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Abstract

With the popularity of online social medias
in recent years, massive-scale multimodal in-
formation has brought new challenges to tra-
ditional Named Entity Disambiguation (NED)
tasks. Recently, Multimodal Named Entity
Disambiguation (MNED) is proposed to link
ambiguous mentions with the textual and vi-
sual contexts to a predefined knowledge graph.
Recent attempts handle these issues mainly by
annotating multimodal mentions and adding
multimodal features to traditional NED mod-
els. These methods still suffer from 1) lack of
multimodal annotation data against the huge
scale of unlabeled corpus and 2) failing to
model multimodal information at knowledge
level. In this paper, we explore a pioneer
study on leveraging multimodal knowledge
learning to address the MNED task. Specit-
ically, we propose a knowledge-guided trans-
fer learning strategy to extract unified repre-
sentation from different modalities and enrich
multimodal Inowledge in a Meta Learning way
which is much easier than collecting ambigu-
ous mention corpus. Then we propose an Inter-
active Multimodal Learning Network (IMN),
which is capable of fully utilizing the multi-
modal information in both mention and knowl-
edge side. To verify the validity of the pro-
posed method, we implemented comparisons
on a public large-scale MNED dataset based
on Twitter KB. Experimental results show that
our method is superior to the state-of-the-art
multimodal methods.

1 Introduction

Nowadays, online social medias have become more
and more important in our daily life. And valuable
information to understand users and their prefer-
ences is hidden in the massive-scale user-generated
content. However, how to extract such informa-
tion from these social media posts is extremely
challenging because the posts are always in un-
structured texts and images. Named Entity Disam-

biguation is such a critical task for extracting struc-
tured information, which maps ambiguous men-
tions from free-form texts to specific entities in
a predefined knowledge graph. NED can bene-
fit many downstream applications such as recom-
mender systems, personal assistance, question an-
swering,etc (Dredze et al., 2010).

Existing researches on NED mainly focus on
texts only and have been proved to be success-
ful for well-formed text. However, as the popu-
larity of incorporating a mix of text and images
in social media platforms (e.g. Twitter!, Instar-
gram?, Snapchat?, etc.), more ambiguous mentions
appear in short and noisy text. Thus the cross-
modal ambiguity makes traditional text-only NED
methods more difficult to link them correctly due
to enormous number of mentions arising from in-
complete and inconsistent expressions. In many
of such cases, it is impossible to disambiguate en-
tities from text alone. For example, The mention
Swift is completely ambiguous only from the tex-
tual context in Fig 1. It is difficult to distinguish
whether Swift refers to Taylor Swift or Ben Swift
for lacking of critical information in the text. Fur-
thermore, the target person Ben Swift cannot be
directly recognized from the image alone through
face recognition techniques due to the obstruction
of eyes, hats and other objects. However, by con-
sidering both mutimodal contexts in the post and
historical data of the entity, the correct entity Ben
Swift can be disambiguated from the candidates.
That is, the textual features and visual features can
complement each other.

Although some recent works has been proposed
for the MNED task (Moon et al., 2018; Adjali et al.,
2020a,b), there also exist some shortcomings. First,
sufficient annotated corpus with both texts and im-
ages is required to train a multimodal model. How-
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Figure 1: The example of MNED task with historical knowledge. Because of the insufficiency of information,
the mention Swift is completely ambiguous only from the textual context. And the correct entity Ben Swift can be
disambiguated by considering mutimodal contexts in the post and historical knowledge.

ever, the multimodal training data requires the an-
notation of all ambiguous mentions with the con-
text of both texts and images in a post, which is
costly to collect and annotate in practice (Abuczki
and Ghazaleh, 2013). As such, The lack of suf-
ficient training data would limit the performance
of neural models. Second, previous works mainly
learn from the mutimodal mention contexts, and
do not exploit available information at the knowl-
edge level which contains useful description and
historical data with visual features.

