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Abstract

We study the differentially private Empirical Risk Minimization (ERM) and
Stochastic Convex Optimization (SCO) problems for non-smooth convex func-
tions. We get a (nearly) optimal bound on the excess empirical risk for ERM with
O(N

3/2

d1/8 + N2

d ) gradient queries, which is achieved with the help of subsampling
and smoothing the function via convolution. Combining this result with the iter-
ative localization technique of Feldman et al. [FKT20], we achieve the optimal
excess population loss for the SCO problem with O(min{N5/4d1/8, N3/2

d1/8 }) gra-
dient queries. Our work makes progress towards resolving a question raised by
Bassily et al. [BFGT20], giving first algorithms for private SCO with subquadratic
steps. In a concurrent work, Asi et al. [AFKT21] gave other algorithms for private
ERM and SCO with subquadratic steps.

1 Introduction

Privacy has become an important consideration for learning algorithms dealing with sensitive data.
Over the past decade, differential privacy, introduced in the seminal work of [DMNS06], has estab-
lished itself as the defacto notion of privacy for machine learning problems. In this paper, we revisit
Empirical Risk Minimization (ERM) and Stochastic Convex Optimization (SCO) problems, two
fundamental problems in statistics and machine learning, in differential privacy setting. In the ERM
problem, we are given a family of convex functions {f(·, x)}x∈Ξ over a bounded closed convex set
K ⊂ Rd of diameter D, a data set S = {x1, · · · , xN} drawn from some unknown distribution P
over the universe Ξ, and the objective is to

minimize F̂ (ω) :=
1

N

∑
xi∈S

f(ω, xi) over ω ∈ K,

The excess empirical loss with respect to a solution ω is defined by F̂ (ω) − F̂ ∗, where F̂ ∗ =

minω∈K F̂ (ω). A closely related but more general problem is SCO, where the objective is to

minimize F (ω) := E
x∼P

f(ω, x) over ω ∈ K,

We refer F (ω) − F ∗ as the excess population loss, where F (ω) = Ex∼P f(ω, x) and F ∗ =
minω∈K F (ω).

Differentially private convex optimization has been studied extensively for over a decade now
[CM08, RBHT09, CMS11, KST12, JT14, TTZ14, BST14, TTZ15, KJ16, WLK+17, FTS17,
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ZZMW17, WYX17, INS+19]. Both DP-ERM and DP-SCO for smooth convex functions are well
understood in the sense that we know (near) linear time algorithms that achieve optimal loss; we refer
the readers to [WYX17, FKT20] for more details. However, for the more general non-smooth convex
loss functions our understanding is not yet complete, which is the focus of this paper.

Our algorithms for DP-SCO build upon our improvements for the DP-ERM problem, and hence
we begin with DP-ERM problem. A summary of the state-of-the-art results of DP-ERM and our
contributions for the non-smooth convex loss functions is given in Table 1. We will discuss the
concurrent work [AFKT21] separately at the end of the introduction, and the following discussion is
only limited to the previous work.

General Convex Strongly Convex Gradient
Complexity

[KST12] GD
√
d log(1/δ)√
Nε

G2d log(1/δ)
µN3/2ε2

N/A

[BST14] GD log
3
2 (N/δ)

√
d log(1/δ)

Nε

G2 log2(N/δ)d log(1/δ)
µN2ε2

N2

[BFTT19] GD
√

d log(1/δ)

Nε

G2d log(1/δ)
µN2ε2

N4.5

[BFGT20] GD
√

d log(1/δ)

Nε

G2d log(1/δ)
µN2ε2

N2

[AFKT21] GD
√

d log(1/δ)

Nε

G2d log(1/δ)
µN2ε2

N2/
√
d

Ours GD
√

d log(1/δ)

Nε

G2d log(1/δ)
µN2ε2

N3/2

d1/8 + N2

d

Table 1: DP-ERM. Comparisons with previous (ε, δ)-differential private algorithms when objective
function is G-Lipschitz and convex (or µ-strongly convex) over a convex set K ⊂ Rd of diameter
D. The results are stated asymptotically and the big O notation is hidden for simplicity. The lower
bound of General Convex function is Ω(min{GD, GD

√
d

Nε }) and of Strongly Convex function is
Ω(min{G2

µ , G2d
µN2ε2 }) [BST14].

