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Abstract

With the popularity of online social medias001
in recent years, massive-scale multimodal in-002
formation has brought new challenges to tra-003
ditional Named Entity Disambiguation (NED)004
tasks. Recently, Multimodal Named Entity005
Disambiguation (MNED) is proposed to link006
ambiguous mentions with the textual and vi-007
sual contexts to a predefined knowledge graph.008
Recent attempts handle these issues mainly by009
annotating multimodal mentions and adding010
multimodal features to traditional NED mod-011
els. These methods still suffer from 1) lack of012
multimodal annotation data against the huge013
scale of unlabeled corpus and 2) failing to014
model multimodal information at knowledge015
level. In this paper, we explore a pioneer016
study on leveraging multimodal knowledge017
learning to address the MNED task. Specif-018
ically, we propose a knowledge-guided trans-019
fer learning strategy to extract unified repre-020
sentation from different modalities and enrich021
multimodal lnowledge in a Meta Learning way022
which is much easier than collecting ambigu-023
ous mention corpus. Then we propose an Inter-024
active Multimodal Learning Network (IMN),025
which is capable of fully utilizing the multi-026
modal information in both mention and knowl-027
edge side. To verify the validity of the pro-028
posed method, we implemented comparisons029
on a public large-scale MNED dataset based030
on Twitter KB. Experimental results show that031
our method is superior to the state-of-the-art032
multimodal methods.033

1 Introduction034

Nowadays, online social medias have become more035

and more important in our daily life. And valuable036

information to understand users and their prefer-037

ences is hidden in the massive-scale user-generated038

content. However, how to extract such informa-039

tion from these social media posts is extremely040

challenging because the posts are always in un-041

structured texts and images. Named Entity Disam-042

biguation is such a critical task for extracting struc- 043

tured information, which maps ambiguous men- 044

tions from free-form texts to specific entities in 045

a predefined knowledge graph. NED can bene- 046

fit many downstream applications such as recom- 047

mender systems, personal assistance, question an- 048

swering,etc (Dredze et al., 2010). 049

Existing researches on NED mainly focus on 050

texts only and have been proved to be success- 051

ful for well-formed text. However, as the popu- 052

larity of incorporating a mix of text and images 053

in social media platforms (e.g. Twitter1, Instar- 054

gram2, Snapchat3, etc.), more ambiguous mentions 055

appear in short and noisy text. Thus the cross- 056

modal ambiguity makes traditional text-only NED 057

methods more difficult to link them correctly due 058

to enormous number of mentions arising from in- 059

complete and inconsistent expressions. In many 060

of such cases, it is impossible to disambiguate en- 061

tities from text alone. For example, The mention 062

Swift is completely ambiguous only from the tex- 063

tual context in Fig 1. It is difficult to distinguish 064

whether Swift refers to Taylor Swift or Ben Swift 065

for lacking of critical information in the text. Fur- 066

thermore, the target person Ben Swift cannot be 067

directly recognized from the image alone through 068

face recognition techniques due to the obstruction 069

of eyes, hats and other objects. However, by con- 070

sidering both mutimodal contexts in the post and 071

historical data of the entity, the correct entity Ben 072

Swift can be disambiguated from the candidates. 073

That is, the textual features and visual features can 074

complement each other. 075

Although some recent works has been proposed 076

for the MNED task (Moon et al., 2018; Adjali et al., 077

2020a,b), there also exist some shortcomings. First, 078

sufficient annotated corpus with both texts and im- 079

ages is required to train a multimodal model. How- 080

1https://twitter.com/
2https://www.instagram.com/
3https://www.snapchat.com/
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Figure 1: The example of MNED task with historical knowledge. Because of the insufficiency of information,
the mention Swift is completely ambiguous only from the textual context. And the correct entity Ben Swift can be
disambiguated by considering mutimodal contexts in the post and historical knowledge.

