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Abstract

Recent advances in deep learning models for sequence classification have greatly
improved their classification accuracy, specially when large training sets are avail-
able. However, several works have suggested that under some settings the predic-
tions made by these models are poorly calibrated. In this work we study binary
sequence classification problems and we look at model calibration from a different
perspective by asking the question: Are deep learning models capable of learning
the underlying target class distribution? We focus on sparse sequence classification,
that is problems in which the target class is rare and compare three deep learning
sequence classification models. We develop an evaluation that measures how well
a classifier is learning the target class distribution. In addition, our evaluation disen-
tangles good performance achieved by mere compression of the training sequences
versus performance achieved by proper model generalization. Our results suggest
that in this binary setting the deep-learning models are indeed able to learn the
underlying class distribution in a non-trivial manner, i.e. by proper generalization
beyond data compression.

1 Introduction

Recent advances in deep learning models for sequence classification have greatly improved their
classification accuracy, specially when large training sets are available. However, several works
have suggested that under some settings the predictions made by these models are poorly calibrated:
a model might provide in general correct predictions but give bad estimates of the confidence
scores Pr(y|x). Having well calibrated estimates of Pr(y|x) is crucial to many machine learning
applications. For example, this is critical in systems in which an end user needs to make a decision
based on the prediction of the model. Here a good estimate is as important as a good prediction.

In this work we study binary sequence classification with a focus on sparse sequence classification
tasks in which only a very small fraction of the sequences in the domain belong to the target
class. These types of problems naturally arise in several applications, for example in NLP or in
Computational Biology where distinguishing relevant segments in DNA sequences is challenging as
it is postulated that only about 1–3% of segments have any biological significance [Eskin, 2002].

While traditional evaluations on model calibration have focused on the quality of the conditional
prediction PrM (y|x) in this paper we look at model evaluation from a different perspective by asking
the question: Are deep learning models capables of learning the underlying target distribution? The
main idea is quite simple, if we have access to large quantities of unlabeled data that accurately
represent the input distribution we can estimate the joint distribution PrM (y, x) implicitly induced
by the conditional model and then we can compare it to the true distribution.
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We conduct experiments using three deep-learning models: an RNN, a Transformer and a WFA (i.e.
Weighted Finite Automata, a form of RNN with linear activation). Our results suggest that in the
binary classification setting the deep-learning models are indeed able to learn the underlying class
distribution in a non-trivial manner. These results seem to be consistent with previous studies showing
that deep-learning models provide calibrated predictions for binary classification problems [Niculescu-
Mizil and Caruana, 2005]. Our main contributions are: 1) We present a novel evaluation framework for
sequence prediction models. By exploiting unlabeled data, we evaluate the model with respect to the
implicitly induced joint distribution. 2) Our evaluation distinguishes performance over components
of the distribution seen in training data as well as unseen components explicitly differentiating
compression from generalization. 3) Our experiments on a sparse sequence classification task show
that deep learning architectures are able to induce good distributions in a non-trivial manner.

2 Related Work

In the recent literature several works have addressed the problem of model calibration. Some of
these studies have shown that for some deep learning architectures, the predictions produced by the
models are not well calibrated [Guo et al., 2017] [Kumar and Sarawagi, 2019] especially for non
pre-trained transformers [Desai and Durrett, 2020]. In contrast, for the case of binary classification
some previous work has suggested that they are indeed well calibrated [Niculescu-Mizil and Caruana,
2005]. To our knowledge we are the first ones to study calibration by looking at the joint distribution
Pr(x, y) induced by the learned classifier instead of the quality of the conditional class predictions.

Calibration aside, several works have compared the classification performance of different deep-
learning architectures: CNNs and RNNs [Józefowicz et al., 2016] [Yin et al., 2017], Transformers
and RNNs [Karita et al., 2019] [Lakew et al., 2018], Transformers and CNNs [Kolesnikov et al.,
2021] [Pinto et al., 2021] [Bai et al., 2021], WFA to CNNs [Quattoni and Carreras, 2020] and WFA
to RNNs [Quattoni and Carreras, 2019].

Finally, an orthogonal related problem is that of developing deep learning models for density
estimation. These include Transformers [Fakoor et al., 2020], Autoregressive Networks [Uria
et al., 2016] [Oliva et al., 2018] and Flow Models [Durkan et al., 2019] [De Cao et al., 2020].

