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Abstract

Autoregressive models and their sequential factorization of the data likelihood
have recently demonstrated great potential for image representation and synthesis.
Nevertheless, they incorporate image context in a linear 1D order by attending
only to previously synthesized image patches above or to the left. Not only is this
unidirectional, sequential bias of attention unnatural for images as it disregards
large parts of a scene until synthesis is almost complete. It also processes the entire
image on a single scale, thus ignoring more global contextual information up to the
gist of the entire scene. As a remedy we incorporate a coarse-to-fine hierarchy of
context by combining the autoregressive formulation with a multinomial diffusion
process: Whereas a multistage diffusion process successively removes information
to coarsen an image, we train a (short) Markov chain to invert this process. In
each stage, the resulting autoregressive ImageBART model progressively incor-
porates context from previous stages in a coarse-to-fine manner. Experiments
show greatly improved image modification capabilities over autoregressive models
while also providing high-fidelity image generation, both of which are enabled
through efficient training in a compressed latent space. Specifically, our approach
can take unrestricted, user-provided masks into account to perform local image
editing. Thus, in contrast to pure autoregressive models, it can solve free-form
image inpainting and, in the case of conditional models, local, text-guided image
modification without requiring mask-specific training.

1 Introduction

Spurred by the increasingly popular attention mechanism, a remarkably simple principle has driven
progress in deep generative modeling over the past few years: Factorizing the likelihood of the data
in an autoregressive (AR) fashion

p(x) =
∏
i

pθ(xi|x<i) (1)

and subsequently learning the conditional transition probabilities with an expressive neural network
such as a transformer [75]. The success of this approach is evident in domains as diverse as language
modeling [7], music generation [16], neural machine translation [46, 76], and (conditional) image
synthesis [54, 8]. However, especially for the latter task of image synthesis, which is also the
focus of this work, the high dimensionality and redundancy present in the data challenges the direct
applicability of this approach.

Missing Bidirectional Context Autoregressive models which represent images as a sequence from
the top-left to the bottom-right have demonstrated impressive performance in sampling novel images
and completing the lower half of a given image [8, 21]. However, the unidirectional, fixed ordering
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of sequence elements not only imposes a perceptually unnatural bias to attention in images by
only considering context information from left or above. It also limits practical applicability to
image modification: Imagine that you only have the lower half of an image and are looking for a
completion of the upper half then these models fail at this minor variation of the completion task.
The importance of contextual information from both directions [36] has also been recognized in the
context of language modeling [14, 45]. However, simply allowing bidirectional context as in [14]
does not provide a valid factorization of the density function for a generative model. Furthermore,
the sequential sampling strategy introduces a gap between training and inference, as training relies
on so-called teacher-forcing [3] (where ground truth is provided for each step) and inference is
performed on previously sampled tokens. This exposure bias can introduce significant accumulations
of errors during the generation process, affecting sample quality and coherence [57].

Global Context & Control via Multinomial Diffusion We propose a coarse-to-fine approach that
addresses the unidirectional bias of generative autoregressive models and their exposure bias as well as
the lacking global context. We formulate learning the data density as a hierarchical problem. A coarser
stage provides compressed contextual side information about the entire image for the autoregressive
process on the next finer stage. We utilize a diffusion process to gradually eliminate information
and compress the data, yielding a hierarchy of increasingly abstract and compact representations.
The first scale of this approach is a discrete representation learning task (cf. [74, 58, 16, 21, 78, 56]).
Subsequently, we further compress this learned representation via a fixed, multinomial diffusion
process [65, 30]. We then invert this process by training a Markov chain to recover the data from
this hierarchy. Each Markovian transition is modeled autoregressively but it simultaneously attends
to the preceding state in the hierarchy, which provides crucial global context to each individual
autoregressive step. As each of this steps can also be interpreted as learning a denoising cloze task
[45], where missing tokens at the next finer stage are “refilled” with a bidirectional encoder and an
autoregressive decoder, we dub our approach ImageBART.

