
SOK: VIRTUALIZATION CLASSIFICATION ON ISOLATION CAPABILITIES

Anonymous authors
Paper under double-blind review

Abstract
Within the Linux ecosystem, hypervisor and container-based
virtualization are the two most prevalent and well-known
server virtualization approaches. As it is often the case, the
choice is much more complex than a binary decision between
those distinct approaches. Recently emerging technologies,
concepts and approaches, have greatly diversified the “server
virtualization landscape”. For example, the enabling concepts
of container-based virtualization are ever changing and im-
prove upon every upcoming Kernel release. Moreover, novel
sandbox-based approaches leverage traditional and recent Op-
erating System (OS) functionality to intercept system calls
for their isolation needs. Hybrid systems utilize classic hyper-
visors in order to run a specific purpose built unikernel to run
container-based virtualization within themselves.

In this work, we present an approach to classify virtualiza-
tion aspects by their isolation capability. For this purpose, we
decompose them into their respective enabling components
and describe them in detail. Finally, we present a multi-level
classification of server virtualization. This classification aims
to enable a quick assessment of virtualization technologies
and their induced implications.

1 Introduction

Virtualization technology isolation capabilities impose a chal-
lenge for many researchers, businesses and service providers
alike. The isolation among processes, containers, Virtual Ma-
chines (VMs) or other containing units, is significant for a
number of reasons. (i) Researchers aim for isolated experi-
ments, without interference from unintentional foreign noise
caused by other tenants. (ii) Businesses strive for the best pos-
sible infrastructure division while maintaining Service Level
Agreements and maximizing profit. (iii) Service providers
want to consolidate their infrastructure to keep total cost of
ownership as low as possible. Naturally, poor isolation would
negatively impact all the use cases above. These demands
towards isolation are enabled by virtualization technologies.

Since its emergence in the 1960s, virtualization is ever-
changing. Starting from experiments with time-sharing sys-
tems on mainframes [18], it has evolved into a broad land-
scape of technologies. These technologies are an integral
part of the business models of many major organizations. To-
day, the application domains of virtualization are vast and the
incentives for their adoptions are manifold.

This is particularly true for cloud computing and the direc-
tion it is progressing to. Areas and special research interest
of the recent years include the Internet of things domain, fog
computing, and edge computing. An encompassing term for
these fields is the “Cloud-To-Thing continuum” [41]. Said
tenants typically compete for resources for a variety of reasons
like overbooking or arbitrary co-location [61]. Other emerg-
ing cloud computing models like Function-As-A-Service of-
ferings also leverage virtualization to a great extent [50]. As
Raza et al. further describe, they have complex demands for
resource isolation, but also non-functional requirements like a
fast cold start and low performance overhead. It is an essential
requirement for virtualization software to be able to isolate
them sufficiently.

Cloud computing and related domains are not the only
fields where resource contention among tenants happens. In
fact, distinct tenants on infrastructure are not necessarily dis-
tinct persons or customers. A simple but very common use-
case is the demand to subdivide existing server hardware to
improve its utilization [34]. For example, a company might
operate a server with a database software, that is not able to
fully utilize. This could be due to any reason like workload
specifics or be imposed by the database software architec-
ture itself. These underutilized resources could be used to
operate another database software for another project, a scale
out, or something completely different as a result of server
consolidation [10, 13]. An incentive therefore could be better
energy efficiency [38] and reduced total cost of ownership
[34]. The trend towards the decomposition of monolithic
applications and thus the enabling of distribution, as well as
consolidation of application components, further diversified
the virtualization landscape. These microservices pattern as
described by Fowler and Lewis [27] are certainly widely ap-
plied in industry and research [57]. What is important though,
is sufficient isolation among those applications, so that they
do not negatively impact each other.

Besides the business oriented use cases, High Perfor-
mance Computing (HPC) data centres and in consequence
researchers utilizing them greatly benefit from the possibili-
ties of virtualization. Every progress made in virtualization
techniques is evaluated and frequently applied within these
centres [29, 53, 65]. While they usually conclude, that na-
tive non-virtualized execution of experiments yields higher
performance, this gap becomes smaller. In some cases the
non-performance related aspects and the convenience of vir-



Journal of Systems Research (JSys) 2022

tualization can outplay the raw performance. Projects like
Singularity 1 for example aim to provide reproducible environ-
ments for HPC experiments built upon virtualization features
of the Linux kernel [37].

Even though all these application domains are highly rele-
vant and represent a multitude of research areas, publication
utilizing virtualization technologies often neglect the details
of their respective implementations [39, 49]. Even within a
seemingly narrow category like container based virtualization,
implementations details make a huge difference regarding as-
pects like performance overhead and degree of isolation.

This paper follows a systematic approach in analysing vir-
tualization technologies. We therefore review existing tech-
nologies and deconstruct them into their isolation enabling
technologies. Along this perspective we aim to provide a
multi-level classification of virtualization technologies. This
classification enables an elaborated decision on which tech-
nology to choose and what to expect.

To provide a holistic view on the enabling aspects of virtu-
alization technologies we make the following contributions
to achieve a classification of those, based on their isolation
capabilities:

• Virtualization Technology Categorization: We categorize
virtualization technologies into three distinct categories:
hypervisor-based, container-based and sandbox-based.

• Elaboration on Virtualization Enablers: For each virtual-
ization category, we highlight the virtualization enabling
aspects of those. These are integrated into the classifica-
tion as subsidiaries.

• Presentation of Dynamic Taxonomy: Based on the cat-
egories and virtualization enablers, we present a multi-
level taxonomy. We further introduce a cross-section
hybrid-based approach that combines aspects of the pre-
viously established categories and thus integrates possi-
ble future developments.

The remainder of the paper is structured as follows: sec-
tion 2 presents important background knowledge, frequently
referred to in upcoming sections. This includes Linux funda-
mentals that describe essential levers for virtualization. Sec-
tion 3 then presents a methodology on how the actual virtual-
ization technology classification is pursued. This is followed
by the implementation of said method in section 4. Based
on this resulting classification, a brief overview over existing
and widely adopted virtualization technologies is given in
section 6. Within this section, said technologies are aligned to
that classification followed by a short discussion. Afterwards,
a review of related work is conducted in section 7. Finally,
a conclusion is drawn in section 8 including a brief general
discussion as well as some thoughts on possible future work.

1https://sylabs.io/singularity/

2 Background

This section briefly presents some Linux OS specific fun-
damentals that tightly interact with virtualization concepts.
We therefore highlight how the kernel interaction happens
and how processes and memory are managed. Moreover, a
short description of how the I/O devices disk and network are
interfaced follows. All these resources are leveraged by virtu-
alization approaches as described in the upcoming sections.

Linux kernels are monolithic kernels. They manage Cen-
tral Processing Unit (CPU) scheduling, memory, file systems,
network protocols and system devices. Kernels are typically
depicted as a layered ring graphs as shown in fig. 1. Notable
here is, that applications are able to directly execute system
calls or use an indirection via system libraries like libc2.

System calls act as levers for applications to transit from
user to kernel space. Further, the kernel provides an interface
to the hardware, which in turn is interfaced via system calls
again.

Hardware

Kernel

System Calls

System Libraries

Applications

Figure 1: Linux Kernel

Based on this model there is a distinction made between (i)
kernel mode and (ii) user mode. These special CPU modes
provide distinct privileges to executed code. Executions
within the (i) kernel mode are granted full access to devices
and other privileged instructions, whereas user programs run
in (ii) user mode. Execution in user mode runs unprivileged
and needs to request privileges via system calls. Switching
between user and kernel mode is called “mode switch”. Ex-
amples for system calls include the opening of a file with
open, mapping a file to memory with mmap or creating a new
process with fork.

2https://man7.org/linux/man-pages/man7/libc.7.html

2

https://sylabs.io/singularity/
https://man7.org/linux/man-pages/man7/libc.7.html


Journal of Systems Research (JSys) 2022

Processes are the vessels for program code execution.
Among other responsibilities, they manage address space,
stacks and registers. Depending on the physical CPU at-
tributes, processes can be executed in parallel, which is typi-
cally called “multitasking”. They are identified by a unique
Process Identifier (PID).

Processes can spawn other processes and threads. For
Linux, all of these are resembled in the task data structure.
All tasks on a Linux system together create a tree structure
with the root PID being 1.

Thus, all tasks are created by other tasks using the sys-
tem calls fork(2)3 or clone(2)4. Internally, fork actually
wraps clone with some privilege specific flags. After the
creation of a new task with its own PID a system call like
execve(2)5. This task creation flow is visualized in fig. 2.
For the remainder of this paper, the term process will be used
to refer to a running Linux task with a PID.

pid 1
sh

clone()
fork()

pid 1
sh

pid 2
sh

execve()

pid 2
ls

Figure 2: Task creation flow

Memory acts as a storage for kernel and application instruc-
tions. Alongside them resides their respective workload data.
More specifically the “Main Memory” describes the actual
physical memory of the system, commonly implemented as
DRAM. It is segmented into “Pages” that typically represent
4 or 8 Kbytes, even though there are exceptions for “Huge
Pages” if the CPU supports it.

