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ABSTRACT

We study how representation learning can accelerate reinforcement learning from
rich observations, such as images, without relying either on domain knowledge or
pixel-reconstruction. Our goal is to learn representations that provide for effective
downstream control and invariance to task-irrelevant details. Bisimulation metrics
quantify behavioral similarity between states in continuous MDPs, which we pro-
pose using to learn robust latent representations which encode only the task-relevant
information from observations. Our method trains encoders such that distances in
latent space equal bisimulation distances in state space. We demonstrate the effec-
tiveness of our method at disregarding task-irrelevant information using modified
visual MuJoCo tasks, where the background is replaced with moving distractors
and natural videos, while achieving SOTA performance. We also test a first-person
highway driving task where our method learns invariance to clouds, weather, and
time of day. Finally, we provide generalization results drawn from properties of
bisimulation metrics, and links to causal inference.

1 Introduction

Figure 1: Robust representa-
tions of the visual scene should
be insensitive to irrelevant objects
(e.g., clouds) or details (e.g., car
types), and encode two observa-
tions equivalently if their relevant
details are equal (e.g., road direc-
tion and locations of other cars).

Learning control from images is important for many real world
applications. While deep reinforcement learning (RL) has enjoyed
many successes in simulated tasks, learning control from real vision
is more complex, especially outdoors, where images reveal detailed
scenes of a complex and unstructured world. Furthermore, while
many RL algorithms can eventually learn control from real images
given unlimited data, data-efficiency is often a necessity in real trials
which are expensive and constrained to real-time. Prior methods
for data-efficient learning of simulated visual tasks typically use
representation learning. Representation learning summarizes images
by encoding them into smaller vectored representations better suited
for RL. For example, sequential autoencoders aim to learn lossless
representations of streaming observations—sufficient to reconstruct
current observations and predict future observations—from which
various RL algorithms can be trained (Hafner et al., 2018; Lee
et al., 2019; Yarats et al., 2019). However, such methods are task-
agnostic: the models represent all dynamic elements they observe in
the world, whether they are relevant to the task or not. We argue such
representations can easily “distract” RL algorithms with irrelevant
information in the case of real images. The issues of distraction is
less evident in popular simulation MuJoCo and Atari tasks, since any change in observation space is
likely task-relevant, and thus, worth representing. By contrast, visual images that autonomous cars
observe contain predominately task-irrelevant information, like cloud shapes and architectural details,
illustrated in Figure 1.
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Rather than learning control-agnostic representations that focus on accurate reconstruction of clouds
and buildings, we would rather achieve a more compressed representation from a lossy encoder, which
only retains state information relevant to our task. If we would like to learn representations that capture
only task-relevant elements of the state and are invariant to task-irrelevant information, intuitively we
can utilize the reward signal to help determine task-relevance, as shown by Jonschkowski & Brock
(2015). As cumulative rewards are our objective, state elements are relevant not only if they influence
the current reward, but also if they influence state elements in the future that in turn influence future
rewards. This recursive relationship can be distilled into a recursive task-aware notion of state
abstraction: an ideal representation is one that is predictive of reward, and also predictive of itself in
the future.

We propose learning such an invariant representation using the bisimulation metric, where the dis-
tance between two observation encodings correspond to how “behaviourally different” (Ferns &
Precup, 2014) both observations are. Our main contribution is a practical representation learning
method based on the bisimulation metric suitable for downstream control, which we call deep
bisimulation for control (DBC). We additionally provide theoretical analysis that proves value
bounds between the optimal value function of the true MDP and the optimal value function of
the MDP constructed by the learned representation. Empirical evaluations demonstrate our non-
reconstructive approach using bisimulation is substantially more robust to task-irrelevant distractors
when compared to prior approaches that use reconstruction losses or contrastive losses. Our initial
experiments insert natural videos into the background of MoJoCo control task as complex distrac-
tion. Our second setup is a high-fidelity highway driving task using CARLA (Dosovitskiy et al.,
2017), showing that our representations can be trained effectively even on highly realistic images
with many distractions, such as trees, clouds, buildings, and shadows. For example videos see
https://sites.google.com/view/deepbisim4control.

