probability exponentially close to 1.489

Next we show that for those data point x such that γ(x) is large, the privacy loss for releasing490

argmaxj [
1
N

∑N
i=1 fi(x)]j is exponentially smaller. The result is based on the following privacy491

amplification lemma that is a simplification of Theorem 6 in the appendix of [Papernot et al., 2018].492

Lemma 14. LetM satisfy (2α, ϵ)-RDP, and there is a singleton output that happens with probability
1− q whenM is applied to D. Then for any D′ that is adjacent to D, Renyi-divergence

Dα(M(D)∥M(D′)) ≤ − log(1− q) +
1

α− 1
log(1 + q1/2(1− q)α−1e(α−1)ϵ).
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Proof. Let P,Q be the distribution of ofM(D) andM(D′) respectively and E be the event that the493

singleton output is selected.494

EQ[(dP/dQ)α] = EQ[(dP/dQ)α|E]PQ[E] + EQ[(dP/dQ)α1(Ec)

≤ (1− q)(
1

1− q
)α +

√
EQ[(dP/dQ)(2α)]

√
EQ[1(Ec)2]

≤ (1− q)−(α−1) + q1/2e(2α−1)ϵ/2 = (1− q)−(α−1)
(
1 + (1− q)α−1q1/2e

2α−1
2 ϵ

)
The first part of the second line uses the fact that event E is a singleton with probability larger than495

1− q under Q and the probability is always smaller than 1 under P . The second part of the second496

line follows from Cauchy-Schwartz inequality. The third line substitute the definition of (2α, ϵ)-RDP.497

Finally, the stated result follows by the definition of the Renyi divergence.498

Theorem 15 (Restatement of Theorem ??). The mechanism that releases argmaxj [
1
N

∑N
i=1 fi(x) +

N (0, (σ2/N2)IC)]j obeys (α, ϵ)-data-dependent-RDP, where

ϵ ≤ 2Ce−
N2γ(x)2

8σ2 +
1

α− 1
log

(
1 + e

(2α−1)αs

2σ2 −N2γ(x)2

8σ2 +logC/2

)
,

where s = 1 for AE-DPFL with the agent-level DP, and s = 2/k for KNN-DPFL with the instance-499

level DP.500

Proof. The proof involves substituting q = Ce−
N2γ(x)2

8σ2 from Lemma ?? into Lemma 14 and use the501

fact thatM satisfies the RDP of a Gaussian mechanism from the RDP’s post-processing lemma. The502

expression bound is simplified for readability using − log(1 − x) < 2x for all x > −0.5 and that503

(1− q)α−1 ≤ 1.504

As we can see, when given teachers that are largely in consensus, the (data-dependent) privacy loss505

exponentially smaller.506
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