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ABSTRACT

We study the problem of policy parameterization for reinforcement learning (RL)
with high-dimensional continuous action space. Our goal is to find a good way
to parameterize the policy of continuous RL as a multi-modality distribution. To
this end, we propose to treat the continuous RL policy as a generative model over
the distribution of optimal trajectories. We use a diffusion process-like strategy to
model the policy and derive a novel variational bound which is the optimization
objective to learn the policy. To maximize the objective by gradient descent, we
introduce the Reparameterized Policy Gradient Theorem. This theorem elegantly
connects classical method REINFORCE and trajectory return optimization for
computing the gradient of a policy. Moreover, our method enjoys strong exploration
ability due to the multi-modality policy parameterization; notably, when a strong
differentiable world model presents, our method also enjoys the fast convergence
speed of trajectory optimization. We evaluate our method on numerical problems
and manipulation tasks within a differentiable simulator. Qualitative results show
its ability to capture the multi-modality distribution of optimal trajectories, and
quantitative results show that it can avoid local optima and outperforms baseline
approaches.

1 INTRODUCTION

Reinforcement learning (RL) with high-dimensional continuous action space is notoriously hard
despite its fundamental importance for many application problems such as robotic manipulation (Ope-
nAI et al., 2019; Mu et al., 2021). Compared with the discrete action space counterpart setup, it is
much trickier to represent policies for continuous RL – by the optimality theory of RL, the function
class of discrete RL policies is simply categorical distributions (Sutton & Barto, 2018), while the
function class of continuous RL policies has to include density functions of arbitrary probabilistic
distributions.

In practice, popular frameworks (Silver et al., 2014; Haarnoja et al., 2018; Schulman et al., 2017)
of deep RL formulate the continuous policy as a neural network that outputs a single-modality
density function over the action space (e.g., a Gaussian distribution over actions). This formulation,
however, breaks the promise of RL being a global optimizer of the return function because the single-
modality policy parameterization introduces local minima that are hard to escape using gradients w.r.t.
distribution parameters. Besides, a single-modality policy will significantly weaken the exploration
ability of RL algorithms because the sampled actions are usually concentrated around the modality.
Our Bandit examples show how a single-modality RL policy fails to solve a simple continuous action
bandit problem. Therefore, in practice, continuous RL often requires meticulous reward design that
takes considerable human effort (Mu et al., 2021; Savva et al., 2019; Yu et al., 2020; Makoviychuk
et al., 2021; Zhu et al., 2020).

In this paper, we propose a principled framework to learn the continuous RL policy as a multi-
modality density function. We provide a holistic solution to two closely-related questions: 1) how to
parameterize the continuous RL policy? 2) how to update the policy parameterized as in (1)?

Our parameterization of the continuous RL policy is based on two ideas. First, we take a sequence
modeling perspective (Chen et al., 2021) and view the policy as a density function over the entire
trajectory space (instead of the action space) (Ziebart, 2010; Levine, 2018). Under this sequence
modeling perspective, we can sample a population of trajectories that cover multiple modalities of
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trajectories, which allows us to concurrently explore distant regions in the solution space. Second,
we use a generative model to parameterize the multi-modality policies, inspired by their success
in modeling highly complicated distributions such as natural images (Goodfellow et al., 2016; Zhu
et al., 2017; Rombach et al., 2022; Ramesh et al., 2021). We introduce a sequence of latent variables
z, and we learn a decoder that “reparameterizes” the random distribution z into the multi-modality
trajectory distribution (Kingma & Welling, 2013), from which we can sample trajectories τ . Our
policy network is, in a spirit, akin to diffusion models (Rombach et al., 2022; Ramesh et al., 2021) by
learning to model the joint distribution p(z, τ). As a prototypical work, we prefer simple design and
choose not to include the multi-step diffusion process as in image modeling.

Our choice of policy parameterization leads us to adopt the variational method (Kingma & Welling,
2013; Haarnoja et al., 2018; Moon, 1996) to derive an on-policy learning algorithm. Classical
on-policy learning leverages the policy gradient theorem (Sutton & Barto, 2018), i.e., ∇J(π) =
Eτ [R(τ)∇ log p(τ)]. Because we model p(z, τ), that requires computing p(τ) and its gradient with∫
z
p(z, τ) dz. However, marginalizing out z is often intractable when z is continuous, and it is

well-known that optimizing the marginal distribution log p(τ) by gradient descent suffers from local
optimality issues (e.g., using gradient descent to optimize Gaussian mixture models which have latent
variables is not effective, so EM is often used instead Ng (2000)). To overcome these obstacles, we
take a different route and adopt variational method (maximum entropy RL) that directly optimizes
the joint distribution of the optimal policy without hassels of integrating over z.

We derive a novel variational bound which is the optimization objective for policy learning. To
maximize this objective, we introduce the Reparameterized Policy Gradient Theorem. The theorem
states a principled way to compute the policy gradient by combining the reward-weighted gradient
(as in the classical policy gradient theorem) and the path-wise gradient from a differentiable world
model (as in classical trajectory optimization methods). The two sources of gradient complement
each other – the reward-weighted gradient improves the likelihood of selecting trajectories from
regions containing high-reward ones, whereas the path-wise gradient suggests updates to make local
improvements to trajectories. This combination allows us to enjoy the precise gradient computation
from differentiable world models (Werling et al., 2021; Hu et al., 2019; Huang et al., 2021) and also
maintains the flexibility to sample and optimize the trajectory distribution globally. Note that this
beautiful result is also a consequence of introducing the latent variable z.

The effectiveness of our method is rooted in our choice of generative policy modeling method. An
ideal method needs to be powerful in modeling multi-modality distribution, and it needs to support
sampling, density value computation, and stable gradient computation. Although there are other
candidates for deep generative models, they often have limitations to being used for continuous policy
modeling. For example, GAN-like generative models (Goodfellow et al., 2020) can only sample but
not compute the density value. While normalizing flow (Rezende & Mohamed, 2015) can compute
the density value, they might not be as robust numerically due to the dependency on the determinant
of the network Jacobian; moreover, normalizing flows must apply continuous transformations onto a
continuously connected distribution, making it difficult to model disconnected modes (Rasul et al.,
2021).

We apply our methods to several numerical problems and three trajectory optimization tasks to manip-
ulate rigid-body objects and deformable objects supported by differentiable physics engines (Werling
et al., 2021; Huang et al., 2020). These environments contain various local optima that challenge
single-modality policies (either reward-weighted policy gradients as in REINFORCE or path-wise
gradients as in trajectory optimization). In contrast, our approach benefits from modeling the trajecto-
ries as generative models and the ability to sample in the trajectory space. In qualitative experiments,
we observe a strong pattern of multi-modality distribution by visualizing the policy after the learning
converges. By quantitative evaluation, the policy learned by our framework does not suffer from the
local optimality issue and significantly outperforms baselines.

2 VARIATIONAL REPARAMETERIZED POLICY LEARNING

In this section, we introduce our basic framework. All notations follow the convention of the commu-
nity. To be more clear, we leave a section that introduces background knowledge in Appendix A and
a mathematical table for notations in Appendix B.
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Figure 1: a) the reward landscape where the agent needs to move from the red dots to the region
containing a high reward; b) latent space Z modeled by random Gaussian; c) the state density of a
sampled trajectory from qθ(z, τ). In (c), each red dot corresponds to a state in the trajectory. Our
policy can be viewed as encoding the stochastic latent variable z into the trajectory distribution
through the decoder qθ(z, τ). We rely on an encoder pϕ(z|τ) to ensure the cycle consistency between
the latent z and the sampled trajectory τ .

2.1 GENERATIVE MODELING OF OPTIMAL TRAJECTORIES

Following (Todorov, 2006; 2008; Toussaint, 2009; Ziebart, 2010; Kappen et al., 2012; Levine, 2018;
Haarnoja et al., 2018), our Variational Reparameterized Policy (VRP) framework, as shown in Fig. 1,
views policy optimization as learning a generative model that generates optimal trajectories. To
capture the multimodalities of the optimal trajectories, we introduce a latent distribution and construct
a decoder-encoder structure similar to recent deep generative models (Kingma & Welling, 2013; Ho
et al., 2020; Rombach et al., 2022; Ramesh et al., 2021). The “encoder” maps trajectories to latent
samples, while the decoder is a neural network that “reparameterizes” random samples from the
latent distribution into different trajectories.