Contributions of our work Our approach tackles high-fidelity image synthesis with autoregressive
models by learning to invert a fixed multinomial diffusion process in a discrete space of compact
image representations to successively introduce context. This reduces both the often encountered
exposure bias of AR models and also enables locally controlled, user-interactive image editing.
Additionally, our model effectively handles a variety of conditional synthesis tasks and our introduced
hierarchy corresponds to a successively compressed image representation. We observe that our model
sample visually plausible images while still enabling a trade-off between reconstruction capability
and compression rate.

2 Related Work

Latent Variable Models Among likelihood-based approaches, latent variable models represent a
data distribution with the help of unobserved latent variables. For example, Variational Autoencoders
(VAEs) [38, 59] encode data points into a lower dimensional latent variable with a factorized dis-
tribution. This makes them easy to sample, interpolate [44, 37] and modify [77]. In a conditional
setting [39], latent variables which are independent from the conditioning lead to disentangled repre-
sentations [31, 69, 48, 60, 5]. A hierarchy of latent variables [66] gives mutli-scale representations of
the data. Unfortunately, even the deepest instantiations of these models [47, 71, 10] lack in sample
quality compared to other generative models and are oftentimes restricted to highly regular datasets.

Autoregressive Models AR models represent a distribution as a product of conditional, learnable
factors via the chain rule of probability densities. While this makes them powerful models for
density estimation [70, 24], their samples often lack global consistency. Especially on image data
modeled with convolutional architectures [73, 62], this has been attributed to a locality bias of
convolutional neural networks (CNNs) which biases the model towards strong local correlations
between neighboring pixels at the expense of a proper modeling of coherence [40, 22]. This leads
to samples resembling texture patterns without discernible global structure. Attempts to fix this
properties by including explicit latent variables [27, 9, 22] have not been overly successful, mainly
due the expressiveness of AR models, providing little incentive for learning additional latent variables.

Generative Models on Improved Representations Another successful line of work first learn an
improved image representation and subsequently learn a generative model for this representation
[74, 12]. Most works [58, 21, 56] learn a discrete representation which is subsequently modeled
autoregressively but approaches using continuous representations in combination with VAEs [12], or
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Figure 1: Overview over our approach: We first learn a compressed, discrete image representation x1 and
subsequently our generative ImageBART model reverts a fixed multinomial diffusion process via a Markov
Chain, where the individual transition probabilities are modeled as independent autoregressive encoder-decoder
models. This introduces a coarse-to-fine hierarchy such that each individual AR model can attend to global
context from its preceding scale in the hierarchy.

normalizing flows [1, 60, 20, 4, 18], exist too. Learning a compact representation enables the use of
transformers for autoregressive modeling [8], which avoids the locality bias of CNNs, can be used
for the synthesis of complex scenes conditioned on text as in DALL-E [56], and, when combined
with adversarial learning [25], enables sampling of coherent high-resolution images [21]. However,
AR modeling of a learned representation still limits applications compared to latent variable models.
Their samples can still exert artifacts resulting from a sequential modeling of components, and,
since these models are always trained by “teacher-forcing”, they are susceptible to an exposure bias
[3, 57, 26, 63, 43].

Diffusion Probabilistic Models Diffusion probabilistic models revert a fixed, diffusion process with
a learned Markov Chain [65]. Being directly applied in pixel space, however, downstream analysis
reveals that these models tend to optimize subtle details of the modeled data, which have little
contribution to the sample quality [29, 15], particularly hindering applications on high-resolution and
-complexity datasets. By using a multinomial diffusion process [30] (recently generalized by [2]) on
a compressed, discrete representation of images, we circumvent these issues. Diffusion probabilistic
models require a very large number of diffusion steps in order to model the reverse process with
a model distribution that factorizes over components. Because our approach uses autoregressively
factorized models for the reverse process, we can reduce the required number of steps and obtain
significant improvements in sampling speed and the ability to model complex datasets.