[KST12] used objective perturbation method to design a DP-algorithm with O(GD
√
d log(1/δ)√
Nε

) excess
empirical risk. This result was improved significantly by [BST14], who first showed a lower bound of
Ω(min{GD, GD

√
d

Nε }) on the excess empirical risk for DP-ERM. Further, they gave an algorithm with

excess empirical risk O(
GD log

3
2 (N/δ)

√
d log(1/δ)

Nε ), which is sub-optimal by a factor of log
3
2 (N/δ).

Their algorithm is based on a modification of SGD by adding Gaussian noise to the gradients to
make it differentially private. The privacy analysis proceeds via amplification by sampling and the
strong composition theorem. Roughly speaking, the logarithmic blowup in the excess empirical risk
is due to two reasons: 1) The strong composition theorem requires that at each step one needs to add
Gaussian noise with a larger variance; 2) They used sub-optimal convergence rate O(log T/

√
T ) for

T -step SGD.

However, getting the optimal bounds with small gradient complexity for non-smooth case turns out
to be a more difficult problem. This was noted by [WYX17], who raised it as an important open
problem. This question was answered in [BFTT19], who gave an algorithm with almost optimal
excess empirical risk. To achieve this, [BFTT19] first consider the smooth case, and give an improved
privacy analysis via the Moments Accountant technique proposed by [ACG+16]. They extend their
result to non-smooth case by applying Moreau-Yosida envelope technique (a.k.a. Moreau envelope
smoothing) [Nes05] to make the function smooth. However, this technique is computationally
inefficient and leads to O(N4.5)-gradient computations for the whole algorithm. This limitation was
overcome in a recent work of [BFGT20] who gave the optimal excess empirical risk guarantee with
O(N2)-gradient computations. The privacy analysis of this result also used Moments Accountant
method, and they used the standard online-to-batch conversion technique [CBCG04] to prove the
high-probability and expectation bound on the excess empirical error of SGD.

As we can see from Table 1, all the previously known results (except the concurrent work [AFKT21])
achieving near optimal excess empirical risk bounds require at least O(N2)-gradient computations.
As Table 2 shows, a similar situation arises in Stochastic Convex Optimization (SCO), which is a
closely related problem compared to ERM. Many results for SCO [BST14, BFTT19, BFGT20]
are directly based on ERM; that is, solving the ERM and analyzing the generalization error.
The first non-trivial result for general convex loss functions achieving excess population loss of
O
(
GD(d

1/4
√
N

+
√
d

Nε )
)

was given by [BST14], who showed the result by first solving the ERM prob-
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lem and bounding the generalization error. They used the result on universal convergence directly,
namely, bounding supω∈K E[F (ω)−F̂ (ω)]. But this method has its limitations; For example, [Fel16]
showed that lower bound of universal convergence is Ω(

√
d/N) for some (not necessarily convex)

loss functions. Later, [BFTT19], [FKT20] and [BFGT20] obtained near optimal excess population
loss with significantly better running times (gradient complexity). The privacy analysis in these
papers relied on recent advances in the privacy techniques such as the Moments Accountant method
[ACG+16], Rényi differential privacy (RDP) [Mir17] and the Privacy Amplification by Iteration
[FMTT18] and other fast stochastic convex optimization algorithms such as [JNN19]. The excess pop-
ulation loss bound in most of these works followed by solving a (phased) convex (regularized) ERM
problem and then appealing to the uniform stability property [HRS16] or the iterative localization
approach [FKT20] to do the generalization error analysis.

General Convex Strongly Convex Gradient Complexity
[BST14] GD(d

1/4 log(n/δ)√
N

+ d1/2 log2(n/δ))
Nε ) N/A N2

[BFTT19] GD( 1√
N

+

√
d log(1/δ)

Nε )
G2

µ ( 1
N + d log(1/δ)

N2ε2 ) N4.5

[FKT20] GD( 1√
N

+

√
d log(1/δ)

Nε )
G2

µ ( 1
N + d log(1/δ)

N2ε2 ) N2 log(1/δ)

[BFGT20] GD( 1√
N

+

√
d log(1/δ)

Nε )
G2

µ ( 1
N + d log(1/δ)

N2ε2 ) N2

[AFKT21] GD( 1√
N

+

√
d log(1/δ)

Nε )
G2

µ ( 1
N + d log(1/δ)

N2ε2 ) min{N3/2, N2/
√
d}

Ours GD( 1√
N

+

√
d log(1/δ)

Nε )
G2

µ ( 1
N + d log(1/δ)

N2ε2 ) min{N5/4d1/8, N3/2

d1/8 }

Table 2: DP-SCO. Comparisons with previous (ε, δ)-differential private algorithms when objective
function is G-Lipschitz and convex (or µ-strongly convex) over a convex set K ⊂ Rd of diameter
D. The results are stated asymptotically and the big O notation is hidden for simplicity. The
lower bound of General Convex function is Ω(GD( 1√

N
+

√
d

Nε )) and of Strongly Convex function is

Ω(G
2

µ ( 1
N + d log(1/δ)

N2ε2 )) [BST14].