In this paper, we focus on solving MNED tasks
at the knowledge level and the training process con-
sists of three steps: knowledge-guided pre-training,
knowledge prototype construction and interactive
learning. To reduce the dependence on annotated
data, we firstly train a mutimodal feature extrac-
tor by implementing a knowledge-guided transfer
learning strategy to make full use of unsupervised
mutimodal corpus. After that we enrich multimodal
information at the knowledge level using a Meta
Learning aggregation method. This keeps both
entities and mentions are multimodal which only
requires a small number of knowledge annotation.
Finally, we unifiedly integrate different modalities
using an Interactive Multimodal learning Network
(IMN), which is able to flexibly utilize the multi-
modal information from both mention contexts and
knowledge graph. Our contributions are summa-
rized as follows:

* We propose a knowledge-guided pre-train
model to reduce the dependence on multi-
modal annotated data by transfer learning. To
the best of our knowledge, this is the first
time to introduce mutimodal pre-train model
in MNED task.

* We propose a Meta Learning method to uti-
lize multimodal information at the knowledge
level. With the Meta Learning method and
pre-train model, only a small number of an-
notation knowledge is required to distinguish
candidate entities.

* We conducted comparative experiments on
a public large-scale MNED dataset. Exper-
imental results show the advantages of our
pre-training method and the Meta Learning
network outperforms state-of-the-art MNED
methods.

2 Related Work

Multimodal Learning As an efficient mecha-
nism of leveraging contextual information from
multiple modalities in parallel, multimodal learning
has been applied in a wide range of tasks in recent
years (Elliott et al., 2015; Specia et al., 2016). In
previous works, representation of different modali-
ties was mostly obtained separately. For visual rep-
resentation, CNN-based models such as VGG (Si-
monyan and Zisserman, 2014) , Google Inception
(Szegedy et al., 2016), ResNet (He et al., 2016) are
widely adopted in many multimodal tasks. Textual
features are mostly represented by language mod-
els such as GloVe (Pennington et al., 2014), GPT
(Radford et al., 2018), XLNet (Yang et al., 2019)
etc. Recently, with the success of pre-train and self-
supervised learning (Misra et al., 2016; Xie et al.,
2017b), several mutimodal transfer learning meth-
ods and architectures (Yu et al., 2021; Gao et al.,
2020; Lu et al., 2019b; Qi et al., 2020) have been
proposed, and have achieved state-of-the-art results
on various vision language tasks, including Visual
Question Answering, Visual Commonsense Rea-



soning, Region-to-Phrase Grounding, Image-text
Retrieval, etc. VideoBERT (Sun et al., 2019) learns
joint distributions over sequences of visual and
linguistic tokens as multimodal features. Vision-
and-Language BERTSs (Lu et al., 2020, 2019a; Gao
etal., 2020) extend BERT architecture to adapt mul-
timodal input by extracting Rols from images and
regards as image tokens. Although these pre-train
models can learn unsupervised features in unsuper-
vised corpus, they still need further improvement
in tasks that require additional knowledge. And we
argue that the self-supervised models still requires
guidance of knowledge.

Named Entity Disambiguation Traditional
NED methods mainly focus on text-only corpus
which can be divided into two categories, local
methods and global methods (Barrena et al., 2018;
Ganea and Hofmann, 2017). For local methods,
each mention is disambiguated separately via
hand-crafted features (Bunescu and Pasca, 2006;
Mihalcea and Csomai, 2007) and contextual
representations learned by neural networks (He
et al., 2013; Eshel et al., 2017). Global meth-
ods(Nguyen et al., 2016; Le and Titov, 2018)
jointly disambiguate mentions by taking into
account the topical coherence among the referred
entities in the same document(Fang et al., 2019).
For the MNED task, the work from (Moon et al.,
2018) is the first to utilize multimodal mention
contexts via weighting the embeddings of images
and words based on attention mechanism. The
previous multimodal works primarily depend on
sufficient training data with fully annotations
on all mention modalities which is costly in
practice(Abuczki and Ghazaleh, 2013). Although
Moon et al. (2018) involve a zero-shot layer in
their model to allow for disambiguation of unseen
entities during training, the performance is limited
if the multimodal information is incomplete in
the training data. Inspired by recent success on
multimodal knowledge graph (Xie et al., 2017a;
Mousselly-Sergieh et al., 2018; Pezeshkpour
et al., 2018),we aim at handle MNED tasks at
the knowledge level, which is much easier than
collecting and annotating multimodal corpus.

