
Is Cross-lingual Evaluation Only About Cross-lingual?

Anonymous ACL submission

Abstract

Multilingual pre-trained language models001
(mPLMs) have achieved great success on vari-002
ous cross-lingual tasks. However, we find that003
the higher performance on these tasks cannot004
be regarded as the better cross-lingual ability005
because models’ task-specific abilities can also006
influence the performance. In this work, we do007
a comprehensive study on two representative008
cross-lingual evaluation protocols: sentence re-009
trieval and zero-shot transfer. We find that cur-010
rent cross-lingual evaluation results strongly011
depend on mPLMs’ task-specific abilities so012
that the performance can be improved with-013
out any improvement in models’ cross-lingual014
ability. To have more accurate comparisons015
of cross-lingual ability between mPLMs, we016
propose two new indexes based on the two eval-017
uation protocols: calibrated sentence retrieval018
performance and transfer rate, and experimen-019
tally show that our proposed indexes effectively020
eliminate the effects of task-specific abilities021
on the cross-lingual evaluation.022

1 Introduction023

Multilingual pre-trained language models024

(mPLMs) have obtained remarkable achievements025

in the fields of multilingual and cross-lingual026

NLP (Devlin et al., 2019; Conneau and Lample,027

2019; Conneau et al., 2020; Ouyang et al., 2021).028

Since mPLMs encode texts in different languages029

into a unified representation space, the models can030

generate powerful cross-lingual representations031

and support NLP research and application beyond032

English (Joshi et al., 2020), e.g., the transfer033

learning from high-resource to low-resource034

languages.035

Researchers have constructed a variety of tasks036

to evaluate the cross-lingual ability of mPLMs,037

and the performance of mPLMs is increasing fast038

with more pre-training data, larger model size, and039

new pre-training objectives (Conneau and Lample,040

2019; Chi et al., 2021b; Xue et al., 2021; Han et al.,041

Figure 1: A visualization of how task-specific abilities
influence cross-lingual evaluation.