3 Method

3.1 Hierarchical Generative Models
To tackle the difficult problem of modeling a highly complex distribution p(x) of high-dimensional
images x, we (i) introduce bidirectional context into an otherwise unidirectional autoregressive
factorization of p(x) as in Eq. (1) and (ii) reduce the difficulty of the learning problem with a
hierarchical approach. To do so, we learn a sequence of distributions (ptθ)

T
t=0, such that each

distribution pt−1θ models a slightly more complex distribution with the help of a slightly simpler
distribution ptθ one level above. This introduces a coarse-to-fine hierarchy of image representations
x0:T := (xt)

T
t=0, such that an xt−1 is modeled conditioned on xt, i.e. xt−1 ∼ pt−1θ (xt−1|xt) and

defines a reverse Markov Chain for x =: x0 as pθ(x0) = pTθ (xT )
∏T
t=1 p

t−1
θ (xt−1|xt). Since our

goal is to approximate the original distribution p(x) with pθ(x0), we introduce a forward Markov
Chain, qθ(x1:T |x0) =

∏T
t=1 q

t
θ(xt|xt−1), to obtain a tractable upper bound on the Kullback-Leibler

(KL) divergence between p and pθ, KL(p(x0)‖pθ(x0)) =: KL, using the evidence lower bound
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(ELBO). With qTθ (xT |xT−1) := pTθ (xT ), we obtain

KL ≤ Ex0,x1 log
p(x0)

p0θ(x0|x1)︸ ︷︷ ︸
=:L1→ discrete repr. learning

+

T∑
t=2

Ex0,xtKL(qt−1θ (xt−1|xt, x0)‖pt−1θ (xt−1|xt))︸ ︷︷ ︸
=:Lt→ decoupled with diffusion process

(2)

We use L1 to learn a compressed and discrete representation of images, such that subsequent stages
of the hierarchy do not need to model redundant information (Sec. 3.2). With Lt, t > 1 we learn a
model that can rely on global context from a coarser representation xt to model the representation
xt−1 (Sec. 3.3). See Fig. 1 for an overview of the proposed model.

3.2 Learning a compact, discrete representation for images
Since the first stage of the hierarchical process is the one that operates directly on the data, we
assign it a separate role. To avoid that the optimization of Lt (t = 1, . . . , T ) in Eq. (2) unnecessarily
wastes capacity on redundant details in the input images—which is an often encountered property
of pixel-based likelihood models [74, 21, 50]—we take L1 = Ep(x0)q1θ(x1|x0) log p(x0)

p0θ(x0|x1)
to be the

reconstruction term for a discrete autoencoder model. This has the advantage that we can directly
build on work in neural discrete representation learning, which has impressively demonstrated that
discrete representations can be used for high-quality synthesis of diverse images while achieving
strong compression. In particular, [49] and [21] have shown that adding an adversarial realism prior
to the usual autoencoder objective helps to produce more realistic images at higher compression rates
by locally trading reconstruction fidelity for realism.

More specifically, we follow [21] to encode images into a low-dimensional representation which is
then vector-quantized with a learned codebook of size K to obtain {0, . . . ,K − 1}h×w 3 x1 ∼
q1θ(x1|x0) deterministically as the index of the closest codebook entry. The encoder is a convolutional
neural network (CNN) with four downsampling steps, such that h = H/16 and w = W/16 for any
input image x0 ∈ RH×W×3. For downstream autoregressive learning, this representation is then
unrolled into a discrete sequence of length N = h · w. To recover an image from x1, we utilize a
CNN decoder G, such that the reverse model is specified as

− log p0θ(x0|x1) ∝ frec(x0, Gθ(x1)) + logDφ(Gθ(x1)) =: Lrec(x0, x1; θ) + Ladv(x1; θ, φ) (3)

Here, frec denotes the perceptual similarity metric [23, 32, 19, 80] (known as LPIPS) and Dφ

denotes a patch-based adversarial discriminator [25]. Note that, due to the deterministic training,
the likelihood in Eq. (3) is likely to be degenerate. Dφ is optimized to differentiate original images
x0 from their reconstruction Gθ(x1) using simultaneous gradient ascent, such that the objective for
learning the optimal parameters {θ∗, φ∗} reads:

{θ∗, φ∗} = arg min
θ

max
φ

(
Lrec(x0, x1; θ)− Ladv(x1; θ, φ) + logDφ(x0) + Lcb(θ)

)
(4)

The optimization of θ via this objective includes the parameters of the encoder and decoder in addition
to the parameters of the learned codebook, trained via the codebook loss Lcb as in [74, 21].