2 Related Work

Our work builds on the extensive prior research on bisimulation in MDP state aggregation.

Reconstruction-based Representations. Early works on deep reinforcement learning from im-
ages (Lange & Riedmiller, 2010; Lange et al., 2012) used a two-step learning process where first an
auto-encoder was trained using reconstruction loss to learn a low-dimensional representation, and
subsequently a controller was learned using this representation. This allows effective leveraging of
large, unlabeled datasets for learning representations for control. In practice, there is no guarantee
that the learned representation will capture useful information for the control task, and significant
expert knowledge and tricks are often necessary for these approaches to work. In model-based
RL, one solution to this problem has been to jointly train the encoder and the dynamics model
end-to-end (Watter et al., 2015; Wahlström et al., 2015) – this proved effective in learning useful
task-oriented representations. Hafner et al. (2018) and Lee et al. (2019) learn latent state models using
a reconstruction loss, but these approaches suffer from the difficulty of learning accurate long-term
predictions and often still require significant manual tuning. Gelada et al. (2019) also propose a
latent dynamics model-based method and connect their approach to bisimulation metrics, using a
reconstruction loss in Atari. They show that ‘2 distance in the DeepMDP representation upper bounds
the bisimulation distance, whereas our objective directly learns a representation where distance in
latent space is the bisimulation metric. Further, their results rely on the assumption that the learned
representation is Lipschitz, whereas we show that, by directly learning a bisimilarity-based represen-
tation, we guarantee a representation that generates a Lipschitz MDP. We show experimentally that
our non-reconstructive DBC method is substantially more robust to complex distractors.

Contrastive-based Representations. Contrastive losses are a self-supervised approach to learn
useful representations by enforcing similarity constraints between data (van den Oord et al., 2018;
Chen et al., 2020). Similarity functions can be provided as domain knowledge in the form of
heuristic data augmentation, where we maximize similarity between augmentations of the same data
point (Laskin et al., 2020) or nearby image patches (Hénaff et al., 2019), and minimize similarity
between different data points. In the absence of this domain knowledge, contrastive representations
can be trained by predicting the future (van den Oord et al., 2018). We compare to such an approach
in our experiments, and show that DBC is substantially more robust. While contrastive losses do
not require reconstruction, they do not inherently have a mechanism to determine downstream task
relevance without manual engineering, and when trained only for prediction, they aim to capture all

2

https://sites.google.com/view/deepbisim4control


Published as a conference paper at ICLR 2021

predictable features in the observation, which performs poorly on real images for the same reasons
world models do. A better method would be to incorporate knowledge of the downstream task into
the similarity function in a data-driven way, so that images that are very different pixel-wise (e.g.
lighting or texture changes), can also be grouped as similar w.r.t. downstream objectives.

Bisimulation. Various forms of state abstractions have been de�ned in Markov decision processes
(MDPs) to group states into clusters whilst preserving some property (e.g. the optimal value, or all
values, or all action values from each state) (Li et al., 2006). The strictest form, which generally
preserves the most properties, isbisimulation(Larsen & Skou, 1989). Bisimulation only groups states
that are indistinguishable w.r.t. reward sequences output given any action sequence tested. A related
concept is bisimulation metrics (Ferns & Precup, 2014), which measure how “behaviorally similar”
states are. Ferns et al. (2011) de�nes the bisimulation metric with respect to continuous MDPs,
and propose a Monte Carlo algorithm for learning it using an exact computation of the Wasserstein
distance between empirically measured transition distributions. However, this method does not scale
well to large state spaces. Taylor et al. (2009) relate MDP homomorphisms to lax probabilistic
bisimulation, and de�ne a lax bisimulation metric. They then compute a value bound based on this
metric for MDP homomorphisms, where approximately equivalent state-action pairs are aggregated.
Most recently, Castro (2020) propose an algorithm for computingon-policybisimulation metrics,
but does so directly, without learning a representation. They focus on deterministic settings and the
policy evaluation problem. We believe our work is the �rst to propose a gradient-based method for
directly learning arepresentation spacewith the properties of bisimulation metrics and show that it
works in the policy optimization setting.