Method Overview. As introduced in Sec. 2.2, the latent distribution and the reparameterization
function together form a policy that can generate diverse trajectories. We use a novel variational bound
to approximate the posterior of optimal trajectories in Sec. 2.3 as the optimization objective. The
variational bound naturally combines maximum entropy RL while also containing a term to enforce
cycle consistency (Zhu et al., 2017) between the encoder and the decoder, preventing the policy
from mode collapse. We then introduce a Reparameterized Policy Gradient Theorem in Sec. 2.4 to
optimize our reparameterized policy to improve the variational bound. We find that the derived policy
gradient includes two terms: one optimizes the latent distribution through a reward-weighted gradient
as the classical policy gradient theorem, and another optimizes the reparameterization network, which
can benefit from the path-wise gradient from a differentiable world model. This helps our inference
algorithm to enjoy the efficiency of differentiable physics while being able to sample globally when
the reward landscape is discontinuous or non-convex.

2.2 TRAJECTORY GENERATION WITH REPARAMETERIZED POLICY

Let z ∈ Z be a latent variable, which can be either continuous or categorical to model optimal
trajectories. We design our “policy” as a joint distribution qθ(z, τ) of latent z and the trajectory τ .
To model a sequential trajectory, we can consider the following two factorizations: 1. sample z
before τ : qθ(z, τ) = p(s1)qθ(z|s1)

∏T
t=1 p(st+1|st, at)qθ(at|z, st); 2. sample z with τ : qθ(z, τ) =

p(s1)qθ(z0|s1)
∏T
t=1 p(st+1|st, at)qθ(at|zt−1, st)qθ(zt|st, zt−1). The latter allows us to model the

hybrid policy as in the option-critic (Bacon et al., 2017), where we can treat zt as the option per step.

Though sampling from qθ may require us to sample τ, z together, it is still convenient to view it as the
combination of two marginal distributions: (1) the policy for the latent representation pθ(z|s1)p(s1),
and (2) a decoder pθ(τ |z, s1) that reparameterizes z into a real trajectory. Note that we will use pθ
to refer to various marginal distribution of qθ(z, τ). For example, pθ(τ) =

∫
z
qθ(z, τ)dz will be the

marginal distribution of trajectories sampled from qθ(z, τ).
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The term “reparameterization” is inspired by the reparameterization trick in (Kingma & Welling,
2013). When z is a Gaussian noise ξ, we can reparameterize the noise into actions by a = µ(θ)+ξσ(θ)
and optimize it with gradients directly. The reparameterized policy qθ can be viewed as an instance
of the stochastic computation graph (Schulman et al., 2015; Weber et al., 2019). In practice, qθ(z|s)
or qθ(a|s, z) are modeled by neural networks as in common policy learning frameworks (Haarnoja
et al., 2018).

2.3 THE VARIATIONAL LOWER BOUND FOR REPARAMETERIZED POLICIES

The Auxiliary Trajectory Encoder Intuitively, learning policy networks by inputting random
distribution can help generate diverse examples, but it will also suffer from the issues of mode
collapse Li et al. (2017). To build a connection between the trajectory and τ and enforce a cycle
consistency, we introduce an auxiliary distribution pϕ(z|τ), which can look at the whole trajectories
and map τ back into the latent z. We will illustrate how the auxiliary encoder naturally emerges from
the variational lower bounds following (Rezende & Mohamed, 2015; Levine, 2018).

The Evidence Lower Bound With the help of the auxiliary encoder pϕ(z|τ), we can now define a
joint distribution of optimality O, latent z, and the trajectory τ as pϕ(O, z, τ) = p(O|τ)pϕ(z|τ)p(τ)
where O and z are independent conditioning on τ . Treating qθ(z, τ) as the posterior approximation,
we can write the Evidence Lower Bound (ELBO) for the optimality. Note that the following inequality
holds for arbitrary distribution pϕ and qθ,

log p(O) = Ez,τ∼qθ [log pϕ(O, z, τ)− log qθ(z, τ)]︸ ︷︷ ︸
ELBO

+DKL(qθ(z, τ)||pϕ(z, τ |O))

≥ Ez,τ∼qθ [log pϕ(O, τ, z)− log qθ(z, τ)]

= Ez,τ∼qθ [log p(O, τ) + log pϕ(z|τ)− log qθ(z, τ)]

= Ez,τ∼qθ

log p(O|τ)︸ ︷︷ ︸
reward

+ log p(τ)︸ ︷︷ ︸
prior

+ log pϕ(z|τ)︸ ︷︷ ︸
cross entropy

− log qθ(z, τ)︸ ︷︷ ︸
entropy

 (1)

The ELBO contains four parts that can all be computed directly given the sampled z and τ (the
environment probability p(st+1|st, at) is canceled as in (Levine, 2018)). The first two parts are
the predefined reward log p(O|τ) = R(τ)/T + c, where c is the normalizing constant that can be
ignored during optimization, and a prior distribution p(τ), which is assumed to be known. The third
part is the log-likelihood of z based on our encoder. It is easy to see that if we fix qθ, and maximize pϕ
alone will minimize the cross-entropy Ez,τ∼qθ [− log pϕ(z|τ)], similarly to the supervised learning.
It achieves optimality when pϕ(z|τ) = pθ(z|τ) = qθ(z,τ)∫

z
qθ(z,τ)dz

, modeling the posterior of z for τ
sampled from qθ. On the other hand, fixing ϕ, the decoder qθ is encouraged to generate trajectories
that are easy to identify or classify; this helps to increase diversity and enforce a cycle consistent to
avoid mode collapse. The fourth part is the policy entropy that enables maximum entropy exploration.

Maximizing all terms together for the parameters θ and ϕ will minimize

DKL(qθ(z, τ)||pϕ(z, τ |O)) = DKL(qθ(z, τ)||pϕ(z|τ)p(τ |O)),

where optimality can be achieved when pθ(z|τ) = pϕ(z|τ) and pθ(τ)pθ(z|τ) = pϕ(z|τ)p(τ |O) ⇒
pθ(τ) =

∫
qθ(τ, z)dz = p(τ |O). We discuss the method’s connection with other methods in Ap-

pendix C.

2.4 REPARAMETERIZED POLICY GRADIENT WITH DIFFERENTIABLE PHYSICS

Given θ, ϕ we can treat the ELBO as our reward Relbo(τ) = log p(O|τ) + log p(τ) + log pϕ(z|τ)−
log qθ(z, τ). The maximization w.r.t. ϕ is straightforward. As for qθ, depending on its structure, we
can optimize it with various on-policy or off-policy RL methods as in (Weber et al., 2019).

Here we study a special case where Relbo(τ) is differentiable to θ through a sampled trajectory τ .
Thus, we can optimize θ by first-order path-wise gradients directly. This case is very interesting as
analytical gradients provide a fast convergence speed but also suffer from the local optima issue (Li
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et al., 2017), while our reparameterization policy naturally includes a latent distribution for sampling
and a parameterization part for optimization, providing more chances to search globally. One can
obtain a path-wise gradient from a differentiable simulator (Hu et al., 2019; Werling et al., 2021), a
learned neural model (Liang et al., 2022).

Reparameterized Policy in Differentiable Environments. Formally, we hope to find θ to maxi-
mize the expectation E[Relbo(τ)] =

∫
z,τ

qθ(z, τ)Relbo(τ)dτdz
1. The sampling procedure is usually

non-differentiable. But if we let at = fθ(st, z, t) and the dynamics st+1 = h(st, at) be differentiable
functions, the trajectory τ becomes a differentiable function of θ almost everywhere.

