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Abstract

Semi-supervised few-shot learning consists in training a classifier to adapt to new
tasks with limited labeled data and a fixed quantity of unlabeled data. Many
sophisticated methods have been developed to address the challenges this problem
comprises. In this paper, we propose a simple but quite effective approach to
predict accurate negative pseudo-labels of unlabeled data from an indirect learning
perspective, and then augment the extremely label-constrained support set in few-
shot classification tasks. Our approach can be implemented in just few lines of code
by only using off-the-shelf operations, yet it is able to outperform state-of-the-art
methods on four benchmark datasets.

1 Introduction

Deep learning [16] allows computational models that are composed of multiple processing layers
to learn representations of data with multiple levels of abstraction, which has already demonstrated
its powerful capabilities in many computer vision tasks, e.g., object recognition [7]], fine-grained
classification [39], object detection [18]], etc. However, deep learning based models always require
large amounts of supervised data for good generalization performance. Few-Shot Learning (FSL) [37],
as an important technique to alleviate label dependence, has received great attention in recent years.
It has formed several learning paradigms including metric-based methods [29, 33}, 145]], optimization-
based methods [4} [25] 28], and transfer-learning based methods [3}, [24]].

More recently, it is intriguing to observe that there has been extensive research in FSL on exploring
how to utilize unlabeled data to improve model performance under few-shot supervisions, which
is Semi-Supervised Few-Shot Learning (SSFSL) [9} 15, 19} 123} 136}, 44]]. The most popular fashion
of SSFSL is to predict unlabeled data with pseudo-labels by carefully devising tailored strategies,
and then augment the extremely small support set of labeled data in few-shot classification, e.g.,
(9150 136]. In this paper, we follow this fashion and propose a simple but quite effective approach to
SSFSL, i.e., a Method of sUccesSIve exClusions (MUSIC), cf. Figurem

As you can imagine, in such label-constrained tasks, e.g., 1-shot classification, it would be difficult
to learn a good classifier, and thus cannot obtain sufficiently accurate pseudo-labels. Therefore, we
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Figure 1: Pipeline of our MUSIC approach, where we take 3-way few-shot classification for an exam-
ple. Specifically, the green data points marked with question mark are unlabeld data in SSFSL, “CLS”
represents the classes of data, and “CON” stands for the predicted confidence of the corresponding
pseudo-labels. In each iteration, we highlight the selected (negative/positive) pseudo-label with the
red color, and exclude that class in the following iteration. Note that, the unlabeled data at the bottom
is not returned with the final positive label due to our reject option strategy (6 = 0.2), cf. Eqn. @).

think about the problem in turn, and realize the process of pseudo-labeling in SSFSL as a series of
successive exclusion operations. In concretely, since it is hard to annotate which class the unlabeled
data belongs to, in turn, it should be relatively easyE| to predict which class it does not belong to based
on the lowest confidence prediction score. Thus, if we treat the predicted pseudo-labels in the previous
traditional way as labeling positive labels, our exclusion operation is to assign negative pseudo-labels
to unlabeled data. In the following, we can use the negative learning paradigm [10] to update the
classifier parameters and continue the negative pseudo-labeling process by excluding the predicted
negative label in the previous iteration, until all negative pseudo-labels are obtained. Moreover, it is
apparent to find that when all negative labels of unlabeled data are sequentially excluded and labeled,
their positive pseudo-labels are also obtained. We can thus eventually augment the small support set
with positive pseudo-labels, and fully utilize the auxiliary information from both labeled base-class
data and unlabeled novel-class data in SSFSL. Also, in our MUSIC, to further improve few-shot
classification accuracy, we equip a minimum-entropy loss into our successive exclusion operations
for enhancing the predicted confidence of both positive and negative labels.

In summary, the main contributions of this work are as follows:

* We propose a simple but effective approach, i.e., MUSIC, to deal with semi-supervised
few-shot classification tasks. To our best knowledge, MUSIC is the first approach to leverage
negative learning as a straightforward way to provide pseudo-labels with as much confidence
as possible in such extremely label-constrained scenarios.