3 Proposed Method

3.1 Task Definition

Formally, the inputs of the MNED task are a set of
multimodal posts P = {p(1), p® ... p(™} and a

predefined knowledge graph G = (E, R, H) that
is composed of the entity set F/, the relation set R
and relative historical data of entities. Each input
post p € P is denoted as p = {pm, pt, pv}, where
Pm 1S a mention that needs to be disambiguated, p;
is a sequence of words surrounding the mention in
the post, and p, is an image associated in the post.
Note that the mention p,, can be obtained by other
tasks such as Named Entity Recognition (Lample
et al., 2016), which is beyond the scope of this
paper. Then the target of MNED is to find the
ground truth entity é € E that p,, corresponds to.

3.2 Knowledge-Guided Pre-train Model

Before dealing with the input multimodal posts, we
firstly build a pre-trained model to capture the in-
herent relationship between images and texts which
is guided by the knowledge graph. In this trans-
fer learning way, the model can better understand
the content of different modalities and is helpful
to overcome insufficient of annotated mutimodal
corpus.

End-to-end architecture The pretrain model is
composed of four parts, textual representation, vi-
sual representation, transformer encoder and train-
ing with adaptive loss. The multimodal inputs con-
sist of textual and visual representation which is
tokenized into a token and patch sequence accord-
ing to WordPieces and Object Detection methods.
We use the standard BERT(Devlin et al., 2018)
pre-process method to get the textual sequence.
Unlike traditional pipeline image representation
techniques, We use an end-to-end method to ob-
tain the visual representation. DEtection TRans-
former(DETR)(Carion et al., 2020) approaches ob-
ject detection as a direct set prediction problem
which directly output the final set of objects in
parallel. Given an input image, we take the fixed-
length vector sequence of the output layer of DETR
decoder as the visual representation. Each of the
vectors corresponds to one image patch, we regard
each patch as an “patch token”.

The concatenation of the text token sequence
and image patch sequence consists of the pre-train
model inputs. A pre-trained standard Transformer
(Vaswani et al., 2017) is adopted as the matching
backbone network of the pre-train model. The in-
formation of text tokens and image patches thus
interact freely in multiple self attention layers. In
order to ensure the mutimodal comprehension abil-
ity as well as sensitiveness at the knowledge of the



pre-train model, we exploit three tasks in the train
process.

Mention Masked Language Modeling(MMLM)
Different from previous random word masking,
our mention masking is directed by the knowledge
graph. For mention tokens, we mask it with a prob-
ability of 85%. For other tokens are masked out
with the probability of 15%. We apply the Whole
Word Masking (WWM) strategy to mask out all
the text tokens corresponding to a word at once.
Finally, the MLM task is to minimize the cross-
entropy loss, written as

Lyym = — Z logp(ti‘t\iae) (1)

ti€Ept

Where 6 is trainable parameters, Pre(t;|t\;, 0) is
denotes the probability of the masked-out token ¢;
predicted by the model, given surrounding tokens
t\; in the post p.

Patch Masked Image Modeling(PMIM) Simi-
lar to MMLM, we mask out certain patches in a
patch sequence (Gao et al., 2020). Given an im-
age patch sequence v = {vy,va, ...., v, } generate
by DETR, we randomly mask out patches with
the probability of 15%. The masked patch fea-
tures are set to zero vectors. PMIM is to predict
the distribution over the masked-out patch features.
The MPM training is supervised by minimizing the
KL-divergence between the distributions of patch
features.