We further assume that s1 is fixed and the functions fθ, h are deterministic to simplify the derivation.
One can remove these assumptions easily through reparameterization as in (Silver et al., 2014; Heess
et al., 2015) to generalize to stochastic functions. As a result, we can write qθ(z, τθ) = qθ(z|τ(z, s1)),
where τ and the density qθ is a deterministic function of the sampled z and s1. In this case,
E[Relbo(τθ)] =

∫
z
qθ(z, τθ)Relbo(τθ)dz. For each sampled trajectory τθ, we can compute its path-

wise gradient w.r.t. to the policy parameter θ as ∇θRelbo(τθ). Then we have the following theorem to
compute the gradient of the expected rewards:

Theorem 1 (Reparameterized Policy Gradient Theorem). Given s1 and under regularity conditions
in Appendix F.1. For almost every θ, the expected reward E[Relbo(τθ)] exists and differentiable, and
its gradient can be computed by

∇θE[Relbo(τθ)] =

∫
z

qθ(z, τθ)

Relbo(τθ)∇θ log qθ(z, τθ)︸ ︷︷ ︸
Reward-weighted Gradient

(REINFORCE)

+ ∇θRelbo(τθ)︸ ︷︷ ︸
Pathwise Gradient

(Trajectory Optimization)

 dz.

We provide a short proof in Appendix F.2.

Combine Sampling and Optimization. Our theorem shares the same spirit as in Schulman et al.
(2015) and is related to the problem of exchange derivative and expectation L’Ecuyer (1995). Here we
want to emphasize its use case in trajectory optimization. Theorem 1 splits gradients into two parts.
The first part is a reward-weighted gradient that aims to improve the likelihood of the distribution
qθ(z|τ) = qθ(z, τθ) for high-reward ones. If the environment is differentiable, the second part may
optimize the policy directly through a path-wise gradient to make local improvements to trajectories.
The natural combination of the sampling and optimization may allow our approach to enjoy the
benefits of both: it can search over the whole space but can also leverage local structures for fast
convergence speed. This can not be achieved without the latent variable z.

Our methods provide the potential to avoid discontinuities in the reward landscape. If qθ(z, τθ) does
not depend on s>1, the reward-weighted gradient can optimize the sampling distribution directly
without relying on the path-wise gradients, providing the policy a chance to ignore the discontinuous
point and move to the high reward region directly. Another appealing point in Theorem 1 is that
in Assumption 2, we only require Relbo(τθ) to be Lipschitz continuous for qθ(z, τθ) ≥ 0. Thus,
our policy gradient estimate can make an unbiased estimation so long as the probability density of
sampling a discontinuous trajectory is negligible. Even if a discontinuous point generates a biased
gradient estimation for a sampled z, the zeroth-order part still has a chance to correct its density
directly by observing the reward directly so long as the optimal trajectories have certain properties.

By defining latent distributions, building the reparameterized policy and the auxiliary encoder, then
optimizing the ELBO with the reparameterized policy gradient through a differentiable world model,
we can combine search and optimization to enjoy the generative modeling of the optimal trajectories.
We summarize the whole recipe in Algorithm 1 of Appendix D and describe implementation details
in Appendix D.

1Here we assume z contains only continuous variables to simplify the derivation. Adding discrete variables
is straightforward by summing over all possibilities.
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3 RELATED WORK

Differentiable Simulation and Trajectory Optimization. Trajectory optimization (Kelly, 2017)
aims to find a trajectory which optimizes the target metrics under given constraints over the tra-
jectory. One branch of methods optimizes the trajectory using the gradient of the optimization
objective (Ratliff et al., 2009; Kalakrishnan et al., 2011; Schulman et al., 2014). Recently, the
development of differentiable simulation technique (Hu et al., 2019; Werling et al., 2021; Qiao et al.,
2021; Freeman et al., 2021; Howell et al., 2022) enables to compute the gradient from the reward
function and optimize the trajectory in physical simulators. Such methods are efficient around the
optimal solution; however, the optimization often gets stuck at local optima elsewhere, especially
when the reward function is not smooth. In our work, one term in the formula of our RPG theorem
corresponds to the gradient from trajectory optimization.

Policy as Sequential Generative Model. Maximum entropy reinforcement learning (Todorov,
2006; 2008; Toussaint, 2009; Ziebart, 2010; Kappen et al., 2012) can be viewed as variational
inference in probabilistic graphical models (Levine, 2018), which models optimality as observed
variable and trajectory as a latent variable. When the demonstration or a fixed dataset is provided on
the offline RL setting (Chen et al., 2021; Reed et al., 2022), policy learning is simplified as a sequence
modeling task (Chen et al., 2021; Zheng et al.; Reed et al., 2022). They use autoregressive models
to learn the distribution of the whole trajectory, including actions, states, and rewards, and use the
action prediction as policy. In our work, we learn a sequential generative model of policy for online
RL via the variational method. The policy can model any distributions in the trajectory space.

Variational Skill Discovery Our method is closely related to the work in unsupervised reinforce-
ment learning (Eysenbach et al., 2018; Achiam et al., 2018) or diverse skill learning (Kumar et al.,
2020; Osa et al., 2022). These methods share the same technique of using neural networks to approxi-
mate the posterior of the latent variable given either states or state-action pairs and encourage the
policy to reach states consistent with the latent variables. However, these methods do not model the
optimal trajectory distribution but only aim to generate a diverse set of solutions by adding the mutual
information term as a reward bonus, resulting in different formulations and effects. For example,
they all choose to fix initial latent distributions without optimizing them, limiting their ability to
achieve optimality. Moreover, Eysenbach et al. (2018); Achiam et al. (2018) does not optimize the
learned skill for the environment rewards; Osa et al. (2022) does not optimize the mutual information
along trajectories; Kumar et al. (2020) needs to solve the optimization problem first before finding a
diverse set of solutions. In contrast, we jointly optimize the latent representation and the policy with
a single objective, providing a simple but unified perspective for previous approaches in optimization
problems.

Hierarchical Methods As mentioned in Sec. 2.2, the hierarchical methods, e.g., option critic (Bacon
et al., 2017), can be seen as a special case of our method when we use a sequence of latent variables
z = (z1, · · · , zT ) to reparameterize the policy. Without optimizing the latent variable through the
variational inference, most hierarchical RL methods often need special designs for the latent space,
e.g., state-based subgoals (Kulkarni et al., 2016; Nachum et al., 2018b;a) or predefined skills (Li
et al., 2020) to avoid mode-collapse. Osa et al. (2019) regularized options to maximize the mutual
information between the action and the options, which are very relevant to ours. However, it does
not model temporal structures as ours to ensure consistency along the trajectories. Hierarchical
imitation learning Gupta et al. (2019); Pertsch et al. (2021); Shankar & Gupta (2020); Jiang et al.
(2022); Lynch et al. (2020); Fang et al. (2020) extract temporal abstractions using generative models
from demonstrations. InfoGAN (Li et al., 2017) and ASE (Peng et al., 2022) uses adversarial
training Goodfellow et al. (2020); Ho & Ermon (2016) to imitate demonstrations. These works all
rely on demonstrations rather than rewards to learn abstractions. For example, (Co-Reyes et al., 2018)
learns representation on the collected dataset with variational inference and then utilizes the trained
model for planning or policy learning. The separation of the representation learning and reward
maximization makes it differ from our methods: first, it requires a state reconstruction module to
supervise the generative model, which is challenging for high-dimensional observations; second, it
optimizes neither the latent distribution nor the actions for the reward directly, thus requires additional
planning procedure during the execution to find suitable actions.
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4 EXPERIMENT

4.1 NUMERICAL EXPERIMENTS

4.1.1 ENVIRONMENT AND EVALUATION

In this section, we investigate the following questions: 1) Whether our method is more efficient for
trajectory optimization than gradient-free algorithms; 2) Whether our method can search over the
large solution space and avoid local optima that might trap a single-modality policy.

We design the following environments to answer these questions. Bandit 1 and 2: Our bandit
problems in Figure 2a-(1) and Figure 2a-(2) have a 1d action space and a non-convex reward
landscape. We initialize our policy as a Gaussian centralized around 0 with its scale barely touching
the right mode of reward. The reward function of Bandit 2 contains an additional discontinuous point.
Move 1 and 2: An agent moves in a 2D environment for a fixed number of steps and receives a
reward according to its terminal position. The terminal reward landscape contains 4 Gaussian peaks
(deeper color = higher reward), as shown in Figure 2a-(3) and (4). The agent is initialized at the
center. Note that the reward of Move 1 near the initialization point is constant, so the agent receives a
non-zero gradient only if it arrives at a position closer to one of the four Gaussian peaks. Move 3:
The terminal reward shown in Figure 2a-(5). There is one obstacle consisting of three white circles.
When an agent runs into an obstacle, it will bounce off (continuous collision detection (Hu et al.,
2019)) due to an impulse normal to the contact surface. Note that there is a small dent between the
three circles, creating a local optimum.