* We can implement the proposed approach using only off-the-shelf deep learning compu-
tational operations, and it can be implemented in just few lines of code. Besides, we also
provide the default value recommendations of hyper-parameters in our MUSIC, and further
validate its strong practicality and generalization ability via various SSFSL tasks.

* We conduct comprehensive experiments on four few-shot benchmark datasets, i.e., mini-
ImageNet, tieredlmageNet, CIFAR-FS and CUB, for demonstrating our superiority over
state-of-the-art FSL and SSFSL methods. Moreover, a series of ablation studies and discus-
sions are performed to explore working mechanism of each component in our approach.

2 Related Work

Few-shot learning The research of few-shot learning [4] 29 [33] [42], |45]] aims to explore the
possibility of endowing learning systems the ability of rapid learning for novel categories from a few
examples. In the literature, few-shot learning methods can be roughly separated into two groups: 1)
Meta-learning based methods and 2) Transfer-learning based methods.

Regarding meta-learning based methods, aka “learning-to-learn”, there are two popular learning
paradigms, i.e., metric-based methods [29} |33} 45]] and optimization-based methods [4} 25, 28]].
More specifically, Prototypical Networks [29] as a classical metric-based method was considered

*Because the probability of selecting a class that does not belong to the correct label is high, the risk of
providing incorrect information in doing so is low, especially for SSFSL.



to generate an embedding in which data points cluster around a single prototype representation for
each class. DeepEMD [45] proposed to adopt the Earth Mover’s Distance as a metric to compute a
structural distance between dense image representations to determine image relevance for few-shot
learning. For optimization-based methods, MAML [4] learned an optimization method to follow the
fast gradient direction to rapidly learn the classifier for novel classes. In [23]], it reformulated the
parameter update into an LSTM and achieved this via a meta-learner.

Regarding transfer-learning based methods, they are expected to leverage techniques to pre-train a
model on the large amount of data from the base classes, without using the episode training strategy.
The pre-trained model is then utilized to recognize novel classes of few-shot classification. In
concretely, [24] proposed to directly set the final layer weights from novel training examples during
few-shot learning as a weight imprinting process. In [3], the authors investigated and shown such
transfer-learning based methods can achieve competitive performance as meta-learning methods.

Semi-supervised few-shot learning Semi-Supervised Learning (SSL) is an approach to machine
learning that combines a small amount of labeled data with a large amount of unlabeled data
during training [6 |46]]. In the era of deep learning, SSL generally utilizes unlabeled data from the
following perspectives, e.g., considering consistency regularization [14], employing moving average
strategy [30], applying adversarial perturbation regularization [22], etc.

In recent years, the use of unlabeled data to improve the accuracy of few-shot learning has received
increasing attention [9, [15] [19} 23| [36| 44], which leads to the family of Semi-Supervised Few-
Shot Learning (SSFSL) methods. However, directly applying SSL methods to few-shot supervised
scenarios usually causes inferior results due to the extreme small number of labeled data, e.g., 1-
shot. More specifically, to deal with the challenging SSFSL, Ren et al. [26] extended Prototypical
Networks [29] to use unlabeled samples when producing prototypes. TPN [[19] was developed to
propagate labels from labeled data to unlabeled data by learning a graph that exploits the manifold
structure of the data. Recently, state-of-the-art SSFSL methods, e.g., [9,[15}136], were proposed to
predict unlabeled data by pseudo-labeling and further augment the label-constrained support set in
few-shot classification. Distant from previous work, to our best knowledge, we are the first to explore
leveraging complementary labels (i.e., negative learning) to pseudo-label unlabeled data in SSFSL.