Ly = — Z K L(vi, Pre(viln;,0)))  (2)

V; EPv

Image and Text Alignment Modeling(ITAM)
In the ITAM task, the hidden output of the to-
ken [CLS] is fed into a scoring function to indi-
cate whether the text and image data are in the
same post. Given a knowledge graph, the negative
sample are randomly selected from similar posts
such as tweets posted by candidate entities and
tweets with the same mention. The hinge-based
bi-directional ranking loss (Lee et al., 2018; Faghri
et al., 2018; Karpathy and Fei-Fei, 2015) is the
most popular objective function for image and text
alignment, which can be formulated as follows:

Lam = — Z {max[0,m — S(pv,pt) + S(po,
Py—Py— 3)

py—)] + max[0,m — S(pv,pi) + S(p,—,pe)]}

where m is a margin constraint, (v—,u") are
negative pairs. S(-) is a scoring function. The
objective function is specifically trained attempts
to pull positive image-text pairs close and push
negative ones away which contribute to distinguish
between mention contexts and candidate entities.
The pre-training model is trained to recover the
different modal information with three objectives
and the three objectives are jointly optimized. Thus,
the overall pre-training objective L is:

L= me + me + Lam (4)

For more implementation details, see related de-
scription in appendix.

3.3 Knowledge Prototype Construction

In spite of the multimodal mention contexts, We
believe that multi-modal information at the knowl-
edge level is potentially important for MNED tasks.
Different from the previous textual representation
methods, we prefer to establish multimodal rep-
resentation at the knowledge level. Given an en-
tity, we construct a small-scale support set which
is composed of related annotation knowledge for
each modality respectively. Then a scoring model
(see section 4) to measure the correlation between
query set and support set is adopted for meta learn-
ing. As an entity is associated with many related
historical posts containing images and texts, We
simply select a part of the representative timeline
tweets as the support set. Specifically, we adopt
three modalities representations to depict an entity
based on timeline posts. The visual prototype of
each entity e, is acquired by aggregating the fea-
tures of the k representative corresponding images.
And features of an image can generated by many
image identification such as ResNet-101 (He et al.,
2016). Similarly, the textual prototype of each en-
tity e; is acquired by pre-trained language models
such as Bert (Devlin et al., 2018). Meanwhile, the
joint prototype of each entity e, can be acquired by
the hidden state of the pre-training model described
in previous subsections.

To select most representative support set from
a large number of historical data, we build a sim-
ilarity graph for each modality. The vertexes of
the similarity graph are feature vectors obtained
in previous steps. And the edges are the cosine
similarity between the vertexes. Then top-k rep-
resentative results are acquired by calculating the
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Figure 2: The overview of the IMN with internal and external interactive component. The internal-interaction com-
ponent extracts the attentions of different modalities within mention contexts and the candidate entity respectively.
The external-interaction component conduct a bidirectional interaction across mention contexts and the candidate

entity.

PageRank score (Page et al., 1999) of each vertex in
the similarity graph. The multimodal prototypes of
an entity can be acquired by averaging the feature
vectors of the top-k PageRank vertexes, and we
perform L2 regularization on each prototype. Fi-
nally, each entity is represented with three different
modalities e = {e,, e, €,}.

For the multimodal posts, three different feature
extractors is applied to obtain query set embed-
dings. For each post p = {py, pt, Dy}, the visual
embedding m,, and textual embedding m; is gen-
erated by the same method used in entity repre-
sentation process. The joint embedding m; of the
mention p,, is acquired by pre-trained model in
section 3.2. Thus, each mention is embedded with
three modalities m = {my,, my, mo}.