Despite these impressive improvements, as the Table 2 suggests, the previous algorithms that achieve
the optimal excess population loss still require O(N2)-gradient computations. Indeed, [BFGT20]
write that “ Proving that quadratic running time is necessary for general non-smooth DP-SCO is a
very interesting open problem...”. Understanding if the lower bound is the right answer to the above
questions or one can design algorithms with subquadratic gradient complexity is the main motivation
that spurred our work.

1.1 Our Contributions

The first contribution of this paper is to show that we can obtain subquadratic gradient complexity
bound for ERM when the dimension is super constant. In particular, for the important regime of
over-parameterization (d ≥ N ), we achieve a bound of O(N1+3/8). Let Kr = {y | y = ω + z, ω ∈
K, z ∈ Rd, ∥z∥r ≤ r}. We now state the result formally.

Theorem 1.1 (DP-ERM). Suppose K ⊂ Rd is a closed convex set and {f(·, x)}x∈Ξ is a family

of G-Lipschitz and convex functions over Kr, where r =
D
√

d log(1/δ)

εN
4. For ε, δ ≤ 1/2, given

any sample set S consists of N samples from Ξ and arbitrary initial point ω0 ∈ K, we have a
(ε, δ)-differentially private algorithm A which takes

O

(
εN

3
2

d1/8 log1/4(1/δ)
+

ε2N2

d log(1/δ)

)

gradient queries and outputs ωT such that E[F̂ (ωT ) − F̂ ∗] = O

(
GD
√

d log(1/δ)

εN

)
, where D =

∥ω∗ − ω0∥2, F̂ (ω) = 1
N

∑
xi∈S f(ω, xi), F̂

∗ = minω∈K F̂ (ω), and the expectation is taken over
the randomness of the algorithm.

4We only need consider the non-trivial case when
√

d log(1/δ)

εN
≤ 1, or any feasible solution is good enough.

This means that r = O(D), which is a mild assumption.
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Moreover, if {f(·, x)}x∈Ξ is also µ-strongly convex over Kr, we can meet the same gradient query

complexity and get a solution ωT such that E[F̂ (ωT )− F̂ ∗] = O
(

G2d log(1/δ)
µε2N2

)
.

The main contribution of the paper is to use the above result to obtain a better gradient complexity for
the SCO problem, answering the open problem in [BFGT20]. Combining our private ERM algorithm
with the iterative localization technique [FKT20], we give the first algorithm achieving optimal error
with strictly sub-quadratic steps for all dimensions.
Theorem 1.2 (DP-SCO). Suppose ε, δ ≤ 1

2 and sample set S consists of N samples drawn i.i.d from
a distribution P over Ξ. Suppose {f(·, x)}x∈Ξ is convex and G-Lipschitz with respect to ℓ2 norm and

convex over Kr, where r =
D
√

d log(1/δ)

εN , there is an (ε, δ)-differentially private algorithm taking

O(N +min{√εN5/4d1/8,
εN3/2

d1/8 log1/4(1/δ)
})

gradient queries to get a solution ωT such that E[F (ωT )− F (ω∗)] = O(GD( 1√
N

+

√
d log(1/δ)

Nε ).

Moreover, if {f(·, x)}x∈Ξ is also µ-strongly convex over Kr, we can meet the same gradient query

complexity and get a solution ωT such that E[F (ωT )− F (ω∗)] = O
(

G2

µ (d log(1/δ)
ε2N2 + 1

N )
)
.

Finally, we note that with straightforward modifications, our results can also capture the regularized
ERM and SCO, where there is one more simple (and convex) function h(ω) added to the objective
function and the objective function takes the form 1

N

∑
xi∈S f(ω, xi) + h(ω), which show up often

in the previous work such as [RBHT09, KST12, WYX17, INS+19].