Negative learning As an indirect learning method for training CNNs, Negative Learning (NL) [10]]
was proposed as a novel learning paradigm w.r.t. typical supervised learning (aka Positive Learning,
PL). More specifically, PL indicates that “input image belongs to this label”, while NL means “input
image does not belong to this complementary label”. Compared to collecting ordinary labels in PL, it
would be less laborious for collecting complementary labels in NL [L0]. Therefore, NL can not only
be easily combined with ordinary classification [5,10], but also assist various vision applications, e.g.,
[12] dealing with noisy labels by applying NL, [35] using unreliable pixels for semantic segmentation
with NL, etc. In this paper, we attempt to leverage NL to augment the few-shot labeled set by
predicting negative pseudo-labels from unlabeled data, and thus obtain more accurate pseudo labels
to assist classifier modeling under label-constrained scenarios.

3 Methodology

3.1 Problem Formulation

Definition In Semi-Supervised Few-Shot Learning (SSFSL), we have a large-scale dataset Dy, s
containing many-shot labeled data from each base class in Cp,se, and a small-scale dataset D, pe;
consisting of few-shot labeled data as a support set S from the category set Cp,ovei, as well as a certain
number of unlabeled data U/ acquired also from C,, ;. Note that, Dy, e is disjoint from Dy, s for
generalization test. The task of SSFSL is to learn a robust classifier f(-;¢) based on both S and U for
making predictions on new queries Q from D,,,,¢;, Where Dy, s is utilized as auxiliary data.

Setting Regarding the basic semi-supervised few-shot classification setting, it generally faces the
N-way-K -shot problem, where only K labeled data from S and U unlabeled data from I/ per class
are available to learn an N-way classifier. In this setting, queries in Q are treated independently of
each other, and are not observed in U/. It is referred to as inductive inference.



For another important setting in SSFSL, i.e., transductive inference, the query set Q is observed also
during training and joint with /.

3.2 MUSIC: A Simple Method of sUccesSIve exClusions for SSFSL

The basic idea of our MUSIC is to augment the few-shot labeled set (the support set) S by predicting
“negative” (i.e., “saying not belonging to”) pseudo-labels to unlabeled data I/, particularly for such
label-constrained scenarios.

Given an image I, we can obtain its representation by training a deep network F'(-; ©) based on
auxiliary data Dygse:

x=F(I;0) e R?, (1)
where O is the parameter of the network. After that, F'(-; ©) is treated as a general feature embedding
function for other images and O is also fixed [[31]]. Then, considering the task of c-class classification,
the aforementioned classifier f(-; §) maps the input space to a c-dimensional score space as

p = softmax(f(x;0)) € R°, ()

where p is indeed the predicted probability score belonging to the c-dimensional simplex A°~1,
softmax(-) is the softmax normalization, and @ is the parameter. In SSFSL, 6 is randomly initialized
and fine-tuned only by N K labeled data in S by the cross-entropy loss:

L(f,y)= _Zyk log pi. , 3)
K

where y € R€ is a one-hot vector denoted as the ground-truth label w.r.t. x, and y; and py, is the k-th
element in y and p, respectively.

To augment the limited labeled data in S, we then propose to predict unlabeled images (e.g., I*)
in U with pseudo-labels from an indirect learning perspective, i.e., excluding negative labels. In
concretely, regarding a conventional classification task, the ground-truth y;, = 1 represents that its
data x belongs to class k, which can be also termed as positive learning. In contrast, we hereby
denote another one-hot vector y € R€ as the counterpart to be the complementary label [10, [12],
where yJ;,, = 1 means that x does not belong to class %, aka negative learning. Due to the quite
limited labeled data in few-shot learning scenarios, the classifier f(-; #) is inaccurate to assign correct
positive labels to 7. On the contrary, however, it could be relatively easy and accurate to give such
a negative pseudo-label to describe that I* is not from class k by assigning 3;: = 1. Therefore, we
realize such an idea of “exclusion” by obtaining the most confident negative pseudo-label based on
the class having the lowest probability score. The process is formulated as:

w1 if k=argmin(p®) and pj <9¢
Yk =\ rejection otherwise ’

“4)

where p* represents the prediction probability w.r.t. I*, and § is a reject option to ensure that there is
sufficiently strong confidence to assign pseudo-labels. While if all p} are larger than ¢, no negative
pseudo-labels are returned for I in this iteration.