3.4 Interactive Multimodal Learning
Network

The architecture of IMN is shown in Figure 3. IMN
adopts the idea of decoupling for modular design
which has strong flexibility and applicability for
different forms of input. In general, IMN consists
of three components: Internal-Interaction, External-
Enteraction and a score component which conduct
a bidirectional interaction of the different modali-
ties across mention contexts and knowledge graph.

3.4.1 Internal-Interaction

The inputs of IMN include two parts: multimodal
mention contexts and the candidate entity proto-

types. The internal-interaction component is uti-
lized to explore the effect of different modalities
within each part of inputs respectively.

Firstly, We adopt a Dense layer (Huang et al.,
2017) to map multimodal embeddings to a uni-
fied representation space. The outputs of the Dense
layer are denoted as m’ = {m,, m;, m’; }. To evalu-
ate the effect of different modalities, a scaled cosine
attention mechanism is performed on the feature
representations m’ as follows:

q = [qv; q; @) = Wy - [miy; my; my) ®)
k = [ko; ke; k1] = Wi - [my; my; my) (©6)
ony = BP0 k) g ey ()

> exp(cos(qi, kj))

J

where g and k are queries and keys for calculat-
ing the scaled cosine attention, W, and W), are the
weight matrices, o; ; denotes the attention weights
on multimodal embeddings.

Then the final embeddings of the input multi-
modal mention contexts s,, can be achieved by
stacking weighted multimodal embeddings.

smo=[>_ai;mj] Vije{vtl} ®)

Similarly, the internal-interaction for the ex-
tended knowledge graph is performed with the mul-
timodal representations of the entities obtained in



Section 3.4 and the output embedding of each entity
is denoted as s..

3.4.2 External-Interaction

The external-interaction component implements a
bidirectional interaction which can deal with the
effect of different modalities from mention contexts
to the knowledge graph and vice versa. We denote
the two directions of effect as entity-to-mention and
mention-to-entity, respectively.

To evaluate the effect of entity-to-mention, we
take s;, as queries and s. as keys respectively.
Then we utilize the scaled cosine attention mecha-
nism to obtain interactive results.

q=1[qv;qt; go] = Wy - 8m 9)

k = [kv; ke; ko] = Wi - se (10)

_ cap(eos(ai, k)
> cap(cos(qr, ky))

Vi, j € {v,t, 0} (11

Qi,j

Then the final representations of mention con-
texts with the effect of different modalities from the
knowledge graph w,, can be obtained as follows.

Um = [ Z Ozi,jkj] Vi e {’U,t,O} (12)

J€{s;t,v}

By switching the queries and keys, we can get
the final representations of the entities u,. with the
mention-to-entity effect. Then u,, and u, are con-
catenated to predict the matching score of the cor-
responding mention m and the entity e. The scorer
function is as follows.

f(m,e) = tanh(Wy[um; ue] + by) (13)

where W, and b, are the weight matrix and bias
term, respectively. The scorer function evaluates
the probability distribution of the ground-truth la-
bels for matching pairs (m, e), where the labels
belong to [—1, 1].

3.4.3 Training

Given a set of multimodal posts which contain men-
tions and their corresponding entities, the training
process is to minimize the ranking loss between the
positive and negative pairs. Intuitively, the model is
trained to produce a higher score between the rep-
resentations of multimodal mention contexts and

the ground-truth entity. Then the loss function is
defined as:

= 3" maz(y+ f(m,e*) = f(m,e),0) (14

e~ ek

where eV is the ground-truth corresponding en-
tity of mention contexts m and e~ is the incor-
rect entity. y is a margin parameter that controls
the amount of difference between f(m,e™) and

f(m,e7).
4 Experiments

4.1 Datasets

Measurement Value
# multimodal input posts 85K
# distinct mentions in posts 1678
# entities in the knowledge graph 68K

# timeline tweets in the knowledge graph 2M

avg. length of posts 20.59
avg.# mentions in a post 1.15
avg.# candidate entities for each mention 17.24
avg.# timeline tweets of an entity 121

Table 1: Key statistics of the MNED dataset.