ever, the multimodal training data requires the an-081

notation of all ambiguous mentions with the con-082

text of both texts and images in a post, which is083

costly to collect and annotate in practice (Abuczki084

and Ghazaleh, 2013). As such, The lack of suf-085

ficient training data would limit the performance086

of neural models. Second, previous works mainly087

learn from the mutimodal mention contexts, and088

do not exploit available information at the knowl-089

edge level which contains useful description and090

historical data with visual features.091

In this paper, we focus on solving MNED tasks092

at the knowledge level and the training process con-093

sists of three steps: knowledge-guided pre-training,094

knowledge prototype construction and interactive095

learning. To reduce the dependence on annotated096

data, we firstly train a mutimodal feature extrac-097

tor by implementing a knowledge-guided transfer098

learning strategy to make full use of unsupervised099

mutimodal corpus. After that we enrich multimodal100

information at the knowledge level using a Meta101

Learning aggregation method. This keeps both102

entities and mentions are multimodal which only103

requires a small number of knowledge annotation.104

Finally, we unifiedly integrate different modalities105

using an Interactive Multimodal learning Network106

(IMN), which is able to flexibly utilize the multi-107

modal information from both mention contexts and108

knowledge graph. Our contributions are summa-109

rized as follows:110

• We propose a knowledge-guided pre-train111

model to reduce the dependence on multi-112

modal annotated data by transfer learning. To113

the best of our knowledge, this is the first114

time to introduce mutimodal pre-train model115

in MNED task.116

• We propose a Meta Learning method to uti- 117

lize multimodal information at the knowledge 118

level. With the Meta Learning method and 119

pre-train model, only a small number of an- 120

notation knowledge is required to distinguish 121

candidate entities. 122

• We conducted comparative experiments on 123

a public large-scale MNED dataset. Exper- 124

imental results show the advantages of our 125

pre-training method and the Meta Learning 126

network outperforms state-of-the-art MNED 127

methods. 128

2 Related Work 129

Multimodal Learning As an efficient mecha- 130

nism of leveraging contextual information from 131

multiple modalities in parallel, multimodal learning 132

has been applied in a wide range of tasks in recent 133

years (Elliott et al., 2015; Specia et al., 2016). In 134

previous works, representation of different modali- 135

ties was mostly obtained separately. For visual rep- 136

resentation, CNN-based models such as VGG (Si- 137

monyan and Zisserman, 2014) , Google Inception 138

(Szegedy et al., 2016), ResNet (He et al., 2016) are 139

widely adopted in many multimodal tasks. Textual 140

features are mostly represented by language mod- 141

els such as GloVe (Pennington et al., 2014), GPT 142

(Radford et al., 2018), XLNet (Yang et al., 2019) 143

etc. Recently, with the success of pre-train and self- 144

supervised learning (Misra et al., 2016; Xie et al., 145

2017b), several mutimodal transfer learning meth- 146

ods and architectures (Yu et al., 2021; Gao et al., 147

2020; Lu et al., 2019b; Qi et al., 2020) have been 148

proposed, and have achieved state-of-the-art results 149

on various vision language tasks, including Visual 150

Question Answering, Visual Commonsense Rea- 151
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soning, Region-to-Phrase Grounding, Image-text152