Thus, after obtaining samples and negative pseudo-label pairs (I*, "), f(-;6) can be updated by
L(f,¥") == 7ilog(l —p}). )
k

In the next iteration, we exclude the k-th class, i.e., the negative pseudo-label in the previous iteration,
from the remaining candidate classes. After that, the updated classifier is employed to give the
probability score pq\‘k € R 1 of I“, without considering class k. The similar pseudo-labeling
process is conducted in a successive exclusion manner until all negative pseudo-labels are predicted
according to Eqn. (@), or no negative pseudo-labels are able to be predicted with a strong confidence.

Finally, in the last iteration, for those samples in ¢/ whose negative labels are all labeled, their positive
pseudo-labels are naturally available. We can further update the classifier by following Eqn. (3) based
on the final positive labels. Then, the updated classifier f(-; #) is ready for predicting Q as evaluation.

Moreover, to further improve the probability confidence and then promote pseudo-labeling, we
propose to equip a minimum-entropy loss (MinEnt) upon p“ by optimizing the following objective:

L(f.p")=— pilogp}. (6)
k



Algorithm 1 Pseudo-code of the proposed MUSIC

# f: a classifier, cf. Eqn. (2) of the paper

# 0: a reject option to select the negative label, cf. Eqn. (4) of the paper

# c: the number of classes

# Position: a list to record the label which has been selected as the negative label in each iteration
# S, U: embeddings of the support and unlabeled set which have been extracted by the pre-trained CNN
model (|S|=L, |U[=M)

begin:
logits < f(S) # support logits (L, c)
loss <— CELoss(logits, targets) # CrossEntropy

while True:
# negative logits and negative label (M)
neg_logits, neg_label < get_neg_samples(Position, f, U, )
if len(neg_label)==0:break # the condition to stop the iterations
# NegCrossEntropy loss, cf. Egqn. (5); Minimum-Entropy loss, cf. Eqn. (6) of the paper
loss <— NegCELoss(neg_logits, neg_label) + MiniEntropy(neg_logits)
end

pos_logits, pos_label <— get_pos_samples(Position)
loss < CELoss(pos_logits, pos_label) + MiniEntropy(pos_logits)
end

It could sharp the distribution of p“ and discriminate the confidence of both positive and negative
labels. Algorithm [3.2]provides the pseudo-code of our MUSIC.

4 Experiments

4.1 Datasets and Empirical Settings

We conduct experiments on four widely-used few-shot learning benchmark datasets for general
object recognition and fine-grained classification, including minilmageNet [25]], tieredImageNet [26],
CIFAR-FS [2]] and CUB [34]. Specifically, minilmageNet consists of 100 classes with 600 samples of
84 x 84 resolution per class, which are selected from ILSVRC-2012 [27]]. tieredlmageNet is a larger
subset from ILSVRC-2012 with 608 classes in a man-made hierarchical structure, where its samples
are also of 84 x 84 image resolution. CIFAR-FS is a variant of CIFAR-100 [13] with low resolution,
which has 100 classes and each of them has 600 samples of 32 x 32 size. Regarding CUB, it is a
fine-grained classification dataset of 200 different bird species with 11,788 images in total.