Virtual memory on the contrary is an abstraction of the
main memory and is presented as non-contended, almost infi-
nite memory to processes. It is only mapped to physical mem-
ory on demand by the Memory Management Unit (MMU).
Thus, virtual memory can be in four different states: (i) unal-
located, (ii) allocated but not mapped yet, (iii) allocated and

3https://man7.org/linux/man-pages/man2/fork.2.html
4https://man7.org/linux/man-pages/man2/clone.2.html
5https://man7.org/linux/man-pages/man2/execve.2.html

mapped and (iv) allocated and mapped to a physical swap
device.

Actually allocated and mapped memory is called “Resident
Memory”. The Resident Set Size (RSS) describes the total
size of resident memory for a given process. This amount is of
specific interest for isolation, since it is the actually contended
memory resource.

The system call mmap(2)6 is usually leveraged to allocate
virtual memory. It is Linux’ obligation when to map that
allocated memory to the physical address space.

Disk or in particular disk I/O since it is attached to the I/O
bus, represents the access to physical storage devices. The
CPU is able to directly communicate with them via this bus.
Within a computing system, they are typically represented
as storage devices with an automatically generated name,
following a system-specific scheme. Modern disks have a
capacity in the GByte or TByte range and can be accessed by
the kernel and applications.

I/O operations follow a standardized protocol and mostly
consist of read and write commands. An I/O operation targets
a sector which represents a small amount of storage on the
physical device of typically 4 Kbytes. On top of a single or
multiple disks, file-systems can be installed. They enable
easy file-based, often tree like access to the disks.

Like disks, network devices are also attached to the I/O
bus. Again, the CPU is able to directly communicate with
them via this bus. The devices are usually referred to as
Network Interface Cards (NICs). Within a computing sys-
tem, they are typically represented as so-called interfaces or
links with a name, generated by a system-specific scheme.
The card itself, or the network controller, is defined by its
transmission properties, or more specifically by its maximum
possible throughput. Typical throughputs of models at the
time of writing are 1Gbit/s to 100Gbit/s. Apart from that,
NICs have one or more ports to connect to other NICs or a
switching/routing device. Interconnections feature multiple
connector interfaces like RJ-45 or SFP variations, as well as
a transmission medium like copper or fibre.

Upon the intent of sending something to another link, the
payload is split into packets of a previously agreed on size.
In TCP/IP this is the “Maximum Transmission Unit (MTU)”.
These packages are further subdivided into nested frames
depending on the applied network stack. For TCP/IP, this
could be an “Ethernet Frame”. These nested frames are then
subsequently sent to a receiving NIC.

3 Methodology

In order to craft a representative and complete virtualization
classification, a structured approach is necessary. Therefore,
the method described lays out the steps that need to be taken.

6https://man7.org/linux/man-pages/man2/mmap.2.html

3

https://man7.org/linux/man-pages/man2/fork.2.html
https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man2/execve.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html


Journal of Systems Research (JSys) 2022

Foremost, a disambiguation of terms within the virtualization
domain is important.

The term virtualization itself is rather broad and there is
no general agreement on it across its applied domains. Many
aspects of and resource types of computer systems can be
virtualized. This ranges from the virtualization of full servers,
over specific resources, towards certain aspects of applica-
tions. Within this paper, the focus lies clearly on the virtu-
alization of servers or “server virtualization”. While other
aspects may be part of it, only technologies and approaches to-
wards this goal will be considered. Here, server virtualization
is defined as Ameen and Hamo [7] puts it:

Definition 1 (Server virtualization).
Server virtualization is the ability to run
many operating systems with isolation
and independences on other operating
system.

Based on this constraint, a comprehensive literature review
is performed to lay out a possible server virtualization classi-
fication. This process starts with a very broad categorization
and tries to narrow technologies down until sufficient distinc-
tion among them can be achieved. This criterion is met once
the enabling technologies are identified.

The enabling technologies are investigated into detail in
order to understand how they create isolation and what the
implications are. These identified fundamental technologies
act as a specific background and are presented as such in
section 2

To begin with, the generally agreed on coarse classification
of related literature, will be used as a baseline. It agrees on
two distinct virtualization categories [20, 52, 54, 60], namely
(i) Hypervisor-based and (ii) Container-based. These two
categories and newly determined ones are further described
during the remainder of section 4.

4 Virtualization Technology Classification

This section will investigate on possibilities to classify virtu-
alization approaches. To begin with, it provides an overview
that presents a quick glance at the resulting classification in
section 4.1. Along this broad classification, each class is fur-
ther analysed and investigated including their virtualization
enabling components.

4.1 Overview
The anticipated classification is visualized in fig. 3. This clas-
sification acts as an overview and is derived from a broad
literature research as described in the following sections. Pre-
cisely, the process to incrementally compose this figure is

described by stepping through these classes. Arbitrary start-
ing from left to right, these are the three virtualization classes
hypervisor, container and sandbox. Moreover, a fourth one
named hybrid is part of this figure to indicate, that there are
virtualization technology implementations, that share charac-
teristics of all classes.

4.2 Hypervisor-based
Like virtualization in general, Hypervisor or Virtual Machine
Monitor (VMM) systems have been around since the 1960s.
During that time IBM had a huge impact on its development
[19]. VMMs create an abstract layer between the hardware
and nested OSs running on the same hardware. Resources of
the host like CPU, memory, disk and network can be individ-
ually and dynamically attached to them. These OSs run with
virtualized hardware and therefore instantiate “VMs”. This
term for hypervisor-based virtual servers is used from now
on.

The following sections will briefly elaborate on various
types of hypervisors, in order to distinct them. Further, a
short discussion about how they achieve isolation follows.
Within a short closing discussion, an initial iteration of the
virtualization taxonomy is formed.

4.2.1 Architecture Types

Goldberg, who was one of the most prominent researchers
in the virtualization domain subdivided Hypervisor-based
virtualization into two categories; Type-1 and Type-2 [28].
The main distinction among them is whether it runs directly
on the hardware, or on top of another OS. Figure 4 illustrates
that difference.

4.2.2 Hardware abstraction levels

While these two distinctions categorize hypervisors, further
significant properties can be found. Hwang et al. [33] de-
scribes some by highlighting three approaches on how the
actual virtualization layer can be provided. These namely are
(i) Full Virtualization, (ii) Paravirtualization and (iii) Hard-
ware Assisted (HWA) Virtualization. These will be briefly
discussed in the following.

(i) Full virtualization aims to run any OS and kernel, inde-
pendent of its own physical system. No modifications to the
guest system is necessary. With this approach, the host’s and
the guest’s kernel and even their processor architecture can
differ. This goal is achieved by binary translation and emula-
tion, depending on its implementation [6, 7]. Hereby every
device presented to the guest system is fully virtualized and
created by the hypervisor. This for example includes CPU,
mainboard, memory and NIC. If applicable, the translation
between the virtual devices within the guest virtual system

4



Journal of Systems Research (JSys) 2022

hy
br

id

Virtualization

hypervisor
based

container
based

sandbox
based

Figure 3: Virtualization Classification Overview

OS1 OS2 OS3 OS4

VMM Type 1

Hardware

(a) Type-1 Hypervisor

Appli-
cations

OS1 OS2 OS3

VMM Type 2

OS

Hardware

(b) Type-2 Hypervisor

Figure 4: Hypervisor architectures

and the actual physical devices on the host system is done by
the combination of guest and host drivers, managed by the
hypervisor.

(ii) Paravirtualization aims to minimize the overhead vir-
tualization of hardware brings [14]. It does so by providing
and leveraging a special abstraction layer. This layer can be
utilized by the VM to run privileged system calls on the hard-
ware rather than in its own virtualized domain. These are also
called “hypercalls”. However, to achieve this, the guest OS
has to be adapted and aware of these hypercalls. Depending
on the implementation and configuration, the performance
benefit can be significant [25].

(iii) Hardware-assisted virtualization is another way to
reduce the performance impact on full virtualization. This
technique came forward with the development of processor
features dedicated to virtualization [15]. These features al-
low the trapping of certain calls without the need for binary

translation or paravirtualization. While both, full- and paravir-
tualization can benefit from hardware-assisted virtualization,
it can still be seen as a distinct category, since vendors decide
whether to use that feature or implement it themselves within
their hypervisor [62].

Neither of these approaches are mutually exclusive and
specific implementations might apply different combinations
or degrees of adaptation. However, these choices have sig-
nificant impact on isolation characteristics as mentioned in
section 5.4.

4.2.3 Classification Impact

To summarize, the following taxonomy for hypervisor based
systems is crafted. However, while implementations that
represent instances within this taxonomy share common iso-
lation characteristics, specific implementation details impact
the factual isolation. Figure 5 illustrates this taxonomy in a
small tree like structure. Since hypervisor types and its means
to provision virtualization are not mutually exclusive, every
possible combination has to exist.

Virtualization

hypervisor
based

types

one

two

abstractions

full

para

hwa

Figure 5: Hypervisor taxonomy

4.3 Container-based
Container, or more specifically within the context of this
paper “Linux container” are isolated processes on a Linux

5



Journal of Systems Research (JSys) 2022

system that have their own view on most system resources.
In contrast to VMs they do not utilize a hypervisor, but in
consequence share the host kernel. However, since they are
able to provide virtual servers including resource isolation,
they are included within the virtualization taxonomy.