2021). However, we find that higher-performing 042

models do not always possess better cross-lingual 043

ability because models’ task-specific abilities also 044

significantly contribute to the performance. 045

In this work, we analyze the effects of task- 046

specific abilities on two widely used evaluation 047

protocols. The first one is cross-lingual sentence 048

retrieval (Zweigenbaum et al., 2017; Artetxe and 049

Schwenk, 2019a), which evaluates mPLMs’ cross- 050

lingual alignment ability by comparing the similar- 051

ity between models’ cross-lingual representations 052

of sentences in different languages. The other is 053

zero-shot cross-lingual transfer, which evaluates 054

mPLMs’ cross-lingual transferability by testing 055

them on different languages with downstream tasks 056

such as natural language inference (Conneau et al., 057

2018; Yang et al., 2019b) and question answer- 058

ing (Lewis et al., 2020b). 059

From the two protocols, researchers derive three 060

indexes of cross-lingual ability: sentence retrieval 061

performance, transfer gap, and zero-shot transfer 062

performance. However, we experimentally find 063

that all the three indexes are affected by models’ 064

task-specific abilities, making their evaluation re- 065

sults not only about models’ cross-lingual ability. 066

Figure 1 is an overview of our observations from 067

experiments. It illustrates how these indexes assess 068

models with the same cross-lingual ability differ- 069

ently: (i) enhancing a models’ sentence embed- 070

1



dings makes higher sentence retrieval performance.071

(ii) improving a model’s NLU ability results in a072

better transfer gap and a higher zero-shot transfer073

performance.074

The differences in mPLMs’ task-specific abili-075

ties hinder us to make fair comparisons between076

their cross-lingual ability using existing indexes,077

so we explore ways to eliminate the effects of task-078

specific abilities in cross-lingual evaluations:079

(i) We find that the quality of mPLMs’ monolin-080

gual sentence embeddings significantly affects their081

performance on cross-lingual sentence retrieval082

while most mPLMs do not possess good pre-trained083

sentence embedding. Thus, we propose to advance084

models’ sentence embeddings on English data by085

contrastive learning before evaluation. We refer086

to the performance of models after fine-tuning as087

calibrated sentence retrieval performance.088

(ii) We find that the monolingual NLU abilities089

of mPLMs are also much different. Fortunately,090

the translate-train performance can be used to mea-091

sure these NLU abilities. Therefore, we propose092

a new index of cross-lingual ability, namely trans-093

fer rate, which is the ratio of the zero-shot transfer094

performance to the translate-train performance.095

We examine the validity and rationality of our096

proposed indexes by experiments and show these097

indexes better reflect the cross-lingual ability of098

mPLMs than currently-used indexes. We hope099

this study will help future work to better analyze100

mPLMs’ cross-lingual ability.101

2 Background102

In this section, we introduce current evaluation pro-103

tocols, setups, indexes of the cross-lingual ability,104

and the mPLMs studied in this work.105

2.1 Evaluation106

A variety of tasks have been used to evaluate107

mPLMs, such as dependency parsing (Schuster108

et al., 2019), named entity recognition (Lin et al.,109

2019), sentiment analysis (Barnes et al., 2018),110

natural language inference (Conneau et al., 2018),111

document classification (Schwenk and Li, 2018),112

question answering (Liu et al., 2019; Lewis et al.,113

2020b; Artetxe et al., 2020; Clark et al., 2020),114

and cross-lingual sentence retrieval (Zweigenbaum115

et al., 2017; Artetxe and Schwenk, 2019a). We116

categorize these tasks into two evaluation proto-117

cols, cross-lingual sentence retrieval and zero-shot118

cross-lingual transfer.119

Sentence Retrieval is to identify the transla- 120

tion of each sentence in a source language from 121

sentences in another language through the sen- 122

tence representations given by models. Pires et al. 123

(2019) first evaluate mBERT on sentence retrieval 124

to demonstrate its powerful cross-lingual alignment 125

ability. They feed each sentence to mBERT without 126

fine-tuning and use the average of all input tokens’ 127

hidden states from a specific layer as its sentence 128

representation. Then, the sentence representations 129

are used to retrieve the translation of each sentence 130

by finding its nearest neighbor. Latter work (Hu 131

et al., 2020; Dufter and Schütze, 2020; Lewis et al., 132

2020a; Chi et al., 2021c) evaluates the cross-lingual 133

ability of mPLMs on sentence retrieval with the 134

same evaluation setup. 135

Zero-shot Cross-lingual Transfer usually uses 136

English as a source language for fine-tuning 137

and evaluates the fine-tuned models on multi- 138

lingual datasets. Based on this protocol, re- 139

searchers develop two indexes of cross-lingual abil- 140

ity: zero-shot transfer performance and transfer 141

gap. (i) Zero-shot transfer performance means 142

the performance of an mPLM on target languages 143

after fine-tuning on a source language. Multiple 144

works use it to evaluate the cross-lingual ability of 145

mPLMs. Pires et al. (2019); K et al. (2020); Ma 146

et al. (2021) do ablation studies on factors that con- 147

tribute to mPLMs’ cross-lingual ability using the 148

zero-shot transfer performance as an index. Huang 149

et al. (2019); Chi et al. (2021b); Ahmad et al. (2021) 150

compare the effectiveness of different cross-lingual 151

pre-training tasks based on the zero-shot transfer 152

performance on XNLI. (ii) Transfer gap is pro- 153

posed by XTREME (Hu et al., 2020) to further an- 154

alyze the cross-lingual transfer. When an mPLM is 155

fine-tuned on one language and evaluated on other 156

languages, there will be a gap between the perfor- 157

mance of the model on the source language and the 158

target languages. The transfer gap is the difference 159

between the performance on the test sets of English 160

and the average performance of other languages. 161

They suppose a lower cross-lingual transfer gap in- 162

dicates more task-related knowledge is transferred 163

from English to target languages, so an mPLM with 164

a perfect cross-lingual ability will have a transfer 165

gap of 0. The transfer gap has been adopted by 166

much recent work (Fang et al., 2021; Chi et al., 167

2021b,a; Ahmad et al., 2021; Zheng et al., 2021; 168

Ouyang et al., 2021; Zhao et al., 2021) to measure 169

the cross-lingual transferability of mPLMs. 170

2



Other Protocols. Apart from the above-171

mentioned protocols, there are other evaluation172

protocols which are sometimes used, including173

word retrieval (Dufter and Schütze, 2020), word174

alignment (Jalili Sabet et al., 2020), word transla-175

tion (Gonen et al., 2020), machine translation (Con-176

neau and Lample, 2019), and cross-lingual infor-177

mation retrieval (Sun and Duh, 2020).178

2.2 Models179

Recently, various multilingual models pre-trained180

on a wide range of languages have been pro-181

posed (Devlin et al., 2019; Conneau and Lample,182

2019; Huang et al., 2019; Conneau et al., 2020;183

Siddhant et al., 2020; Chi et al., 2021b; Feng184

et al., 2020; Xue et al., 2021; Ouyang et al., 2021).185

From these models, we select three representative186

mPLMs pre-trained with different objectives, train-187

ing data, and task-specific abilities.188

mBERT (Devlin et al., 2019) is the first189

Transformer-based mPLM, which has achieved190

great success on amounts of cross-lingual tasks191

and has been widely used in cross-lingual re-192

search. mBERT is a 12-layer Transformer pre-193

trained on the Wikipedia dumps of 104 languages194

using Masked Language Model (MLM) and Next195

Sentence Prediction (NSP) objectives.196

LaBSE (Feng et al., 2020) is a 12-layer Trans-197

former using a dual-encoder architecture, which198

has powerful sentence representation ability and es-199

tablishes new state-of-the-art performance on cross-200

lingual sentence retrieval. It is pre-trained on three201

pre-training tasks together, MLM, Translation Lan-202

guage Model (Conneau and Lample, 2019), and203

Translation Ranking (Yang et al., 2019a). Its train-204

ing data consists of 17B monolingual sentences and205

6B bilingual translation pairs over 109 languages.206

XLM-RBase and XLM-R (Conneau et al., 2020)207

are 12-layer and 24-layer Transformers, which208

have better NLU ability than mBERT. Compared to209

mBERT, they are pre-trained on larger corpora, the210

filtered CommonCrawl data (Wenzek et al., 2020)211

of 100 languages using the MLM objective.212

3 Sentence Retrieval213

In this section, we analyze the effect of the task-214

specific ability on sentence retrieval performance,215

i.e., the monolingual sentence embedding qual-216

ity. Previous studies have two observations: (i)217

PLMs pre-trained with only language modeling218

objectives have poor sentence embedding quality219

while PLMs with sentence-level pre-training tasks 220

have good embedding quality (Gao et al., 2021); 221

(ii) fine-tuning mPLMs on English intermediate- 222

tasks, such as question answering and natural lan- 223

guage inference, can significantly improve the per- 224

formance of cross-lingual sentence retrieval (Phang 225

et al., 2020; Ruder et al., 2021). Correspondingly, 226

there are two research questions: (i) does the dif- 227

ference in mPLMs’ sentence embedding quality 228

influence their comparisons on cross-lingual sen- 229

tence retrieval? (ii) does fine-tuning on English 230

intermediate-tasks improve cross-lingual ability or 231

sentence embedding quality? By answering these 232

two questions, we explore to find out a better way to 233

evaluate cross-lingual ability in sentence retrieval. 234

3.1 Datasets 235

We briefly introduce datasets we used for fine- 236

tuning (SQuAD v1.1, AllNLI+STSb), valida- 237

tion (WMT20), and testing (Tatoeba, STS-2017, 238

WikiANN-NER) in this experiment. 239

SQuADv1.1 (Rajpurkar et al., 2016) is a 240

question-answering dataset with passages ex- 241

tracted from Wikipedia articles and crowdsourced 242

question-answer pairs, where the answer to each 243

question is a text span from the corresponding pas- 244

sage. The evaluation setup proposed by Ruder et al. 245

(2021) involves the training set of SQuAD v1.1. 246

AllNLI+STSb consists of two sentence-pair 247

datasets. AllNLI (Reimers and Gurevych, 2019) is 248

an English natural language inference corpus that 249

combines the training set of Stanford Natural Lan- 250

guage Inference (Bowman et al., 2015) and Multi- 251

Genre Natural Language Inference (Williams et al., 252

2018). The Semantic Textual Similarity Bench- 253

mark (STSb) (Cer et al., 2017) is a dataset that con- 254

tains sentence pairs assigned with similarity scores. 255

We use the training sets of these two datasets to en- 256

hance mPLMs’ monolingual sentence embeddings. 257

Tatoeba (Artetxe and Schwenk, 2019b) com- 258

prises up to 1,000 English-aligned sentence pairs 259

for 112 languages and is widely used for current 260

sentence retrieval evaluation. We conduct sentence 261

retrieval evaluation on parallel sentences of 36 dif- 262

ferent language pairs from it. 263

STS-2017 (Cer et al., 2017) is a multilingual 264

Semantic Textual Similarity (STS) task with mono- 265

lingual test data for en, ar, es, and cross-lingual test 266

data for en-de, fr-en, it-en, and nl-en. We evaluate 267

mPLMs’ sentence embeddings on the monolingual 268

test data for the three languages. 269
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No Fine-tuning Question Answering Fine-tuning Sentence Embedding Fine-tuning

Task CLSR STS NER CLSR STS NER CLSR STS NER

mBERT 37.5 50.7 62.4 40.8 ( +3.3) 57.7 ( +7.0) 61.1 (-1.3) 43.1 ( +5.6) 70.9 (+20.2) 61.7 (-0.7)
XLM-RBase 53.4 53.7 61.0 66.7 (+13.3) 56.4 ( +2.7) 59.6 (-1.4) 74.7 (+21.3) 64.8 (+11.1) 58.5 (-2.5)
XLM-R 35.6 52.6 66.2 77.7 (+42.1) 65.8 (+13.2) 64.7 (-1.5) 83.0 (+47.7) 71.7 (+19.1) 65.7 (-0.5)
LaBSE 95.4 77.6 64.0 94.9 ( -0.5) 69.3 ( -8.3) 64.0 (-0.0) 95.2 ( -0.2) 83.8 ( +6.2) 63.2 (-0.8)

Table 1: Average scores of four models on cross-lingual sentence retrieval (CLSR), STS, and cross-lingual NER
(NER). We report the results of the models without fine-tuning, and changes in the results after fine-tuning with the
two different methods respectively. By convention, sentence retrieval, NER results are reported in accuracy, and STS
results are reported in Spearman’s correlation coefficient × 100. The full results can be found in the appendix A.