3.3 Parallel learning of hierarchies
Under suitable choices for pθ, qθ, one can directly optimize these chains over

∑
t Lt. However,

the objectives Lt of the hierarchy levels are coupled through the forward chain qθ, which makes
this optimization problem difficult. With expressive reverse models pt−1θ , the latent variables xt
are often ignored by the model [22] and the scale of the different level-objectives can be vastly
different, resulting in a lot of gradient noise that hinders the optimization [52]. In the continuous case,
reweighting schemes for the objective can be derived [29] based on a connection to score matching
models [67]. However, since we are working with a discrete x1, there is no analogue available.

While we could follow the approach taken for the first level and sequentially optimize over the
objectives Lt, this is a rather slow process since each level t− 1 needs to be converged before we can
start solving level t. However, this sequential dependence is only introduced through the forward
models qtθ and since q1θ already learns a strong representation, we can choose simpler and fixed,
predefined forward processes for qtθ, t > 1. The goal of these processes, i.e., generating a hierarchy
of distributions by reducing information in each transition, can be readily achieved by, e.g., randomly
masking [14], removing [45] or replacing [30] a fraction of the components of xt−1.
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Multinomial diffusion This process of randomly replacing a fraction βt of the components with
random entries can be described as a multinomial diffusion process [30], a natural generalization
of binomial diffusion [65]. The only parameter θ of qtθ is therefore βt, which we consider to be
fixed. Using the standard basis e(k) = (δjk)Kj=1, the forward process can be written as a product of
categorical distributions C specified in terms of the probabilities over the codebook indices:

qtθ(xt|xt−1) =

N∏
i=1

C(xit|(1− βt)e(xit−1) + βt1/K), t > 1 (5)

where 1 = (1)Kj=1 is the all one vector. It then follows that after t− 1 steps, on average, a fraction of
ᾱt :=

∏t
l=2(1− βt) entries from x1 remain unchanged in xt, i.e.

qtθ(xt|x1) =

N∏
i=1

C(xit|ᾱte(xi1) + (1− ᾱt)1/K), t > 1. (6)

This enables computation of the posterior qθ(xt−1|xt, x1) =
qtθ(xt|xt−1)qθ(xt−1|x1)

qθ(xt|x1)
for t > 2, and,

using the fact that q1θ is deterministic, we can rewrite Lt as

Ep(x0)Eqθ(xt|x1)KL(qt−1θ (xt−1|xt, x1)‖pt−1θ (xt−1|xt)), t > 2 (7)

such that the KL term can now be computed analytically for t > 2. For t = 2, we use a single sample
Monte-Carlo estimate for the maximum likelihood reformulation, i.e.

arg minL2 = arg maxEp(x0)Eq2θ(x2|x1) log p1θ(x1|x2). (8)

Finally, we set pTθ to be a uniform distribution. This completes the definition of the reverse chain pθ,
which can now be started from a random sample for xT ∼ pTθ (xT ), denoised sequentially through
xt−1 ∼ pt−1θ (xt−1|xt) for t = T, . . . , 2, and finally be decoded to a data sample x0 = G(x1).

Reverse diffusion models Under what conditions can we recover the true data distribution? By
rewriting

∑
t Lt, we can see from

KL(p(x0)‖pθ(x0)) ≤
T∑
t=1

KL(qθ(xt−1|xt)‖pt−1θ (xt−1|xt)) (9)

that this is possible as long as all reverse models are expressive enough to represent the true reverse
processes defined by qθ. For the first level, we can ensure this by making x1 large enough such
that the reconstruction error becomes negligible. For the diffusion process, previous image models
[65, 29, 68, 30] relied on the fact that, in the limit βt → 0, the form of the true reverse process has the
same functional form as the forward diffusion process [65, 41]. In particular, this allows modeling of
the reverse process with a distribution factorized over the components. However, to make qT−1θ close
to a uniform distribution requires a very large T (in the order of 1000 steps) with small βt. Training
such a large number of reverse models is only feasible with shared weights for the models, but this
requires a delicate reweighting [29] of the objective and currently no suitable reweighting is known
for the discrete case considered here.