Retrieval, etc. VideoBERT (Sun et al., 2019) learns153

joint distributions over sequences of visual and154

linguistic tokens as multimodal features. Vision-155

and-Language BERTs (Lu et al., 2020, 2019a; Gao156

et al., 2020) extend BERT architecture to adapt mul-157

timodal input by extracting RoIs from images and158

regards as image tokens. Although these pre-train159

models can learn unsupervised features in unsuper-160

vised corpus, they still need further improvement161

in tasks that require additional knowledge. And we162

argue that the self-supervised models still requires163

guidance of knowledge.164

Named Entity Disambiguation Traditional165

NED methods mainly focus on text-only corpus166

which can be divided into two categories, local167

methods and global methods (Barrena et al., 2018;168

Ganea and Hofmann, 2017). For local methods,169

each mention is disambiguated separately via170

hand-crafted features (Bunescu and Paşca, 2006;171

Mihalcea and Csomai, 2007) and contextual172

representations learned by neural networks (He173

et al., 2013; Eshel et al., 2017). Global meth-174

ods(Nguyen et al., 2016; Le and Titov, 2018)175

jointly disambiguate mentions by taking into176

account the topical coherence among the referred177

entities in the same document(Fang et al., 2019).178

For the MNED task, the work from (Moon et al.,179

2018) is the first to utilize multimodal mention180

contexts via weighting the embeddings of images181

and words based on attention mechanism. The182

previous multimodal works primarily depend on183

sufficient training data with fully annotations184

on all mention modalities which is costly in185

practice(Abuczki and Ghazaleh, 2013). Although186

Moon et al. (2018) involve a zero-shot layer in187

their model to allow for disambiguation of unseen188

entities during training, the performance is limited189

if the multimodal information is incomplete in190

the training data. Inspired by recent success on191

multimodal knowledge graph (Xie et al., 2017a;192

Mousselly-Sergieh et al., 2018; Pezeshkpour193

et al., 2018),we aim at handle MNED tasks at194

the knowledge level, which is much easier than195

collecting and annotating multimodal corpus.196

3 Proposed Method197

3.1 Task Definition198

Formally, the inputs of the MNED task are a set of199

multimodal posts P = {p(1), p(2), ..., p(n)} and a200

predefined knowledge graph G = (E,R,H) that 201

is composed of the entity set E, the relation set R 202

and relative historical data of entities. Each input 203

post p ∈ P is denoted as p = {pm, pt, pv}, where 204

pm is a mention that needs to be disambiguated, pt 205

is a sequence of words surrounding the mention in 206

the post, and pv is an image associated in the post. 207

Note that the mention pm can be obtained by other 208

tasks such as Named Entity Recognition (Lample 209

et al., 2016), which is beyond the scope of this 210

paper. Then the target of MNED is to find the 211

ground truth entity ê ∈ E that pm corresponds to. 212

3.2 Knowledge-Guided Pre-train Model 213

Before dealing with the input multimodal posts, we 214

firstly build a pre-trained model to capture the in- 215

herent relationship between images and texts which 216

is guided by the knowledge graph. In this trans- 217

fer learning way, the model can better understand 218

the content of different modalities and is helpful 219

to overcome insufficient of annotated mutimodal 220

corpus. 221

End-to-end architecture The pretrain model is 222

composed of four parts, textual representation, vi- 223

sual representation, transformer encoder and train- 224

ing with adaptive loss. The multimodal inputs con- 225

sist of textual and visual representation which is 226

tokenized into a token and patch sequence accord- 227

ing to WordPieces and Object Detection methods. 228

We use the standard BERT(Devlin et al., 2018) 229

pre-process method to get the textual sequence. 230

Unlike traditional pipeline image representation 231

techniques, We use an end-to-end method to ob- 232

tain the visual representation. DEtection TRans- 233

former(DETR)(Carion et al., 2020) approaches ob- 234

ject detection as a direct set prediction problem 235

which directly output the final set of objects in 236

parallel. Given an input image, we take the fixed- 237

length vector sequence of the output layer of DETR 238

decoder as the visual representation. Each of the 239

vectors corresponds to one image patch, we regard 240

each patch as an “patch token”. 241

The concatenation of the text token sequence 242

and image patch sequence consists of the pre-train 243

model inputs. A pre-trained standard Transformer 244

(Vaswani et al., 2017) is adopted as the matching 245

backbone network of the pre-train model. The in- 246

formation of text tokens and image patches thus 247

interact freely in multiple self attention layers. In 248

order to ensure the mutimodal comprehension abil- 249

ity as well as sensitiveness at the knowledge of the 250
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pre-train model, we exploit three tasks in the train251

