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Abstract
Hyperpolarized (HP) gas MRI enables quantification of regional lung ventilation via clinical
biomarkers such as the ventilation defect percentage (VDP). VDP is computed from seg-
mentations derived from spatially co-registered functional HP gas MRI and structural pro-
ton (1H)-MRI; although these scans are acquired at similar inflation levels, misalignments
are frequent, requiring a lung cavity estimation (LCE). Here, we propose a multi-channel
deep learning method for generating LCEs using HP gas and 1H-MRI. We compare the
performance of the proposed method to single-channel alternatives.
Keywords: Deep learning, segmentation, multi-channel, multi-modal.

1. Introduction

Hyperpolarized (HP) gas MRI enables quantification of regional lung ventilation via clin-
ical biomarkers such as the ventilation defect percentage (VDP). VDP is computed from
segmentations derived from spatially co-registered functional HP gas and structural proton
(1H)-MRI. To maximize spatial alignment, both modalities are acquired at a similar lung
inflation; however, the scans are frequently misaligned. Image registration consistently un-
derperforms in cases with large discrepancies in topology between functional and structural
scans (Tahir et al., 2014). Therefore, a lung cavity estimation (LCE) that represents the
lung cavity volume in the spatial domain of HP gas MRI is required; this volume poses sig-
nificant segmentation challenges, resulting in considerable manual editing. Deep learning
(DL) has shown promise for pulmonary image segmentation, and single-channel convolu-
tional neural networks (CNNs) have been used for segmentation of HP gas MRI and 1H-MRI
scans separately (Tustison et al., 2021; Astley et al., 2020). We propose a multi-channel DL
method for generating LCEs using HP gas and 1H-MRI.
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2. Methods

The data set comprised 480 3D 1H-MRI scans and HP xenon-129 (129Xe)-MRI ventilation
scans from 315 healthy participants and patients with numerous pulmonary pathologies.
1H-MRI and 129Xe-MRI scans were rigidly registered. A 3D nn-UNet (Isensee et al., 2018)
CNN was trained with a PReLU activation function, ADAM optimization and cross-entropy
loss function on patches of 96x96x96 voxels for 300 epochs. A learning rate of 1x10�5 and
batch size of 2 were used. We assessed three DL methods by varying the input channels to
the network as follows: 1) ventilation-only (129Xe-MRI), 2) structural-only (1H-MRI), and
3) multi-channel (129Xe-MRI + 1H-MRI). Training and testing sets of 422 and 58 scans,
respectively, were used. Only one scan per participant was included in the testing set and
thus no participant was included in both the training and testing sets. To evaluate manually-
delineated expert LCEs, Dice similarity coe�cient (DSC), average boundary Hausdor↵
distance (average HD), and relative error (XOR) metrics were computed. Friedman tests
with Bonferroni correction were used to assess group di↵erences between DL methods.

3. Results and Discussion

Figure 1 shows the qualitative performance of each DL method comparing the DL-generated
LCEs to expert LCEs for three random cases. For all cases, the multi-channel method
generated plausible LCEs and outperformed other methods.

Figure 1: Example coronal slices showing 1H-MRI fused with the corresponding 129Xe-MRI
overlaid with LCEs for three random cases. DSC values are provided.

Results for each DL method are provided in Table 1; the multi-channel method generated
the most accurate segmentations across all metrics. For all three metrics, the multi-channel
method significantly outperformed the single-channel methods (p<0.001).
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Table 1: Quantitative results for the testing set (n=58) using DSC, average HD, and XOR
metrics for the three DL methods. Median (range) values are provided.

LCE DL method DSC Average HD (mm) XOR
Ventilation-only 0.952 (0.719, 0.979) 2.22 (0.762, 66.0) 0.095 (0.043, 0.749)
Structural-only 0.935 (0.797, 0.959) 4.19 (2.13, 11.5) 0.132 (0.082, 0.355)
Multi-channel 0.967 (0.867, 0.978) 1.68 (0.778, 37.0) 0.066 (0.045, 0.246)

The ventilation-only method did not generate plausible LCEs due to the lack of struc-
tural features provided to the CNN. Conversely, the structural-only method generated rea-
sonable LCEs; however, in cases where there were misalignments between the 129Xe-MRI
and 1H-MRI scans, the structural-only method could not account for inherent registration
errors. The multi-channel method, utilizing structural and functional modalities, signifi-
cantly outperformed single-channel methods across all metrics tested (p<0.001). Previous
studies used single-channel CNN-based methods to segment the lung parenchyma on 1H-
MRI. The inclusion of functional features present in the 129Xe-MRI scans, in addition to
structural features on 1H-MRI, provide the network context with which to adapt the struc-
tural LCE to account for inherent registration errors.
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