3 Preliminaries
We start by introducing notation and outlining realistic assumptions about underlying structure in the
environment. Then, we review state abstractions and metrics for state similarity.
We assume the underlying environment is aMarkov decision process(MDP), described by the tuple
M = ( S; A ; P; R;  ), whereS is the state space,A the action space,P(s0js; a) the probability of
transitioning from states 2 S to states0 2 S, and 2 [0; 1) a discount factor. An “agent” chooses
actionsa 2 A according to a policy functiona � � (s), which updates the system states0 � P (s; a),
yielding a rewardr = R(s) 2 R. The agent's goal is to maximize the expected cumulative discounted
rewards by learning a good policy:max� EP [

P 1
t =0 [ t R(st )]. While our primary concern is learning

from images, we do not address the partial-observability problem explicitly: we instead approximate
stackedpixel observations as the fully-observed system states (explained further in Appendix B).

Bisimulation is a form of state abstraction that groups statessi andsj that are “behaviorally equiv-
alent” (Li et al., 2006). For any action sequencea0:1 , the probabilistic sequence of rewards from
si andsj are identical. A more compact de�nition has a recursive form: two states are bisimilar
if they share both the same immediate reward and equivalent distributions over the next bisimilar
states (Larsen & Skou, 1989; Givan et al., 2003).
De�nition 1 (Bisimulation Relations (Givan et al., 2003)). Given an MDPM , an equivalence
relation B between states is a bisimulation relation if, for all statessi ; sj 2 S that are equivalent
underB (denotedsi � B sj ) the following conditions hold:

R(si ; a) = R(sj ; a) 8a 2 A ; (1)
P(Gjsi ; a) = P(Gjsj ; a) 8a 2 A ; 8G 2 SB ; (2)

whereSB is the partition ofS under the relationB (the set of all groupsG of equivalent states), and
P(Gjs; a) =

P
s02 G P(s0js; a):

Exact partitioning with bisimulation relations is generally impractical in continuous state spaces, as
the relation is highly sensitive to in�nitesimal changes in the reward function or dynamics. For this
reason,Bisimulation Metrics (Ferns et al., 2011; Ferns & Precup, 2014; Castro, 2020) softens the
concept of state partitions, and instead de�nes a pseudometric space(S; d), where a distance function
d : S � S 7! R� 0 measures the “behavioral similarity” between two states1.

De�ning a distanced between states requires de�ning both a distance between rewards (to soften
Equation (1)), and distance between state distributions (to soften Equation (2)). Prior works use the
Wasserstein metric for the latter, originally used in the context of bisimulation metrics by van Breugel

1Note thatd is a pseudometric, meaning the distance between two different states can be zero, corresponding
to behavioral equivalence.

3



Published as a conference paper at ICLR 2021

& Worrell (2001). Thepth Wasserstein metric is de�ned between two probability distributionsPi
andPj asWp(Pi ; Pj ; d) = (inf  02 �( P i ;P j )

R
S�S d(si ; sj )p d 0(si ; sj ))1=p, where�( Pi ; Pj ) is the

set of all couplings ofPi andPj . This is known as the “earth mover” distance, denoting the cost of
transporting mass from one distribution to another (Villani, 2003). Finally, the bisimulation metric is
the reward difference added to the Wasserstein distance between transition distributions:

De�nition 2 (Bisimulation Metric). From Theorem 2.6 in Ferns et al. (2011) withc 2 [0; 1):
d(si ; sj ) = max

a2A
(1 � c) � jR a

si
� R a

sj
j + c � W1(Pa

si
; Pa

sj
; d): (3)

4 Learning Representations for Control with Bisimulation Metrics

Figure 2:Learning a bisimulation metric represen-
tation: shaded in blue is the main model architecture,
it is reused for both states, like a Siamese network.
The loss is the reward and discounted transition dis-
tribution distances (using Wasserstein metricW ).