WikiANN-NER (Pan et al., 2017) is a cross-270

lingual named entity recognition dataset generated271

from Wikipedia covering 282 languages. As most272

mPLMs do not support all of these languages, our273

evaluations are restricted to 40 languages from274

XTREME. We use this dataset for cross-lingual275

transfer evaluation at word-level.276

WMT20 (Barrault et al., 2020) is used as the277

validation set for sentence retrieval because the278

Tatoeba dataset has no validation data. Specifi-279

cally, we use the test sets of 7 language pairs from280

WMT20 as our validation sets, from en to cs, de,281

ja, pl, ru, ta, zh.282

3.2 Experiment with Evaluation Setups283

To investigate the effect of fine-tuning, we im-284

plement three variants: no fine-tuning, question285

answering fine-tuning, sentence embedding fine-286

tuning. Among them, sentence embedding fine-287

tuning is the first time to be used in cross-lingual288

sentence retrieval. The details are as follows:289

No Fine-tuning. We directly use the mPLMs290

to encode each sentence and take the hidden states291

from the best-scoring layer of each model on the292

validation set for Tatoeba and STS evaluations.293

Specifically, we use the hidden states from the 8th294

layer for mBERT, the 7th layer for XLM-RBase, the295

13th layer for XLM-R, and the last layer for LaBSE.296

For NER evaluation, we fine-tune the models on297

the NER English training set and evaluate on the298

test sets of 40 languages from XTREME.299

Question Answering Fine-tuning. We fine-300

tune the models on the training set of SQuAD v1.1301

following (Ruder et al., 2021). We save and val-302

idate the training checkpoints every 500 training303

steps and pick the one with the highest sentence304

retrieval accuracy on our validation set (WMT20).305

For Tatoeba and STS evaluations, we extract the306

sentence representations from the same layer as we307

mentioned above for each model. For NER evalu-308

ation, we continue training the selected model on309

the NER training set. 310

Sentence Embedding Fine-tuning. To directly 311

optimize sentence embeddings, we fine-tune the 312

models with the siamese network structure pro- 313

posed by Reimers and Gurevych (2019) on AllNLI 314

and STS benchmark datasets, which are both En- 315

glish datasets. When fine-tuning on the NLI data, 316

we use the Multiple Negatives Ranking Loss pro- 317

posed by Henderson et al. (2017), which produces 318

better sentence representations than the original 319

softmax loss in (Reimers and Gurevych, 2020). 320

When fine-tuning on the STS data, we use the 321

cosine similarity loss. We save the training check- 322

points when every 10% of training data is processed 323

and pick the one with the highest sentence retrieval 324

accuracy on the validation set. We evaluate the 325

selected checkpoints on STS, Tatoeba, and NER 326

with the identical evaluation setups as we described 327

above (question answering fine-tuning). 328

To track the changes in monolingual sentence 329

embedding quality and cross-lingual ability, we 330

evaluate models on STS-2017 and WikiANN-NER, 331

respectively. 332

3.3 Results and Discussions 333

We show the experimental results in Table 1. The 334

followings are our observations from the results. 335

1. The huge differences in sentence em- 336

bedding quality influence the comparisons of 337

the performance of different mPLMs. mPLMs 338

produce better sentence embeddings after adding 339

sentence-level pre-training objectives and achieve 340

better performance of cross-lingual sentence re- 341

trieval. For example, LaBSE is better than XLM-R 342

on both CLSR and STS. However, LaBSE doesn’t 343

achieve better performance than XLM-R on NER. 344

Hence, based on the result of CLSR, we cannot 345

conclude that LaBSE has better cross-lingual abil- 346

ity than XLM-R. Furthermore, even if two mPLMs 347

are pre-trained with the same objective on the same 348

data, their evaluation results without fine-tuning 349
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can still be inconsistent between CLSR and NER.350

In our experiment, XLM-R gets worse results on351

both STS and sentence retrieval than XLM-RBase,352

but it outperforms XLM-RBase on NER. Besides,353

the performance of CLSR is highly related to the354

performance of STS, which only measures the355

monolingual sentence embedding quality. In sum-356

mary, sentence embedding quality significantly in-357

fluences the performance of cross-lingual sentence358

retrieval. To make sentence retrieval results re-359

flect the cross-lingual ability of mPLMs, we have360

to ensure the models can generate good sentence361

embeddings.362

2. Fine-tuning improves models’ sentence em-363

beddings instead of cross-lingual ability. As364

shown in the table, both question answering fine-365

tuning and sentence embedding fine-tuning signifi-366

cantly improve the sentence retrieval performance367

on Tatoeba for all models except LaBSE, which is368

itself a good sentence embedding model. XLM-R369

benefits most from fine-tuning, where both fine-370

tuning methods lead to improvements of over 40371

points on sentence retrieval. However, contrary372

to what Phang et al. (2020) might suggest, we ar-373

gue that the huge improvement of mPLMs in sen-374

tence retrieval possibly comes from better monolin-375

gual sentence embeddings generated by the models376

rather than the higher cross-lingual ability. When377

looking at the NER results, we can only observe378

a slight decrease, indicating that fine-tuning does379

not actually improve the cross-lingual ability of the380

models. Meanwhile, we can see that the average381

STS performance across three languages is largely382

improved by fine-tuning. These results demonstrate383

that fine-tuning on English data enhances the sen-384

tence embeddings of mPLMs over all languages,385

which induces boosts in sentence retrieval perfor-386

mance. Hence, we can use fine-tuning to improve387

the sentence embeddings quality without influenc-388

ing cross-lingual ability for fair evaluation.389

3. Sentence embedding fine-tuning leads to390

larger improvements than question answering391

fine-tuning. Compared with Question Answering392

fine-tuning, the sentence embedding fine-tuning393

approach provides better sentence representations394

for all models. For mBERT and LaBSE, the STS395

results of the sentence embedding fine-tuning are396

more than 10 points higher than that of question397

answering fine-tuning. Similarly, we can see the398

same thing happens on the sentence retrieval perfor-399

mance, especially for XLM-RBase, where the aver-400

0

10
mBERT

20 40 60 80 100
0

2
LaBSE

CLSR STS

Figure 2: A visualization of the performance change of
the two models on sentence retrieval and STS when fine-
tuning them on different amounts of data. The x-axis is
the percentage of training data used, and the y-axis is
the difference in performance.