This section outlines distinct characteristics of container-
based virtualization based on technologies applied. First, iso-
lation targets and their relation to the technologies highlighted
in section 2 are presented. Following up, the architecture of
a typical container engine is discussed. Finally an extension
of the previously mentioned taxonomy from section 4.2.1 is
proposed.

4.3.1 Isolation targets

Compared to hypervisor based virtualization, container-based
virtualization is fundamentally different. It does not allow
for full virtualizations like the usage of any host kernel or
different CPU architecture. It also does not make any use of
paravirtualization, since no device or component is emulated.
Furthermore, there is no hardware-assisted virtualization pos-
sible and necessary. Container-based virtualization solely
makes use of the features of the host OS. However, the goals
and use-cases for both approaches overlap to a certain degree.
This namely is the provisioning of virtual servers [60]. Con-
tainer based virtual servers are called “containers” from now
on.

There are no virtual devices that are being presented to
the virtual server as in hypervisor-based virtualization, since
no emulation and binary translation is taking place. Instead,
Linux kernel features are being used to limit access, view and
utilization to the resources provided by and shared with the
host. Dua et al. [23] present an overview of the aspects of
resources that need to be handled by the kernel on an abstract
level. More in-depth information can be found within this
chapter in section 2. Specifically, these are (i) process, (ii)
resource, (iii) network, (iv) filesystem, (v) storage, (vi) device
and (vii) capabilities.

These aspects are briefly described in the following:

(i) Process isolation creates a limited view of the process
tree from the perspective of the container. All processes
within the container are branched of a new process with the
PID 1. This PID and its underlying tree is also visible from
the host, but with different PIDs dependent on previous pro-
cess state. This aspect is realized by using namespaces as
described in section 5.1. More specifically, PID namespaces.

(ii) Resource limitation affects all typically used resources
of a server. This includes CPU shares, memory, disk I/O and
net I/O. Access to those can be limited and isolated dependant
of the applied virtualization technique. This aspect is realized
by using cGroups as described in section 5.2.

(iii) Network interfaces isolation is separate from the ac-
tual possible utilization of a device. The container needs
its own personal network stack and only sees configuration
affecting it directly. This aspect is realized by using names-
paces as described in section 5.1. More specifically, network
namespaces.

(iv) Filesystem tree isolation provides containers with their
own root filesystem to not interfere with the host. Files, in-
stalled packages and configurations of the host are invisible
to the container client, if not explicitly configured differently.
This enables the installation of packages and changing of
configurations without interference. This aspect is realized
by using mount namespaces as described in section 5.1.

(v) Storage isolation gives containers their own storage
area for any kind of state. This could be a mounted filesys-
tem externally managed by the host. Apart from simple bind
mounts, container engines frequently leverage more sophisti-
cated storage engines, to provide containers with filesystems.
These range from overlay filesystems promising maintainabil-
ity benefits, while suffering from performance issues [45], to
clustered ones like Ceph [68] where isolation is completely
handled out of system. In simple cases this aspect is realized
by using mount namespaces as described in section 5.1. More
sophisticated approaches are directly offered by the container
engine.

(vi) Device isolation makes containers aware of specific
devices on the host system. Specific ones like Intelligent
Platform Management Interface (IPMI), Graphics Processing
Units (GPU) or disks can be made available to the container.
This aspect is realized by using namespaces as described in
section 5.1. More specifically, mount namespaces.

(vii) Capabilities describe which kind of operations the
processes within the container are allowed to execute. These
include operations like mounting a filesystem or binding to a
network device. This aspect is realized by Linux capabilities
as described in section 5.3.

4.3.2 Example architecture

Linux offers many levers to enact the actual isolation of all the
aspects described above. Namespaces provide the necessary
isolation mechanisms, cGroups regulate limits on resource
utilization and Capabilities grant required permissions.

Figure 6 shows a superficial and slightly simplified con-
tainer engine architecture on the example of Docker7. This
architecture however can be easily adapted to other classic
container engines that also make use of the three mechanisms

7https://www.docker.com/

6

https://www.docker.com/


Journal of Systems Research (JSys) 2022

mentioned above [5, 35]. The following will briefly discuss
the elements of the Docker architecture.

Docker
engine

containerd

runc 1

namespaces

cGroups

capabilities

runc n

namespaces

cGroups

capabilities

Storage
engine

device-
mapper

overlayFS

Figure 6: Docker architecture

The Docker engine itself is merely a Command Line In-
terface (CLI). Its primary purpose is user interaction and
convenience of bringing all the container related features to-
gether. It therefore sensibly abstracts them to achieve an
appropriate usability.

Containerd8 is the actual daemon process running on a host,
that is interacted with by using the Docker CLI. It therefore
acts as a proxy towards the actual enactment of containers via
runc and storage related features.

The storage engine enables containerd to provide storage
for containers. This includes the authentication at container
image registries to download base images a container is cre-
ated from. Moreover, it provides access to storage for state,
typically called volumes. Volumes could be provided us-
ing a local overlayFS or devicemapper concept, or be con-
sumed from an external provider by leveraging specific stor-
age drivers. Additionally, overlayFS is typically used to
merge layered data including existing images, modifications
and user data. This aspect is analysed by Mizusawa et al., who
find many performance benefits in that approach compared to
others existing at that time [46].

Finally, runc9 is the component actually utilizing names-
paces, cGroups and capabilities in order to create a running
container.

Within the container domain, there are two important in-
dustry standards and specifications available. One being the
(i) Container Runtime Interface (CRI), the other one being
the (ii) Open Container Initiative (OCI) specifications. The
(i) CRI defines an Application Programming Interface (API)

8https://github.com/containerd/containerd
9https://github.com/opencontainers/runc

towards the container engine. In the example above, this
would be containerd. This enables container orchestrators
like Kubernetes10 to transparently utilize different engines, as
long as they are compliant to that API. The (ii) OCI on the
other hand, describes how container images are supposed to
look like, in order to be accessed and executed independent
of the actual runtime like runc.

4.3.3 Classification Impact

To summarize, container-based virtualization fully depends
on the degree Linux tools like namespaces, cGroups and
capabilities are used. Moreover, storage is often handled
outside the container perspective and is merely mounted into
the respective namespace. This extends the taxonomy shown
in fig. 5 as highlighted in fig. 7.

Virtualization

container
based

namespaces

cGroups

capabilities

Figure 7: Container taxonomy

4.4 Sandbox-based
While most containerization technologies make use of the
same Linux kernel fundamentals, there are some emerging
technologies that pursue a different route. In order to better
distinguish these from hypervisor and container-based vir-
tualization they will be called sandbox-based from now on.
However, this term is not an established term yet, but can be
found among popular implementations of this approach.

4.4.1 Concept

Sandboxes can be created by utilizing system call filtering
provided by the Kernel. Linux offers some mechanisms in
order to do so. More background information on the sys-
tem call filtering, and thus sandbox creation is presented in
section 5.5.

These kinds of containers may still use all the principles
highlighted in section 4.3 but are extended by the application
of sandboxing methods. Wan et al. thoroughly investigate

10https://kubernetes.io/

7

https://github.com/containerd/containerd
https://github.com/opencontainers/runc
https://kubernetes.io/


Journal of Systems Research (JSys) 2022

sandboxing possibilities for container for the purpose of iso-
lation. They implement a two-step process. They first profile
and record system calls a container executes, to limit those
afterwards in a second step [66].

One representative technology of this class of container
based virtualization is Googles gVisor11. Their approach is to
reimplement fundamental Linux capabilities within the user
space to gain more control and thus improve isolation [70].

4.4.2 Example Architecture

gVisor offers two operational modes. One is the ptrace
mode discussed in this section. The other one utilizes Kernel
Virtual Machine (KVM) in order to process system calls. This
approach is discussed in section 4.5. A simplified architec-
tural image is presented in fig. 8 as seen accordingly in its
documentation [3]. As visible from that figure, there are two
units between the application and the host; (i) Sentry and (ii)
Gofer. These two and their relationship are briefly discussed
in the following

(ii)
Gofer

(i)
Sentry

Con-
tainer

File
Access

Limited
Syscalls

KVM/
ptrace

Host Linux Kernel

Sandbox

K
ernel

U
ser

Figure 8: gVisor architecture

(i) Sentry itself implements Linux and is responsible for
handling system calls. A container breaching security would
only reach into Sentry and not into the host. It therefore
exposes most of the Linux system calls, intercepts and reim-
plements them, in order to delegate them to the host.

(ii) Gofer is responsible for handling files outside of Sen-
try’s own domain. Hence, it enables filesystem access for
Sentry.

Due to the fact that many operations enacted by Sentry
and Gofer are executed or proxied via user space, the per-
formance overhead of such an approach is very high. Most

11https://gvisor.dev/

operations take at least double the amount of time compared
to traditional container based virtualization approaches [70].
However, Young et al. also conclude, that sandboxes signifi-
cantly improve security and isolation. Wang et al. [67] come
to a similar conclusion.

4.4.3 Classification Impact

The sandbox based virtualization is a powerful method to
improve isolation, but comes with a performance penalty. The
approaches they use, most specifically the system call filtering,
makes them an important addition within the virtualization
classification and are thus added to the taxonomy. Hence, the
taxonomy in fig. 7 is extended as presented in fig. 9

Virtualization

sandbox
based

ptrace

BPF

SUD

Figure 9: Sandbox taxonomy

4.5 Emerging and Hybrid Technologies
Besides the previously mentioned hypervisor, container and
sandbox-based approaches, further technologies have recently
emerged. Some of them claim to combine beneficial ap-
proaches of existing technologies, while minimizing their
drawbacks. They often minimize choices in order to optimize
and focus on details. On superficial observation however, they
are not easily categorized among the previously introduced
categories.