1.2 Our Techniques

(private) ERM: convex strongly convex
Lemma 3.7

Lemma 3.6

(private) SCO: convex strongly convex
Lemma 3.7

Lemma 5.5

Theorem 4.1

Figure 1: Reductions between ERM and SCO for
general convex and strongly convex cases. Lemma
5.5 is in the full version in the supplementary ma-
terial

Most of the previous works [BST14, BFTT19,
BFGT20] that achieve near optimal bounds for
ERM and SCO are based on adaptations of SGD
to make it differentially private. The information
theoretic lower bound of Ω(1/

√
T ) for T -step

SGD may be one of the important reasons why
we can not get subquadratic gradient complexity
for non-smooth convex ERM easily. Consider
the algorithm in [BFGT20] as an example. It
needs to add Gaussian noise v ∼ N (0, σ2Id×d)

with σ2 = G2 log(1/δ)
ε2 to each gradient. By a

standard analysis of SGD, we can only show
an excess empirical risk of Θ(D

√
dσ2√
T

), which
requires us to set T = Ω(N2) to get ideal bound,
thus hitting the quadratic barrier.

We deviate from the above approaches for de-
signing private algorithms for non-smooth func-
tions. First notice that the gradient complexity

O( εN
3
2

d1/8 log1/4(1/δ)
+ ε2N2

d log(1/δ) ) in Theorem 1.1 is the same for both strongly convex and general
non-smooth functions; same holds for DP-SCO. This is not a coincidence; We prove that if we can
achieve optimal empirical risk (population loss) for one case, then we can achieve optimal empirical
risk (population loss) for another with the same privacy guarantee and gradient complexity. The
Figure 1 illustrates the relationship among these different problems.

Our result for the general convex non-smooth case is obtained by providing a reduction to the strongly
convex non-smooth case. Thus, our task becomes designing better algorithms for the strongly convex
non-smooth functions. Rather than using SGD, we let the objective function take convolution with a
sphere kernel to make it smooth. We then use the accelerated stochastic approximation algorithm in
[GL12] for solving strongly convex stochastic optimization problems. However, this is not enough,
as the required noise that needs to be added to the gradients to make the algorithm private is too large
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to get subquadratic gradient complexity, even if we use the tighter Moments Accountant technique
[ACG+16]. We overcome this by increasing the batch size to an appropriate value. Combining these
ideas together, we show that the amount of noise we add can be reduced to achieve the optimal excess
empirical loss, and we get the gradient complexity of O(max{N3/2/d1/8, N2/d}).
For SCO, we get the gradient complexity of O(min{N5/4d1/8, N3/2/d1/8}) via application of the
iterative localization approach of Feldman et al [FKT20]. The intuition behind iterative localization
is using private ERM to solve regularized objective functions which have low sensitivity, iteration by
iteration. Each iteration reduces the distance to an approximate minimizer by a multiplicative factor,
so after logarithmic number of phases we are done.

1.3 Concurrent and Independent Work

In an independent and concurrent work, [AFKT21] give a new analysis of private regularized mirror
descent to do the private ERM. Then they combine the iterative localization approach to achieve the
optimal excess population loss for SCO. Their result also achieves subquaratic gradient complexity.
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Result in [AFKT21]
State Of Art

Trivial For α ≥ 2

More formally, they get O(logN ·
min(N3/2

√
log d,N2/

√
d)) for SCO in

query complexity. We compare their gradient
complexity with ours in the figure to right. As
we see, our result is better in the important
regime d ≤ N1+1/3. Same holds true for ERM.
Finally, we remark that the main motivation of
[AFKT21] was to study SCO problem in more
general ℓp norms as much of the literature has
focused on the ℓ2-norm. They also give new
results in ℓp-bounded domain together with
another concurrent work [BGN21].

2 Preliminaries

We recall some basic definitions in convex optimization and DP.

Definition 2.1 (L-Lipschitz Continuity). A function f : K → R is L-Lipschitz continuous over the
domain K ⊂ Rd if the following holds for all ω, ω′ ∈ K : |f(ω)− f(ω′)| ≤ L∥ω − ω′∥2.

Definition 2.2 (β-Smoothness). A function f : K → R is β-smooth over the domain K ⊂ Rd if for
all ω, ω′ ∈ K, ∥∇f(ω)−∇f(ω′)∥2 ≤ β∥ω − ω′∥2.

Definition 2.3 (µ-Strongly convex). A differentiable function f : K → R is called strongly con-
vex with parameter µ > 0 if the following inequality holds for all points ω, ω′ ∈ K, ⟨∇f(ω) −
∇f(ω′), ω − ω′⟩ ≥ µ∥ω − ω′∥22. Equivalently, f(ω′) ≥ f(ω) +∇f(ω)⊤(ω′ − ω) + µ

2 ∥ω′ − ω∥22.