age sentence retrieval performance of sentence em- 401

bedding fine-tuning is 8 points higher than that of 402

question answering fine-tuning. These results sug- 403

gest that models fine-tuned on SQuAD can not pro- 404

vide sentence representations that are good enough 405

for sentence retrieval evaluation, so we propose 406

to fine-tune models that generate poor sentence 407

representations using the sentence embedding fine- 408

tuning approach on AllNLI+STSb data. 409

4. Sentence embedding fine-tuning provides 410

good enough sentence representations for CLSR. 411

According to the table, the STS results of mBERT 412

and LaBSE increase a lot, but this does not lead to a 413

significant change in their sentence retrieval results. 414

We suppose that when a model is able to generate 415

semantically meaningful sentence representations 416

for each language, a further improvement on its sen- 417

tence embeddings has little impact on its sentence 418

retrieval results. To further validate our hypoth- 419

esis, we divide the training data (AllNLI+STSb) 420

into ten pieces and record the STS and sentence 421

retrieval performance of the two models fine-tuned 422

on 10% to 100% of the training data. We visual- 423

ize the difference between the results of models 424

fine-tuned on 10% of the training data and those 425

more than 10% data in Figure 2. We can observe 426

that the sentence retrieval performance of the two 427

models stabilizes, whereas their STS results show 428

a rising trend with more training data. It indicates 429

that the sentence embedding fine-tuning approach 430

can help mPLMs generate sentence embeddings 431

that are good enough for sentence retrieval evalu- 432

ation so the evaluation results can fully reflect the 433

cross-lingual ability of models. We refer to the 434

performance with sentence embedding fine-tuning 435
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as calibrated sentence retrieval performance.436

4 Zero-shot Cross-lingual Transfer437

In this section, we examine the rationality of two438

evaluation indexes of cross-lingual ability, transfer439

gap and zero-shot transfer performance, and ana-440

lyze the effect of task-specific abilities in zero-shot441

cross-lingual transfer.442

4.1 Experiment with Transfer Gap443

The basis of the transfer gap is that target languages444

must not outperform source languages in the cross-445

lingual transfer, so the difference between mod-446

els’ performance on English and other languages447

can measure the amount of knowledge transferred.448

Most mPLMs are pre-trained with the highest En-449

glish resource, so it is not surprising that the mod-450

els always perform higher on English than other451

languages. Nevertheless, it is worth studying that452

whether the transfer gap is still valid when En-453

glish is a low-resource language in a model, that454

is the scenario of transferring knowledge from a455

low-resource language to high-resource languages.456

Hence, we choose a low-resource language, Urdu,457

as the source language in our experiment.458

As stated in Hu et al. (2020), the transfer gap459

only applies to multilingual datasets with the same460

test sets across all languages (translated from En-461

glish annotated data) because the zero-shot trans-462

fer performance can not be comparable across lan-463

guages if test sets differ. Hence, we experiment464

with the transfer gap on XNLI, where the test sets465

for 14 languages are human-translated from its466

English test set. The XNLI training sets for 14467

languages are machine translated from its English468

training set; meanwhile, the machine translation469

system adopted by Conneau et al. (2018) generates470

poor translations (low BLEU scores) from English471

to low-resource languages like Urdu. To exclude472

the potential effects of the translation quality, we473

additionally create a smaller version of XNLI by474

concatenating its human-translated validation sets475

and test sets of each language together and splitting476

them into train, validation, test sets, with a ratio of477

8:1:1. We refer to this dataset as XNLI Manual478

and report the results of on both datasets.479

4.2 Issues of Transfer Gap480

Our experimental results are shown in Table 2. We481

have the following observations from the results.482

1. Performance on the source language can- 483

not be an upper bound for target languages. We 484

can observe that most target languages in the cross- 485

lingual transfer have better accuracy than the source 486

language for all models, especially for LaBSE fine- 487

tuned on XNLI, where no target language under- 488

performs the source language. In more detail, the 489

extremely low-resource language sw always under- 490

performs ur, whereas high-resource languages such 491

as en, es, fr, de significantly outperform the source 492

language by approximately 10% on XNLI and 5% 493

on the XNLI Manual. These results reveal two 494

things about the cross-lingual transfer: (i) The per- 495

formance of a model on a source language should 496

not be an upper bound of its target languages’ per- 497

formance. (ii) The zero-shot transfer performance 498

on a target language might relate to its pre-training 499

resource. Hence, a transfer gap of zero does not 500

amount to a perfect cross-lingual transfer. 501

2. Transfer gap can be negative. As shown 502

in Table 2, mBERT fine-tuned on XNLI is the only 503

model with a positive and transfer gap between 504

the source and target languages, while all other 505

models yield a negative transfer gap. These results 506

show the possibility of obtaining a negative trans- 507

fer gap is possible when transferring knowledge 508

from low-resource to high-resource languages. We 509

suppose that if an mPLM is pre-trained with the 510

lowest English resources among all languages, it 511

will also give a negative or close to zero transfer 512

gap when fine-tuning on English training sets. A 513

small transfer gap might come from bad source lan- 514

guage performance rather than good cross-lingual 515

transferability. Hence, the transfer gap cannot be a 516

suitable index of mPLMs’ cross-lingual ability. 517

4.3 Experiment with Zero-shot Transfer 518

Performance 519

From the previous experiment, we observe that 520

high-resource languages can always succeed in 521

zero-shot transfer performance, no matter what the 522

source language is. Hence, we suppose that the 523

zero-shot transfer performance depends not only 524

on mPLMs’ cross-lingual representations but also 525

on their NLU ability. To validate our supposition, 526

we calculate the Pearson’s correlation coefficients 527

between the zero-shot transfer performance and 528

the translate-train-all performance, the calibrated 529

sentence retrieval performance. 530

The translate-train-all performance of a model is 531

obtained by fine-tuning it on the concatenation of 532
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Model ur en fr es de el bg ru tr ar vi th zh hi sw avg gap

Zero-shot Cross-lingual Transfer (Fine-tuned on XNLI Urdu training data)

mBERT 61.8 68.1 64.7 65.1 64.0 61.4 63.2 64.8 57.9 59.7 63.1 48.3 65.2 60.6 46.5 61.0 +0.9
XLM-RBase 66.9 75.8 72.1 73.6 71.8 71.5 73.0 72.0 69.0 68.5 71.5 69.8 71.0 68.7 63.2 70.5 -3.9
XLM-R 73.5 88.6 83.2 84.1 82.8 82.6 83.3 80.7 79.2 79.2 79.7 77.2 80.0 76.6 71.8 80.1 -7.1
LaBSE 67.8 78.3 75.1 75.5 74.2 74.2 75.3 74.2 73.1 71.5 74.1 68.4 72.9 70.5 69.7 72.9 -5.5

Zero-shot Cross-lingual Transfer (Fine-tuned on XNLI Manual Urdu training data)

mBERT 54.5 59.8 57.6 59.4 59.4 56.7 59.0 59.5 53.7 55.3 58.0 49.9 57.0 57.4 44.8 56.1 -1.7
XLM-RBase 60.3 67.9 64.7 64.4 62.7 63.5 65.8 63.4 60.9 59.9 64.0 61.6 62.1 62.0 55.3 62.5 -2.4
XLM-R 67.2 75.6 73.1 72.5 73.9 72.6 73.6 71.2 69.5 70.4 70.9 69.4 71.1 69.6 64.0 70.9 -4.0
LaBSE 62.2 66.6 65.6 67.8 65.7 64.5 66.4 64.3 65.1 62.6 64.9 57.4 62.9 64.0 60.3 64.0 -1.9

Table 2: The zero-shot transfer results of four models on XNLI and XNLI Manual. We report the accuracy on each
of the 15 XNLI languages, the average accuracy, and the transfer gap. Note that target languages underperform the
source language (Urdu) are underlined for each model.