Thus, to be able to recover the true data distribution with a modest number of reverse models that can
be trained fully parallel, and without weight-sharing, we model each reverse process autoregressively.
We use an encoder-decoder transformer architecture [75], such that the decoder models the reverse
process for xt−1 autoregressively with the help of global context obtained by cross-attending to
the encoder’s representation of xt as visualized in Fig. 1. Note that the need for autoregressive
modeling gets reduced for small βt, which we can adjust for by reducing the number of decoder
layers compared to encoder layers. The use of the compression model described in Sec. 3.2, however,
allows to utilize full-attention based transformer architectures to implement the autoregressive scales.

4 Experiments
Sec. 4.1 evaluates the quality ImageBART achieves in image synthesis. Since we especially want to
increase the controllability of the generative process, we evaluate the performance of ImageBART
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Figure 2: Samples from our models. Top row: FFHQ, LSUN-Cats, Middle row: LSUN-Bedrooms, LSUN-
Churches, Bottom row: ImageNet.

Method Cats Beds Churches FFHQ

VDVAE [10] – – – 28.5

DDPM [29] 19.75 4.90 7.89 –

StyleGAN2 [34] 7.25 2.35 3.86 3.8
BigGAN [6] – – – 12.4

DCT [50] – 6.40 7.56 13.06
TT [21] 17.31 6.35 7.81 11.4

ImageBART 15.09 5.51 7.32 9.57

ImageBART DDPM SSDE

Churches

Cats

cIN (c14)

cIN (c323)

cIN (c963)

Table 1: Left: FIDs on the LSUN-{Churches,Beds,Cats} [79] and FFHQ [33] datasets. Right: Corresponding
qualitative comparisons. Qualitative comparisons with TT can be found in Fig. 20 and Fig. 21

on class- and text-conditional image generation in Sec. 4.2. The ability of our approach to attend to
global context enables a new level of localized control which is not possible with previous, purely
autoregressive approaches as demonstrated in Sec. 4.3. Finally, Sec. 4.4 presents ablations on model
and architecture choices.

4.1 High-Fidelity Image Synthesis with ImageBART
In this section we present qualitative and quantitative results on images synthesized by our approach.
We train models at resolution 256× 256 for unconditional generation on FFHQ [33], LSUN -Cats,
-Churches and -Bedrooms [79] and on class-conditional synthesis on ImageNet (cIN) [13].

Effective Discrete Representations Learning the full hierarchy as described in Eq. (2) and without
unnecessary redundancies in the data requires to first learn a strong compression model via the
objective in Eq. (4). [21] demonstrated how to effectively train such a model and we directly utilize
the publicly available pretrained models. For training on LSUN, we finetune an ImageNet pretrained
model for one epoch on each dataset. As the majority of codebook entries remains unused, we
shrink the codebook to those entries which are actually used (evaluated on the validation split of
ImageNet) and assign a random entry for eventual outliers. This procedure yields an effective,
compact representation on which we subsequently train ImageBART.

Training Details As described in Sec. 3.3, we use an encoder-decoder structure to model the reverse
Markov Chain pt−1θ (xt−1|xt), t < T , where the encoder is a bidirectional transformer model and
decoder is implemented as an AR transformer. As the context for the last scale is pure noise, we
employ a decoder-only variant to model pT−1θ (xT−1|xT ). Furthermore, to account for the different
complexities of the datasets, we adjust the number of multinomial diffusion steps for each dataset
accordingly. For FFHQ we choose a chain of length T = 3, such that the total model consists of (i)
the compression stage and (ii) n = 2 transformer models trained in parallel via the objective described
in Eq.(7). Similarly, we set n = 3 for each of the LSUN models and n = 5 for the ImageNet model.
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rejection rate for cIN sampling