4.5.1 Concept

On deeper investigation though, all these solutions make use
of previously existing technologies and thus follow the same
approaches. As previously noted, these have impact on per-
formance, security and isolation characteristics.

The combination of technologies enables the vendors to
file opinionated decisions on specific implementations, yield-
ing benefits for certain scenarios. Combining for example
hypervisor and container-based solutions, the decision for a
very specific OS within the virtual machine is made possi-
ble. The Kernel can be minimized to only enable necessities
for container execution in order to reduce overhead and thus

8

https://gvisor.dev/


Journal of Systems Research (JSys) 2022

combining isolation capabilities of both approaches. Kata12

containers is a popular implementation pursuing that concept.
While isolation capabilities improve, performance is slightly
degraded compared to traditional container-based virtualiza-
tion using runc as an example [36]. The previously discussed
gVisor also offers a so called KVM mode, which follows a
similar approach and is used as an alternative to ptrace.

A slightly more sophisticated form of the combination
of existing technologies are unikernel or “library operating
system” based systems. With the rise of cloud computing
and convenient tools within this ecosystem they became a
viable alternative to fully fledged Linux based VMs [42, 51].
Conceptually, they compile an application down to machine
executable code being able to run directly on hardware with-
out a general purpose OS involved. During that process only
mandatory functionality is included. The resulting image can
then be booted by a machine, which usually is a virtual one.
The adaptation of virtual servers in this context is a key factor,
since it significantly reduces the amount of hardware compat-
ibility code necessary. However, as for the combination of
virtualization approaches, this still relies on hypervisor-based
virtualization and thus shares the same isolation capabilities.
It does make a difference in the performance and security
domain as shown by Compastié et al. [17] with their ap-
proach towards Software-Defined Security (SDSec). IBM’s
implementation called Nabla13 represents a well-known rep-
resentation of this approach.

4.5.2 Classification Impact

Even though not strictly being a virtualization class on its
own, hybrid approaches shall also be included within the
taxonomy. What is most important though, is the fact that
any virtualization technology implementation may leverage
any of the concepts highlighted within this taxonomy and
described throughout this section. The resulting taxonomy is
highlighted in fig. 10. Simultaneously, this figure also repre-
sents the final taxonomy and thus also includes hypervisor,
container and sandbox-based virtualization.

4.6 Summary

This section proposes a taxonomy for virtualization technolo-
gies with respect to isolation capability. It therefore analyses
existing approaches of prevalent technologies to categorize
them as a first step. Those categories are (i) hypervisor, (ii)
container and (iii) sandbox based ones. These are further sub-
divided into their enabling technologies and methods. Hence,
the resulting taxonomy resembles a tree.

Within that tree, all leaf notes are considered to be options,
whereas every other node represents a dimension.

12https://katacontainers.io/
13https://nabla-containers.github.io/

However, modern solutions have evolved in ways, that
utilize approaches of previously foreign domains. They do
so in order to counter their own drawbacks or to optimize on
different aspects. For this reason, a (iv) hybrid cross-section
over all aspects as shown in the final taxonomy of fig. 10
is necessary. In consequence, the following definition for
virtualization is proposed.

Definition 2. A virtualization technol-
ogy’s isolation is defined by the degree
of realization of option leaves within the
virtualization taxonomy dimensions.

5 Virtualization Enablers

This section highlights the details for virtualization in relation
to the virtualization classification of section 4. Hereby, we de-
scribe fundamental enabling technologies that are provided by
the Linux kernel and leveraged by virtualization technologies.

5.1 Namespaces

Linux offers namespaces14 in order to isolate system specific
resources. It does so by wrapping them into an abstraction, in
order to present them to a process [11]. This enables processes
to yield completely different views of a system compared to
the host system.

While this technology is an enabling one for container-
ization and thus Container-based virtualization, they do not
directly relate. Both concepts and technologies can exist
without the respective other one.

All available namespaces at the time of writing are high-
lighted in fig. 11. They are constantly adapted and extended
in order to meet new demands and solve new challenges like
a proposed CPU namespace [55].

The following paragraphs will briefly describe all those
namespaces. The more prominently used and thus more im-
portant ones will be discussed into a little more detail.

(i) cGroup namespaces15 enable the usage of virtualized
cGroups. When applied, a process is able to define its own
cGroups, while the hosts cGroups are still active and protected.
This allows for nesting of cGroups. For more information on
cGroups in general refer to section 5.2.

14https://man7.org/linux/man-pages/man7/namespaces.7.html
15https://man7.org/linux/man-pages/man7/cgroup_namespaces.

7.html

9

https://katacontainers.io/
https://nabla-containers.github.io/
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html


Journal of Systems Research (JSys) 2022

hy
br

id

Virtualization

hypervisor
based

types

one

two

abstractions

full

para

hwa

container
based

namespaces

cGroups

capabilities

sandbox
based

ptrace

BPF

SUD

Figure 10: Virtualization Taxonomy

Namespaces

(i)
cGroup

(ii)
IPC

(iii)
Network

(iv)
Mount

(v)
PID

(vi)
Time

(vii)
User

(viii)
UTS

Figure 11: Linux Namespaces

(ii) IPC namespaces16 isolate Inter Process Communication
(IPC) resources. These mostly refer to message queues and
the usage of shared memory between processes. By applying
these namespaces, processes are able to generate their own
identifiers for them without inheriting their parent ones.

(iii) Network namespaces17 isolate networking related re-
sources for a process. This includes interfaces, protocol
stacks, routing tables and more. In practice, virtual veth18

network interfaces are created, which pair physical or other
virtual interfaces to form a pipe-like tunnel. This enables
the creation of a bridge between those interfaces and in con-
sequence, between network namespaces in order to create
arbitrary virtual network topologies. Together with the mount,
PID and user namespaces as described in the following, they
provide essential levers for container virtualization.

(iv) Mount namespaces19 isolate the list of mounts a pro-
cess is able to see. Moreover, it allows the process to define
its own mounts without interfering with other processes or
the host. This important namespace allows to present a full
root filesystem tree to a container including bind mounts for
possible state as yet another layer.

(v) PID namespaces20 isolate process related resources and
abstractions. Processes in a PID namespace get their own
PID starting at 1. Subsequently started processes invoked by

16https://man7.org/linux/man-pages/man7/ipc_namespaces.7.
html

17https://man7.org/linux/man-pages/man7/network_
namespaces.7.html

18https://man7.org/linux/man-pages/man4/veth.4.html
19https://man7.org/linux/man-pages/man7/mount_namespaces.

7.html
20https://man7.org/linux/man-pages/man7/pid_namespaces.7.

html

10

https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html


Journal of Systems Research (JSys) 2022

that process will have this new PID 1 as parent and will be as-
signed another unique one within that namespace. Collisions
with other PID namespaces can not happen.

(vi) Time namespaces21 isolate the settings for the system
clocks. This very recent addition to the Linux kernel main-
line enables to set a process specific time which influences
derived values like uptime. Moreover, it can also be leveraged
for checkpoint restore methods for processes and container
migration [44].

(vii) User namespaces22 isolate user related aspects for a
process. These include user and group IDs, home directory,
and capabilities. The latter is being described in section 5.3.
This implies, that a user can have different capabilities within
a user namespace than outside. In the case of a container, cou-
pled with other namespaces, this allows an unprivileged host
user to install packages within namespaces, that otherwise
would require elevated privileges.

(viii) UTS namespaces23 isolates host and domain name.
Processes within the same UNIX Time-Sharing (UTS) names-
pace are able to see and resolve to these names among them.
Container engines typically leverage that to identify them-
selves. Moreover, container orchestration engines might use
these namespaces to set up a cluster wide name resolution
[43].

As already hinted throughout the description of names-
paces, combining them makes them especially powerful. Us-
ing them in conjunction with cGroups extends that even more.
This important building block for containers is discussed in
the following section 5.2.

5.2 cGroups
Control24 groups are a Linux feature that allows fine-grained
control over different system resources [31]. More specifi-
cally, it enables to limit access to them. Typically, they are
referred to as “cGroups”. They are called “groups” because
they can be applied to a group of processes which all share
the same limits. Moreover, cGroups can be nested and are
thus arranged in a hierarchical structure.

The cGroups project went under a significant restructuring
effort, resulting in the release of cGroups v2. This effort was
first merged into the kernel with version 4.5 and is able to
fully replace v1 since kernel version 5.6 [22]. This paper

21https://man7.org/linux/man-pages/man7/time_namespaces.7.
html

22https://man7.org/linux/man-pages/man7/user_namespaces.7.
html

23https://man7.org/linux/man-pages/man7/uts_namespaces.7.
html

24https://man7.org/linux/man-pages/man7/cgroups.7.html

focuses on the usage of v2 and thus this is the version being
discussed in the following.

Resources are being controlled by resource controllers,
sometimes also called subsystems. Figure 12 presents all
those controllers visually. Like namespaces, they are con-
stantly extended and improved like the most recent addition
of a “misc” controller that is not yet part of most distributions
[24].