Definition 2.4 (Differential privacy). A randomized mechanismM is (ε, δ)-differentially private if
for any event O ∈ Range(M) and for any neighboring databases S, S′ that differ in a single data
element, one has

Pr[M(S) ∈ O] ≤ exp(ε) Pr[M(S′) ∈ O] + δ.

2.1 A Meta Algorithm for DP Convex Optimization

Many DP convex optimization algorithms with noisy first-order information have the following
simple format.
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Algorithm 1: Private Meta Algorithm METADP

1 Input: Sample set S = {x1, · · · , xN}, the objective convex function F (ω) we want to
minimize, the initial point ω0, and privacy parameters ε, δ;

2 Process: for phases t = 1, · · · , T do
3 Select a random sample set St from the uniform distribution over all subsets of S of size B;
4 Let Gt = (

∑
xi∈St

∇f(ωt−1, xi) + v)/B, where v ∼ N (0, σ2Id×d);
5 Update the result by some sub-procedure ωt ← Sub-procedure(ωt−1, Gt);
6 end
7 Output: Some function of {ωi}i≥1.

Compared to non-private algorithms, DP algorithms make two simple modifications to make it
private. First, we compute gradients over a uniform sample of some size B. Next, we add a carefully
calibrated Gaussian noise to these gradients and take average, before updating our results. The DP
analysis then follows from a careful accounting of the privacy budget lost in each iteration, and the
bound on excess empirical risk comes from the property of the optimization algorithm. The privacy
analysis of the above algorithm can be done via moments account [ACG+16] or using the framework
of sub-sampled Gaussian mechanism, for which we can use tCDP proposed in [BDRS18]. As this is
a direct application of the main result in [BDRS18], we leave the proof of the following theorem in
the full version attached as supplementary material.

Theorem 2.5. Suppose {f(·, x)}x∈Ξ is a family of G-Lipschitz and convex functions over K, for

ε < c1B
2T/N2, B ≤ N/10 and 1/2 ≥ δ > 0, by setting σ =

c2GB
√

T log(1/δ)

εN for some constant
c1 and c2, METADP is (ε, δ)-differential private.

3 Differentially Private ERM

In this section, we present private algorithms achieving the optimal excess empirical loss with
subquadratic gradient complexity when the dimension is super constant. We consider non-smooth
strongly-convex functions first, and then show how to reduce the general non-smooth case to the
strongly-convex case in the last subsection. Due to space constraints, we won’t be able to provide all
the proofs in the main body; the supplementary material contains the full version of the paper with all
the proofs.

3.1 Non-smooth Strongly-convex Functions

We use the framework introduced in Section 2.1 and give a faster private algorithm. Specifically, we
modify a stochastic convex optimization algorithm (AC-SA) in [GL12] to fit into our framework.

Algorithm 2: Accelerated stochastic approximation (AC-SA) algorithm
1 Input: Initial point ω0 ∈ K.
2 Initialization: Set the initial point ωag

0 = ω0;
3 Set the step-size parameters αt =

2
t+2 and γt =

4L
t(t+1) ;

4 Process:
5 for t = 1, · · · , T do
6 Let ωmd

t = (1−αt)(µ+γt)
γt+(1−α2

t )µ
ωag
t−1 +

αt[(1−αt)µ+γt]
γt+(1−α2

t )µ
ωt−1;

7 Query Oracle Gt ≡ G(ωmd
t );

8 ωt = argminω∈K{αt[⟨Gt, ω⟩+ h(ω) + µ∥ωmd
t − ω∥22] + [(1− αt)µ+ γt]∥ωt−1 − ω∥22};

9 ωag
t = αtωt + (1− αt)ω

ag
t−1;

10 end
11 Return: ωag

T .

First we recall some properties of the algorithm AC-SA. Suppose f : K → R is a convex function,
and the objective is to get Ψ∗ := minω∈K{Ψ(ω) = f(ω) + h(ω)}, where K is a closed convex set
and h(ω) is a simple convex function with known structure.

Theorem 3.1 (Proposition 9 in [GL12]). If the following conditions are met:
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• For some L ≥ 0,M ≥ 0 and µ > 0, µ
2 ∥y − ω∥22 ≤ f(y) − f(ω) − ⟨g(ω), y − ω⟩ ≤

L
2 ∥y − ω∥22 + M∥y − ω∥2, ∀ω, y ∈ K, where g(ω) ∈ ∂f(ω) and ∂f(ω) denotes the
sub-differential of f at ω.