1.0 0.5 0.25 0.05

FID 21.19 13.12 9.77 7.44
IS 61.6±0.8 109.5±2.3 146.2±3.8 273.5±4.1

Text-conditional image synthesis on CC [64]

Method FID ↓ IS ↑ CLIP-score ↑
TT [21] 28.86 13.11±0.43 0.20±0.03

ImageBART 22.61 15.27±0.59 0.23±0.03

Table 2: Quantitative analysis on conditional models. Left: Results on class conditional Imagenet for different
rejection rates, see also Fig, 20 in the supplemental. Right: Results of text-conditional ImageBART and
comparison with TT [21] on the CC test set. Corresponding qualitative comparisons can be found in Fig. 21.

Mountains and hills ___ ___ in the shape of a heart. The texture of ___
reflecting on a surface./ covered in snow./ during sunrise. An apple An avocado Flames wood. pizza. water.

Figure 3: Samples from text-conditional ImageBART. Best 2 of 32 with reranking as in [56].

Results For each of these settings, Fig. 2 depicts samples of size 256× 256 generated with Image-
BART and a single pass through the learned Markov Chain, demonstrating that our model is able to
produce realistic and coherent samples. This is further confirmed by a quantitative analysis in Tab. 1,
where we compare FID scores of competing likelihood-based and score-based methods such as TT
[21] and DDPM [29]. Regarding other works on diffusion models such as [29] and [68] operating
directly in pixel space, we observe that these approaches perform roughly equivalently well in terms
of FID for datasets of low complexity (e.g. LSUN-Bedrooms and-Churches). For more complex
datasets (LSUN-Cats, cIN), however, our method outperforms these pixel-based approaches, which
can also be seen qualitatively on the right in Tab. 1. See Fig. 20 for a comparison on ImageNet.

4.2 Conditional Markov Chains for Controlled Image Synthesis

Being a sequence-to-sequence model, our approach allows for flexible and arbitrary condition-
ing by simply preprending tokens, similar to [21, 56]. More specifically, each learned transition
pt−1θ (xt−1|xt, c), t > 1 of the Markov chain is then additionally conditioned on a representation c,
e.g. a single token in the case of the class-conditional model of Sec. 4.1. Note that the compression
model p0θ remains unchanged.

Text-to-Image Synthesis Besides class-conditional modeling on ImageNet, we also learn a text-
conditional model on Conceptual Captions (CC) [64, 51]. We obtain c by using the publicly available
tokenizer of the CLIP model [55], yielding a conditioning sequence of length 77. To model the
dataset, we choose T = 5 and thus train n = 4 transformer models independently. For the p0θ, we
directly transfer the compression model from Sec. 4.1, trained on the ImageNet dataset.

Fig. 3 visualizes synthetic samples obtained with this model for various “image-cloze” tasks. Our
resulting model is able to attend to semantic variations in the conditioning sentence (e.g. a change
of weather for imagery of mountains) and renders the corresponding images accordingly. In Tab. 2,
we evaluate FID [28] and Inception Scores (IS) [61] to measure the quality of synthesized images,
as well as cosine similarity between CLIP [55] embeddings of the text prompts and the synthesized
images to measure how well the image reflects the text. ImageBART improves all metrics upon [21].
Fig. 21 in the supplement provides corresponding qualitative examples for user-defined text inputs.

Resolutions Beyond 256×256 Pixels. Our approach is not restricted to generating images of size
256× 256 pixels. Although trained on a fixed resolution, we can apply our models in a patch-wise
manner, where we use the sliding attention window of [21] for each scale t > 0. As we now
incorporate more and more global context while decoding with the Markov chain (which can be
thought of as widening a noisy receptive field), ImageBART is able to render consistent images in the
megapixel regime. See for example Fig. 4, where we use our text-conditional model to render an
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Figure 4: ImageBART is capable of generating high-resolution images. Here, we condition it on text prompts
and interpolate between the two descriptions depicted above the image (see also Sec. 4.2).

image of size 300× 1800 pixel and interpolate between two different text prompts. More examples,
especially also for semantically guided synthesis, can be found in Sec. A.2.