Cgroups

(i)
cpu

(ii)
cpuset

(iii)
freezer

(iv)
hugetlb

(v)
io

(vi)
memory

(vii)
perf_event

(viii)
pids

(ix)
rdma

Figure 12: Linux Cgroups

The following paragraphs will briefly describe all those
cGroups. The more prominently used and thus more impor-
tant ones will be discussed into a little more detail.

(i) cpu controllers set the amount of CPU cycles allowed.
Apart from a raw value for cycles, aspects like weighted
priorities and min/max utilization percentages can be set.

(ii) cpuset controllers set constraints on CPU and memory
placement. Only values specified are allowed for affected pro-
cesses. This is especially helpful for Non-Uniform Memory
Access (NUMA) systems [32].

(iii) freezer controllers are able effectively freeze and thaw
process groups. Oh et al. [47] have shown that this can
be useful in order to dynamically increase system response
time. They use freeze cGroups to freeze certain processes on
demand to process a user input.

(iv) hugetlb controllers limit size for huge pages for the
affected group. This can have an effect on memory perfor-
mance but is considered to be a complex topic. Panwar et al.

11

https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://man7.org/linux/man-pages/man7/uts_namespaces.7.html
https://man7.org/linux/man-pages/man7/uts_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html


Journal of Systems Research (JSys) 2022

[48] elaborated on that and proposed a strategy to utilize them
in and outside of virtualization. For a brief memory specific
background refer to section 2.

(v) io controllers enable the setting of both, bandwidth and
Input Output Operations Per Second (IOPS) based limits to
block devices for process groups.

(vi) memory controllers set the amount of allocatable mem-
ory per process group. Moreover, it is possible to set hints for
the Out Of Memory (OOM) killer. Without specific configu-
ration, only processes within a cGroup are killed by it.

(vii) perf_event controllers allow the gathering of cGroup
specific perf events. These events are a means for kernel
instrumentation and possibly contain sensible information
like CPU counter or specific kernel function calls including
payload.

(viii) pids controllers are able to impose a limit on process
generation for the affected process group. It can be config-
ured with a maximum amount of possible fork and clone
operations.

(ix) rdma controllers regulate the access to Remote Direct
Memory Access (RDMA) resources. This can be important
for RDMA based devices like Infiniband NIC [40].

Similar to namespaces cGroups offer powerful measures to
control, limit and possibly isolate resources. Used in conjunc-
tion with namespaces from the previous section 5.1, most en-
abling aspects for container virtualization are available. User
specific capabilities are the last fundamental building block
for isolation and are thus briefly presented in the following
section.

5.3 Capabilities
Linux capabilities25 are distinct units that allow the execution
of very specific actions. These capabilities can be granted to
a user or group.

At the time of writing the list of capabilities contain at least
80 different ones. They range from simple file operations
over logging permissions towards complex admin like rights
like kernel module loading. Certainly, this list is too extensive
to discuss them here in a useful way.

Generally speaking, these capabilities exist to improve se-
curity. Fine-grained control over minimal operations allow
system administrators to protect resources and to forbid cer-
tain actions. Hallyn and Morgan [30] have shown, that these

25https://man7.org/linux/man-pages/man7/capabilities.7.
html

are very effective. Moreover, there is a strong synergy with
user namespaces as described in section 5.1.

5.4 Hypervisor specific isolation
Isolation capabilities and the levers the hypervisor uses to
achieve it highly depends on the choices described in the pre-
vious section 4.2.1. These do not always align with the possi-
bilities Linux offers which may be due to arbitrary preference
or the fact, that these possibilities have not been developed
yet. Hence, the following will present some examples for the
resources CPU, memory and I/O by highlighting how specific
implementations solve isolation challenges.

CPU: The Xen26 hypervisor represents an interesting ex-
ample for CPU isolation, since it offers the possibility to
choose different CPU schedulers in order to control how this
resource is shared. All approaches try to utilize this sched-
uler and therefore request shares. The scheduler will then
schedule time for a VM for example based on its deadline,
runtime or a credit system. Cherkasova et al. [16] discuss
those schedulers in depth. They conclude, that the applied
scheduler is highly dependent on the use-case but also state,
that the default settings are not usable beyond experiments.

KVM27 on the other side offers the possibility to utilize
cGroups as described in section 5.2. This is possible due to
the deep integration of KVM into the Linux kernel. Both ap-
proaches offer the possibility to dynamically adapt or change
granted CPU shares to a VM.

Memory: Silva et al. [59] state, that there are principally
two distinct methods for memory isolation. One being cGoups
as shown in section 5.2, the other one is static memory assign-
ment. The hypervisor therefore requests memory from the
host and completely blocks it for allocation to its managed
VMs. Static allocation of memory is undesirable, since the
risk of non-utilized memory is very high. Therefore, Wald-
spurger invented the technique “ballooning” [64]. They devel-
oped this for VMware ESX Server28 a very popular enterprise
VMM. By using their technique, they can prove that they can
successfully reclaim or extend memory from a VM without
negatively affecting it. The terminology they use for these
respective terms are called “deflating” and “inflating”.

I/O: According to Waldspurger and Rosenblum two main
approaches for I/O isolation can be pursued [63]. One be-
ing the (i) emulation of devices, the other one is (ii) para-
virtualization. Both were previously discussed in section 4.2.1.
Hence, limiting utilization can be provided by implementation
details of the emulated device, or by leveraging cGroups.

26https://xenproject.org/
27https://www.linux-kvm.org/
28https://www.vmware.com/de/products/esxi-and-esx.html

12

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://xenproject.org/
https://www.linux-kvm.org/
https://www.vmware.com/de/products/esxi-and-esx.html


Journal of Systems Research (JSys) 2022

5.5 Syscall Filtering

As described in section 2 system calls are used to create
an interaction between user and kernel space. Linux offers
the ability to intercept these system calls for debugging and
manipulation purposes.

The latter allows them to be utilized for virtualization pur-
poses similar to hypercalls as mentioned in section 4.2.1.
This technique enables the creation of so-called “sandboxes”,
a mechanism applied in various application domains from
embedded systems to cloud-computing [12]. According to
Schrammel et al. there are three distinct levers available to
intercept system calls. These are (i) ptrace, (ii) Seccomp-BPF
and (iii) Syscall User Dispatch (SUD) [56].

(i) ptrace is a system call itself29. It is able to examine other
processes memory and registers, and is therefore primarily
used for breakpoint debugging and system call tracing. Due
to the fact that it can also filter system calls it is applicable to
implement sandboxing.

(ii) Seccomp-BPF is a kernel feature that allows for sys-
tem call filtering. It therefore makes use of Berkeley Packet
Filter (BPF) mechanisms. BPF or the recent implementation
“Extended Berkeley Packet Filter (eBPF)”, is a special VM
running within the Linux kernel. This VM is able to exe-
cute code in kernel space that a user compiled in user space.
This enables complex instrumentation and even runtime ma-
nipulation of kernel functionality. As a practical example,
this technology is also used by modern browsers like the
chromium project [2].

(iii) SUD is the most recent addition to the Linux kernel
[4] invented for Windows emulation. It enables the filtering
of syscalls made from a specified memory region and can
subsequently be dispatched to user space.

6 Validation

In order to validate the classification proposed in section 4
we present a list of popular virtualization technologies and
arrange them along this classification. Table 1 highlights
those in a tabular view. This list does not claim to be complete
in any way but serves to purpose to get an idea of the existing
landscape with respect to isolation techniques.

This table clearly reflects the variety of virtualization tech-
nology implementations and the fact that many solutions al-
ready implement hybrid approaches. However, distinct silos
can still be perceived. Hypervisor and container based im-
plementations tend to utilize isolation aspects from their own
domain. There are exceptions though.

29https://man7.org/linux/man-pages/man2/ptrace.2.html

KVM30 for example makes use of Cgroups if configured
accordingly, while gVisor31 utilizes a type-I hypervisor and
sandboxing concepts. XEN32 on the other hand acts as a
traditional type-I hypervisor. Compared to KVM, it does not
try to act as a general purpose OS. In this list VirtualBox33

acts as an example for a widely adopted type-II hypervisor that
is still capable of a wide range of virtualization techniques.

Docker34, Podman35 and Flatpak36 are all representatives
of container virtualization domain. Flatpak is slightly special
here, as it aims to package graphical end user applications
in contrast to the former ones. They do however utilize all
the same Linux functionalities (Namespaces, Cgroups and
Capabilities) to achieve isolation.

The sandbox domain is comparatively new in relation to
the hypervisor and container based virtualization. gVisor37 in
particular is a very interesting representative here. It offers the
possibility to utilize KVM as a type-I hypervisor to achieve
sandbox functionality, but also presents the option to use
ptrace instead. Both effectively perform system call filtering.
While still being a research project and thus not being widely
adopted, bpfContain [26] utilize modern BPF functionality
to achieve this. Findlay et al. state, that they work on an
integration into container runtime standards which seems
very promising.

This list could certainly be extended indefinitely but gives
an idea of the currently prevalent virtualization landscape

7 Related Work

Most publications arbitrary pick a list of popular or widely
applied virtualization technologies in order to compare them.
While they usually explain how the virtualization is enabled,
these aspects typically come short [39, 49].