For fair comparisons, we obey the protocol of data splits in [9, 15} 36]] to train the feature embedding
function and conduct experiments for evaluations in SSFSL. We choose the commonly used ResNet-
12 [7]] as the backbone network, and the network configurations are followed [9} 15| 36]]. For
pre-training, we just follow the same way of [38]] to pre-train the network, but do not use any pseudo
labels during pre-training. For optimization, Stochastic Gradient Descent (SGD) with momentum
of 0.9 and weight decay of 5 x 10~* is adopted as the optimizer to train the feature extractor from
scratch. The initial learning rate is 0.1, and decayed as 6 x 1073, 1.2 x 1072 and 2.4 x 10~* after
60, 70 and 80 epochs, by following [38]. Regarding the hyper-parameters in MUSIC, the reject
option § in Eqn. @) is set to % and the trade-off parameter over Eqn. (6] is set to 1 as default for
all experiments and iterations, which shows its practicality and non-tricky. During evaluation, the
last layer of pre-trained model is replaced by an ¢5-normalization layer and a c-dimensional fully
connected layer as the classifier. We also use SGD for optimization. Our MUSIC and all baselines
are evaluated over 600 episodes with 15 test samples in each class. All experiments are conducted by
MindSpore with a GeForce RTX 3060 GPU.

4.2 Main Results

We report the empirical results in the following four setups. All results are the average accuracy and
the corresponding 95% confidence interval over the 600 episodes are also conducted.

Basic semi-supervised few-shot setup We compare our MUSIC with state-of-the-art methods
in the literature in Table[I] As shown, our simple approach outperforms the competing methods
of both generic few-shot learning and semi-supervised few-shot learning by a large margin across
different few-shot tasks over all the datasets. Beyond that, we also report the results of solely using



Table 1: Comparisons of 5-way few-shot classification with the basic semi-supervised few-shot setup. These
results are performed with 30/50 unlabeled samples for 5-way-1-shot/5-way-5-shot, respectively. The light blue
blocks represent that these methods are tested in the inductive setup, and the light yellow blocks are tested in the
basic semi-supervised setup. The highest accuracy is marked in red, and the second highest accuracy is in blue.

METHOD BACKBONE minilmageNet | tieredImageNet CIFAR-FS CUB
1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot
MatchingNet [33]] 4 CONV 4356 55.31 - - - - - -
MAML [4]] 4 CONV 48.70  63.11 | 51.67 7030 | 5890 71.50 | 54.73 75.75
ProtoNet [29] 4 CONV 4942 68.20 | 53.31 72.69 | 55,50 72.00 | 5046 76.39
LEO [28] WRN-28-10 | 61.76 77.59 | 66.33 81.44 - - - -
CAN [8] ResNet-12 | 63.85 79.44 | 69.89 84.23 - - - -
DeepEMD [45] ResNet-12 | 6591 82.41 | 71.16 86.03 | 7458 86.92 | 75.65 88.69
FEAT [43] ResNet-12 | 66.78 82.05 | 70.80 84.79 - - 7327 85.77
RENet [[L1] ResNet-12 | 67.60 82.58 | 71.61 8528 | 74.51 86.60 | 82.85 91.32
FRN [40] ResNet-12 | 66.45 82.83 | 72.06 86.89 - - 83.55 92.92
COSOC [21]] ResNet-12 | 69.28 85.16 | 73.57 87.57 - - - -
SetFeat [1]] ResNet-12 | 68.32 82.71 | 73.63 87.59 - - 79.60 90.48
MCL [20]] ResNet-12 | 69.31 85.11 | 73.62 86.29 - - 85.63 93.18
STL DeepBDC [41] | ResNet-12 | 67.83 8545 | 73.82  89.00 - - 84.01 94.02
TPN [19] 4 CONV 52.78 6642 | 55.74 71.01 - - - -
TransMatch [44]] WRN-28-10 | 60.02 79.30 | 72.19 82.12 - - - -
LST [17] ResNet-12 | 70.01 78.70 | 77.70  85.20 - - - -
EPNet [23] ResNet-12 | 70.50 80.20 | 7590 82.11 - - - -
ICI [36] ResNet-12 | 69.66 80.11 | 84.01 89.00 | 76.51 84.32 | 89.58 92.48
iLPC [15] ResNet-12 | 70.99 81.06 | 85.04 89.63 | 78.57 85.84 | 90.11 -
PLCM [9] ResNet-12 | 72.06 83.71 | 84.78 90.11 | 77.62 86.13 - -
Ours ResNet-12 | 74.96 85.99 | 8540 90.79 | 7896 87.25 | 90.76 93.27
Ours (only neg) ResNet-12 | 73.86 85.11 | 8491 90.29 | 7826 86.53 | 89.91 92.46
Ours (only pos) ResNet-12 | 74.44 85.86 | 8533 90.62 | 78.81 87.11 | 90.27 93.11