4.3 Beyond Conditional Models: Local Editing with Autoregressive Models
Recent autoregressive approaches, which use a CNN to learn a discrete representation [74], partially
alleviate the issues of pixel-wise autoregressive models by working on larger image patches. However,
as we show in Fig. 5, even approaches which use adversarial learning to maximize the amount of
context encoded in the discrete representation [21] cannot produce completions of the upper half of
an image which are consistent with a given lower half.

While our approach also models each transition autoregressively from the top-left to the bottom-right,
the ability to attend to global context from the previous scale enables consistent completions of
arbitrary order, e.g. right-to-left. To achieve this, we mask the diffusion process as described in
Sec. A.3. For a user-specified mask m (e.g. the upper half of an image as in Fig. 5), this results in a
forward-backward process pt−1|t−1,mθ , which, by definition, leaves the unmasked context intact. The
reverse process then denoises the unmasked entries to make them consistent with the given context.

Fig. 5 (bottom) visualizes this mixing process, where we use a model with T = 3. The first column
shows the masked input. To start the process we set all masked entries to random entries. The first
two columns then show (decoded) samples from the masked reverse processes p2,mθ and p1,mθ , which
still display inconsistencies. The remaining columns show the trajectory of the process p1|1,mθ , which
demonstrates how the model iteratively adjusts its samples according to the given context until it
converges to a globally consistent sample. For illustration, we show the analog trajectory obtained
with [21], but because it can only attend to unidirectional context, this trajectory is equivalent to a
sequence of independent samples and therefore fails to achieve global consistency.

The masked process can be used with arbitrary masks, which enables localized image editing with free,
hand-drawn masks as shown in Fig. 6. Note that our model does not need to be trained specifically
for this task, which also avoids generalization problems associated with training on masks [81].
Combining this property with the conditional models from Sec. 4.2 allows for especially interesting
novel applications, where local image regions are modified based on user specified class or text
prompts, as shown in Fig. 7.

Masked Input TT [21] ImageBART

Input Iterative Refinement According to Global Context

ImageBART

TT [21]

Figure 5: Without global context, AR models fail at completing upper halfs, contrasting ImageBART.
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Figure 6: Local editing application using markov chain of length 16 on FFHQ. By incorporating bidirectional
context ImageBART is able to solve this unconditional inpainting task (cf. Sec. 4.3).

Original Masked Guidance
Arctic fox (c279) Lorikeet (c90) Zebra (c340) Tiger (c292) Green lizzard (c46)

’Man standing on a road’ ’A beautiful sunset.’ ’Northern lights.’ ’The road leads straight ’A small city.’
’in nature in summer.’ to the coast.’

Figure 7: Conditionally guided inpainting results obtained from conditional ImageBART trained on the i)
ImageNet (top row) and ii) Conceptual Captions (bottom row) datasets.

4.4 Ablations

On the Number of Diffusion Steps In this section we analyze the effect of varying the number of
diffusion steps (denoted by T ). To do so, we perform an experiment for unconditional training on
the FFHQ dataset, where we train a Taming Transformers (TT) baseline (corresponding to the case
T = 2 within our framework) with 800M parameters and three variants of ImageBART with T = 3
(2x400M), T = 5 (4x200M) and T = 9 (8x100M), respectively. Note that for a fair comparison,
all models use the same first level for compression, and we fix the number of remaining parameters
to 800M and distribute them equally across all scales. All models were trained with the same
computational budget and evaluated at the best validation checkpoint.

In Tab. 3, we assess both the pure synthesis and the modification ability of ImageBART by computing
FID scores on samples and modified images (in the case of upper half completion as in Fig. 5). For
both tasks, we use a single pass through the reverse Markov chain. We observe that the modification
performance increases monotonically with the number of scales, which highlights the improved
image manipulation abilities of our approach. For unconditional generation, we observe a similar
trend, although FID seems to plateau beyond T = 5.