A similar situation applies to releases during and after the
advent of container-based virtualization. Classifications of
prevalent typically stop at a broader, more superficial point of
view. The reason therefore is that they usually focus on some-
thing completely different instead of a mere classification of
technologies [20, 52, 54, 60].

In contrast, Anjali et al. aim to classify virtualization tech-
nologies according to a scale based on “Location of func-
tionality” [8]. Hereby they assume higher isolation, the less
functionality is actually executed on the host kernel, com-
pared to a guest Kernel. The scale itself ranges from low
isolation like native Linux processes over gVisor hybrid ap-
proaches towards full KVM virtualization. While this claim

30https://www.linux-kvm.org/
31https://gvisor.dev/
32https://xenproject.org/
33https://www.virtualbox.org/
34https://www.docker.com/
35https://podman.io/
36https://flatpak.org/
37https://gvisor.dev/

13

https://man7.org/linux/man-pages/man2/ptrace.2.html
https://www.linux-kvm.org/
https://gvisor.dev/
https://xenproject.org/
https://www.virtualbox.org/
https://www.docker.com/
https://podman.io/
https://flatpak.org/
https://gvisor.dev/


Journal of Systems Research (JSys) 2022

Name Version Comment Hypervisor Container Sandbox

I II Full Para HWA
Names-
paces Cgroups Capa-

bilities
ptrace BPF SUD

KVM 2.3 with Cgroups x x x x x
XEN 4.15 x x x x
VirtualBox 6.1 x x x x
Docker 20.10 x x x
Podman 4.1 x x x
Flatpak 1.14 x x x
gVisor 2022 with KVM x x x x x x
gVisor 2022 with ptrace x x x x
bpfContain[26] 2021 x x x x

Table 1: Virtualization technology classification of popular implementations

seems intuitive, they do not measure performance degradation
impact by competing tenants, but rather performance over-
head imposed by the technologies. Each of those technologies
are highlighted by their own approach to achieve isolation,
analysing the amount and call pattern of system calls. Com-
bined with the results of this paper, their assumptions could
be experimentally determined.

While this paper pursues a classification of virtualization
technologies, the measurement of performance within vir-
tualization technologies is tightly related. Various authors
perform comparative studies regarding the performance degra-
dation for virtualization technologies [9, 58]. Most find that
containers are able to deliver almost bare-metal like perfor-
mance, but also show promising results for hybrid solutions.
Isolation on the other hand seems better for hypervisor-based
virtualization. They do however imply, that there is a relation
between the class of virtualization technology and perfor-
mance. We, in contrast, classify virtualization technologies
along their mechanisms for isolation, whereas they classify
them along performance.

8 Conclusion

This paper aimed to craft a virtualization classification. It was
done by dissecting established virtualization technologies
and by studying scientific articles published in the virtual-
ization domain. Implementing process led to a taxonomy
that presents every substantial building block that enables
isolation. On the most superficial level this taxonomy di-
vided technologies into the three categories (i) hypervisor, (ii)
container and (iii) sandbox based. Since applying enabling
concepts within these categories are not limited to their re-
spective category, (iv) hybrid based extends this list by one.
The final resulting taxonomy is presented in fig. 10

Besides this summary, reflections on the resulting clas-
sification are discussed in section 8.1. Moreover, thoughts
regarding possible future work are presented in section 8.2.
This section takes on ideas that raised during the work on this

paper.

8.1 Discussion
What is yet to be shown though, is if this is also the case
for any thinkable manifestation of virtualization technology.
While this paper carefully crafted a classification taxonomy,
the virtualization landscape is ever-changing. There might be
minor adaptations necessary in order to assess any past or up-
coming technology. Table 1 briefly shows a small proportion
of those manifestations including upcoming ones.

Moreover, the classification performed here does not create
an ordinal scale. An ordering based on isolation capability,
startup time or performance overhead can only be performed
based on measurements.

A central limitation regarding virtualization technologies
certainly is the focus on the Linux OS. Other OSs also offer
virtualization technologies including Microsoft’s solutions
like Hyper-V38 or closed source Hypervisors like VMwares
ESC39. Moreover, other UNIX based OSs offer solutions for
container based virtualization like FreeBSD’s Jails[1]. The
methodology to measure those systems does not change, the
profiling technology however needs to.

8.2 Future Work
Furthermore, since all the technologies presented in this pa-
per are very Linux focussed, an adaptation to different OSs
might be interesting. Especially technologies only applicable
for Microsoft’s OS Windows Server40 could yield additional
insights and possibly even a new class in the taxonomy.

As this taxonomy shows, there is a broad amount of vir-
tualization technology manifestations possible. Especially
considering different versions and configurations of those re-
sult in even more actually implemented solutions. This aspect

38https://docs.microsoft.com/virtualization
39https://www.vmware.com/de/products/esxi-and-esx.html
40https://www.microsoft.com/en-gb/windows-server

14

https://docs.microsoft.com/virtualization
https://www.vmware.com/de/products/esxi-and-esx.html
https://www.microsoft.com/en-gb/windows-server


Journal of Systems Research (JSys) 2022

is an essential reason to not try to analyse every technology
regarding their isolation capabilities, but rather craft a method
to sensibly measure it on demand. Such an approach enables
to compare isolation for a specific use case. This is not limited
to isolation though. As mentioned in section 8.1 other ordinal
scales like performance impact could be of interest. Even a
“multi criteria decision making” approach could be applied
like pursued by Domaschka et al. [21].

As mentioned before in section 8 Anjali et al. presented a
scale for virtualization [8]. Combined with the findings of this
paper and a sensible measurement methodology, both could
be verified against their capability to isolate. Further, these
could support the challenge of Williams et al. who questions
virtualization for cloud computing in general [69]

References

[1] Chapter 15. Jails. URL https://docs.freebsd.org/
en/books/handbook/jails/.

[2] Chromium Docs - Linux Sandboxing, . URL
https://chromium.googlesource.com/chromium/
src/+/master/docs/linux/sandboxing.md.

[3] gVisor Security Basics - Part 1, . URL
https://gvisor.dev/blog/2019/11/18/
gvisor-security-basics-part-1/.

[4] Syscall User Dispatch — The Linux Kernel documenta-
tion, . URL https://www.kernel.org/doc/html/
latest/admin-guide/syscall-user-dispatch.
html.

[5] S. Abraham, A. K. Paul, R. I. S. Khan, and A. R.
Butt. On the Use of Containers in High Performance
Computing Environments. In 2020 IEEE 13th Inter-
national Conference on Cloud Computing (CLOUD),
pages 284–293, Beijing, China, Oct. 2020. IEEE.
ISBN 978-1-72818-780-8. doi: 10.1109/CLOUD49709.
2020.00048. URL https://ieeexplore.ieee.org/
document/9284294/.

[6] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. ACM
SIGPLAN Notices, 41(11):2–13, Oct. 2006. ISSN
0362-1340. doi: 10.1145/1168918.1168860. URL
https://doi.org/10.1145/1168918.1168860.

[7] R. Y. Ameen and A. Y. Hamo. Survey of Server
Virtualization. Apr. 2013. URL http://arxiv.org/
abs/1304.3557. arXiv: 1304.3557.

[8] Anjali, T. Caraza-Harter, and M. M. Swift. Blend-
ing containers and virtual machines: a study of fire-
cracker and gVisor. In Proceedings of the 16th ACM

SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, VEE ’20, pages 101–
113, New York, NY, USA, Mar. 2020. Association
for Computing Machinery. ISBN 978-1-4503-7554-
2. doi: 10.1145/3381052.3381315. URL https:
//doi.org/10.1145/3381052.3381315.

[9] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, and
S. d. R. S. de Souza. Container-Based Performance
Evaluation: A Survey and Challenges. In 2018 IEEE
International Conference on Cloud Engineering (IC2E),
pages 398–403, Apr. 2018. doi: 10/gpfjh3.

[10] B. Bermejo and C. Juiz. A general method for evaluating
the overhead when consolidating servers: performance
degradation in virtual machines and containers. The
Journal of Supercomputing, Feb. 2022. ISSN 1573-
0484. doi: 10.1007/s11227-022-04318-5. URL https:
//doi.org/10.1007/s11227-022-04318-5.

[11] E. W. Biederman and L. Networx. Multiple instances
of the global linux namespaces. In Proceedings of the
Linux Symposium, volume 1, pages 101–112. Citeseer,
2006.

[12] I. Borate and R. Chavan. Sandboxing in Linux:
From Smartphone to Cloud. International Journal
of Computer Applications, 148:1–8, Aug. 2016. doi:
10.5120/ijca2016911256.

[13] D. Carver. Advanced consolidation for dynamic con-
tainers. PhD thesis, 2019.

[14] L. Chen, S. Patel, H. Shen, and Z. Zhou. Profiling and
Understanding Virtualization Overhead in Cloud. In
2015 44th International Conference on Parallel Process-
ing, pages 31–40, Sept. 2015. doi: 10/gpd5fc. ISSN:
0190-3918.

[15] W. Chen, H. Lu, L. Shen, Z. Wang, N. Xiao, and
D. Chen. A Novel Hardware Assisted Full Virtualization
Technique. In 2008 The 9th International Conference
for Young Computer Scientists, pages 1292–1297, Nov.
2008. doi: 10/dwtg4k.