Table 2: Comparisons of 5-way few-shot classification with the transductive setup. The highest accuracy is
marked in red, and the second highest accuracy is in blue.

METHOD BACKBONE minilmageNet | tieredImageNet CIFAR-FS CUB

1-shot  5-shot | 1-shot 5-shot | 1-shot 5-shot | 1-shot 5-shot

TPN [19]] 4 CONV 5551 69.86 | 59.91 73.30 - - - -

EPNet [23]] ResNet-12 66.50 81.06 | 76.53 87.32 - - - -
ICI [36] ResNet-12 66.80 79.26 | 80.79 8792 | 7397 84.13 | 88.06 92.53
iLPC [15] ResNet-12 69.79 79.82 | 83.49 8948 | 77.14 8523 | 89.00 92.74

PLCM [9] ResNet-12 70.92 82.74 | 82.61 89.47 - - - -
Ours ResNet-12 72.01 8349 | 83.57 89.81 | 77.56 85.49 | 89.40 9291
Ours (only neg) | ResNet-12 7146 83.04 | 83.20 89.33 | 77.26 85.10 | 88.73 92.51
Ours (only pos) | ResNet-12 71.83 8331 | 8344 89.57 | 7742 8533 | 89.31 92.78

the pseudo-labeled negative or positive samples generated by our MUSIC, which is denoted by “Ours
(only neg)” or “Ours (only pos)” in that table. It is apparent to observe that even only using negative
pseudo-labeling, MUSIC can still be superior to other existing FSL methods. Moreover, compared
with the results of only using positive pseudo-labeling, the results of only using negative are worse. It
reveals that accurate positive labels still provide more information than negative labels [10]].

Transductive semi-supervised few-shot setup In the transductive setup, it is available to access
the query data in the inference stage. We also perform experiments in such a setup and report the
results in Table[2} As seen, our approach can still achieve the optimal accuracy on all the four datasets,
which justifies the effectiveness of our MUSIC. Regarding the comparisons between (only) using
negative and positive pseudo-labels, it has similar observations as those in Table



Table 3: Comparisons of 5-way few-shot classifica-
tion with the distractive semi-supervised setup. &

minilmageNet|tieredImageNet
1-shot 5-shot |1-shot 5-shot
MS k-Means [26] [49.00 63.00 [51.40 69.10

TPN [19] 50.40 64.90 [53.50 69.90

METHOD

&l

Test accuracy

‘ Icl (1) - EPNet (5)
TPN with MTL [19]|61.30 72.40 |71.50 82.70 e +§fﬁ: —i—Etim“i:si
LST [17] 64.10 77.40 |73.50 83.40 sst = e et
EPNet [23] 64.70 76.80 |72.20 82.10 . _ #of nlabeled samples
PLCM [9] 68.50 80.20 |79.10 87.80 Flgure 2: Comparlson results of varied unlabeled
. . . . samples on minilmageNet. The number in the brack-
Ours 68.62 80.67 [79.69 88.50 ets of the legend represents K -shot in SSFSL.
Table 4: Comparisons of 5-way few-shot classifi- Table 5: Comparisons of 5-way few-shot classifi-
cation with different orders of negative and positive cation without / with the minimum-entropy loss (Mi-
pseudo-labeling w.r.t. unlabeled data. nEnt), cf. Eqn. (6).
SETTINGS minilmageNet CUB SETTINGS minilmageNet CUB
1-shot 5-shot | 1-shot 5-shot 1-shot 5-shot | 1-shot 5-shot
neg — pos — --- | 74.77 85.43 | 90.47 92.59 Ours (w/o MinEnt) | 74.73 85.74 | 90.45 92.98
pos — neg — --- | 74.54 85.09 | 90.29 92.24 Ours (w/ MinEnt) | 74.96 85.99 | 90.76 93.27