3 Evaluating Deep-Learning Model as Moment Predictors

Our goal is to evaluate models defined over sequences of discrete symbols. More precisely we
consider an alphabet Σ and the set of all possible sequences Σ⋆. In general, we can think of
probabilistic binary sequence classifiers as functions from Σ⋆ → [0, 1]. In our setting we assume that
we have access to a large set of sequences U = {x(1), . . . , x(u)} sampled according to the underlying
distribution over Σ⋆. We can think of U as a large set of unlabeled sequences that represent the
domain of the sequence classification task. The target class Y that we wish to learn is a subset of
sequences in U , that is Y ⊂ U . We are particularly interested in cases where the target class is rare,
that is cases in which |Y | is significantly smaller than |U |.

We will create a labeled training set T = {(x(1), y(1)), . . . , (x(m), y(m))} of size m by sampling
sequences from U and labeling y = 1 as positive instances if they appear in Y , and otherwise as
negative instances y = 0. Section 4 contains further details about how we create the task data from an
existing dataset, for various training sizes m. Given a training set we will train a sequence classifier
M that defines a distribution PrM (y|x).
In this work, we consider three sequence classification models: an RNN, a Transformer and a WFA.
As recurrent neural network (RNN) we employ a multi-layer LSTM [Hochreiter and Schmidhuber,
1997] with a binary classification feed-forward layer on top. For the Transformer we select the BERT
[Devlin et al., 2019] architecture, we don’t use the pre-trained weights and we expand the embeddings
with new randomly initialized ones to deal with the protein dataset vocabulary. Both models output
the conditional probability Pr(l|x) where x is a sentence and l a label. We also evaluate a WFA
(Weighted Finite Automata; which in essence is an RNN with linear activation functions [Rabusseau
et al., 2019]) employing the ensemble proposed in Quattoni and Carreras [2020].
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3.1 Evaluation Metrics

The sequence model M that we wish to evaluate defines a conditional distribution PrM (y|x). Gener-
ally, we would like to compute the true error of M by evaluating the model on the true distribution
Pr(x, y). In this section, we will use the set U as a proxy for Pr(x), and specifically we will estimate
the moments of M on the joint distribution PrM (x, y) that is implicitly induced by the model over
the target class.1 More precisely, consider the set:

Zn = {zn | zn ∈ Σn,∃x ∈ U such that zn ∈ x} (1)
where zn is a sub-sequence of size n, zn ∈ x indicates that zn is a sub-sequence of a domain
sequence x, and therefore Zn is the set of all sub-sequences of size n observed in U . We use these
sub-sequences as the support set to compute moments of a model, and we define the moment function
EM : zn × U → R as:

EM (zn, U) =
1

|U |
∑
x∈U

PrM (y|x) #[zn ∈ x] (2)

where zn is a sub-sequence of length n and #[zn ∈ x] is a function that counts the number of
times that zn appears in sequence x. From now on, we will assume a fixed U and drop it from the
expression, and we will refer to the sub-sequences zn and their values EM (zn) as the moments of M .
Since we assume that U is a good representation of the the domain, EM (zn) can be regarded as an
estimate of the expected number of times that we should observe zn in a sample from PrM (x, y).

Given sets U and Y , the moments from the true joint distribution PrY (x, y) can be computed similarly
as:

EY (zn) =
1

|U |
∑
x∈Y

#[zn ∈ x] (3)

Putting it all together, if we have a domain represented by a set of unlabeled sequences U , a subset of
target sequences Y and a model PrM (y|x), we can compute the model’s moment function EM (zn)
and compare it to the true moments EY (xn). Notice that for a model that learns the target class
perfectly (i.e. a model that gives accurate predictions and that it is perfectly calibrated) we will have
EM (zn) = EY (zn) for all moments in N .

Now that we have the necessary functions, we propose to evaluate a model M by comparing EM and
EY . To compare the moment functions we propose the following metrics:

MSPC: This metric measures the Spearman rank correlation between gold and model moments of a
fixed length. The Spearman correlation coefficient measures the strength and direction of association
between ranked variables. In our evaluation a high MSPC means that the model sorts the moments of
the distribution in a way that is similar to the gold ordering. The MSPC is computed as:

cov(rank[EM (zn)], rank[EY (zn)])

σ(rank[EM (zn)]) · σ(rank[EY (zn)])
(4)

where rank[E(zn)] are the raw function scores for all zn ∈ Zn converted to ranks. In essence, this
metric measures the agreement on partial orderings induced by the model and gold moment functions.
That is, given any two pairs of moments of a fixed length zn and z′n whenever EY (zn) > EY (z

′
n) we

want EM (zn) > EM (z′n).