We conduct comparative experiments on a pub-
lic multimodal entity disambiguation dataset (Ad-
jali et al., 2020a) which collects text and images
to jointly build a corpus of tweets with ambigu-
ous mentions along with a Twitter KB defining the
entities. The entities in the corpus are composed
of popular twitter users including people, compa-
nies, and organizations. The overall statistics can
be seen in table 1 and more details of the dataset
construction can be found in appendix section.

4.2 Experimental Settings

Hyperparameters For the pre-train model, We
use the default parameters of DETR and Bert(base)
in which the number of negative examples is set
to 5, the margin of ITAM is 0.3 and the training
steps is 1M. For knowledge prototype construction,
we keep 10 PageRank results as the support set of
each modality, other parameters adopt the default
configuration of original feature extraction model.
For IMN, the mapped size is 300, the margin of
the loss function is 0.2 and the epoch is 100 with
a validation set for early stopping. We update the
parameters using Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of 0.001, the
dropout rate is 0.2, the score function is tanh.



Evaluation Metrics For evaluation, we use stan-
dard micro P@1 accuracy(Adjali et al., 2020b;
Moon et al., 2018) and R@3 (Moon et al., 2018)
recall as metrics in our experiments. P@1 can in-
tuitively reflect the precision of results. R@3 eval-
uates the matching quality by measuring whether
the ground-truth entity is highly ranked.

4.3 Results and Analysis
4.3.1 Baselines

We compare our IMN model with both machine
learning methods and multimodal deep learning
methods. These benchmark methods are intro-
duced as follows:

* DZMNED (Moon et al., 2018): The first pro-
posed method for MNED by considering mul-
timodal contexts, which adopts a CNN-LSTM
hybrid network with modality attention.

* ET (Adjali et al., 2020b): A feature-based
machine learning model use the combination
of multimodal features to build an Extra-Trees
classifier for MNED task.

* JMEL (Adjali et al., 2020b): The state-of-
the-art method which extract the features of
different modalities and learn a joint represen-
tation of tweets with a fully connected neural
network.

4.3.2 Main Results

Table 2 shows the results of our model compared
with baselines. In general, our IMN model achieves
significant improvements over all the baselines on
both P@1 and R@3 with the mutimodal dataset*.
It can be observed that the pretrain methods are
at an absolute advantage in both P@1 adn R@3,
which shows advantage of transfer learning and
the necessity of jointly representing multimodal
features for MNED task. Comparing to the multi-
modal method such as JMEL with traditional tex-
tual and visual representation methods, our model
achieves 1.9% absolute improvement on P@1. The
improvements indicate that the interaction between
multiple modalities also adds performance gain by
capturing the effect of different modalities from
both the posts and the knowledge graph. In ad-
dition, adding more multimodal features can still

“We select the same feature extractors used in baselines re-
spectively to ensure the fairness of comparison. Since we have
reached a consistent conclusion, the difference of extractors is
not reflect

supplement MNED tasks, even that the pre-trained
representation already contain multimodal informa-
tion. This proves that the information of different
modes can complement each other.

Model modals _ result
text image joint | P@1(%) R@3(%)

ET v v 67.1 -

JMEL v v 80.3 -

DEMNED | v v 80.14 94.18
IMN(base) | v v 82.23 94.54
IMN(joint) v 81.19 93.84
IMN(img) v v 82.40 94.61
IMN(txt) v v 82.44 94.83
IMN v v v 83.99 95.04

Table 2: Comparison results with baselines on the mul-
timodal dataset. The best performance is denoted with
bold text and "v'" indicates that features of the corre-
sponding modal are included in the input.