Model fr de ar zh sw avg

Calibrated Sentence Retrieval (Tatoeba)

mBERT 70.9 82.9 33.2 79.1 14.9 50.0
XLM-RBase 87.0 96.6 62.6 87.1 34.9 79.4
XLM-R 91.8 97.4 77.7 93.0 35.4 86.5
LaBSE 96.0 99.2 90.1 96.6 88.2 95.8

Zero-shot Cross-lingual Transfer (XNLI)

mBERT† 73.4 70.0 64.3 67.8 49.7 64.3
XLM-RBase

∗ 79.7 78.7 73.8 76.7 66.5 75.5
XLM-R∗ 84.1 83.9 79.8 80.2 73.9 80.3
LaBSE 81.0 79.3 75.4 77.0 71.8 76.5

Translate-Train-All (XNLI)

mBERT† 77.8 77.6 73.8 77.6 70.5 74.6
XLM-RBase

∗ 81.4 80.3 77.3 80.2 73.1 78.7
XLM-R∗ 85.1 85.7 83.1 83.7 78.0 83.2
LaBSE 81.9 81.9 78.1 80.2 74.7 79.1

Correlation with Zero-shot Transfer Performance

Sent Retrieval. 90.4 90.0 87.4 85.3 63.6 91.0
Translate-Train. 98.5 94.4 94.2 91.4 89.5 95.1

Table 3: The sentence retrieval results on Taoteba, zero-
shot transfer, translate-train-all results on XNLI, and
Pearson’s correlation coefficients between the zero-shot
transfer results and the translate-train-all, the sentence
retrieval results. We report the results on five lan-
guages and the average results of the 14 XNLI languages
(source language English is excluded). Results with †∗
are from Hu et al. (2020); Conneau et al. (2020). We
boldface the best score of each column on each task.
The full results can be found in the appendix A.

training sets from all languages and then evaluating533

on multilingual test sets. This evaluation setup534

does not examine the cross-lingual transferability535

of models, so we use models’ translate-train-all536

performance to measure their NLU ability.537

The calibrated sentence retrieval performance538

well reflects the cross-lingual ability of a model as539

we have shown in Sec. 3, so we use mPLMs’ cali-540

brated sentence retrieval performance to measure541

their cross-lingual representation quality.542

4.4 Issues of Zero-shot Transfer Performance 543

We show the experimental results in Table 3. Based 544

on these results, we analyze what affects the zero- 545

shot performance and the potential dangers of using 546

it as an index of cross-lingual ability. 547

1. NLU ability significantly affects the zero- 548

shot transfer performance. According to the 549

correlation coefficients, we can clearly see the cor- 550

relation between the zero-shot transfer performance 551

and translate-train-all performance is stronger than 552

that of the calibrated sentence retrieval, whereas the 553

translate-train results are not related to the cross- 554

lingual ability of mPLMs. Moreover, there are two 555

main inconsistencies between the zero-shot transfer 556

performance and the cross-lingual alignment abil- 557

ity of the models. (i) LaBSE outperforms all other 558

models on sentence retrieval, while XLM-R outper- 559

forms all other models on both zero-shot transfer 560

and translate-train-all. (ii) LaBSE obtains more 561

than 50 points than the other models on the en-sw 562

sentence retrieval, but its zero-shot transfer perfor- 563

mance on sw is lower than that of XLM-R. The 564

strong correlation between the zero-shot transfer 565

and translate-train results reveals that the zero-shot 566

transfer performance is strongly affected by the 567

NLU ability of models. This means a large model 568

pre-trained on a huge amount of monolingual data 569

can easily succeed at the zero-shot setting without 570

an outstanding cross-lingual ability. 571

2. Measuring cross-lingual ability by the zero- 572

shot transfer performance is problematic. 573

Using the zero-shot transfer performance as an 574

index of the cross-lingual ability not only com- 575

promises fair comparisons between models but 576

also potentially leads to inadequate conclusions. 577

(i) Many pre-training tasks like SOP and pre- 578

training strategies such as n-gram masking (Raf- 579
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Model fr de ar zh sw avg

Transfer Rate (XNLI)

mBERT 94.3 90.2 87.1 87.4 70.5 86.0
XLM-RBase 97.9 98.0 95.5 95.6 91.0 96.0
XLM-R 98.8 97.9 96.0 95.8 94.7 96.5
LaBSE 98.9 96.8 96.5 96.0 96.1 96.7

Correlation with Calibrated Sentence Retrieval

Zero-shot. 90.4 90.0 87.4 85.3 63.6 91.0
Transfer Rate. 98.6 95.8 92.7 87.8 69.8 95.7

Table 4: The transfer results on XNLI, and Pearson’s
correlation coefficients between the calibrated sentence
retrieval results and the zero-shot transfer, the transfer
rate results. We report the results on five languages
and the average results of the 14 XNLI languages. We
boldfact the best score of each column on each task. The
full results can be found in the appendix A.