MSPCP: While MSPC is a useful metric when evaluating the class distribution induced by a model,
we need to keep in mind that for longer moments EY (zn) will be sparse and for most inputs it will be
0 since we are targeting a rare class. So in this context we compute the Spearman rank correlation
between gold non-zero moments and the model prediction for those moments, this will give an idea
of how well the model would sort the moments of the target distribution if it knew the true support of
the target moments function.

MR: as MSPC might be overly harsh, a complementary alternative metric in this case is the mean-rank
given to the target non-zero moments:

1−
∑

zn : EY (zn)>0

rank[EM (zn)]

|Zn|
(5)

1We highlight that the set U is assumed to be sampled from the true Pr(x) and will contain repetitions of
each distinct x proportional to its likelihood. And so does Y . This detail is relevant because we can think of U
as an empirical estimate of Pr(x), which is necessary for the definitions of moments in this section.
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This metric captures how well a model performs in the task of making the binary prediction of which
moments should be non-zero for the target class.

We believe that it is important to make a distinction between the ability of a model to compress
data versus its ability to generalize to unseen data. A natural way to achieve this goal is to make a
distinction between moments that have been seen in the training set, versus moments that have not
been seen. That is, for any training set T and moment length n we can define a subset ZT

n ⊆ Zn:

ZT
n = {zn ∈ Zn : zn appears in T} (6)

Given training set T we can define its analogous unseen evaluation by computing the metric over
Zn \ ZT

n . We call these new metrics: MSPC-U, MSPCP-U and MR-U.

In order to evaluate the generalization ability of a model we will also consider a baseline model
that memorizes the training data and makes predictions with the observed training moments. More
precisely, given a training set T the baseline will compute the moments function as:

EBT
(zn) =

1

|U |
∑

(x,y)∈T :y=1

#[zn ∈ x] (7)

4 Experiments

To generate the data used in our experiments we use the PFAM dataset [El-Gebali et al., 2018].
This dataset consists of aminoacid sequences pertaining to different protein families. Deep-models
have been shown to be very successful at classifying the complete sequences [Bileschi et al., 2019]
[Szalkai and Grolmusz, 2018]. To derive a more challenging task we decide to work with segments
and we generate the unlabeled set U by sampling sequence segments of size 5.

To create our target class Y we pick a protein-family and select all segments that appear in se-
quences from that family. We select as our target the most rare or sparse family based on the ratio
|Y |/|U |. We also select a second family as validation data. We create 5 labeled training sets T =
{(x(1), y(1)), . . . , (x(m), y(m))} by sampling sequences with m ∈ {400, 1000, 2000, 4000, 8000}.
For the optimization details refer to appendix A.

4.1 Results

To summarize the results, for each training set size and model, we compute an aggregate metric,
which we refer as MICRO (MC). The MICRO score is defined as a weighted average of the scores for
moments of different lengths, where the weight is proportional to the total number of test-moments of
that size. The full breakdown of results is available in appendix D.

Figure 1a shows MICRO MSPC for the three models and the baseline. The first observation is
that all models perform significantly better than the baseline. Recall that the baseline is essentially
remembering the moments that it has observed at training, therefore it is natural that as we increase
the number of training sequences its performance approaches that of the learned models. Figure 1b
shows the analogous results when MSPC is computed over unseen moments, the baseline in this case
is undefined since by definition the expectation over all unseen moments will be zero. Still the models
seem to be learning to rank unseen moments, and therefore they are making proper generalizations.

However, one obvious observation is that the MSPC is not very high in absolute terms (appendix D
tables, both in the all and unseen scenarios). Looking at the absolute value of the MSPC might be
misleading because we are modeling a sparse sequence classification task. In other words, the gold
expectation for most of the moments in the domain is zero and in this case the MSPC metric might be
too harsh. Thus, as described in Section 3.1, we turn our attention to MR.

The MR metric reflects the model’s ability to predict the non-zero moments of the distribution and as
shown in Figure 1c all models learn to do this relatively well. This is also true for the generalization
setting (Figure 1d) in which models are forced to make predictions over unseen moments.