• For each call of the stochastic oracle G with the input ωt ∈ K, the stochastic oracle G can
output an independent vector G(ωt) such that E[G(ωt)] ∈ ∂f(ωt).

• For any t ≥ 1 and ωt ∈ K, E[∥G(ωt)− g(ωt)∥22] ≤ V .

Then, AC-SA (algorithm 2) outputs ωT after T iterations such that E[Ψ(ωT ) − Ψ∗] ≤
O
(

L∥ω0−ω∗∥2
2

T 2 + M2+V
µT

)
, where ω∗ = argminω∈K Ψ(ω) and Ψ∗ = Ψ(ω∗).

3.1.1 Smoothing Function

From the statement of Theorem 3.1, it is clear that the algorithm in [GL12] gives much better
convergence rates for smooth functions. As we are considering non-smooth functions, we need an
efficient way to smooth the objective function without introducing too much error. In the next few
paragraphs, we show how to achieve that. Recall that D denotes the diameter of the closed convex
set K ⊂ Rd. Suppose {f(·, x)}x∈Ξ is a family of G-Lipschitz and µ-strongly convex functions
over K. This implies that for any sample set S, the empirical loss function F̂ (ω) we consider is
G-Lipschitz and µ-strongly convex over the domain K. We do a convolution on f(·, x), which
is denoted by f(·, x) ∗ nr. The objective function after the convolution step becomes F̂nr

(ω) =
1
N

∑
xi∈S Ey∼nr

f(ω + y, xi), where nr is the uniform density on the ℓ2 ball of radius r. We need
the following claim:

Claim 3.2. Suppose {f(·, x)}x∈Ξ is convex and G-Lipschitz over K+B2(0, r). For ω ∈ K, F̂nr (ω)
has following properties:
1) F̂ (ω) ≤ F̂nr

(ω) ≤ F̂ (ω) +Gr;
2) F̂nr

(ω) is G-Lipschitz;
3) F̂nr

(ω) is G
√
d

r -Smooth;
4) For random variables y ∼ nr and x uniformly from S, one has E[∇f(ω + y, x)] = ∇F̂nr

(ω) and
E[∥∇F̂nr

(ω)−∇f(ω + y, x)∥22] ≤ G2.

The properties 1)-3) of this claim come from Lemma 7 and Lemma 8 in [YNS12] while the forth
follows from Lemma E.2 in [DBW12]. Furthermore, the convolution operation preserves strong
convexity, which implies the fact below.

Fact 3.3. Let nr be the uniform density on the ℓ2 ball of radius r, and f : Kr → R be a µ-strongly
convex function over Kr. Then Ey∼nr

f(y + ·) is µ-strongly convex over K.

3.1.2 Algorithm

Recall that y ∼ nr is a d-dimension vector drawn from the uniform density on the ℓ2 ball of radius r.
Our algorithm is described in Algorithm 3 below, which is a modification of Algorithm 2.

Algorithm 3: Private AC−SA
1 Input: A convex set K with diameter D, a family {f(·, xi)}i∈[N ] of G-Lipschitz and µ-strongly

convex functions over K, an initial point ω0 ∈ K, privacy parameters ε, δ, the batch size B, and
the number of steps T .

2 Set r ← D
Td1/4 and σ ← Θ(

GB
√

T log(1/δ)

εN );
3 Run the AC−SA with the Oracle G defined below;
4 Return: The output of AC−SA

5 Oracle G(ω):
6 Select a random sample set St from the uniform distribution over all subsets of S of size B.
7 Return:

(∑
xi∈St

∂f(ω + yi, xi) + v)/B, where yi ∼ nr for each i ∈ [B] and
v ∼ N (0, σ2Id×d

)
.
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3.1.3 Utility and Privacy

It is not hard to show that Private AC−SA (Algorithm 3) is an instance of METADP (see Section 2.1),
so we have the following guarantee directly by Theorem 2.5.

Lemma 3.4. For ε ≤ c1B
2T/N2, δ ≤ 1/2, B ≤ N/10 and σ =

c2GB
√

T log(1/δ)

εN where c1 ≤
1, c2 ≥ 1 are constants, Private AC−SA is (ε, δ)-DP.

Now we consider the accuracy of Private AC−SA, which is proved in the full version.