process.252

Mention Masked Language Modeling(MMLM)253

Different from previous random word masking,254

our mention masking is directed by the knowledge255

graph. For mention tokens, we mask it with a prob-256

ability of 85%. For other tokens are masked out257

with the probability of 15%. We apply the Whole258

Word Masking (WWM) strategy to mask out all259

the text tokens corresponding to a word at once.260

Finally, the MLM task is to minimize the cross-261

entropy loss, written as262

Lmm = −
∑
ti∈pt

logP (ti|t\i, θ) (1)263

Where θ is trainable parameters, Pre(ti|t\i, θ) is264

denotes the probability of the masked-out token ti265

predicted by the model, given surrounding tokens266

t\i in the post p.267

Patch Masked Image Modeling(PMIM) Simi-268

lar to MMLM, we mask out certain patches in a269

patch sequence (Gao et al., 2020). Given an im-270

age patch sequence v = {v1, v2, ...., vn} generate271

by DETR, we randomly mask out patches with272

the probability of 15%. The masked patch fea-273

tures are set to zero vectors. PMIM is to predict274

the distribution over the masked-out patch features.275

The MPM training is supervised by minimizing the276

KL-divergence between the distributions of patch277

features.278

Lpm = −
∑
vi∈pv

KL(vi, P re(vi|v\i, θ))) (2)279

Image and Text Alignment Modeling(ITAM)280

In the ITAM task, the hidden output of the to-281

ken [CLS] is fed into a scoring function to indi-282

cate whether the text and image data are in the283

same post. Given a knowledge graph, the negative284

sample are randomly selected from similar posts285

such as tweets posted by candidate entities and286

tweets with the same mention. The hinge-based287

bi-directional ranking loss (Lee et al., 2018; Faghri288

et al., 2018; Karpathy and Fei-Fei, 2015) is the289

most popular objective function for image and text290

alignment, which can be formulated as follows:291

Lam = −
∑

p
v− ,p

t−

{max[0,m− S(pv, pt) + S(pv,

pt−)] + max[0,m− S(pv, pt) + S(pv− , pt)]}
(3)292

293

where m is a margin constraint, (v−, u−) are 294

negative pairs. S(·) is a scoring function. The 295

objective function is specifically trained attempts 296

to pull positive image-text pairs close and push 297

negative ones away which contribute to distinguish 298

between mention contexts and candidate entities. 299

The pre-training model is trained to recover the 300

different modal information with three objectives 301

and the three objectives are jointly optimized. Thus, 302

the overall pre-training objective L is: 303

L = Lmm + Lpm + Lam (4) 304

For more implementation details, see related de- 305

scription in appendix. 306

3.3 Knowledge Prototype Construction 307

In spite of the multimodal mention contexts, We 308

believe that multi-modal information at the knowl- 309

edge level is potentially important for MNED tasks. 310

Different from the previous textual representation 311

methods, we prefer to establish multimodal rep- 312

resentation at the knowledge level. Given an en- 313

tity, we construct a small-scale support set which 314

is composed of related annotation knowledge for 315

each modality respectively. Then a scoring model 316

(see section 4) to measure the correlation between 317

query set and support set is adopted for meta learn- 318

ing. As an entity is associated with many related 319

historical posts containing images and texts, We 320

simply select a part of the representative timeline 321

tweets as the support set. Specifically, we adopt 322

three modalities representations to depict an entity 323

based on timeline posts. The visual prototype of 324

each entity ev is acquired by aggregating the fea- 325

tures of the k representative corresponding images. 326

And features of an image can generated by many 327

image identification such as ResNet-101 (He et al., 328

2016). Similarly, the textual prototype of each en- 329

tity et is acquired by pre-trained language models 330

such as Bert (Devlin et al., 2018). Meanwhile, the 331

joint prototype of each entity eo can be acquired by 332

the hidden state of the pre-training model described 333

in previous subsections. 334

To select most representative support set from 335

a large number of historical data, we build a sim- 336

ilarity graph for each modality. The vertexes of 337

the similarity graph are feature vectors obtained 338

in previous steps. And the edges are the cosine 339

similarity between the vertexes. Then top-k rep- 340

resentative results are acquired by calculating the 341
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Figure 2: The overview of the IMN with internal and external interactive component. The internal-interaction com-
ponent extracts the attentions of different modalities within mention contexts and the candidate entity respectively.
The external-interaction component conduct a bidirectional interaction across mention contexts and the candidate
entity.