To gain more insight into the distributions induced by the models, another way of breaking down the
MSPC metric is to focus on how well a model ranks the non-zero moments of the gold distribution.
That is, in this case, we tell the model which moments are non-zero and let the model rank them.
Figure 1e shows MSPCP. We can see that all models learn to rank the moments of the target class and
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(a) MICRO MSPC (b) MICRO MSPC-U

(c) MICRO MR (d) MICRO MR-U

(e) MICRO MSPCP (f) MICRO MSPCP-U

Figure 1: MICRO MSPC, MR and MSPCP results

this also holds true for unseen moments (Figure 1f). In this evaluation scenario, the WFA seems to be
better than the other two models. This is most likely due to the difference between the loss function
minimized by the WFA and the loss functions minimized by the LSTM and BERT models. The WFA
classifier is defined as an ensemble of class specific models, and therefore it is explicitly modeling
the class distributions.

Finally we also explored correlations between different models by computing pairwise Spearman
correlation between the model’s predictions. We found out that the correlation is high for shorter
moments and that it decreases significantly with longer ones. Regarding pairwise associations, LSTM
and BERT show a higher level of agreement, while the WFA is more correlated to BERT overall.

5 Conclusion

In this paper we presented a novel evaluation framework for comparing sequence classification
models and for testing the extent to which they can implicitly learn the target distribution. Our results
comparing three different deep-learning models suggest that the models have the ability to learn the
underlying distribution. They also suggest that despite significant differences in the architectures and
even in the loss functions (i.e. for the WFA), their performance is comparable. The goal of this paper
was to develop a simple way to gain insights into what is actually been learned by a given sequence
classifier. But the evaluation approach itself also suggests ways in which we could exploit unlabeled
data to obtain better calibrated sequence classifiers, future work should explore this possibility.
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A Optimization Details

For each of our training sets Tm = {(x(1), y(1)), . . . , (x(m), y(m))} we train a new model and
validate the parameters independently. We use a 2 layer LSTM and we validate all parameters such
as the dimension of the hidden state, of the embeddings and the learning rate with a grid search
evaluated on the validation data. We proceed analogously for the BERT parameters, note that we use
the bert-base model.

We use Adam [Kingma and Ba, 2014] as optimizer employing the standard cross entropy loss function.
For both LSTM and BERT we train 5 models with different starting random seeds for each training
set and we report the average of the results.

Table 1: Training time and minimum number of parameters to fully compress 8000 sequences.
Training time (s) # of parameters

WFA 67 1.15× 105

LSTM 63 1× 106

BERT 305 1.1× 108

For the WFA model the only parameter that we need to validate is the number of states k. Besides,
as there are no randomly initialized parameters and the training is not stochastic, we don’t need to
perform multiple runs with multiple seeds. The WFA is trained using the spectral learning method.
For a detailed and comprehensive explanation of the training method the reader is referred to Balle
et al. [2014]. Furthermore, we employ the scalability techniques described in Quattoni et al. [2017].

LSTM and BERT models were trained on a single GPU while the WFA, for which the bottleneck is
computing a singular value decomposition of a large sparse matrix, was trained on a CPU. To give
an idea of the relative size of each model, we computed the minimum number of parameters for
which the models were able to achieve perfect classification on our biggest training set. We report the
numbers in Table 1.

B Data

Here we presents some statistics about the data that we have generated. There are a total of 23 amino
acid symbols.

Table 2: Dataset statistics.
# of sequences % wrt | ∪n Zn|

| ∪n Zn| 1.8× 106 -
|ZY

1 | 2× 101 86.96%
|ZY

2 | 3.9× 102 86.70%
|ZY

3 | 4.1× 103 49.89%
|ZY

4 | 1.5× 104 10.00%
|ZY

5 | 2.8× 104 1.68%

C Models correlation

Here we show a figure displaying the pairwise Spearman correlation between the model’s predictions.
Ni stands for the different ngram lengths.
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Figure 2: MSPC between models.

D Result Tables

Table 3: MSPC, 400 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.92878 0.87715 0.88803 0.88812
N2 0.86161 0.7269 0.81566 0.62104
N3 0.64555 0.41444 0.57328 0.16744
N4 0.34245 0.22023 0.30406 0.051655
N5 0.14245 0.10607 0.13102 0.03562
MICRO 0.16185 0.1173 0.14786 0.037732