fel et al., 2020), DeBERTa (He et al., 2021) have580

been shown to enhance monolingual language mod-581

els’ NLU ability effectively and improve the mod-582

els’ performance on downstream tasks including583

MNLI, SQuAD, so implementing the tasks and584

strategies on mPLMs possibly improve the zero-585

shot transfer performance on multilingual NLI and586

QA tasks. However, the improvement induced by587

better task-specific abilities will be regarded as an588

improvement in the cross-lingual ability of mPLMs589

when using the zero-shot performance as an index.590

(ii) Almost all mPLMs are pre-trained with dif-591

ferent amounts of data and vocabulary sizes on592

each language, resulting in a large difference be-593

tween their NLU abilities, which is ignored by ex-594

isting studies (Pires et al., 2019; K et al., 2020)595

on the effect of language similarity in cross-lingual596

transfer. We notice that languages in the same lan-597

guage family as English, such as de, es, fr, ru, are598

four target languages with the highest resource in599

Wikipedia (Wu and Dredze, 2020). Thus, even if600

an equal amount of task knowledge is transferred601

from English to all other languages, the above-602

mentioned languages can still outperform others603

in terms of the zero-shot transfer. In other words,604

the effect of language similarity might be overesti-605

mated.606

4.5 Transfer Rate607

To eliminate the effect of NLU ability, we propose608

to use the translate-train-all performance as the609

estimation of NLU ability for each language, so610

the cross-lingual ability can be measured by the611

ratio of the zero-shot transfer performance to the612

translate-train performance. We refer to this index613

as “transfer rate”, which measures the percentage 614

of knowledge transferred from a source language 615

to target languages. 616

We show the transfer rate of five languages of 617

the models and Pearson’s correlation coefficients 618

between the transfer rate and sentence retrieval re- 619

sults in Table 4. The detailed results containing all 620

languages can be found in the appendix. We can 621

see the transfer rate scores better demonstrate the 622

cross-lingual ability of models than the zero-shot 623

scores by showing a stronger correlation with the 624

sentence alignment ability of the models. LaBSE 625

gets a higher average transfer rate than XLM-R, 626

which suggests the cross-lingual pre-training ob- 627

jective could be an important step for mPLMs to 628

obtain good cross-lingual ability. 629

Additionally, we notice that some multilingual 630

datasets do not contain any training set for lan- 631

guages other than English, while an estimation of 632

mPLMs’ NLU ability on other languages is needed 633

in the calculation of transfer rate. We hope that 634

the research community can see the necessity of 635

providing training sets for all languages when cre- 636

ating new multilingual datasets for cross-lingual 637

evaluations. 638

5 Conclusion 639

In this work, we revisit two widely-used evaluation 640

protocols of the cross-lingual ability of mPLMs, 641

cross-lingual sentence retrieval and zero-shot cross- 642

lingual transfer and find that the evaluations are not 643

only about cross-lingual. Specifically, we observe 644

that (i) better monolingual sentence embeddings 645

can substantially boost the performance of mod- 646

els on sentence retrieval, which the current evalua- 647

tion setups have ignored. (ii) the zero-shot transfer 648

performance largely depends on the task-specific 649

abilities of mPLMs, so the larger model with better 650

NLU ability (XLM-R) can significantly outperform 651

the model with better ability of cross-lingual align- 652

ment (LaBSE) on XNLI. Towards a better eval- 653

uation in the cross-lingual research, we propose 654

two new indexes of cross-lingual ability: (i) Cal- 655

ibrated sentence retrieval performance, which is 656

the performance of models after fine-tuning on the 657

sentence embeddings objective. (ii) Transfer rate, 658

which measures the percentage of task knowledge 659

transferred from a source to target languages. We 660

hope this study will enlighten future analyses on 661

the cross-lingual ability and help the development 662

of new mPLMs with better cross-lingual ability. 663
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A Appendix 919

A.1 All Language Results 920

Sentence Retrieval The full results of mBERT, 921

XLM-RBase, XLM-R, LaBSE under three different 922

evaluation setups on CLSR, STS, and NER are 923

shown in Table 5, Table 6, and Table 7 respectively. 924

Zero-shot Cross-lingual Transfer The 14 lan- 925

guages’ results of calibrated sentence retrieval on 926

Taoteba, zero-shot transfer, translate-train-all, trans- 927

fer rate on XNLI can be found in Table 8. The Pear- 928

son’s correlation coefficients between the zero-shot 929

transfer performance and the translate-train-all, the 930

calibrated sentence retrieval performance, and the 931

Pearson’s correlation coefficients between the trans- 932

fer rate and the calibrated sentence retrieval perfor- 933

mance can be seen at the bottom of the table. Ad- 934

ditionally, the zero-shot transfer and translate-train- 935

all performance of LaBSE of 15 XNLI languages 936

on XNLI is shown in Table 9. 937

A.2 Hyperparameters 938

Question Answering Fine-tuning We fine-tune 939

all models with a learning rate of 3e-5 and a batch 940

size of 12 for 2 epochs. 941

Sentence Embedding Fine-tuning The hyperpa- 942

rameters for sentence embedding fine-tuning can 943

be found in Table 10. 944

NER We search for the best learning rate out 945

of [5e-6, 1e-5, 2e-5] and batch size out of [32, 946

128]. We train all models for 10 epochs and run 947

validation on the English validation set every 300 948

training steps. 949

XNLI We search for the best learning rate out 950

of [5e-6, 1e-5, 2e-5] and batch size out of [16, 32, 951

128]. We run validation when every 5% of training 952

data is processed and pick the checkpoint with the 953

best average performance across all languages on 954

validation sets. We fine-tune each model for 10 955

epochs with five different seeds and report the mean 956

performance on test sets across the five seeds. 957

11

https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.24963/ijcai.2019/746
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/2021.starsem-1.22
https://doi.org/10.18653/v1/2021.starsem-1.22
https://doi.org/10.18653/v1/2021.starsem-1.22
https://doi.org/10.18653/v1/2021.acl-long.264
https://doi.org/10.18653/v1/2021.acl-long.264
https://doi.org/10.18653/v1/2021.acl-long.264
https://doi.org/10.18653/v1/w17-2512
https://doi.org/10.18653/v1/w17-2512
https://doi.org/10.18653/v1/w17-2512


No Fine-tuning

Lang. af ar bg bn de el es et eu fa fi fr he hi hu id it ja

mBERT 38.9 24.5 48.8 17.0 75.4 29.8 64.1 28.1 25.5 41.2 39.0 64.3 40.1 34.8 36.9 53.5 57.3 40.9
XLM-RBase 55.2 36.8 67.6 29.3 89.9 53.7 74.0 49.3 33.5 68.0 66.7 74.1 53.9 54.2 61.6 70.8 68.2 57.2
XLM-R 38.5 24.8 37.1 22.1 72.5 35.1 53.4 25.1 19.4 48.2 46.6 57.6 30.3 33.7 50.5 49.6 49.6 45.1
LaBSE 97.0 89.3 95.6 91.3 99.2 96.8 98.1 97.9 95.9 96.4 96.9 95.9 92.3 97.6 96.9 95.5 95.1 96.4

Lang. jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

mBERT 17.6 19.6 27.1 36.0 17.9 20.1 63.7 68.4 59.4 10.8 13.4 14.1 13.7 16.0 32.9 30.8 61.0 68.6
XLM-RBase 15.1 41.4 40.3 51.6 56.6 46.0 79.5 80.6 72.5 18.7 25.7 32.5 38.3 31.2 61.1 36.6 68.4 60.7
XLM-R 11.2 11.1 25.9 42.1 22.4 27.4 66.1 59.4 51.4 10.8 11.4 26.9 25.0 9.7 45.7 18.1 39.7 38.8
LaBSE 87.3 95.4 90.1 94.2 99.0 95.4 97.1 95.6 95.0 90.8 90.2 98.7 97.3 97.8 98.0 95.9 97.2 96.6