We evaluate our method against the single modality policies learned from the following base-
lines: 1) Reinforce (Williams, 1992), and 2) policies optimized through path-wise gradients with
Adam (Kingma & Ba, 2014). We compare their sample efficiency and final performance after training
is finished.

4.1.2 EXPERIMENT RESULTS

We plot the average episode return of each algorithm against the number of samples in Figure 2b.
Error bars show the standard deviations over five runs with different random seeds. The results
suggest that our methods achieve better sample efficiency and find better solutions than baseline
algorithms.

(a) Environments for numerical experiments. We plot the reward landscapes in the first two bandit environments
and show the rewards of the terminating positions as contour plots in the right three 2d move environments. These
environments all pose some level of challenge in optimizing reward/value landscapes that are discontinuous
and/or locally optimal.

(b) Training curve. X-axis: number of sampled states. Y-axis: average return. Error bars show standard
deviations over 5 runs. Hyperparameters are available in Table 2.

We first take Bandit 2 in Figure 2a-(2), which has two modes and regions containing zero gradients
in its reward landscape, as an example for comparison. We show the performance of each algorithm
in Figure 2b-(2). In terms of optimality, our method converges to the globally optimal solution in the
end and achieves a much higher return compared with other methods in Figure 2b-(2). Two reasons
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prevent our method from being stuck at the local optima. First, the entropy term in the Relbo objective
encourages the agent to perform a maximum entropy exploration over the whole reward landscape,
while the cross entropy term drives the agent to sample distinguishable actions for different latent
variables, causing different action modes determined by latent variables to move away from each
other, resulting in a better state coverage. Second, after discovering different local optima, our policy
is able to maintain a multi-modality action distribution to exploit those local optima independently.
By adjusting the probabilities of different modes through optimizing rewards with latent variables, it
can eventually converge to the global optimal solution. In experiments, we observed that although our
method quickly found the right mode of the reward function, shown in Figure 2a-(2), which is locally
optimal, it would still increase the probabilities for the under-explored region due to the exploration
terms in our objective. After it found the left mode, it would maintain two action modes and optimize
them together until the expected return of the left mode was larger than the right one and eventually
converged to the left, finding the global optimum.

A notable feature of the multi-modality is that during the whole optimization process, the expected
reward increases monotonically as it only needs to increase the reward for modes with higher rewards.
In contrast, when Adam and Reinforce converge to the right mode, even if we have introduced the
maximum entropy reward to encourage exploration. different from our method, their single modality
property prevents them from jumping from one mode to a better mode as there is no way to go across
the flat region in between without decreasing the reward.

In terms of sample efficiency, our method benefits from the pathwise analytical gradient, consistently
outperforming Reinforce, which has a noisy gradient estimate that may reduce convergence speed
when the number of samples is limited. Though Adam increases rewards faster than our method in
the beginning stage, it quickly gets stuck at the local optima. Current RL algorithms like PPO or SAC
are also constrained by the single modality gaussian parameterization of the policy, these methods
can only find suboptimal solutions, even when more than enough samples are given.

Remaining environments Experiments on the remaining four environments show a similar behavior
pattern that our method can converge to the global optima that the baselines fail to find. We observe
that the curve of ADAM in Figure 2b-(1) even decreases after reaching a local optimum. This is due
to the discontinuity on the right of the reward landscape as shown in Figure 2a-(1). When a Gaussian
policy reaches the right local optimum, the analytical gradients nearing that point still only contain a
positive value, pushing the policy to go across the optimal point and move into the right flat region,
causing the return to decrease to −0.5 in the end. Reinforce and PPO does not suffer from this issue,
as it only uses the reward-weighted gradient estimate, and can correctly identify the left low-reward
region and move away from it. SAC also does not suffer from this issue, as the policy optimizes the
Q function, which smooth the discontinuity to allow the policy to converge at the local maximum
stably. But it is still very challenging to find the global optima with a similar reason as in the Bandit
2 environment.

In the case of sequential decision-making problems, our method consistently outperforms algorithms
that maintain single modality policy in several move environments by a large margin and can find
global optima as shown in Figure 2b (3)-(5). We observed that Reinforce went to the left side mode in
Move 1 and Move 2 as at the starting state there are no reward signals pointing to the global optimum
in the upper side of the state space. Its variance is also high due to the increased problem dimensions.
Adam even did not make any progress in Move 1 as there is no gradient around the initial state. The
Move 3 environment includes physics-based contacts in the dynamic system, while our method still
can solve it with the analytical gradients, in presence of the discontinuities during contacts.

4.1.3 HOW LATENT DISTRIBUTIONS AFFECT THE TRAJECTORY MODELING?

Modeling the trajectories with a sequential {zi} instead of a single latent variable sampled before
sampling the trajectory τ can help factorize the trajectory space to build a more compact representation.
We construct an environment containing four obstacles to demonstrate its effects in Figure 3. The
agent on the bottom left must avoid obstacles and reach the goal at the top right corner. We study
the case where z is a discrete variable. We first plot the state and the action distributions for policies
learned by sampling a single categorical z before the trajectory τ in Figure 3a. Different colors
represent the different values of z. We plot the state and action distributions and use different colors to
represent their corresponding z values. Though a categorical distribution can represent various paths
toward the goal, the number of latent samples constrained its expressive power. However, as shown in
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Figure 3b, we model the distribution with a sequence of z1, zK+1, z2K+1, . . . , zNK+1. This brings
the compositionality that allows the agents to select various z sequences to generate trajectories
that can better cover the state space. The action distribution on the right successfully captures the
symmetry of the optimal trajectories and the action pattern of moving along different directions, which
helps the policy better cover the whole state space compared with a single categorical distribution.

(a) Sample z before τ (b) Sample a sequence of {zi}

Figure 3: A navigation task to demonstrate the effects of learning a sequence of z. An agent needs to
move from the bottom left to the top right and avoid the green obstacles. Both the state and action
space are 2D. Different colors represent different values of z or zi.

4.2 EVALUATION ON MANIPULATION TASKS WITH DIFFERENTIABLE PHYSICS

We evaluate our approach in several physical environments to demonstrate its potential in trajectory
optimization. Figure 4 compares our approaches against the gradient-based trajectory optimizer
with a single Gaussian head in three environments. The Grasp environment, based on Nimble
Physics (Werling et al., 2021), contains three balls. The agent needs to control a 3 DoF gripper to
grasp the green ball and pick it up. However, the agent only knows that it needs to grasp an object, and
it does not receive any reward before lifting it. We use a reward to minimize the distance between the
gripper and the nearest balls, which creates a local minimum that encourages the gripper to touch the
nearest ball in front of it, as shown in Figure 4. The first-order gradient-based trajectory optimization
got stuck. In contrast, our method can capture the multimodality of the reward landscape, approach
different balls, and exploit different options (touching different balls) simultaneously. In the end, our
method successfully finds the solution to pick up the green ball. The Rope and the Cut environments
are two soft body environments built with PlasticineLab (Huang et al., 2020), each containing a 3DoF
rigid body manipulator. In the Rope environment, an agent needs to push the left side of a rope
forward. Similarly, in the Cut environment, an agent needs to cut off the left end of a rope. However,
manipulators are initialized in the middle of the objects, which is far away from suitable contact
points required to finish the tasks, leading to local optima (Li et al., 2022) as shown in Fig. 4. In
contrast, our method can explore different contact points and find correct solutions in the end. These
experiments show the potential of our approach in learning the optimal policies with differentiable
physics.

5 CONCLUSION AND FUTURE WORK

We derive a framework that models the policy of continuous RL by a multi-modality distribution
in the variational inference framework. Under this framework, we also derive a Reparameterized
Policy Gradient Theorem which enjoys the advantage of both classical sample-based methods (as
in REINFORCE) and trajectory optimization methods (which require the support of differentiable
world models).