Algorithm 1 Deep Bisimulation for Control (DBC)
1: for Time t = 0 to 1 do
2: Encode statezt = � (st )
3: Execute actionat � � (zt )
4: Record data:D  D [ f st ; at ; st +1 ; r t +1 g
5: Sample batchB i � D
6: Permute batch:B j = permute(B i )
7: Train policy:EB i [J (� )] . Algorithm 2
8: Train encoder:EB i ;B j [J (� )] . Equation (4)
9: Train dynamics:J (P̂ ;� )=( P̂ (� (st ); at ) � �zt +1 )2

We propose Deep Bisimulation for Control (DBC), a data-ef�cient approach to learn control policies
from unstructured, high-dimensional states. In contrast to prior work on bisimulation, which typically
aims to learn a distance function of the formd : S � S 7! R� 0 between states, our aim is instead to
learnrepresentationsZ under which̀ 1 distances correspond to bisimulation metrics, and then use
these representations to improve reinforcement learning. Our goal is to learn encoders� : S 7! Z
that capture representations of states that are suitable to control, while discarding any information
that isirrelevantfor control. Any representation that relies on reconstruction of the state cannot do
this, as these irrelevant details are still important for reconstruction. We hypothesize that bisimulation
metrics can acquire this type of representation, without any reconstruction.

Bisimulation metrics are a useful form of state abstraction, but prior methods to train distance
functions either do not scale to pixel observations (Ferns et al., 2011) (due to the max operator
in Equation (3)), or were only designed for the (�xed) policy evaluation setting (Castro, 2020).
By contrast, we learn improved representations for policy inputs, as the policy improves online.
Our � � -bisimulation metricis learned with gradient decent, and we prove it converges to a �xed
point in Theorem 1 under some assumptions. To train our encoder� towards our desired relation
d(si ; sj ) := jj � (si ) � � (sj )jj1, we draw batches of state pairs, and minimise the mean square error
between the on-policy bisimulation metric and`1 distance in the latent space:

J (� ) =
�

jjzi � zj jj1 � j r i � r j j � W 2
�
P̂ (�j �zi ; ai ); P̂ (�j �zj ; aj )

� � 2
; (4)

where zi = � (si ), zj = � (sj ), r are rewards, and�z denotes� (s) with stop gradients.Equation (4)
also uses a probabilistic dynamics modelP̂ which outputs a Gaussian distribution. For this reason,
we use the 2-Wasserstein metricW2 in Equation (4), as opposed to the 1-Wasserstein in Equation (3),
since theW2 metric has a convenient closed form:W2(N (� i ; � i ); N (� j ; � j ))2 = jj � i � � j jj2

2 +
jj � 1=2

i � � 1=2
j jj2

F , wherejj � jj F is the Frobenius norm. For all other distances we continue using the
`1 norm. Our model architecture and training is illustrated by Figure 2 and Algorithm 1.

Algorithm 2 Train Policy (changes to SAC in blue)
1: Get value:V = min i =1 ;2 Q̂i (�̂ (s)) � � log � (aj� (s))
2: Train critics:J (Qi ; � ) = ( Qi (� (s)) � r � V )2

3: Train actor:J (� ) = � log p(aj� (s)) � min i =1 ;2 Qi (� (s))
4: Train alpha:J (� ) = � � log p(aj� (s))
5: Update target critics:̂Qi  � Q Qi + (1 � � Q )Q̂i

6: Update target encoder:̂�  � � � + (1 � � � )�̂

Incorporating control. We combine our rep-
resentation learning approach (Algorithm 1)
with the soft actor-critic (SAC) algorithm
(Haarnoja et al., 2018) to devise a practical
reinforcement learning method. We modi�ed
SAC slightly in Algorithm 2 to allow the value
function to backprop to our encoder, which
can improve performance further (Yarats et al.,
2019; Rakelly et al., 2019). Although, in principle, our method could be combined with any RL
algorithm, including the model-free DQN (Mnih et al., 2015), or model-based PETS (Chua et al.,
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2018). Implementation details and hyperparameter values of DBC are summarized in the appendix,
Table 2. We train DBC by iteratively updating three components in turn: a policy� (in this case SAC),
an encoder� , and a dynamics model̂P (lines 7–9, Algorithm 1). We found a single loss function was
less stable to train. The inputs of each loss functionJ (�) in Algorithm 1 represents which components
are updated. After each training step, the policy� is used to step in the environment, the data is
collected in a replay bufferD, and a batch is randomly selected to repeat training.