Question Answering Fine-tuning

Lang. af ar bg bn de el es et eu fa fi fr he hi hu id it ja

mBERT 49.4 33.2 57.3 20.7 82.9 29.4 73.7 32.2 30.8 49.3 41.7 70.9 45.5 37.4 46.2 54.8 67.2 49.0
XLM-RBase 74.8 62.6 83.1 59.0 96.6 76.6 90.0 67.9 53.1 86.1 85.2 87.0 75.5 84.7 82.3 89.0 80.8 80.3
XLM-R 80.0 77.7 89.6 76.1 97.4 84.8 94.9 72.1 59.5 92.3 90.0 91.8 84.7 94.0 87.8 92.8 87.5 89.9
LaBSE 96.8 90.1 95.1 91.2 99.2 96.4 97.9 96.9 94.7 96.1 96.6 96.0 92.0 98.1 96.3 95.9 95.3 96.5

Lang. jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

mBERT 16.6 22.1 31.7 44.8 21.5 21.6 70.2 76.1 66.4 14.9 20.5 24.4 14.6 16.5 37.8 37.2 65.7 79.1
XLM-RBase 29.8 65.4 58.6 76.9 79.5 75.1 90.7 90.5 87.9 34.9 53.4 70.1 79.9 53.7 81.6 70.5 89.7 87.1
XLM-R 34.1 79.4 69.9 86.1 92.7 84.2 95.0 93.3 90.9 35.4 80.5 88.5 91.8 61.9 91.2 84.3 94.0 93.0
LaBSE 83.9 95.3 89.4 93.8 98.5 95.2 97.4 96.3 94.8 88.2 91.5 97.4 96.5 96.9 98.0 95.8 98.0 96.6

Sentence Embedding Fine-tuning

Lang. af ar bg bn de el es et eu fa fi fr he hi hu id it ja

mBERT 41.2 31.1 50.7 20.4 76.8 31.5 66.9 32.5 31.0 45.6 42.6 66.0 42.2 40.8 42.2 55.9 63.2 44.6
XLM-RBase 63.9 53.2 77.1 46.8 91.7 69.3 81.1 57.4 46.3 79.5 77.4 80.2 69.2 74.3 72.7 82.7 76.0 68.7
XLM-R 77.8 69.2 85.2 65.8 96.6 78.5 90.7 72.9 57.4 88.6 88.0 88.9 79.5 91.0 85.6 90.6 82.9 86.3
LaBSE 97.0 89.4 91.1 90.8 99.4 96.4 98.1 98.2 95.0 95.8 97.4 95.1 92.6 97.7 96.4 95.5 95.2 95.7

Lang. jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

mBERT 17.6 22.8 30.8 38.0 23.0 26.8 64.5 70.8 60.0 13.3 21.2 22.6 15.1 18.7 34.7 34.1 61.3 70.0
XLM-RBase 26.8 56.4 52.3 67.2 75.3 65.3 85.5 84.5 80.5 27.2 50.5 63.2 68.8 46.7 70.8 56.7 81.2 74.7
XLM-R 28.8 73.7 65.9 81.6 88.5 78.0 92.0 90.8 88.5 30.3 58.0 72.2 77.2 59.6 89.5 62.2 92.5 91.0
LaBSE 85.4 94.6 91.0 92.7 98.8 95.0 97.4 95.9 95.3 88.2 90.6 97.0 96.5 97.1 97.5 95.8 97.7 96.0

Table 5: Full CLSR results of all models on 36 language-pairs under three evaluation setups.

No Fine-tuning Question Answering Fine-tuning Sentence Embedding Fine-tuning

Model AR-AR EN-EN ES-ES AR-AR EN-EN ES-ES AR-AR EN-EN ES-ES

mBERT 49.28 49.44 53.53 49.85 57.24 66.05 58.23 76.28 78.28
XLM-RBase 40.14 58.10 62.86 41.94 60.66 66.62 53.37 68.48 72.47
XLM-R 49.57 57.23 50.99 53.33 71.30 72.76 61.47 77.34 80.47
LaBSE 72.62 77.68 82.54 62.34 70.13 75.46 78.70 87.37 85.45

Table 6: The STS-2017 results of four models under three evaluation setups. All results are reported in Spearman’s
correlation coefficient × 100.
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No Fine-tuning

Lang. ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur

mBERT 45.2 55.3 68.1 58.5 62.3 67.9 71.1 59.9 57.2 52.9 50.6 77.5 82.6 83.4 79.0 72.1 68.5 65.0 56.4 31.0
XLM-RBase 47.0 53.2 67.3 49.0 59.5 55.7 72.4 58.9 62.1 56.2 48.3 75.8 80.9 82.7 74.6 74.8 70.4 69.1 62.6 56.8
XLM-R 53.0 56.8 79.1 54.3 61.9 69.0 74.3 68.6 64.1 61.8 54.7 78.6 84.4 84.1 80.0 79.4 79.9 73.4 65.2 55.8
LaBSE 44.6 56.7 68.5 49.1 66.7 69.9 75.1 63.6 66.9 56.4 53.4 76.7 81.4 83.3 76.8 71.8 73.6 68.5 54.7 54.9

Lang. fa fr it pt es bg ru ja ka ko th sw yo my zh kk tr et fi hu

mBERT 43.8 81.0 80.7 79.1 73.3 77.6 65.3 29.0 67.8 61.2 0.6 70.8 49.2 50.5 45.4 49.1 74.4 77.4 78.2 76.0
XLM-RBase 51.1 77.0 78.6 78.0 73.5 77.5 64.8 20.5 66.8 51.5 3.9 69.3 33.8 49.8 28.4 40.8 74.2 72.1 76.0 76.8
XLM-R 67.3 80.8 81.8 82.9 76.3 82.7 71.9 18.5 71.0 59.6 2.3 69.2 43.0 53.3 28.8 54.8 82.5 81.2 81.0 81.9
LaBSE 48.2 77.9 79.7 78.1 70.9 78.8 65.8 24.7 68.6 56.8 2.3 75.6 75.3 61.1 27.8 50.0 76.7 74.8 77.0 77.3

Question Answering Fine-tuning

Lang. ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur

mBERT 49.4 55.3 71.2 61.7 56.8 68.2 72.6 61.9 55.7 50.0 49.2 77.1 82.1 83.6 78.0 66.2 68.1 65.6 54.5 36.0
XLM-RBase 53.5 49.7 69.3 46.0 57.8 63.1 70.0 53.4 58.0 54.7 45.7 75.5 78.6 80.8 72.6 72.7 68.5 65.5 59.7 61.2
XLM-R 53.1 56.7 77.4 53.4 61.0 68.8 75.8 57.9 63.6 60.7 53.8 76.5 84.8 84.7 78.5 78.7 72.3 70.5 63.5 54.6
LaBSE 47.2 57.3 71.7 51.2 64.6 70.2 73.9 64.4 67.9 55.0 51.7 76.3 81.4 82.8 77.1 70.1 74.5 69.0 53.6 52.2