PageRank score (Page et al., 1999) of each vertex in342

the similarity graph. The multimodal prototypes of343

an entity can be acquired by averaging the feature344

vectors of the top-k PageRank vertexes, and we345

perform L2 regularization on each prototype. Fi-346

nally, each entity is represented with three different347

modalities e = {ev, et, eo}.348

For the multimodal posts, three different feature349

extractors is applied to obtain query set embed-350

dings. For each post p = {pm, pt, pv}, the visual351

embedding mv and textual embedding mt is gen-352

erated by the same method used in entity repre-353

sentation process. The joint embedding mj of the354

mention pm is acquired by pre-trained model in355

section 3.2. Thus, each mention is embedded with356

three modalities m = {mv,mt,mo}.357

3.4 Interactive Multimodal Learning358

Network359

The architecture of IMN is shown in Figure 3. IMN360

adopts the idea of decoupling for modular design361

which has strong flexibility and applicability for362

different forms of input. In general, IMN consists363

of three components: Internal-Interaction, External-364

Enteraction and a score component which conduct365

a bidirectional interaction of the different modali-366

ties across mention contexts and knowledge graph.367

3.4.1 Internal-Interaction368

The inputs of IMN include two parts: multimodal369

mention contexts and the candidate entity proto-370

types. The internal-interaction component is uti- 371

lized to explore the effect of different modalities 372

within each part of inputs respectively. 373

Firstly, We adopt a Dense layer (Huang et al., 374

2017) to map multimodal embeddings to a uni- 375

fied representation space. The outputs of the Dense 376

layer are denoted asm′ = {m′v,m′t,m′j}. To evalu- 377

ate the effect of different modalities, a scaled cosine 378

attention mechanism is performed on the feature 379

representations m′ as follows: 380

q = [qv; qt; ql] =Wq · [m′v;m′t;m′o] (5) 381

382
k = [kv; kt; kl] =Wk · [m′v;m′t;m′o] (6) 383

384

αi,j =
exp(cos(qi, kj))∑
j

exp(cos(qi, kj))
∀i, j ∈ {v, t, o} (7) 385

where q and k are queries and keys for calculat- 386

ing the scaled cosine attention, Wq and Wk are the 387

weight matrices, αi,j denotes the attention weights 388

on multimodal embeddings. 389

Then the final embeddings of the input multi- 390

modal mention contexts sm can be achieved by 391

stacking weighted multimodal embeddings. 392

sm = [
∑
i

αi,jm
′
j ] ∀i, j ∈ {v, t, l} (8) 393

Similarly, the internal-interaction for the ex- 394

tended knowledge graph is performed with the mul- 395

timodal representations of the entities obtained in 396
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Section 3.4 and the output embedding of each entity397

is denoted as se.398

3.4.2 External-Interaction399

The external-interaction component implements a400

bidirectional interaction which can deal with the401

effect of different modalities from mention contexts402

to the knowledge graph and vice versa. We denote403

the two directions of effect as entity-to-mention and404

mention-to-entity, respectively.405

To evaluate the effect of entity-to-mention, we406

take sm as queries and se as keys respectively.407

Then we utilize the scaled cosine attention mecha-408

nism to obtain interactive results.409

q = [qv; qt; qo] =Wq · sm (9)410

411
k = [kv; kt; ko] =Wk · se (10)412

413

αi,j =
exp(cos(qi, kj))∑
j

exp(cos(qi, kj))
∀i, j ∈ {v, t, o} (11)414

Then the final representations of mention con-415

texts with the effect of different modalities from the416

knowledge graph um can be obtained as follows.417

um = [
∑

j∈{s,t,v}

αi,jkj ] ∀i ∈ {v, t, o} (12)418

By switching the queries and keys, we can get419

the final representations of the entities ue with the420

mention-to-entity effect. Then um and ue are con-421

catenated to predict the matching score of the cor-422

responding mention m and the entity e. The scorer423

function is as follows.424

f(m, e) = tanh(Wy[um;ue] + by) (13)425

where Wy and by are the weight matrix and bias426

term, respectively. The scorer function evaluates427

the probability distribution of the ground-truth la-428

bels for matching pairs (m, e), where the labels429

belong to [−1, 1].430

3.4.3 Training431

Given a set of multimodal posts which contain men-432

tions and their corresponding entities, the training433

process is to minimize the ranking loss between the434

positive and negative pairs. Intuitively, the model is435

trained to produce a higher score between the rep-436

resentations of multimodal mention contexts and437

the ground-truth entity. Then the loss function is 438

defined as: 439

τ =
∑

e−∈E

max(γ + f(m, e+)− f(m, e−), 0) (14) 440

where e+ is the ground-truth corresponding en- 441

tity of mention contexts m and e− is the incor- 442

rect entity. γ is a margin parameter that controls 443

the amount of difference between f(m, e+) and 444

f(m, e−). 445

4 Experiments 446

4.1 Datasets 447

Measurement Value

# multimodal input posts 85K
# distinct mentions in posts 1678
# entities in the knowledge graph 68K
# timeline tweets in the knowledge graph 2M
avg. length of posts 20.59
avg.# mentions in a post 1.15
avg.# candidate entities for each mention 17.24
avg.# timeline tweets of an entity 121