To investigate the effect of each component in
our model, we conduct a set of ablation experi-
ments as shown in Table 3. IMN is the complete
proposed model. The notation ’-” means removing
some part of the model. From the experimental
results we can observe that the performance drops
significantly when both interactions are removed,
which demonstrates the effectiveness of our inter-
active model. The performance drops considerably
by removing one of the interactions (i.e. Internal-
Interaction or External-Interaction). This proves
the multimodal information from both the posts
and the entities is helpful for the MNED task.

4.3.3 Ablation Study

Results
Model P@1(%) | R@3
IMN 83.99 95.04
- External-Interaction 83.16 93.07
- Internal-Interaction 82.26 94.89
- Both Interactions 82.10 94.50
- Knowledge Guided 83.07 94.95

Table 3: Ablation tests for MNED. "-" means removing
corresponding component of the model.

We also investigated the necessity of knowledge
guidance in the pre-training process. Firstly, We im-
plement the same mask strategy of Bert by treating
mentions as normal words. Then, negative exam-
ples of each case are randomly selected from all
tweets. We can observe that the overall accuracy
will be reduced to a certain extent in Table 3. The



Modal Side Mention Modals Entity Modals Results
text 1image joint | text image joint | P@1(%) R@3(%)

v v 79.84 94.03
Single Modal v v 77.56 91.93
v v 81.19 94.16
v v v 80.38 94.16
Mention Side | v v v 80.80 94.14
v v v v 81.11 94.26
v v v 82.38 94.59
Entity Side v v v 82.19 94.81
v v v v 83.21 95.00

Table 4: Results of the Multimodalitiy Analysis. Single Modal indicates the effect of different modals when used
alone. Mention Side and Entity Side refer to the enrichment means of multimodal information on the mention and

the knowledge side respectively.

result shows that the structure and historical infor-
mation in the knowledge graph can be learned by
a pre-train manner and is helpful to improve the
effect of the MNED task.

4.3.4 Multimodalitiy Analysis

In this part, we perform a series of experiments
to evaluate the performance of our model on deal-
ing with the multimodal features on different input
sides. As shown in Table 4, the pre-trained features
are significantly outperform other single-modal fea-
tures. Besides, we enrich multimodal features on
the mention side and the entity side respectively.
Results show that adding multimodal features from
both sides can improve the model effect, and the
multimodal features on the entity side has a more
obvious contribution to the improvement of results.
This points out a new direction for data annotating
of MNED tasks: we can put the focus of data anno-
tation on the production of multimodal knowledge,
even if the input mention does not have multimodal
contexts. In this way, the multimodal annotation
dependence on the mention side can be greatly re-
duced.

4.3.5 Aggregating Statistics

In order to further study the effect of different meth-
ods for entity support set construction, we conduct
comparative experiments using different K values
and two aggregation strategies and the results are
shown in Figure 3. We can observe that the effect
of PageRank method is significantly outperform
random method especially for a small number of
K values. It indicates that the features selected by
the PageRank method are more representative and
the influence of noise on the result is reduced to
some extent. The point can be inferred from the
experimental results that it is significant to improve

the quality of multimodal knowledge rather than
rely on accumulating features.

0.95
—e- PageRank Aggregation Method
—e— Random Strategy

—

0.70
top 1

0.90

0.85

P@1(%)

0.80

0.75

Top 5 Top 10 Top 20 Top 50 all

Figure 3: Results corresponding to different aggrega-
tion strategies. The abscissa represents the final aggre-
gated number of entity historical data and the ordinate
represents the corresponding precision.

5 Conclusion

We propose to solve MNED task at the knowledge
level through Mutimodal Transfer Learning and
Meta Learning. With large-scale unsupervised data
and a small amount of annotated knowledge, our
model significantly outperforms the state-of-the-
art MNED methods. Experimental results show
that enrich multimodal features at the knowledge
level is more conducive to improving the effect of
MNED models compared with mention contexts
annotation.