Lemma 3.5. Under the assumptions defined in Algorithm Private AC−SA, after T iterations, it
outputs ωT such that

E[F̂ (ωT )− F̂ ∗] = O

(
G2/B + σ2d/B2

µT
+

GDd1/4

T

)
,

where ω∗ = argminω∈K F̂ (ω), and F̂ ∗ = minω F̂ (ω).

Before stating the main result of this section, we need the following lemma that removes the
dependence on the diameter term. Recall that the lower bound of strongly convex case is

Ω(min{G2

µ , G2d log(1/δ)
µε2N2 }) while for the general case is Ω(min{GD,

GD
√

d log(1/δ)

εN }). Therefore,

we only need to think about the case when d log(1/δ)
ε2N2 ≤ 1, or the bound will be trivial. The following

lemma says if we can achieve sum of these two lower bounds for strongly-convex case, then we can
achieve the optimal bound for the strongly-convex case, which implies we can reduce the Strongly-
Convex Case to General Convex Case. The following lemma follows from the reduction in Section
5.1 in [FKT20], and we try to give a more formal statement for convenience in the future.

Lemma 3.6 (Reduction to General Convex Case). Given F̂ is G-Lipschitz and µ-strongly con-
vex. Suppose for any ε, δ < 1/2, we have an (ε, δ)-differentially private algorithm A which
takes ω0 as the initial start point and outputs a solution ωT such that E[F̂ (ωT ) − F̂ ∗] =

O

(
G2d log(1/δ)

µε2N2 +
GD
√

d log(1/δ)

εN

)
, where ω∗ = argminω∈K F̂ (ω) and D = ∥ω0−ω∗∥2. Then by

taking A as sub-procedure with some modifications on parameters, we can get an (ε, δ)-differentially

private solution with excess empirical loss at most E[F̂ (ωT )−F̂ ∗] = O
(

G2d log(1/δ)
µε2N2

)
. Furthermore,

if A uses g(N, ε, δ) many gradients, the new algorithm uses
∑

i≥1 g(N, ε/2i, δ/2i) many gradients.

We give the proof in the full version. Now we are ready to prove the bounds for strongly convex case
of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.5, the output ω of Private AC−SA satisfies E[F̂ (ω) − F̂ ∗] =

O

(
G2

B +σ2d
B2

µT + GDd1/4

T

)
. Setting σ =

c2GB
√

T log(1/δ)

εN and T = ⌈ 100εN

c1d1/4
√

log(1/δ)
⌉ (c1, c2 are

defined in Lemma 3.4), one has

E[F̂ (ω)−F̂ ∗] = O
(

G2

µBT + G2d log(1/δ)
µε2N2 + GDd1/4

T

)
= O

(
G2

µBT + G2d log(1/δ)
µε2N2 +

GD
√

d log(1/δ)

εN

)
To ensure that Private AC−SA is (ε, δ)-DP, we set B = ⌈

√
εN2

c1T
+ ε2N2

d log(1/δ)T ⌉. By our choice of T ,

we have B ≤ N/10 and ε ≤ c1B
2T/N2. Hence, we can apply Lemma 3.4 to conclude the guarantee

of (ε, δ) differential privacy. Furthermore, we get a solution ω such that

E[F̂ (ω)− F̂ ∗] = O

(
G2d log(1/δ)

µε2N2
+

GD
√

d log(1/δ)

εN

)
.

As for the total gradient complexity of our algorithm, we are under the assumption that d log(1/δ)
ε2N2 ≤ 1,

which means that εN

d1/4
√

log(1/δ)
≥ d1/4, and T = ⌈ 100εN

c1d1/4
√

log(1/δ)
⌉ = Θ( εN

d1/4
√

log(1/δ)
). As for
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the batch size, we know
√

εN2

T + ε2N2

d log(1/δ)T = ω(1) and thus B = ⌈
√

εN2

T + ε2N2

d log(1/δ)T ⌉ =

Θ(
√

εN2

T + ε2N2

d log(1/δ)T ), from which we get the gradient complexity is

BT = Θ

(
εN

3
2

d1/8 log1/4(1/δ)
+

ε2N2

d log(1/δ)

)
.

By Lemma 3.6 we can adjust Private AC−SA and get a final solution ωT such that

E[F̂ (ωT )− F̂ ∗] = O

(
G2d log(1/δ)

µε2N2

)
,

with gradient complexity Θ(
∑log logN3

i=1
(ε/2i)N3/2

d1/8 log1/4(2i/δ)
+ (ε/2i)2N2

d log(2i/δ) ) = Θ( εN
3
2

d1/8 log1/4(1/δ)
+

ε2N2

d log(1/δ) ), which completes the proof.