Distractive semi-supervised few-shot setup In real applications, it might not be realistic to collect
a clean unlabeled set without mixing any data of other classes. To further validate the robustness of
MUSIC, we conduct experiments with the distractive setup, i.e., the unlabeled set contains distractive
classes which are excluded in the support set. In that case, positive pseudo-labels are more prone to
error, while negative pseudo-labels have a much lower risk of error. Table 3] presents the comparison
results and shows that our approach can perform as the best solution in all distractive semi-supervised
few-shot classification tasks.

Variety-unlabeled semi-supervised few-shot setup In order to analyze the performance in the
case of different unlabeled samples, we perform our MUSIC under the variety-unlabeled semi-
supervised setup and compare with state-of-the-arts, e.g., ICI [36], LST [17] and PLCM [9]. As
shown in Figure |2} our approach significantly outperforms over these methods in different K -shot
tasks of SSFSL. It further validates the effectiveness and generalization ability of our MUSIC.

4.3 Ablation Studies and Discussions

We hereby analyze and discuss our MUSIC approach by answering the following questions based on
ablation studies on two datasets, i.e., minilmageNet and CUB.

Will negative pseudo-labels be easier to predict under SSFSL than positive ones? As assumed
previously, in such an extremely label-constrained scenario, e.g., 1-shot learning, it might be hard
to learn an accurate classifier for correctly predicting positive pseudo-labels. In this sub-section,
we conduct ablation studies by alternatively performing negative and positive pseudo-labeling to
verify this assumption. In Table[] different settings denote different orders of negative and positive
pseudo-labeling in SSFSL. For example, “neg — pos — - - - ” represents that we firstly obtain negative
pseudo-labels by our MUSIC (without using the final positive labels) and update the model, and
then we obtain positive pseudo—labelsE] and update model, and so on. Regarding the iteration time, it
is relevant to the number of K in the K-way classification. In concretely, for 5-way classification,
our MUSIC returns the most confident negative pseudo-label in the current iteration and excludes
it for the next iteration. Thus, after four times of “neg — pos”, all negative pseudo-labelings are
finished and the results can be reported. Similarly, “pos — neg — - - - ” means that we get the positive
pseudo-labels first, followed by the negative ones. As the results shown in Table ] we can see that
obtaining negative pseudo-labels first obviously achieves better results than positive first, which

3The method of positive pseudo-labeling here is a baseline solution, which trains a classifier with cross-
entropy and obtains the positive pseudo-label by the highest logits above a certain threshold (e.g., 0.7).



shows that labeling negative pseudo-labels first can lay a better foundation for model training, and
further answers the question in this sub-section as “YES”.

Is the minimum-entropy loss effective? In our MUSIC, to further improve the probability confi-
dence and then promote pseudo-labeling, we equip the minimum-entropy loss (MinEnt). We here
test its effectiveness and report the results in Table[5] It can be found that training with MinEnt
(i.e., the proposed MUSIC) brings 0.2~0.3% improvements over training without MinEnt in SSFSL.

Is the reject option ¢ effective? We hereby Table 6: Comparisons of 5-way few-shot classification
verify the effectiveness and necessity of the without / with the reject option 6, cf. Eqn. (@).

reject option ¢ in MUSIC. The § in our ap-
proach acts as a safeguard to ensure that the SETTINGS ‘ minilmageNet ‘ CUB
obtained negative pseudo-labels are as con- l-shot 5-shot | 1-shot 5-shot
fident as possible. We present the results in Ours (w/0 9) ‘ 74.04 8531 ‘ 9044 92.87
Table[6] and can observe that MUSIC with § Ours (w/0) | 74.96 8599 | 90.76 93.27
achieves significantly better few-shot classifi-

cation accuracy than MUSIC without 4. Additionally, even without &, our approach can still perform
well, i.e., the results being comparable or even superior to the results of state-of-the-arts.