Table 1: Key statistics of the MNED dataset.

We conduct comparative experiments on a pub- 448

lic multimodal entity disambiguation dataset (Ad- 449

jali et al., 2020a) which collects text and images 450

to jointly build a corpus of tweets with ambigu- 451

ous mentions along with a Twitter KB defining the 452

entities. The entities in the corpus are composed 453

of popular twitter users including people, compa- 454

nies, and organizations. The overall statistics can 455

be seen in table 1 and more details of the dataset 456

construction can be found in appendix section. 457

4.2 Experimental Settings 458

Hyperparameters For the pre-train model, We 459

use the default parameters of DETR and Bert(base) 460

in which the number of negative examples is set 461

to 5, the margin of ITAM is 0.3 and the training 462

steps is 1M. For knowledge prototype construction, 463

we keep 10 PageRank results as the support set of 464

each modality, other parameters adopt the default 465

configuration of original feature extraction model. 466

For IMN, the mapped size is 300, the margin of 467

the loss function is 0.2 and the epoch is 100 with 468

a validation set for early stopping. We update the 469

parameters using Adam optimizer (Kingma and 470

Ba, 2014) with an initial learning rate of 0.001, the 471

dropout rate is 0.2, the score function is tanh. 472
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Evaluation Metrics For evaluation, we use stan-473

dard micro P@1 accuracy(Adjali et al., 2020b;474

Moon et al., 2018) and R@3 (Moon et al., 2018)475

recall as metrics in our experiments. P@1 can in-476

tuitively reflect the precision of results. R@3 eval-477

uates the matching quality by measuring whether478

the ground-truth entity is highly ranked.479

4.3 Results and Analysis480

4.3.1 Baselines481

We compare our IMN model with both machine482

learning methods and multimodal deep learning483

methods. These benchmark methods are intro-484

duced as follows:485

• DZMNED (Moon et al., 2018): The first pro-486

posed method for MNED by considering mul-487

timodal contexts, which adopts a CNN-LSTM488

hybrid network with modality attention.489

• ET (Adjali et al., 2020b): A feature-based490

machine learning model use the combination491

of multimodal features to build an Extra-Trees492

classifier for MNED task.493

• JMEL (Adjali et al., 2020b): The state-of-494

the-art method which extract the features of495

different modalities and learn a joint represen-496

tation of tweets with a fully connected neural497

network.498

4.3.2 Main Results499

Table 2 shows the results of our model compared500

with baselines. In general, our IMN model achieves501

significant improvements over all the baselines on502

both P@1 and R@3 with the mutimodal dataset4.503

It can be observed that the pretrain methods are504

at an absolute advantage in both P@1 adn R@3,505

which shows advantage of transfer learning and506

the necessity of jointly representing multimodal507

features for MNED task. Comparing to the multi-508

modal method such as JMEL with traditional tex-509

tual and visual representation methods, our model510

achieves 1.9% absolute improvement on P@1. The511

improvements indicate that the interaction between512

multiple modalities also adds performance gain by513

capturing the effect of different modalities from514

both the posts and the knowledge graph. In ad-515

dition, adding more multimodal features can still516

4We select the same feature extractors used in baselines re-
spectively to ensure the fairness of comparison. Since we have
reached a consistent conclusion, the difference of extractors is
not reflect

supplement MNED tasks, even that the pre-trained 517

representation already contain multimodal informa- 518

tion. This proves that the information of different 519

modes can complement each other. 520

Model
modals result

text image joint P@1(%) R@3(%)
ET X X 67.1 -
JMEL X X 80.3 -
DEMNED X X 80.14 94.18
IMN(base) X X 82.23 94.54
IMN(joint) X 81.19 93.84
IMN(img) X X 82.40 94.61
IMN(txt) X X 82.44 94.83
IMN X X X 83.99 95.04

Table 2: Comparison results with baselines on the mul-
timodal dataset. The best performance is denoted with
bold text and "X" indicates that features of the corre-
sponding modal are included in the input.