3.2 General Non-smooth Convex Functions

In the general non-smooth case, we only assume that the family of functions {f(·, x)}x∈Ξ is G-
Lipschitz and convex over K. We now give a reduction from this case to the strongly-convex case,
which completes our main result for ERM.
Lemma 3.7. Suppose K ⊂ Rd is a convex set of diameter D and let {f(·, x)}x∈Ξ be a family
of convex functions over K, which are G-Lipschitz and µ-strongly convex. Given any sample
set S consists of N samples from Ξ and other necessary inputs, suppose we have a (ε, δ)-DP

algorithm A which can output a solution ωT such that E[F̂ (ωT )− F̂ ∗] = O
(

G2d log(1/δ)
µε2N2

)
, where

F̂ ∗ = minω∈K F̂ (ω). Then when {h(·, x)}x∈Ξ is only G-Lipschitz and convex with necessary inputs,
for any sample set S of size N , we also have a (ε, δ)-DP algorithm A′ which can get a solution

ωT such that E[Ĥ(ωT ) − Ĥ∗] = O

(
GD
√

d log(1/δ)

εN

)
. where Ĥ(ω) = 1

N

∑
xi∈S h(ω, xi), Ĥ

∗ =

minω∈K H(ω). The gradient complexity and privacy guarantee of A and A′ are the same. Moreover,
the reduction also holds for SCO.

Proof. We only consider this lemma in the context of ERM, as we can use the nearly the same
argument for SCO. Without loss of generality, we assume the intial point ω0 = 0. The proof of
this reduction is rather simple: After getting {h(·, xi)}xi∈S , we only need to consider hu(ω, x) =
h(ω, x) + u∥ω∥2. Then hu(·, x) is u-strongly convex and O(G + uD)-Lipschitz for any x with
∥ω∥2 ≤ D and ω ∈ K.

For the case uD ≤ G, we run A on {hu(·, xi)}xi∈S to get a solution ωT with loss E[Hu(ωT ) −
H∗

u] = O
(

G2d log(1/δ)
uε2N2

)
, where Hu(ω) =

1
N

∑
xi∈S h(ω, xi) + u∥ω∥2 and H∗

u = minω∈K Hu(ω).

Now by setting u = Θ

(
G
√

d log(1/δ)

DεN

)
, one has E[Ĥ(ωT ) − Ĥ∗] = O

(
G2d log(1/δ)

uε2N2 + uD2
)
=

O

(
GD
√

d log(1/δ)

εN

)
. For the case uD ≥ G, we have GD

√
d log(1/δ)

εN ≥ GD and hence we can

simply output the initial point ω0 as the solution with a loss no more than GD.

The above reduction completes the main result of Theorem 1.1 for the general non-smooth case.

4 Differentially Private SCO

As mentioned before, for DP-SCO, we get the desired gradient complexity via an application of the
iterative localization approach of Feldman et al [FKT20]. We prove the reduction theorem stated
below, the proof of which is in the full version available as supplementary material.
Theorem 4.1. Suppose we have an algorithm A which can solve ERM under strongly convex case
and gets a solution with excess empirical loss O( G2

µN ) by using g(N) many gradients, then we have
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an algorithm A′ which can solve SCO under general case and gets a solution with excess population
loss O(GD√

N
) by using

∑⌈logN⌉
i=1 g(N/2i) many gradients.

Moreover, for ε, δ ≤ 1/2, if Aε,δ is (ε, δ)-differentially private with excess empirical loss O(G
2

µ ( 1
N +

d log(1/δ)
ε2N2 )) under the strongly convex case by using g(N, ε, δ) many gradients, then we can get

(ε, δ)-differentially private A′ with excess population loss O(GD( 1√
N

+

√
d log(1/δ)

εN )) by querying

gradients at most
∑⌈logN⌉

i=1 g(N/2i, ε/2i, δ/2i) times.

To obtain the optimal bounds for SCO, we first notice that we can afford to obtain sub-optimal bounds
for ERM (O(G

2

µ ( 1
N + d log(1/δ)

ε2N2 ))), and hence fewer number of gradient queries. This observation
combined with a careful choice parameters for ERM and the above theorem, helps us prove the main
result in Theorem 1.2.
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