Our framework opens a new venue of continuous RL. It has deep connections with diffusion model,
decision sequence modeling, and differentiable physics techniques. In the future, we are interested in
exploring how sequence modeling techniques, such as transformers, can be used to model the policy
in our framework. We are also interested in testing our method for more complicated tasks, such as
dexterous object manipulation. Finally, our method can be extended to offline RL and off-policy RL
setups. We leave all these exploration efforts to future works.
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Figure 4: Visualization of policy distribution for manipulation with differentiable physics. We
qualitatively compare the Gaussian policy learned by ADAM and the multi-modality policy learned
by our method. On the left, we overlay final states from three trajectories of the Gaussian policy. On
the right, we also draw three samples (trajectories) from the policy, and we visualize the final state
of each trajectory in a different plot. We see that the three final states from the Gaussian policy are
similar, while the final states are very different for trajectories from our policy. Additionally, one
of the modalities of our method can solve the problem (the rightmost column), while the Gaussian
policies get stuck in local minima.

REPRODUCIBLITY STATEMENT

We will provide an open-source implementation of our method on GitHub. We will also update more
illustrative examples and demos to our website. The hyperparameter used in the experiment section
can be found in Table 2 in the appendix. The theoretical results are also in multiple sections of our
appendix.
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A PRELIMINARY

Markov decision process A Markov decision process (MDP) is a tuple of (S,A,P,R), where S
is the state space and A is the action space. p(s′|s, a) is the transition probability that transits state s
to another state s′ after taking action a. The function R(s, a, s′) computes a reward per transition.
A policy π(a|s) selects an action distribution according to the state s. Executing a policy π starting
from the initial state s1 with density p(s1) will result in a trajectory τ , which is a sequence of states
and actions {s1, a1, s2, . . . , st, at, . . . } where at ∼ π(a|s = st), st+1 ∼ p(s|s = st, a = at). We
also use the terminology environment to refer to an MDP in an RL problem. The discounted reward
of a trajectory is Rγ(τ) =

∑∞
t=1 γ

tR(st, at, st+1) where 0 < γ < 1 is the discount factor to ensure
the series converges. The goal of reinforcement learning (RL) is to find a parameterized policy πθ
that maximizes the expected reward Es1∼p(s1)V

πθ (s1) = Eτ∼πθ,s1∼p(s1)[Rγ(τ)], where we call
V πθ (s1) the value of the state s1 for the policy πθ.

For simplicity, we focus on optimization problems in a finite horizon MDP in this paper. This
means that we only consider the first T states and actions {s1, a1, . . . , sT , aT , sT+1}. In this case,
we can directly optimize for the total reward R(τ) =

∑T
t=1R(st, at, st+1). Defining the measure

and ensuring the existence of policy gradients for infinite horizon MDP with differentiable physics
requires more strict conditions, and we leave it as future work.

Policy gradient and zeroth-order gradient estimate REINFORCE (Sutton & Barto, 2018)
approximates the expected reward with Monte-Carlo sampling and optimizes the policy param-
eter θ with a zeroth order gradient estimate, which can be written as ∂Es1∼p(s1)[V

πθ (s1)]

∂θ ≈∑Nsamples
i=1 R(τ i)∇θ log πθ(a

i) where Nsamples is the number of sampled trajectories, τ i and ai =
{ait}1≤t≤T represent the trajectory and action sequence per sample, and the log-likelihood can be
computed by log πθ(a

i) =
∑

1≤t≤T log πθ(at|st).

Differentiable simulation In differentiable physics we consider as a special MDP where the
transition probability p(s′|s, a) can be represented as δ(s′ − h(s, a))2. The transition function
h : S × A → S and reward function R(s, a, s′) are deterministic and differentiable. If we further
assume that the policy πθ(a|s) = δ(a− fθ(s)) is a differentiable deterministic function w.r.t. θ and
input s, then each element in a sampled trajectory τ and the total reward R(τ) are also differentiable
w.r.t. each st, at and θ. We can optimize the reward R(τ) with gradient-based optimizers after
computing the first-order path-wise gradient ∂R(τ)

∂θ through back-propogation.

It’s argued that even if the environment is deterministic, it is still beneficial to optimize a stochastic
policy (Suh et al., 2022; Xu et al., 2022) to leverage the advantages of stochastic sampling for the non-
smooth reward landscape (Hu et al., 2019; Xu et al., 2022; Antonova et al., 2022). A typical choice
is to add Gaussian noise w to the action sequence a and optimize it with the reparameterization
trick (Kingma & Welling, 2013), which estimates the same policy gradient as REINFORCE by
∂Es1∼p(s1)[V

πθ (s1)]

∂θ ≈
∑Nsamples
i=1 ∇θR(τ

i(ai+wi)), where ai and wi are actions and Gaussian noises
to generate the i-th trajectory τ i.

RL as Probabilistic Inference The RL as inference framework (Todorov, 2006; 2008; Toussaint,
2009; Ziebart, 2010; Kappen et al., 2012; Levine, 2018), which defines optimality p(O|τ) ∝ eR(τ)/T ,
where T is a defined temperature. It further defines a prior distribution of the trajectory p(τ) =

p(s1)
∏T
t=1 p(at|st)p(st+1|st, at), where p(at|st) is a known prior action distribution, e.g., a Gaus-

sian distribution. Thus, we can compute the possibility of the optimality p(O) = p(τ |O)p(τ).
The goal of the framework is to approximate the posterior distribution of optimal trajectories
p(τ |O) = p(O|τ)p(τ)∫

p(O|τ)p(τ)dτ , which can be considered as a softmax weighting among all prior tra-
jectories based on their rewards, sharing the same spirit to path integral and the SoftMax policy.

2δ is the Dirac delta function.
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B MATHEMATICAL NOTATIONS

Notation Explanation

z The latent variable
τ The sampled trajectory

p(O|τ) Optimality of a trajectory τ
p(τ) Prior distribution of trajectories (for example, random actions)
p(O)

∫
p(O|τ)p(τ)dτ .

p(τ |O) The posterior policy we want to model
pϕ(z|τ) The introduced auxiliary encoder

qθ(z, τ)
Joint distribution of z, τ by sampling from the

reparameterized policy in the environment p(st+1|st, at).
qθ(at|st, z) or qθ(at|st, zt) The policy to select actions at different steps
qθ(z|s1) or qθ(zt|st, zt−1) The policy to sample latent z

pθ(z|τ) The probability of sampling z or all zi given τ in qθ
pθ(z|s1) The marginal distribution of z in qθ conditioning on s1
pθ(τ) The marginal distribution of τ in qθ
pθ(τ |z) The marginal distribution of τ conditioning on z in qθ
Relbo The variational lower bound defined in Eq. 1

fθ(st, z, t) The deterministic policy function.
h(st, at) The deterministic state transition function.
qθ(z|τ) Usually the qθ(z, τθ) in deterministic environments

τθ or τθ(z, s1) In deterministic environment, the trajectory becomes a function of θ and s1
∇θRelbo(τθ) The path-wise gradient obtained from the differentiable environment

C CONNECTION WITH GENERATIVE MODELS

Many generative models are based on ELBO

log p(x) = Ez∼q(z) [log p(x, z)− log q(z)] +KL(q(z)∥p(z|x)).

One can compare our approaches with other generative models. VAE defines pθ(x, z) = pθ(x|z)p(z)
and q(z) = qϕ(z|x) and then optimize θ, ϕ jointly to maximize the ELBO bound. By doing so,
qϕ(z|x) has to align with the true posterior of pθ(z|x). Thus

log p(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z) + log p(z)− log qϕ(z|x)]

The Expectation–maximization algorithm (EM) (Dempster et al., 1977) assumes that we have
pθ(x, z) = pθ(x|z)pθ(z) with finite z, thus we can compute the expectation pθ(z|x) explicitly and
treat it as qϕ, then E-step: compute pθ(z|x) to solve maxϕ log pθ(x) − DKL(qϕ(z|x)||pθ(z|x)).
M-step: fixing ϕ, find maxθ Eqϕ [log pθ(x, z)]− Eqϕ [log qϕ(z|x)] can maximize the ELBO bound.