To investigate the effect of each component in 521

our model, we conduct a set of ablation experi- 522

ments as shown in Table 3. IMN is the complete 523

proposed model. The notation ’-’ means removing 524

some part of the model. From the experimental 525

results we can observe that the performance drops 526

significantly when both interactions are removed, 527

which demonstrates the effectiveness of our inter- 528

active model. The performance drops considerably 529

by removing one of the interactions (i.e. Internal- 530

Interaction or External-Interaction). This proves 531

the multimodal information from both the posts 532

and the entities is helpful for the MNED task. 533

4.3.3 Ablation Study 534

Model
Results

P@1(%) R@3
IMN 83.99 95.04

- External-Interaction 83.16 93.07
- Internal-Interaction 82.26 94.89
- Both Interactions 82.10 94.50
- Knowledge Guided 83.07 94.95

Table 3: Ablation tests for MNED. "-" means removing
corresponding component of the model.

We also investigated the necessity of knowledge 535

guidance in the pre-training process. Firstly, We im- 536

plement the same mask strategy of Bert by treating 537

mentions as normal words. Then, negative exam- 538

ples of each case are randomly selected from all 539

tweets. We can observe that the overall accuracy 540

will be reduced to a certain extent in Table 3. The 541
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Modal Side
Mention Modals Entity Modals Results

text image joint text image joint P@1(%) R@3(%)

Single Modal
X X 79.84 94.03

X X 77.56 91.93
X X 81.19 94.16

Mention Side
X X X 80.38 94.16
X X X 80.80 94.14
X X X X 81.11 94.26

Entity Side
X X X 82.38 94.59
X X X 82.19 94.81
X X X X 83.21 95.00

Table 4: Results of the Multimodalitiy Analysis. Single Modal indicates the effect of different modals when used
alone. Mention Side and Entity Side refer to the enrichment means of multimodal information on the mention and
the knowledge side respectively.

result shows that the structure and historical infor-542

mation in the knowledge graph can be learned by543

a pre-train manner and is helpful to improve the544

effect of the MNED task.545

4.3.4 Multimodalitiy Analysis546

In this part, we perform a series of experiments547

to evaluate the performance of our model on deal-548

ing with the multimodal features on different input549

sides. As shown in Table 4, the pre-trained features550

are significantly outperform other single-modal fea-551

tures. Besides, we enrich multimodal features on552

the mention side and the entity side respectively.553

Results show that adding multimodal features from554

both sides can improve the model effect, and the555

multimodal features on the entity side has a more556

obvious contribution to the improvement of results.557

This points out a new direction for data annotating558

of MNED tasks: we can put the focus of data anno-559

tation on the production of multimodal knowledge,560

even if the input mention does not have multimodal561

contexts. In this way, the multimodal annotation562

dependence on the mention side can be greatly re-563

duced.564

4.3.5 Aggregating Statistics565

In order to further study the effect of different meth-566

ods for entity support set construction, we conduct567

comparative experiments using different K values568

and two aggregation strategies and the results are569

shown in Figure 3. We can observe that the effect570

of PageRank method is significantly outperform571

random method especially for a small number of572

K values. It indicates that the features selected by573

the PageRank method are more representative and574

the influence of noise on the result is reduced to575

some extent. The point can be inferred from the576

experimental results that it is significant to improve577

the quality of multimodal knowledge rather than 578

rely on accumulating features. 579

Figure 3: Results corresponding to different aggrega-
tion strategies. The abscissa represents the final aggre-
gated number of entity historical data and the ordinate
represents the corresponding precision.