[16] L. Cherkasova, D. Gupta, A. Vahdat, and L. Cherkasova.
When Virtual is Harder than Real: Resource Allocation
Challenges in Virtual Machine Based IT Environments.
Hewlett Packard Laboratories, Tech. Rep. HPL-2007-
25, 2007.

[17] M. Compastié, R. Badonnel, O. Festor, R. He, and
M. Kassi-Lahlou. Unikernel-based approach for
software-defined security in cloud infrastructures. In
NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, pages 1–7, Apr. 2018. doi:
10.1109/NOMS.2018.8406155. ISSN: 2374-9709.

15

https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/
https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md
https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-1/
https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-1/
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://ieeexplore.ieee.org/document/9284294/
https://ieeexplore.ieee.org/document/9284294/
https://doi.org/10.1145/1168918.1168860
http://arxiv.org/abs/1304.3557
http://arxiv.org/abs/1304.3557
https://doi.org/10.1145/3381052.3381315
https://doi.org/10.1145/3381052.3381315
https://doi.org/10.1007/s11227-022-04318-5
https://doi.org/10.1007/s11227-022-04318-5


Journal of Systems Research (JSys) 2022

[18] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing system. In Proceedings of
the May 1-3, 1962, Spring Joint Computer Conference,
pages 335–344.

[19] R. J. Creasy. The Origin of the VM/370 Time-Sharing
System. IBM Journal of Research and Development,
25(5):483–490, Sept. 1981. ISSN 0018-8646. doi:
10.1147/rd.255.0483.

[20] J. Daniels. Server virtualization architecture and im-
plementation. XRDS: Crossroads, The ACM Mag-
azine for Students, 16(1):8–12, Sept. 2009. ISSN
1528-4972, 1528-4980. doi: 10/bvpxrx. URL https:
//dl.acm.org/doi/10.1145/1618588.1618592.

[21] J. Domaschka, S. Volpert, and D. Seybold. Hathi:
An MCDM-based Approach to Capacity Planning for
Cloud-hosted DBMS. In 2020 IEEE/ACM 13th Inter-
national Conference on Utility and Cloud Computing
(UCC), pages 143–154. doi: 10.1109/UCC48980.2020.
00033.

[22] C. Down. 5 years of cgroup v2: The future of linux
resource control. 2021.

[23] R. Dua, A. R. Raja, and D. Kakadia. Virtualization
vs Containerization to Support PaaS. In 2014 IEEE
International Conference on Cloud Engineering, pages
610–614, Boston, MA, USA, Mar. 2014. IEEE. ISBN
978-1-4799-3766-0. doi: 10/ggbwfz. URL http:
//ieeexplore.ieee.org/document/6903537/.

[24] Edge, Jake. The misc control group [LWN.net], 2021.
URL https://lwn.net/Articles/856438/.

[25] H. Fayyad-kazan, L. Perneel, and M. Timmerman. Full
and Para-Virtualization with Xen: A Performance Com-
parison 1. 2013.

[26] W. Findlay, D. Barrera, and A. Somayaji. BPFContain:
Fixing the Soft Underbelly of Container Security.

[27] M. Fowler and J. Lewis. Microservices.
URL https://martinfowler.com/articles/
microservices.html.

[28] R. P. Goldberg. Architectural Principles for Virtual
Computer Systems. Technical report, HARVARD UNIV
CAMBRIDGE MA DIV OF ENGINEERING AND
APPLIED PHYSICS, Feb. 1973. URL https://
apps.dtic.mil/sti/citations/AD0772809. Sec-
tion: Technical Reports.

[29] N. Gordon and J. R. Lange. Lifting and Drop-
ping VMs to Dynamically Transition Between Time-
and Space-sharing for Large-Scale HPC Systems. In
Proceedings of the 31st International Symposium on

High-Performance Parallel and Distributed Computing,
pages 30–42. ACM. ISBN 978-1-4503-9199-3. doi:
10.1145/3502181.3531471.

[30] S. E. Hallyn and A. G. Morgan. Linux capabilities:
making them work. 2008.

[31] T. Heo, J. Weiner, V. Davydov, L. Thorvalds, P. Parav,
T. Klauser, S. Hallyn, and K. Khlebnikov. Control group
v2, 2015. URL https://www.kernel.org/doc/
Documentation/admin-guide/cgroup-v2.rst.

[32] C. Hollowell, C. Caramarcu, W. Strecker-Kellogg,
A. Wong, and A. Zaytsev. The Effect of NUMA
Tunings on CPU Performance. Journal of Physics:
Conference Series, 664(9):092010, Dec. 2015. ISSN
1742-6596. doi: 10.1088/1742-6596/664/9/092010.
URL https://doi.org/10.1088/1742-6596/664/
9/092010. Publisher: IOP Publishing.

[33] J. Hwang, S. Zeng, F. y. Wu, and T. Wood. A
component-based performance comparison of four hy-
pervisors. In 2013 IFIP/IEEE International Symposium
on Integrated Network Management (IM 2013), pages
269–276, May 2013. ISSN: 1573-0077.

[34] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Appli-
cation Performance Management in Virtualized Server
Environments. In 2006 IEEE/IFIP Network Operations
and Management Symposium NOMS 2006, pages 373–
381, Apr. 2006. doi: 10.1109/NOMS.2006.1687567.
ISSN: 2374-9709.

[35] A. Kovacs. Comparison of different Linux containers.
In 2017 40th International Conference on Telecommu-
nications and Signal Processing (TSP), pages 47–51,
Barcelona, Spain, July 2017. IEEE. ISBN 978-1-5090-
3982-1. doi: 10.1109/TSP.2017.8075934. URL http:
//ieeexplore.ieee.org/document/8075934/.

[36] R. Kumar and B. Thangaraju. Performance Analysis
Between RunC and Kata Container Runtime. In 2020
IEEE International Conference on Electronics, Com-
puting and Communication Technologies (CONECCT),
pages 1–4, July 2020. doi: 10.1109/CONECCT50063.
2020.9198653.

[37] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity:
Scientific containers for mobility of compute. 12(5):
e0177459. ISSN 1932-6203. doi: 10.1371/journal.
pone.0177459.

[38] Y. C. Lee and A. Y. Zomaya. Energy efficient
utilization of resources in cloud computing systems.
60(2):268–280. ISSN 1573-0484. doi: 10.1007/
s11227-010-0421-3.

16

https://dl.acm.org/doi/10.1145/1618588.1618592
https://dl.acm.org/doi/10.1145/1618588.1618592
http://ieeexplore.ieee.org/document/6903537/
http://ieeexplore.ieee.org/document/6903537/
https://lwn.net/Articles/856438/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://apps.dtic.mil/sti/citations/AD0772809
https://apps.dtic.mil/sti/citations/AD0772809
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v2.rst
https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v2.rst
https://doi.org/10.1088/1742-6596/664/9/092010
https://doi.org/10.1088/1742-6596/664/9/092010
http://ieeexplore.ieee.org/document/8075934/
http://ieeexplore.ieee.org/document/8075934/


Journal of Systems Research (JSys) 2022

[39] G. Li, K. Takahashi, K. Ichikawa, H. Iida, P. Thieng-
buranathum, and P. Phannachitta. Comparative
Performance Study of Lightweight Hypervisors Used in
Container Environment:. In Proceedings of the 11th
International Conference on Cloud Computing and
Services Science, pages 215–223, Online Streaming, —
Select a Country —, 2021. SCITEPRESS - Science
and Technology Publications. ISBN 978-989-758-
510-4. doi: 10.5220/0010440502150223. URL
https://www.scitepress.org/DigitalLibrary/
Link.aspx?doi=10.5220/0010440502150223.

[40] J. Liu, J. Wu, and D. K. Panda. High performance rdma-
based mpi implementation over infiniband. Interna-
tional Journal of Parallel Programming, 32(3):167–198,
2004.

[41] T. Lynn, P. T. Endo, A. M. N. C. Ribeiro, G. B. N.
Barbosa, and P. Rosati. The Internet of Things: Def-
initions, Key Concepts, and Reference Architectures.
In T. Lynn, J. G. Mooney, B. Lee, and P. T. Endo,
editors, The Cloud-to-Thing Continuum: Opportuni-
ties and Challenges in Cloud, Fog and Edge Com-
puting, Palgrave Studies in Digital Business & En-
abling Technologies, pages 1–22. Springer Interna-
tional Publishing. ISBN 978-3-030-41110-7. doi:
10.1007/978-3-030-41110-7_1.

[42] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: library operating systems
for the cloud. page 12, 2013. doi: 10.1145/2490301.
2451167.

[43] V. Marmol, R. Jnagal, and T. Hockin. Networking in
Containers and Container Clusters. page 4, 2015.

[44] X. Merino and C. Otero. The cost of time virtualization
in linux containers. Technical report, 2022.

[45] N. Mizusawa, K. Nakazima, and S. Yamaguchi. Per-
formance Evaluation of File Operations on OverlayFS.
In 2017 Fifth International Symposium on Computing
and Networking (CANDAR), pages 597–599, Nov. 2017.
doi: 10.1109/CANDAR.2017.62. ISSN: 2379-1896.