Lang. fa fr it pt es bg ru ja ka ko th sw yo my zh kk tr et fi hu

mBERT 42.7 77.7 80.6 77.0 66.8 76.3 64.4 29.3 63.8 57.6 0.1 67.1 47.1 43.2 43.1 44.2 69.7 77.1 77.4 74.3
XLM-RBase 49.0 74.9 76.8 76.1 70.0 75.3 58.6 16.9 63.2 48.4 1.0 67.6 49.8 51.3 21.6 38.1 71.5 68.8 74.2 75.2
XLM-R 63.4 80.1 81.5 82.1 76.9 81.2 71.3 21.2 69.1 58.8 4.4 67.0 34.9 53.8 30.3 50.3 78.7 77.7 78.5 80.4
LaBSE 51.0 78.2 79.0 77.4 70.1 78.7 67.6 29.2 67.6 54.2 3.3 74.1 74.2 58.9 34.4 46.8 75.5 74.9 76.5 77.4

Sentence Embedding Fine-tuning

Lang. ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur

mBERT 47.3 55.5 69.4 58.9 64.9 67.6 73.0 57.5 56.1 50.9 50.3 75.2 81.8 83.8 78.1 69.6 69.7 65.3 56.7 33.4
XLM-RBase 55.7 49.9 67.8 47.2 52.4 51.1 69.8 53.6 60.7 53.7 46.9 74.8 79.2 81.8 71.6 70.5 65.2 64.4 55.9 55.1
XLM-R 53.6 59.6 77.0 54.0 60.6 70.7 76.0 63.7 64.1 60.0 51.4 76.5 83.6 84.8 79.5 79.0 79.8 72.3 66.3 69.8
LaBSE 46.1 56.4 70.8 46.9 65.6 65.7 74.0 58.6 64.5 54.8 50.7 75.2 80.1 81.8 75.9 72.8 70.0 66.1 53.2 64.6

Lang. fa fr it pt es bg ru ja ka ko th sw yo my zh kk tr et fi hu

mBERT 40.4 79.2 80.9 78.3 70.3 78.1 65.5 27.6 66.3 59.1 0.4 67.5 49.6 49.4 42.3 46.6 73.6 75.9 76.3 74.8
XLM-RBase 44.3 76.0 75.5 77.4 73.0 76.7 60.2 13.8 61.5 47.1 3.4 65.5 43.2 48.4 18.9 38.7 74.4 69.1 73.7 73.9
XLM-R 66.0 80.6 81.2 80.5 70.7 82.0 70.7 21.3 69.8 60.4 2.5 68.2 47.3 50.8 25.9 53.6 79.3 78.0 78.8 79.9
LaBSE 51.0 78.6 79.1 78.5 72.2 77.7 64.8 25.8 68.3 56.3 2.4 73.6 67.8 56.5 31.7 47.7 75.5 73.1 76.0 77.3

Table 7: Full NER results of all models on 40 languages under three evaluation setups.
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Model fr es de el bg ru tr ar vi th zh hi sw ur avg

Zero-shot Cross-lingual Transfer

mBERT 73.4 73.5 70.0 65.3 68.0 67.8 60.9 64.3 69.3 54.1 67.8 58.9 49.7 57.2 64.3
XLM-RBase 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 75.5
XLM-R 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.3
LaBSE 81.0 81.2 79.3 79.3 80.7 78.6 76.4 75.4 77.3 70.4 77.0 73.2 71.8 69.6 76.5

Calibrated Sentence Retrieval

mBERT 70.9 73.7 82.9 29.4 57.3 66.4 37.8 33.2 65.7 14.6 79.1 37.4 14.9 37.2 50.0
XLM-RBase 87.0 90.0 96.6 76.6 83.1 87.9 81.6 62.6 89.7 79.9 87.1 84.7 34.9 70.5 79.4
XLM-R 91.8 94.9 97.4 84.8 89.6 90.9 91.2 77.7 94.0 91.8 93.0 94.0 35.4 84.3 86.5
LaBSE 96.0 97.9 99.2 96.4 95.1 94.8 98.0 90.1 98.0 96.5 96.6 98.1 88.2 95.8 95.8

Translate-Train-All

mBERT† 77.8 79.1 77.6 75.9 77.6 75.4 74.3 73.8 77.0 70.0 77.6 70.7 70.5 67.4 74.6
XLM-RBase 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 78.7
XLM-R 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.2
LaBSE 81.9 82.9 81.9 81.5 82.4 80.8 78.5 78.1 80.8 75.1 80.2 76.3 74.7 72.1 79.1

Transfer Rate

mBERT 94.3 92.9 90.2 86.0 87.6 89.9 82.0 87.1 90.0 77.3 87.4 83.3 70.5 84.9 86.0
XLM-RBase 97.9 98.2 98.0 96.4 97.9 98.0 94.4 95.5 96.0 95.8 95.6 95.1 91.0 93.6 96.0
XLM-R 98.8 98.3 97.9 97.2 97.8 97.2 95.7 96.0 96.5 95.8 95.8 94.2 94.7 94.5 96.5
LaBSE 98.9 97.9 96.8 97.3 97.9 97.3 97.3 96.5 95.7 93.7 96.0 95.9 96.1 96.5 96.7

Pearson’s Correlation Coefficient with the Zero-shot Transfer Performance

Calibrated Sentence Retrieval. 90.4 90.0 90.0 93.8 94.4 95.3 96.6 87.4 91.4 92.1 85.3 96.8 63.6 89.9 91.0
Translate-Train-All. 98.5 96.7 94.4 96.1 94.3 96.5 91.6 94.2 96.6 96.3 91.4 93.5 89.5 93.9 95.1

Pearson’s Correlation Coefficient with the Calibrated Sentence Retrieval Performance

Transfer Rate. 98.6 93.9 95.8 97.6 95.6 95.5 99.6 92.7 95.8 96.2 87.8 97.9 69.8 98.0 95.7

Table 8: The calibrated sentence retrieval results on Taoteba and zero-shot transfer, translate-train-all results on
XNLI, and Pearson’s correlation coefficients on 14 XNLI languages.

Task en fr es de el bg ru tr ar vi th zh hi sw ur avg

Zero-shot. 86.0 81.0 81.2 79.3 79.3 80.7 78.6 76.4 75.4 77.3 70.4 77.0 73.2 71.8 69.6 77.2
Translate-train-all. 86.1 81.9 82.9 81.9 81.5 82.4 80.8 78.5 78.1 80.8 75.1 80.2 76.3 74.7 72.1 79.5

Table 9: Full zero-shot transfer and translate-train-all results of LaBSE.

Model Learning Rate Batch Size Warmup Proportion #Epochs (AllNLI) #Epochs (STSb)

mBERT 2e-5 128 0.1 1 10
XLM-RBase 2e-5 128 0.1 1 5
XLM-R 5e-6 64 0.1 1 5
LaBSE 2e-5 128 0.1 1 10

Table 10: Hyperparameters for the Sentence-BERT fine-tuning approach.
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