In Maximum Entropy RL, we have p(O, τ) = p(O|τ)p(τ) defined by the reward,
and we optimize qθ(τ |O) only. The ELBO bound becomes a maximum entropy term
Eτ∼π [log p(O|τ) + log p(τ)− log π(τ)] .

Latent Encoder q(z|x) Joint p(x, z) MLE objective

VAE z pϕ(z|x) pθ(x|z)p(z) p(x)
EM z maxϕ log pθ(x) − DKL(qϕ(z|x)||pθ(z|x)) pθ(x|z)pθ(z) p(x)

Diffusion {xt}t≥1
∏T

i=1 N (xt;
√
1 − βtxt−1, βtI) p(xT )

∏
t≥1 pθ(xt−1|xt) p(x0)

MaxEntRL τ πθ(τ) p(O|τ)p(τ) p(O)
RPG τ, z qθ(z, τ) p(O|τ)pϕ(z|τ)p(τ) p(O)

Table 1: Comparison of different algorithms that optimize ELBO bounds for inference

D IMPLEMENTATION DETAILS

The algorithm is shown in Algorithm 1.
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Algorithm 1 Variational Reparameterized Policy

1: Input: pϕ, qθ(z, τ).
2: Initialize pϕ, qθ.
3: while time remains do
4: Sample start state s1.
5: Sample from the latent code policy z, τ .
6: Compute the variational lower bound Relbo based Eq. 1.
7: Update the auxiliary encoder pϕ to maximize Relbo.
8: Update the parameterized policy gradient qθ to maximize Relbo with Theorem 1.
9: end while

Table 2: Hyperparameters and rewards of our algorithms.

Hyperparameter\Env Bandit1 Bandit 2 Move1 Move2 Move3

environment steps 1 1 8 8 50
num epoch 50 50 50 50 50
batch size 1000 1000 256 256 500
samples per epoch 50000 50000 12800 12800 25000
batch size 1000 1000 256 256 500

The learning rate (3 × 10−4) is the same across all environments. Adam uses the exact same
hyperparameter as our method except for the dimension of the latent variable is 1. REINFORCE uses
the exact same hyperparameter as our method except for the dimension of the latent variable is 1 and
the policy gradient is estimated using reinforce.

E BIAS OF THE FIRST-ORDER GRADIENT ESTIMATOR

In this section, we analyze the difference between two types of policy gradient estimators, namely the
Zeroth-Order (ZoBG) and First-Order (FoBG) gradient estimator (Suh et al., 2022). We establish
a necessary condition for two to be equivalent when both action and parameter are 1 dimensional.
From the 1D case, we also show the intractability of constructing a gradient estimator similarly to
these two in higher dimensions.

Lemma 1 (Leibniz integral rule, general form). Let f(x, t) be a function such that both f(x, t) and
its partial derivative ∂f(x,t)

∂x are continuous in t and x in some region of the xt plane, including
a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1. Also suppose that the functions a(x) and b(x) are both continuous
and both have continuous derivatives for x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1

d

dx

∫ b(x)

a(x)

f(x, t)dt =

∫ b(x)

a(x)

∂

∂x
f(x, t)dt+

d

dx
b(x) · f(x, b(x))− d

dx
a(x) · f(x, a(x))

Lemma 2 (Jump Discontinuity, 1D version). Let f(x, t) be a function such that both f(x, t) and
its partial derivative ∂f(x,t)

∂x are continuous in t and x in some region of the xt plane. f has jump
discontinuity if and only if there exist bi = qi(x) such that

lim
t→qi(x)−

f(x, t) ̸= lim
t→qi(x)+

f(x, t)

We define i to correspond the ith jump discontinuity of f . For convenience, we also abbreviate the
above as f(b−i ) ̸= f(b+i ) in later parts of this section.

Corollary 1 (Leibniz integral rule, 1D region form). Let f(x, t) be a function such that both f(x, t)
and its partial derivative ∂f(x,t)

∂x are continuous in t and x in some region of the xt plane, including
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t ∈ T, T = R, x ∈ X,X = R. Also suppose that the functions qi(x) for all i are continuous and
have continuous derivatives for x ∈ R. Then, by Lemma 1 and 2, for x ∈ X

d

dx

∫
T

f(x, t)dt =

∫
T

∂

∂x
f(x, t)dt︸ ︷︷ ︸

interior part

+
∑
i

∂qi(x)

∂x

(
f(x, qi(x)

−)− f(x, qi(x)
+)

)
︸ ︷︷ ︸

boundary part

For convenience, we also refer to the first term as the interior part and the second term as the boundary
part in the later parts of this section.

Theorem 2 (Policy Gradient Theorem, zeroth order version). Let πθ(a) be a function such that
πθ(·) ∈ C0 for all θ ∈ R and π(·)(a) ∈ C1 for all a ∈ A,A = R. Let R(a) be a function with jump
discontinuities and defined for all a ∈ A

d

dθ

∫
A

πθ(a)R(a)da =

∫
A

∂πθ(a)

∂θ
R(a)da

holds.

Proof. Define the integrand πθ(a)R(a) = f(θ, a), by Corollary 1

d

dθ

∫
A

πθ(a)R(a)da

=

∫
A

∂πθ(a)

∂θ
R(a)da+

∑
i

∂qi(θ)

∂θ

(
f(θ, qi(θ)

−)− f(θ, qi(θ)
+)

)
Case 1: If πθ(bi) ̸= 0, by Lemma 2, the definition of the ith jump discontinuity can be rewritten as

qi(θ) = bi : f(θ, b
−
i ) ̸= f(θ, b+i )

: πθ(b
−
i )R(b

−
i ) ̸= πθ(b

+
i )R(b

+
i )

: R(b−i ) ̸= R(b+i ) πθ(·) ∈ C0 for all θ

, which means qi(θ) is constant with respect to θ. ∂qi(θ)∂θ = 0 reduces the boundary part to 0 and gives

d

dθ

∫
A

πθ(a)R(a)da =

∫
A

∂πθ(a)

∂θ
R(a)da+ 0

Case 2: If πθ(b) = 0, by Lemma 2, then f(θ, b) = πθ(b)R(b) = 0, which means f(θ, b−) =
f(θ, b+) = 0 and f does not have jump discontinuity at b.

Lemma 3 (Law of the unconscious statistician, continuous random variable). Let x be a random
variable and let y = g(x) be a function of this random variable.

E[g(x)] =

∫
X

fX(x)g(x)dx

Theorem 3 (Policy Gradient Theorem, first-order version). Let ω be a random variable such that
a = h(θ, ω) with probability distribution p(ω) ∈ C0 and ∂h(θ,ω)

∂ω ̸= 0 for all θ. Let f(θ, ω) =
p(ω)R(h(θ, ω)) with the ith jump discontinuity of f defined to be qi(θ). The first order gradient is

d

dθ

∫
A

πθ(a)R(a)da =

∫
Ω

p(ω)
∂

∂θ
R(h(θ, ω))dω +

∑
i

∂qi(θ)

∂θ

(
f(θ, qi(θ)

−)− f(θ, qi(θ)
+)

)

Proof. Reparameterize a = h(θ, ω), substitute in f by definition

d

dθ

∫
A

πθ(a)R(a)da =
d

dθ

∫
Ω

p(ω)R(h(θ, ω))dω =
d

dθ

∫
Ω

f(θ, ω)dω
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By Lemma 2 the definition of the ith jump discontinuity can be rewritten as
qi(θ) = bi : f(θ, b

−
i ) ̸= f(θ, b+i )

: p(b−i )R(h(θ, b
−
i )) ̸= p(b+i )R(h(θ, b

+
i ))

: R(h(θ, b−i )) ̸= R(h(θ, b+i )) p(ω) ∈ C0

Suppose ω ∼ N (0, σ), h(θ, ω) = θ + σω and exist action ai = h(θ, bi) such that R(a−i ) ̸= R(a+i ),
the definition of qi(θ) and its evaluation at a local neighbour qi(θ +∆θ) can be rewritten as

qi(θ) = bi : h(θ, bi) = ai

qi(θ +∆θ) = b∆i : h(θ +∆θ, b∆i ) = ai

since function R is not parameterized, the location of its ith jump discontinuity is ai and does not
change. Therefore, substitute in h(θ, ω) = θ + σω and solve for bi and b∆i gives bi = (ai − θ)/σ
and b∆i = (ai − (θ +∆θ))/σ. Differentiate qi(θ) gives

dqi(θ)

dθ
= lim

∆θ→0

qi(θ +∆θ)− qi(θ)

∆θ

= lim
∆θ→0

b∆i − bi
∆θ

= lim
∆θ→0

∆θ/σ

∆θ

=
1

σ
̸= 0

In general, ignoring the boundary term when estimating the left-hand side with a first-order estimator
leads to a bias due to the discontinuity of the reward/value function.