Table 4: MSPC, 1000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.94362 0.93947 0.95351 0.90198
N2 0.88806 0.7933 0.86798 0.75504
N3 0.67164 0.51563 0.628 0.26579
N4 0.3531 0.29955 0.33486 0.086673
N5 0.14741 0.13336 0.13959 0.053745
MICRO 0.1674 0.14934 0.15853 0.05768
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Table 5: MSPC, 2000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.96439 0.95964 0.94995 0.86733
N2 0.92286 0.87423 0.90971 0.75083
N3 0.70414 0.58983 0.68951 0.34454
N4 0.36564 0.3234 0.36066 0.11984
N5 0.15135 0.1424 0.14818 0.07408
MICRO 0.1722 0.15994 0.16882 0.079362

Table 6: MSPC, 4000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.97824 0.96855 0.96439 0.92673
N2 0.94558 0.8781 0.92219 0.79916
N3 0.73057 0.63392 0.68747 0.442
N4 0.37522 0.34892 0.35885 0.16727
N5 0.15539 0.14952 0.15057 0.10524
MICRO 0.17682 0.16879 0.17084 0.1122

Table 7: MSPC, 8000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.98714 0.98398 0.98022 0.94554
N2 0.94925 0.92542 0.93935 0.82521
N3 0.73837 0.69595 0.72027 0.55846
N4 0.37987 0.37275 0.38072 0.25477
N5 0.15761 0.16066 0.16111 0.17104
MICRO 0.17927 0.18125 0.18245 0.18006

Table 8: MR, 400 Training Sequences.
WFA LSTM BERT BASELINE

N4 0.78962 0.68841 0.75878 0.52947
N5 0.81186 0.73307 0.7875 0.51656
MICRO 0.80996 0.72927 0.78505 0.51765

Table 9: MR, 1000 Training Sequences.
WFA LSTM BERT BASELINE

N4 0.79955 0.75561 0.78494 0.53438
N5 0.82346 0.793 0.80632 0.51921
MICRO 0.82143 0.78982 0.8045 0.5205

Table 10: MR, 2000 Training Sequences.
WFA LSTM BERT BASELINE

N4 0.81061 0.77585 0.80705 0.54377
N5 0.83217 0.81294 0.82522 0.52434
MICRO 0.83034 0.80979 0.82368 0.526
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Table 11: MR, 4000 Training Sequences.
WFA LSTM BERT BASELINE

N4 0.81873 0.79771 0.80568 0.55984
N5 0.84102 0.82841 0.83056 0.53338
MICRO 0.83913 0.8258 0.82844 0.53563

Table 12: MR, 8000 Training Sequences.
WFA LSTM BERT BASELINE

N4 0.82277 0.81864 0.82526 0.59726
N5 0.84592 0.85317 0.85399 0.55846
MICRO 0.84395 0.85023 0.85155 0.56176

Table 13: MSPCP, 400 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.89774 0.81564 0.83128 0.83008
N2 0.83119 0.6226 0.7294 0.55278
N3 0.6639 0.33845 0.51782 0.1582
N4 0.6367 0.23165 0.44983 0.053211
N5 0.71182 0.25286 0.52513 0.0077381
MICRO 0.68458 0.25665 0.50207 0.040077

Table 14: MSPCP 1000, Training Sequences.
WFA LSTM BERT BASELINE

N1 0.91579 0.90947 0.93083 0.85113
N2 0.84449 0.71795 0.81302 0.67625
N3 0.69214 0.48918 0.61035 0.26223
N4 0.66321 0.38853 0.51871 0.12028
N5 0.76345 0.36944 0.55099 0.042548
MICRO 0.7258 0.38895 0.54801 0.091939

Table 15: MSPCP, 2000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.94737 0.94015 0.92541 0.7985
N2 0.89145 0.82017 0.86927 0.64694
N3 0.72948 0.57631 0.66934 0.35078
N4 0.69176 0.46408 0.57831 0.18212
N5 0.77876 0.43644 0.60665 0.083977
MICRO 0.74752 0.4607 0.60521 0.14338

Table 16: MSPCP, 4000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.96842 0.95368 0.94737 0.88872
N2 0.92282 0.83142 0.88642 0.70724
N3 0.77011 0.58983 0.67558 0.46542
N4 0.73517 0.48084 0.56523 0.24313
N5 0.83144 0.47518 0.57467 0.11361
MICRO 0.79601 0.48997 0.58302 0.19071
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Table 17: MSPCP, 8000 Training Sequences.
WFA LSTM BERT BASELINE

N1 0.98195 0.97714 0.97143 0.91729
N2 0.93024 0.90049 0.91239 0.73807
N3 0.78783 0.67781 0.70733 0.59942
N4 0.7477 0.53759 0.56915 0.35323
N5 0.8491 0.50004 0.54256 0.1588
MICRO 0.81193 0.53088 0.56849 0.2643