Joint vs. Independent Training While it is possible to optimize Eq. (2) jointly across all scales, we
found that training is more robust when training all scales independently. Besides the usual separation
of training the compression model p0θ and the generative model pt≥1θ , training the latter in parallel
over multiple scales avoids the tedious weighting of the loss contribution from different scales; an
often encountered problem in other denoising diffusion probabilistic models [29].

Efficiency with Less Decoder Layers As we implement the conditional transition probabilities pt−1θ
with an encoder-decoder transformer architecture, we are interested in the effect of altering the ratio
of encoder and decoder layers in the model. Recent work has provided evidence that it is possible to
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Unconditional Generation

method FID ↓ IS ↑
TT (T = 2) 12.44 4.42± 0.05
ImageBART (T = 3) 12.55 3.98± 0.07
ImageBART (T = 5) 10.69 4.27± 0.05
ImageBART (T = 9) 10.81 4.49± 0.05

Upper Half Completion

method FID ↓ IS ↑
TT (T = 2) 11.80 4.48± 0.10
ImageBART (T = 3) 9.25 4.49± 0.13
ImageBART (T = 5) 6.87 4.81± 0.13
ImageBART (T = 9) 6.64 4.86± 0.15

Table 3: Assessing the effect of different T with a fixed number of parameters distributed equally over all scales.
All models are trained on FFHQ. Left: Full image generation results. Right: Using the example of upper image
completion, we evaluate the ability to complete and modifiy an image, see Sec. 4.3 and 4.4.

Figure 8: Left: Effect of number of encoder vs. decoder layers for a fixed total number of model parameters
((195± 5)M ), evaluated on LSUN-Churches. FIDs are evaluated w.r.t 3 × 2500k samples. The plot shows 3
standard deviations. All models are trained jointly over three scales. Right: Our model achieves better sampling
performance than state of the art diffusion models (SSDE [68], DDPM [29], ADM [15]) and also approaches the
inference speed of TT [21], which only consists of a single autoregressive stage. Reducing the number of scales
increases inference speed at the expense of controllability. Experiments were conducted on a single NVIDIA
A100 and are reported averaged over 1000 samples with a batch size of 50, evaluated on FFHQ while using the
same number of trainable parameters (800m) for all AR models.

significantly reduce the number of decoder layers and thus also decrease autoregressive decoding
speed while maintaining high quality [35]. We perform an experiment on LSUN-Churches, where
we analyze the effect of different layer-ratios on synthesis quality (measured by FID) and on decoding
speed when fixing the total number of model parameters to 200M. The results in the left part of
Fig. 8 confirms that it is indeed possible to reduce the number of decoder layers while maintaining
satisfactory FID scores with higher decoding efficiency. We identity a favorable trade-off between
four and six decoder layers and transfer this setting to our other experiments.

Finally, we compare our model in terms of sampling speed with the recent state-of-the-art generative
diffusion [29, 68] and AR models [21]. The results are summarized in Fig. 8. While consistently
being faster than all pixel-based models due to training in a compressed latent space, the increase in
runtime w.r.t. [21] is moderate due to the use of encoder-decoder transformers, i.e., a a decrease in
pure decoder layers. If a faster runtime is desired, the speed can be further increased by reducing the
number of decoder layers even more, see also the discussion in Sec. A.5.

5 Conclusion

We have proposed ImageBART, a hierarchical approach to introduce bidirectional context into autore-
gressive transformer models for high-fidelity controllable image synthesis. We invert a multinomial
diffusion process by training a Markov chain to gradually incorporate context in a coarse-to-fine
manner. Our study shows that this approach (i) introduces a natural hierarchical representation of
images, with consecutive levels carrying more information than previous ones. (see also Fig. 9). (ii)
It alleviates the unnatural unidirectional ordering of pure autoregressive models for image represen-
tation through global context from previous levels of the hierarchy. (iii) It enables global and local
manipulation of a given input, a feat previously out-of-reach for ARMs. (iv) We additionally show
that our model can be efficiently conditioned on various representations, allowing for a large class of
conditional image synthesis tasks such as semantically guided generation or text-to-image synthesis.
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