5 Conclusion 580

We propose to solve MNED task at the knowledge 581

level through Mutimodal Transfer Learning and 582

Meta Learning. With large-scale unsupervised data 583

and a small amount of annotated knowledge, our 584

model significantly outperforms the state-of-the- 585

art MNED methods. Experimental results show 586

that enrich multimodal features at the knowledge 587

level is more conducive to improving the effect of 588

MNED models compared with mention contexts 589

annotation. 590

There are still many points worth continuing to 591

explore. In particular, the structural information 592

in the knowledge graph which can be learned by 593

knowledge representation models such as transE 594

may also be useful. Besides, the prototype aggre- 595

gation method still needs further exploration with 596

graph learning models such as GCN etc. 597
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Figure 4: Our knowledge guided multimodal pre-training model. We cut the image into fixed-length patches with
DETR, and concatenate textual tokens as the input sequence. Finally, the multimodal semantic representation is
obtained through the transformer encoder.

A Implementation details786

A.0.1 Pre-train Model Architecture787

The overview of the pretrain model is illustrated788

in Figure 4. It is composed of four parts, textual789

representation, visual representation, transformer790

encoder and training with adaptive loss. The multi-791

modal input is firstly tokenized into a token or patch792

sequence according to WordPieces and Object De-793

tection. We use the standard BERT pre-process794

method to process the input sequence. And, the795

sum of the sequence embedding, position embed-796

ding and segmentation embedding is regarded as797

the text representation.798

A.0.2 DETR Extractor799

We use an end-to-end method to obtain the visual800

representation. DEtection TRansformer(DETR)801

approaches object detection as a direct set predic-802

tion problem. It consists of a set-based global loss,803

which forces unique predictions via bipartite match-804

ing, and a Transformer encoder-decoder architec-805

ture. Given a fixed small set of learned object806

queries, DETR reasons about the relations of the807

objects and the global image context to directly808

output the final set of predictions in parallel. Given809

an input image, we take the fixed-length vector se-810

quence of the output layer of DETR decoder as the811

visual representation. Each of the vectors corre- 812

sponds to one image patch, we regard each patch 813

as an “patch token”. 814

A.0.3 Negative Sampling in ITAM 815

For ITAM task, for one positive example in the 816

train dataset, the text and image are extracted from 817

the same post, while for one negative sample, the 818

text and image are randomly selected from similar 819

posts: 820

• 70% of the negative examples are randomly 821

selected from the historical tweets posted by 822

candidate entities of the mentions appearing 823

in the article. 824

• 15% of the negative examples are randomly 825

selected from the tweets with the same men- 826

tion. 827

• 15% of the negative examples are randomly 828

selected among the entire corpus. 829

B Experimental details 830

B.0.1 Dataset introduction 831

The entities in the corpus are composed of popular 832

twitter users including people, companies, and or- 833

ganizations. For ground-truth entity generation, an 834
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important mechanism in Twitter communication is835

the usage of a user’s screen name (@UserScreen-836

Name) in a tweet which helps to explicitly align837

mention with the ground-truth entity. Each tweet838

contains textual and visual content after a series839

of preprocessing including deleting single-modal,840

non-related and enumerated tweets. To sufficiently841

enrich the KB with ambiguous entities, thus make842

the MNED task challenging, a simple procedure843

was adopted to jointly generate ambiguous candi-844

date entities and populate the KB. On the basic845

assumption that entities sharing the same last name846

or acronyms (when the Twitter user is an organi-847

zation etc.) are potential candidate entities, entity848

generation can be achieved naturally by collecting849

entities sharing the same last name or acronyms.850

In the dataset, screen names in the original post851

were replaced with the last name or acronyms of852

the ground-truth entity as mentions.853

Figure 5: The average attention distribution on differ-
ent modalities. The black column represents the aver-
age weight of joint embedding in IMN and mention em-
bedding in DZMNED.

B.0.2 Attention Distribution854

In order to evaluate the capability of extracting855

multimodal features, we output the final attention856

weight of each modality and make an average on857

the test set. Figure 5 shows the attention distri-858

bution over the joint/mention, text and image of859

the input posts. It is observed that the attention860

distribution of DZMNED is more imbalanced than861

ours. Specifically, the imbalance mainly lies on862

the average weight of images, which indicates that863

our model can extract visual features better than864

that of DZMNED. This can also support the good865

performance of our model on MNED.866
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