[46] N. Mizusawa, Y. Seki, J. Tao, and S. Yamaguchi. A
Study on I/O Performance in Highly Consolidated
Container-Based Virtualized Environment on Over-
layFS with Optimized Synchronization. In 2020 14th
International Conference on Ubiquitous Information
Management and Communication (IMCOM), pages 1–
4, Taichung, Taiwan, Jan. 2020. IEEE. ISBN 978-
1-72815-453-4. doi: 10.1109/IMCOM48794.2020.
9001733. URL https://ieeexplore.ieee.org/
document/9001733/.

[47] S. Oh, C. Hahm, B. Seo, T. Lee, and J. Lee. On
the improvements of fast user interactivity in consumer
electronic devices using Linux. In 2017 IEEE 7th
International Conference on Consumer Electronics -
Berlin (ICCE-Berlin), pages 267–270, Berlin, Sept.
2017. IEEE. ISBN 978-1-5090-4014-8. doi:
10.1109/ICCE-Berlin.2017.8210648. URL http://
ieeexplore.ieee.org/document/8210648/.

[48] A. Panwar, A. Prasad, and K. Gopinath. Making
Huge Pages Actually Useful. In Proceedings of
the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, pages 679–692, Williamsburg VA
USA, Mar. 2018. ACM. ISBN 978-1-4503-4911-
6. doi: 10.1145/3173162.3173203. URL https:
//dl.acm.org/doi/10.1145/3173162.3173203.

[49] M. Plauth, L. Feinbube, and A. Polze. A Performance
Survey of Lightweight Virtualization Techniques. In
F. De Paoli, S. Schulte, and E. Broch Johnsen, edi-
tors, Service-Oriented and Cloud Computing, Lecture
Notes in Computer Science, pages 34–48, Cham, 2017.
Springer International Publishing. ISBN 978-3-319-
67262-5. doi: 10/ggfktr.

[50] A. Raza, I. Matta, N. Akhtar, V. Kalavri, and V. Isaha-
gian. SoK: Function-As-A-Service: From An Applica-
tion Developer’s Perspective. 1(1). ISSN 2770-5501.
doi: 10.5070/SR31154815.

[51] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drep-
per, R. Jones, O. Krieger, R. Mancuso, and L. Wood-
man. Unikernels: The Next Stage of Linux’s Dom-
inance. In Proceedings of the Workshop on Hot
Topics in Operating Systems, pages 7–13, Bertinoro
Italy, May 2019. ACM. ISBN 978-1-4503-6727-
1. doi: 10.1145/3317550.3321445. URL https:
//dl.acm.org/doi/10.1145/3317550.3321445.

[52] F. Rodríguez-Haro, F. Freitag, L. Navarro,
E. Hernánchez-sánchez, N. Farías-Mendoza, J. A.
Guerrero-Ibáñez, and A. González-Potes. A summary
of virtualization techniques. Procedia Technology, 3:
267–272, 2012. ISSN 22120173. doi: 10/gpddtm. URL
https://linkinghub.elsevier.com/retrieve/
pii/S2212017312002587.

[53] C. Ruiz, E. Jeanvoine, and L. Nussbaum. Performance
Evaluation of Containers for HPC. In S. Hunold,
A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E.
Gómez Requena, V. Scarano, A. L. Varbanescu, S. L.
Scott, S. Lankes, J. Weidendorfer, and M. Alexander,
editors, Euro-Par 2015: Parallel Processing Workshops,
Lecture Notes in Computer Science, pages 813–824.
Springer International Publishing. ISBN 978-3-319-
27308-2. doi: 10.1007/978-3-319-27308-2_65.

17

https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0010440502150223
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0010440502150223
https://ieeexplore.ieee.org/document/9001733/
https://ieeexplore.ieee.org/document/9001733/
http://ieeexplore.ieee.org/document/8210648/
http://ieeexplore.ieee.org/document/8210648/
https://dl.acm.org/doi/10.1145/3173162.3173203
https://dl.acm.org/doi/10.1145/3173162.3173203
https://dl.acm.org/doi/10.1145/3317550.3321445
https://dl.acm.org/doi/10.1145/3317550.3321445
https://linkinghub.elsevier.com/retrieve/pii/S2212017312002587
https://linkinghub.elsevier.com/retrieve/pii/S2212017312002587


Journal of Systems Research (JSys) 2022

[54] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A
Survey on Concepts, Taxonomy and Associated Secu-
rity Issues. In 2010 Second International Conference
on Computer and Network Technology, pages 222–226,
Apr. 2010. doi: 10/d4zx2p.

[55] P. Sampat. kernel: Introduce CPU Namespace
[LWN.net], Oct. 2021. URL https://lwn.net/
Articles/872507/.

[56] D. Schrammel, S. Weiser, S. Mangard, and R. Sadek.
Jenny: Securing Syscalls for PKU-based Memory Isola-
tion Systems. page 18, 2022.

[57] V. Seshagiri, D. Huye, L. Liu, A. Wildani, and R. R.
Sambasivan. [SoK] Identifying Mismatches Between
Microservice Testbeds and Industrial Perceptions of
Microservices. 2(1). ISSN 2770-5501. doi:
10.5070/SR32157839.

[58] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay.
Containers and Virtual Machines at Scale: A Com-
parative Study. In Proceedings of the 17th Inter-
national Middleware Conference, pages 1–13, Trento
Italy, Nov. 2016. ACM. ISBN 978-1-4503-4300-
8. doi: 10.1145/2988336.2988337. URL https:
//dl.acm.org/doi/10.1145/2988336.2988337.

[59] M. Silva, K. D. Ryu, and D. Da Silva. VM Performance
Isolation to Support QoS in Cloud. In 2012 IEEE 26th
International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum, pages 1144–1151,
May 2012. doi: 10.1109/IPDPSW.2012.140.

[60] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson. Container-based operating system virtu-
alization: a scalable, high-performance alternative to
hypervisors. ACM SIGOPS Operating Systems Re-
view, 41(3):275–287, Mar. 2007. ISSN 0163-5980.
doi: 10/cr62t6. URL https://doi.org/10.1145/
1272998.1273025.

[61] L. Tomás and J. Tordsson. Improving cloud infrastruc-
ture utilization through overbooking. In Proceedings of
the 2013 ACM Cloud and Autonomic Computing Con-
ference, CAC ’13, pages 1–10. Association for Com-
puting Machinery. ISBN 978-1-4503-2172-3. doi:
10.1145/2494621.2494627.

[62] I. VMWARE. Understanding full virtualization. Par-
avirtualization and Hardware Assist, 2007.

[63] C. Waldspurger and M. Rosenblum. I/O virtualization.
Communications of the ACM, 55(1):66–73, Jan. 2012.
ISSN 0001-0782, 1557-7317. doi: 10.1145/2063176.
2063194. URL https://dl.acm.org/doi/10.1145/
2063176.2063194.

[64] C. A. Waldspurger. Memory resource management
in VMware ESX server. ACM SIGOPS Operating
Systems Review, 36(SI):181–194, Dec. 2002. ISSN
0163-5980. doi: 10.1145/844128.844146. URL https:
//dl.acm.org/doi/10.1145/844128.844146.

[65] J. P. Walters, V. Chaudhary, M. Cha, S. Guercio, and
S. Gallo. A Comparison of Virtualization Technologies
for HPC. In 22nd International Conference on Ad-
vanced Information Networking and Applications (Aina
2008), pages 861–868. IEEE. ISBN 978-0-7695-3095-
6. doi: 10.1109/AINA.2008.45.

[66] Z. Wan, D. Lo, X. Xia, and L. Cai. Practical and
Effective Sandboxing for Linux Containers. page 41,
2019. doi: 10.1007/s10664-019-09737-2.

[67] X. Wang, J. Du, and H. Liu. Performance and iso-
lation analysis of RunC, gVisor and Kata Containers
runtimes. Cluster Computing, Jan. 2022. ISSN
1573-7543. doi: 10.1007/s10586-021-03517-8. URL
https://doi.org/10.1007/s10586-021-03517-8.

[68] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,
pages 307–320, 2006.

[69] D. Williams, R. Koller, and B. Lum. Say Goodbye to
Virtualization for a Safer Cloud. page 6.

[70] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. The True Cost of
Containing: A gVisor Case Study. page 6, 2019.

18

https://lwn.net/Articles/872507/
https://lwn.net/Articles/872507/
https://dl.acm.org/doi/10.1145/2988336.2988337
https://dl.acm.org/doi/10.1145/2988336.2988337
https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1145/1272998.1273025
https://dl.acm.org/doi/10.1145/2063176.2063194
https://dl.acm.org/doi/10.1145/2063176.2063194
https://dl.acm.org/doi/10.1145/844128.844146
https://dl.acm.org/doi/10.1145/844128.844146
https://doi.org/10.1007/s10586-021-03517-8

	Introduction
	Background
	Methodology
	Virtualization Technology Classification
	Overview
	Hypervisor-based
	Architecture Types
	Hardware abstraction levels
	Classification Impact

	Container-based
	Isolation targets
	Example architecture
	Classification Impact

	Sandbox-based
	Concept
	Example Architecture
	Classification Impact

	Emerging and Hybrid Technologies
	Concept
	Classification Impact

	Summary

	Virtualization Enablers
	Namespaces
	cGroups
	Capabilities
	Hypervisor specific isolation
	Syscall Filtering

	Validation
	Related Work
	Conclusion
	Discussion
	Future Work