There are still many points worth continuing to
explore. In particular, the structural information
in the knowledge graph which can be learned by
knowledge representation models such as transE
may also be useful. Besides, the prototype aggre-
gation method still needs further exploration with
graph learning models such as GCN etc.
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E[CLS] ” Vi H V2 ” V3 ” V4 ” H Vn ” E[SEP] ” TI ” V2 H V3 ” ” Tm-1 ” Tm HE[SEP]]
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Figure 4: Our knowledge guided multimodal pre-training model. We cut the image into fixed-length patches with
DETR, and concatenate textual tokens as the input sequence. Finally, the multimodal semantic representation is

obtained through the transformer encoder.

A Implementation details

A.0.1 Pre-train Model Architecture

The overview of the pretrain model is illustrated
in Figure 4. It is composed of four parts, textual
representation, visual representation, transformer
encoder and training with adaptive loss. The multi-
modal input is firstly tokenized into a token or patch
sequence according to WordPieces and Object De-
tection. We use the standard BERT pre-process
method to process the input sequence. And, the
sum of the sequence embedding, position embed-
ding and segmentation embedding is regarded as
the text representation.

A.0.2 DETR Extractor

We use an end-to-end method to obtain the visual
representation. DEtection TRansformer(DETR)
approaches object detection as a direct set predic-
tion problem. It consists of a set-based global loss,
which forces unique predictions via bipartite match-
ing, and a Transformer encoder-decoder architec-
ture. Given a fixed small set of learned object
queries, DETR reasons about the relations of the
objects and the global image context to directly
output the final set of predictions in parallel. Given
an input image, we take the fixed-length vector se-
quence of the output layer of DETR decoder as the
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visual representation. Each of the vectors corre-
sponds to one image patch, we regard each patch
as an “patch token”.

A.0.3 Negative Sampling in ITAM

For ITAM task, for one positive example in the
train dataset, the text and image are extracted from
the same post, while for one negative sample, the
text and image are randomly selected from similar
posts:

* 70% of the negative examples are randomly
selected from the historical tweets posted by
candidate entities of the mentions appearing
in the article.

* 15% of the negative examples are randomly
selected from the tweets with the same men-
tion.

* 15% of the negative examples are randomly
selected among the entire corpus.

B Experimental details

B.0.1 Dataset introduction

The entities in the corpus are composed of popular
twitter users including people, companies, and or-
ganizations. For ground-truth entity generation, an



important mechanism in Twitter communication is
the usage of a user’s screen name (@ UserScreen-
Name) in a tweet which helps to explicitly align
mention with the ground-truth entity. Each tweet
contains textual and visual content after a series
of preprocessing including deleting single-modal,
non-related and enumerated tweets. To sufficiently
enrich the KB with ambiguous entities, thus make
the MNED task challenging, a simple procedure
was adopted to jointly generate ambiguous candi-
date entities and populate the KB. On the basic
assumption that entities sharing the same last name
or acronyms (when the Twitter user is an organi-
zation etc.) are potential candidate entities, entity
generation can be achieved naturally by collecting
entities sharing the same last name or acronymes.
In the dataset, screen names in the original post
were replaced with the last name or acronyms of
the ground-truth entity as mentions.

0.6 q EEm Pretrain/Mention
. Text
mm Image

0.5 4

Attention Weight

Figure 5: The average attention distribution on differ-
ent modalities. The black column represents the aver-
age weight of joint embedding in IMN and mention em-
bedding in DZMNED.

B.0.2 Attention Distribution

In order to evaluate the capability of extracting
multimodal features, we output the final attention
weight of each modality and make an average on
the test set. Figure 5 shows the attention distri-
bution over the joint/mention, text and image of
the input posts. It is observed that the attention
distribution of DZMNED is more imbalanced than
ours. Specifically, the imbalance mainly lies on
the average weight of images, which indicates that
our model can extract visual features better than
that of DZMNED. This can also support the good
performance of our model on MNED.
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