5 Generalization Bounds and Links to Causal Inference

While DBC enables representation learning without pixel reconstruction, it leaves open the question
of how good the resulting representations really are. In this section, we present theoretical analysis
that bounds the suboptimality of a value function trained on the representation learned via DBC.
First, we show that our� � -bisimulation metricconverges to a �xed point, starting from the initialized
policy � 0 and converging to an optimal policy� � .
Theorem 1. Letmetbe the space of bounded pseudometrics onS and� a policy that is continuously
improving. De�neF : met7! metby

F (d; � )(si ; sj ) = (1 � c)jr �
si

� r �
sj

j + cW(d)(P �
si

; P �
sj

): (5)

ThenF has a least �xed point~d which is a� � -bisimulation metric.

Proof in appendix. As evidenced by De�nition 2, the bisimulation metric has no direct dependence on
the state space. Pixels can change, but bisimilarity will stay the same. Instead, bisimilarity is grounded
in a recursion of future transition probabilities and rewards, which is closely related to the optimal
value function. In fact, the bisimulation metric gives tight bounds on the optimal value function
with discount factor . We show this using the property that the optimal value function is Lipschitz
with respect to the bisimulation metric, see Theorem 5 in Appendix (Ferns et al., 2004). This result
also implies that the closer two states are in terms of~d, the more likely they are to share the same
optimal actions. This leads us to a generalization bound on the optimal value function of an MDP
constructed from a representation space using bisimulation metrics,jj � (si ) � � (sj )jj1 := ~d(si ; sj ):
We can construct a partition of this space for some� > 0, giving usn partitions where1

n < (1 � c)� .
We denote� as the encoder that maps from the original state spaceS to each� -cluster. This� denotes
the amount of approximation allowed, where large� leads to a more compact bisimulation partition
at the expense of a looser bound on the optimal value function.
Theorem 2(Value bound based on bisimulation metrics). Given an MDP �M constructed by aggre-
gating states in an� -neighborhood, and an encoder� that maps from states in the original MDPM
to these clusters, the optimal value functions for the two MDPs are bounded as

jV � (s) � V � (� (s)) j �
2�

(1 �  )(1 � c)
: (6)

Proof in appendix. As� ! 0 the optimal value function of the aggregated MDP converges to the
original. Further, by de�ning a learning error for� , L := supsi ;sj 2S

�
� jj � (si ) � � (sj )jj1 � ~d(si ; sj )

�
� ,

we can update the bound in Theorem 2 to incorporateL : jV � (s) � V � (� (s)) j � 2� +2 L
(1 �  )(1 � c) :

MDP dynamics have a strong connection to causal inference and causal graphs, which are directed
acyclic graphs (Jonsson & Barto, 2006; Schölkopf, 2019; Zhang et al., 2020). Speci�cally, the state
and action at timet causally affect the next state at timet + 1 . In this work, we care about the
components of the state space that causally affect current and future reward. Deep bisimulation for
control representations connect tocausal feature sets, or the minimal feature set needed to predict a
target variable (Zhang et al., 2020).
Theorem 3 (Connections to causal feature sets (Thm 1 in Zhang et al. (2020))). If we partition
observations using the bisimulation metric, those clusters (a bisimulation partition) correspond to
the causal feature set of the observation space with respect to current and future reward.
This connection tells us that these features are the minimal suf�cient statistic of the current and future
reward, and therefore consist of (and only consist of) thecausal ancestorsof the reward variabler .
De�nition 3 (Causal Ancestors). In a causal graph where nodes correspond to variables and directed
edges between a parent nodeP and child nodeC are causal relationships, the causal ancestors
AN (C) of a node are all nodes in the path fromC to a root node.
If there are interventions ondistractor variables, or variables that control the rendering functionq
and therefore the rendered observation but do not affect the reward, the causal feature set will be
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robust to these interventions, and correctly predict current and future reward in the linear function
approximation setting (Zhang et al., 2020). As an example, in autonomous driving, an intervention
can be a change from day to night which affects the observation space but not the dynamics or reward.
Finally, we show that a representation based on the bisimulation metric generalizes to other reward
functions with the same causal ancestors.