Therefore, we have shown that a gradient estimator for only the interior part of the first-order gradient
is a biased estimator of the original policy gradient. The bias is the boundary term.

F PROOF OF THE REPARAMETERIZED POLICY GRADIENT THEOREM

F.1 REGULARITY CONDITIONS

Let θ ∈ Θ = (−ϵ, ϵ) ∈ R without loss of generality and Ω = {z ∈ Z|qθ(z, τθ) > 0} be a measure
space, then for z ∈ Ω, θ ∈ [−ϵ, ϵ], we make the following assumptions
Assumption 1 (Bounded ELBO). The reward R, prior density log p(τ), log qθ(z|τ), log pϕ(z|τ) are
bounded for all τ .
Assumption 2 (Lipschitz Condition). qθ(z|τ), log qθ(z|τ), log pϕ(z|τ), prior distribution log p(τ),
action policy fθ(st, z, t), reward R and dynamics h(at, st) are Lipschitz continuous w.r.t. any s, a
and continuous z. In addition, qθ is Lipschitz continuous w.r.t. θ.
Assumption 3 (Lebesgue-integrable). The probability density qθ(z, τθ) and its derivative
|∇θqθ(z, τθ)| is Lebesgue-integrable jointly over Ω and their integration is bounded for all
θ ∈ [−ϵ, ϵ].

Assumption 1 is easy to guarantee when the state space and the action space are compact and the time
horizon T is finite because continuous functions on a compact set are always bounded. Similarly,
for bounded inputs, the common neural networks can also satisfy Assumption 2. Otherwise, we can
simply clamp them before feeding them into a neural network to make the input bounded, as we
do not need the network and the environment to be continuously differentiable as in Lemma 1 but
only absolutely continuous. We require the dynamics h(at, st) to be Lipschitz continuous, ruling out
chaotic systems.

Assumption 3 holds for common distributions. For example, given a Gaussian distribution
p(z) = e(−z

2/(2σ2))/(
√
2πσ), the parameter σ’s partial derivative ∂p

∂σ (z) = e(−z
2/(2σ2))(−σ2 +

z2)/(
√
2πσ4) is simply a function of exponential family and can be verified to be absolutely inte-

grable on R and bounded for any domain σ ∈ [a, b], a, b > 0.
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F.2 PROOF OF THEOREM 1

To differentiate under integration, we use the following Lemma (cheng; L’Ecuyer, 1995),
Lemma 4 (Leibniz integral rule). Let X be an open subset of R, and Ω be a measure space. Suppose
that a function f : X × Ω → R satisfies the following conditions:

1. f(x, ω) is a measurable function of x and ω jointly and is integrable over ω for almost all
x ∈ X fixed.

2. For almost all ω ∈ Ω, f(x, ω) is an absolutely continuous function of x (the derivative
∂f(x, ω)/∂x exists almost everywhere).

3. ∂f/∂x is “locally integrable”, that is, for all compact intevals [a, b] ∈ X ,∫ b

a

∫
Ω

∣∣∣∣ ∂∂xf(x, ω)
∣∣∣∣ dωdx <∞.

Then for almost every x ∈ X , its derivative exists and

d

dx

∫
Ω

f(x, ω)dω =

∫
Ω

∂

∂x
f(x, ω)dω

Then it is easy to prove Theorem 1.

Proof. Define the measurable function f(θ, z) = qθ(z, τθ)Relbo(τθ).

Since Relbo(τθ) is bounded by a constant M by Assumption 1 and qθ(z, τθ) is positive and Lebesgue-
integrable by Assumption 3, their product’s absolute value will be bounded by qθ(z, τθ)M , so f(θ, z)
becomes Lebesgue-integrable for every θ.

By Assumption 2 and assuming the horizon is finite, the trajectory τ will become a Lipschitz function
with respect to θ and z, so as Relbo(τθ), qθ(z, τθ) and their products f(θ, z). Thus ∂f(θ,z)

∂θ exists
almost everywhere for all z ∈ Ω.

To bound its derivative, let Relbo(τθ) be L-Lipschitz w.r.t. θ, notice that

|∇θf(θ, z)| = |Relbo(τθ)∇θqθ(z, τθ) + qθ(z, τθ)∇θRelbo(τθ)| ≤M |∇θqθ(z, τθ)|+ L |qθ(z, τθ)| ,
is dominated by the sum of two Lebesgue-integrable functions whose integration is bounded for all
θ ∈ Θ by Assumption 3. Thus its gradient must be locally integrable. Then applying Lemma 4, we
can do differentiation under the integration sign and finish the proof as

∇θE[Relbo(τθ)] =

∫
z

∇θ (qθ(z, τθ)Relbo(τθ)) dz

=

∫
z

Relbo(τθ)∇θqθ(z, τθ)(z|s1) + qθ(z, τθ)∇θRelbo(τθ)dz

=

∫
z

qθ(z, τθ) [Relbo(τθ)∇θ log qθ(z, τθ) +∇θRelbo(τθ)] dz.

We want to emphasize the importance of the Lipschitz continuity that helps to bound the integration.
Informally, the Lipschitz condition is directly related to the scale of the path-wise gradient. When the
Lipschitz constant is too large, the environments will generate exploding gradients or contains sharp
changes in the reward landscape, similarly to the discontinuity and causing empirical bias Suh et al.
(2022). Besides, when the reward landscape has discontinuous points, there will be a bias caused by
the motion of the discontinuity, as suggested by the Leibniz integral rule. We refer interested readers
to Appendix E for a detailed illustration of the difference between the zeroth-order gradient estimate
and the first-order gradient estimate under the expectation we do not find in the literature. Note that
we do not ask for the continuity of the gradients and support activation functions such as ReLU.

The finite horizon assumption is also necessary to make the theorem holds, otherwise the gradients
∇θRelbo(τθ) may be unbounded if we do not set up a suitable discount factor.
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G LEARNING A DIFFERENTIABLE WORLD MODEL

G.1 METHOD

To apply our method in a non-differentiable environment, we train a differentiable world model
jointly with the policy optimization as Model-based Reparameterized Policy Gradient (MBRPG).
This method has been proven data-efficient for policy optimization (Hafner et al., 2019; Schrittwieser
et al., 2020; Ye et al., 2021; Hansen et al., 2022).

Specifically, besides of the encoder pϕ(z|s, a), the policy πθ(a|s, z), πθ(z|s1) we additionally learn
a deterministic dynamic network hψ(s, a), a reward network Rψ(s, a), an observation encoder fψ(o)
and the Q−network Qψ(s, a, z). In practice, they are all two-layer fully connected neural networks
with a hidden dimension 256. We also define α, β to weigh the entropy term and the cross entropy
term in the variational lower bound.