Table 18: MSPC-U, 400 Training Sequences.
WFA LSTM BERT

N2 0.77232 0.73303 0.81822
N3 0.63313 0.40291 0.56004
N4 0.34065 0.2175 0.3016
N5 0.14201 0.10539 0.13042
MICRO 0.1585 0.11474 0.14464

Table 19: MSPC-U, 1000 Training Sequences.
WFA LSTM BERT

N2 0.81324 0.82896 0.83926
N3 0.64174 0.48128 0.59383
N4 0.34826 0.29307 0.32861
N5 0.14637 0.13186 0.13814
MICRO 0.16311 0.14516 0.15393

Table 20: MSPC-U, 2000 Training Sequences.
WFA LSTM BERT

N2 0.8269 0.83715 0.84263
N3 0.65265 0.53285 0.63791
N4 0.35574 0.31071 0.349
N5 0.14912 0.13942 0.14534
MICRO 0.16625 0.15358 0.16222

Table 21: MSPC-U, 4000 Training Sequences.
WFA LSTM BERT

N2 0.76113 0.71213 0.75573
N3 0.64381 0.53365 0.59127
N4 0.3578 0.32639 0.33669
N5 0.15151 0.14394 0.14514
MICRO 0.1686 0.15897 0.16098

Table 22: MSPC-U, 8000 Training Sequences.
WFA LSTM BERT

N2 0.55257 0.45058 0.54054
N3 0.5661 0.49899 0.53307
N4 0.34073 0.32207 0.33099
N5 0.14853 0.14779 0.14838
MICRO 0.16437 0.16211 0.16341
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Table 23: MR-U, 400 Training Sequences.
WFA LSTM BERT

N4 0.78938 0.68689 0.75781
N5 0.81158 0.73209 0.7868
MICRO 0.80984 0.72854 0.78452

Table 24: MR-U, 1000 Training Sequences.
WFA LSTM BERT

N4 0.79892 0.753 0.78288
N5 0.82284 0.79121 0.80471
MICRO 0.82096 0.7882 0.803

Table 25: MR-U, 2000 Training Sequences.
WFA LSTM BERT

N4 0.80935 0.77132 0.80411
N5 0.83072 0.80961 0.82234
MICRO 0.82903 0.8066 0.82091

Table 26: MR-U, 4000 Training Sequences.
WFA LSTM BERT

N4 0.81769 0.79101 0.79967
N5 0.83928 0.82256 0.82509
MICRO 0.83758 0.82008 0.82309

Table 27: MR-U, 8000 Training Sequences.
WFA LSTM BERT

N4 0.8205 0.80457 0.81277
N5 0.8425 0.84127 0.84245
MICRO 0.84077 0.83838 0.84012

Table 28: MSPCP-U, 400 Training Sequences.
WFA LSTM BERT

N2 0.70856 0.54879 0.62302
N3 0.64968 0.31778 0.49905
N4 0.63467 0.22759 0.44711
N5 0.71121 0.25239 0.52548
MICRO 0.68721 0.24644 0.50169

Table 29: MSPCP-U, 1000 Training Sequences.
WFA LSTM BERT

N2 0.56343 0.63362 0.61802
N3 0.66231 0.43854 0.56343
N4 0.65681 0.37763 0.5092
N5 0.7621 0.36656 0.54989
MICRO 0.72875 0.37139 0.53812
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Table 30: MSPCP-U, 2000 Training Sequences.
WFA LSTM BERT

N2 0.52016 0.65202 0.64873
N3 0.67633 0.49721 0.60039
N4 0.67863 0.43764 0.55913
N5 0.77518 0.42648 0.60156
MICRO 0.74444 0.43131 0.58896

Table 31: MSPCP-U 4000 Training Sequences.
WFA LSTM BERT

N2 0.52822 0.58149 0.54327
N3 0.69234 0.45822 0.56041
N4 0.71764 0.44072 0.53155
N5 0.82694 0.46119 0.56332
MICRO 0.79166 0.45506 0.55384

Table 32: MSPCP-U, 8000 Training Sequences.
WFA LSTM BERT

N2 0.81084 0.59462 0.24505
N3 0.6507 0.46172 0.48333
N4 0.71584 0.4504 0.49123
N5 0.84148 0.46038 0.51201
MICRO 0.80016 0.45745 0.50523
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