Theorem 4(Task Generalization). Given an encoder� : S 7! Z that maps observations to a latent
bisimulation metric representation wherejj � (si ) � � (sj )jj1 := ~d(si ; sj ), Z encodes information
about all the causal ancestors of the rewardAN (R).

Proof in appendix. This result shows that the learned representation will generalize to unseen reward
functions, as long as the new reward function has a subset of the same causal ancestors. As an
example, a representation learned for a robot to walk will likely generalize to learning to run, because
the reward function depends on forward velocity and all the factors that contribute to forward velocity.
However, that representation will not generalize to picking up objects, as those objects will be ignored
by the learned representation, since they are not likely to be causal ancestors of a reward function
designed for walking. Theorem 4 shows that the learned representation will be robust to spurious
correlations, or changes in factors that are not inAN (R). This complements Theorem 5, that the
representation is a minimal suf�cient statistic of the optimal value function, improving generalization
over non-minimal representations.

Theorem 5(V � is Lipschitz with respect to~d). Let V � be the optimal value function for a given
discount factor . If c �  , thenV � is Lipschitz continuous with respect to~d with Lipschitz constant

1
1� c , where~d is a � � -bisimulation metric.

jV � (si ) � V � (sj )j �
1

1 � c
~d(si ; sj ): (7)

See Theorem 5.1 in Ferns et al. (2004) for proof. We show empirical validation of these �ndings in
Section 6.2.

6 Experiments
Our central hypothesis is that our non-reconstructive bisimulation based representation learning
approach should be substantially more robust to task-irrelevant distractors. To that end, we evaluate
our method in a clean setting without distractors, as well as a much more dif�cult setting with
distractors. We compare against several baselines. The �rst is Stochastic Latent Actor-Critic (SLAC,
Lee et al. (2019)), a state-of-the-art method for pixel observations on DeepMind Control that learns a
dynamics model with a reconstruction loss. The second is DeepMDP (Gelada et al., 2019), a recent
method that also learns a latent representation space using a latent dynamics model, reward model, and
distributional Q learning, but for which they needed a reconstruction loss to scale up to Atari. Finally,
we compare against two methods using the same architecture as ours but exchange our bisimulation
loss with (1) a reconstruction loss (“Reconstruction”) and (2) contrastive predictive coding (Oord
et al., 2018) (“Contrastive”) to ground the dynamics model and learn a latent representation.

6.1 Control with Background Distraction
In this section, we benchmark DBC and the previously described baselines on the DeepMind Control
(DMC) suite (Tassa et al., 2018) in two settings and nine environments (Figure 3),finger_spin ,
cheetah_run , andwalker_walk and additional environments in the appendix.

Default Setting. Here, the pixel observations have simple backgrounds as shown in Figure 3 (top row)
with training curves for our DBC and baselines. We see SLAC, a recent state-of-the-art model-based
representation learning method that uses reconstruction, generally performs best.

Simple Distractors Setting. Next, we include simple background distractors, shown in Figure 3
(middle row), with easy-to-predict motions. We use a �xed number of colored circles that obey the
dynamics of an ideal gas (no attraction or repulsion between objects) with no collisions. Note the
performance of DBC remains consistent, as other methods start decreasing.

Natural Video Setting. Then, we incorporate natural video from the Kinetics dataset (Kay et al.,
2017) as background (Zhang et al., 2018), shown in Figure 3 (bottom row). The results con�rm our
hypothesis: although a number of prior methods can learn effectively in the absence of distractors,
when complex distractions are introduced, our non-reconstructive bisimulation based method attains
substantially better results.
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