Given any z and any initial latent state si = fψ(oi), and an arbitrary action sequence, we can use the
learned dynamic network to generate the trajectory by

at ∼ πθ(a|st, z) or at = agtt (policy)
rt = Rψ(st, at) (reward)

r′t = −α log πθ(at|st, z) + β log pϕ(z|st, at) (intrinsic reward)
Qt = Qψ(st, at, z) (Q value)

st+1 = hψ(st, at) (dynamics)

for t = i, i + 1, . . . , i +K. Notice that during the model rollout, we can either use the action at
sampled from the current policy πθ(a|st, z) or an action sequence {agtt } sampled from the replay
buffer. When the action is sampled from the current policy πθ(a|st, z), we obtain a Monte-Carlo
estimate for the value of si, which can be used to optimize the policy πθ:

Vestimate(oi, z) ≈ γK(Qi+K + r′i+K) +

i+K−1∑
t=i

γj(rt + r′t) (1)

To train the dynamics model, we sample trajectory segments of length K + 1 τi:i+K =
{oi, agti , r

gt
i , oi+1, a

gt
i+1, r

gt
i+1, . . . , oi+K} from the replay buffer and select a latent z. We then

self-supervise the dynamic network to ensure state consistency and avoid reconstruction as in (Ye
et al., 2021; Hansen et al., 2022) (in this case we let at = agtt in the trajectory):

Lψ(τ) =

i+K−1∑
t=i

L1∥st+1−ng(fψ(ot+1))∥2+L2(rt−rgtt )2+L3(Qt−ng(rgtt +γVestimate(ot+1, z)))
2

(2)
where ng(x) means stopping gradient and L1 = 1000, L2 = L3 = 0.5 are constant to balance the
loss. The whole process is illustrated in Algorithm 2. For all experiments, we take K = 6.

G.2 EXPERIMENT

We first compare our method with SAC Haarnoja et al. (2018) on locomotion tasks (Cheetah-v3 and
Humanoid-v3 in OpenAI Gym Brockman et al. (2016)) in Figure 6(a) and (b). We plot the learning
curve of MBRPG together with the SAC’s performance after training for 3 million steps. We can
see that by learning the model, our method achieves on-par performance with fewer samples. In
particular, our method only requires 1 million samples to reach 15000 scores on Cheetah-v3 and only
0.5 million samples to reach 6000+ scores on Humanoid-v3. This attributes to the efficiency brought
by learning a model for policy optimization. However, we observed that removing the latent variables
and the variational bound, which is a baseline model-based RL algorithm (MBRL), did not affect the
performance of our method. We conjecture that these locomotion tasks do not require a multi-modal
policy for exploration, and a Gaussian policy is sufficient.

To illustrate the effectiveness of our approach, we have built two environments that need multi-
modality explorations, as illustrated in Figure 5. In (a) AntMove environments, an ant robot can move
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Algorithm 2 Model-based Variational Reparameterized Policy

1: Input: pϕ, πθ, hψ, Rψ, fψ, Qψ
2: while time remains do
3: Sample start state o1 and encode it as fψ(o1). Select z from πθ(z|s1).
4: Execute the policy π(a|s, z) and store transitions into the replay buffer B.
5: Sample a batch of trajectory segment of length K {τ it:t+K , z} from the buffer B.
6: Optimize ψ using Equation 2.
7: Optimize πθ(a|s, z) with gradient descent to maxmize the value estimate in Equation 1 for
s, z sampled from the buffer.

8: Optimize πθ(z|s1) with policy gradient to maximize Vestimate(s1, z)− α log πθ(z|s1) for s1
is sampled from the buffer.

9: Optimize ϕ, α, β and other auxiliary networks.
10: end while

Figure 5: Non-differentiable environments

either upward or rightward to reach one of the two goal regions represented by the black circle. The
agent always receives a penalty proportional to its distance to the closest goal, which motivates it to
go upward instead of moving right. However, if the agent chooses the longer right path, it will receive
a higher bonus when it reaches the goal. Such a local optimum will trap a single modality agent, as
shown in Figure 6 (c). When we remove the latent space and the latent policy p(z|s1), the baseline
single-modal RL policy (MBRL) will get stuck in the local optima, while our approach (MBRPG),
thanks to its ability to maintain multi-modality trajectory distribution, will attempt to go right even
when it is sub-optimal at the beginning and thus has a higher chance to find the global optima. We
also test our method for an 11− dof mobile robot for opening the cabinet shown in Figure 5 (b). It is
easier for the robot to open the left door, but it will receive a higher reward when it opens the right
one. Similarly, the normal RL agent modeled by a Gaussian distribution (MBRL) fails to explore a
way to open the right door. In contrast, our method explores the two directions simultaneously and
can open the right one, in the end, resulting in higher rewards, as shown in Figure 6.

Figure 6: Experiments with a learned world model.
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Figure 7: The landscape of expected reward after a gaussian filter with gradually decreasing standard
deviation.

H INSUFFICIENCY OF THE SINGLE MODALITY GAUSSIAN POLICY

Our method is motivated by the insufficiency of the Gaussian policy in solving non-convex problems.
A gaussian policy with large entropy has proven effective in many continuous control problems.
However, even if the Gaussian distribution has a very high initial variance, it may still fail to solve
many tasks. The Gaussian parameterization can only model single-modality action distribution, which
limits the policy update in both REINFORCE and ADA. It would prevent them from converging to
the global optima even though it can explore the whole reward landscape.

Without loss of generality, let us take the 1d continuous bandit problem as an example. In this
case, a Gaussian policy is fully determined by its mean µ and variance σ2. Both REINFORCE
and ADAM maximize the expected reward Ea∼N (µ,σ)[R(a)] by computing its policy gradient
∇Ea∼N (µ,σ)[R(a)]. We now assume R(a) is Lipschitz continuous and differentiable almost every-
where. As we show in the paper, the gradients computed by the two methods are the same.

If the standard deviation σ is not large enough, a Gaussian policy will suffer from the non-
convexity issue like a deterministic optimizer. It is easy to see that ∇µEa∼N (µ,σ)[R(a)] =

∇µ

∫
a
1/(σ

√
2π)e−

(µ−a)2

2σ2 R(a)da = ∇µF
σ(µ), where Fσ(µ) =

∫
a
1/(σ

√
2π)e−

(µ−a)2

2σ2 R(a)da
is a deterministic function given by passing the original reward landscape through a Gaussian filter.
As shown in Figure 7, optimizing R(a) with policy gradient will be equivalent to running gradient
descent on Fσ(µ) with a sufficient number of samples. So if a non-convex reward R(a) is still
non-convex after it was smoothed by a Gaussian kernel, the random perturbation provided by the
Gaussian noise will not help the policy to jump out of local optima.

We now consider the method starting with a very large standard deviation σ and gradually reducing it
to zero, as shown in Figure 7. We plot the Fσ for different std σ. The leftmost shows Fσ for large
σ and the rightmost is close to the original reward function. We use the red dotted line to denote
the optimum µ∗(σ) = argmaxµ F

σ(µ) for each σ. We can see that for very large σ, Fσ is convex,
and we can assume the policy gradient method finds the optimal µ∗(σ). However, µ∗ for very large
σ is not necessarily close to the global optima µ∗(0). In the beginning, the right mode is optimal
as it has a high average reward (which can be visually measured by the area under the right mode).
But when we reduce the σ gradually, the global maximum may drastically change from the right
mode to the left mode as shown in the red block (middle two) of Figure 7 because the left mode has a
higher extreme value that exceeds the right. However, at the moment that the optimum changes to
the left mode, Fσ is already non-convex; the policy gradient method has little chance to discover
the new global optima and will get stuck at the right local optima. This behavior will devastate all
gradient-based algorithms that optimize a single-modal policy (REINFORCE, ADAM, SAC, and
PPO).

To illustrate the insufficiency of the gaussian policy with a large standard deviation, we vary the
initial standard deviation for REINFORCE and anneal to 0 in a sufficiently large amount of training
steps. Notice that the global optima have a reward of 1.10.
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Initial std 0.01 0.1 0.5 1 2 5 10

expected reward 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.49±0.00 0.47±0.00 0.42±0.00

Table 3: Final performance of reinforce with linearly decreasing standard deviation.

I ABLATION STUDIES

In this section, we first study the importance of the trajectory encoder to understand what role it plays
in helping maintain a multi-modality trajectory distribution. Then, we show how hyperparameter
controlling the reward weight of entropy of action affects algorithms that have different policy
paramterization.

Figure 8: Ablating trajectory encoder

In Figure 8, we show the importance of the trajectory encoder, We can see that when we do not
optimize the mutual information between z and τ through log pϕ(z|τ) (Ours (no info loss)), our
method degrades to almost identical behavior as Adam. We can see that the best-performing method
is our method in its current form.
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