What is the effect of iteration manner in our MUSIC?  As
aforementioned, our approach works as a successive exclusion
manner until all negative pseudo-labels are predicted, and even-
tually obtaining positive pseudo-labels. As pseudo-labeling
conducting, it is interesting to investigate how the performance
changes as the iteration progresses. We report the correspond-
ing results in Figure[3] As shown, on each task of these two
datasets, our approach all shows a relatively stable growth

trend, i.e., 0.5~2% improvements over the previous iteration. o GuB (52me)
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Test accuracy

What is the performance of pseudo-labeling in MUSIC?
In this sub-section, we explicitly investigate the error rates of
both negative and positive pseudo-labels predicted by our ap-
proach. We take 5-way-5-shot classification on minilmageNet Figure 3: Our results of 5-way few-shot
and CUB as examples, and first present the pseudo-labeling classification with iteration increasing.
error rates of negative labels in Table[7} Since the task is 5-way

prediction, there are totally four iterations of negative pseudo-labeling in MUSIC reported in that
table. Except for error rates, we also detailedly report the number of wrong labeled samples in each
iteration, as well as the total number of labeled samples. Note that, in the third and forth iterations of
negative pseudo-labeling, the total number of labeled samples are less than the number of unlabeled
data (i.e., 250), which is due to the reject option in MUSIC. That is to say, those samples cannot be
pseudo-labeled with a strongly high confidence. Meanwhile, we also see that, as the pseudo-labeling
progresses, the error rates slowly increase, but the final error rate of negative labeling is still no higher
than 6.7%. It demonstrates the effectiveness of our approach from a straightforward view.

# iteration

On the other side, Table [§| compares the positive pseudo-labeling error rates, and also reports the
proportion of labeled samples in the total number of unlabeled samples. Regarding ICI [36] and
iLPC [15], although they designed tailored strategies to ensure the correctness of pseudo-labels, e.g.,
instance credibility inference [36] and label cleaning [15]], these methods still have high pseudo-
labeling error rates (over 25%). Compared with them, our approach has significantly low error
rates, i.e., about 10%. Meanwhile, we also note that our MUSIC only predicts about 80% of the
unlabeled data, which can be regarded to be relatively conservative. However, it reveals that our

Table 7: Pseudo-labeling error rates of negative labels of each iteration in 5-way-5-shot classification.

ITERATION _ | 1 \ 2 \ 3 \ 4
minilmageNet | 0.43% (1.1/250) | 1.17% (2.9/250) | 2.93% (7.3/249) | 4.15% (8.2/198)
CUB 0.69% (1.3/195) | 1.83% (3.6/195) | 4.47% (8.5/190) | 6.63% (10/152)




Table 8: Pseudo-labeling error rates and proportion of positive labels in 5-way-5-shot classification.

METRIC DATASET ICI [36] iLPC [15] Ours (w/o 0) Ours

minilmageNet | 24.72% (61.8/250)|23.92% (59.8/250) | 14.92% (37.3/250) | 9.09% (18.0/198)

ERRORRATE | g 129.03% (56.6/195) | 26.10% (50.9/195) | 20.00% (39.0/195) | 11.91% (18.1/152)

minilmageNet 100% 100% 100% 79.20%

PROPORTION CUB 100% 100% 100% 77.95%

(a) ICI [36] (b) iLPC [15] (c) Our MUSIC

Figure 4: ¢-SNE [32] visualization of samples for the 5-way 5-shot 50-unlabeled task. Different colors denote
different classes. For ICI and iLPC, the circled data points represent the selected samples. For our MUSIC, the
circled are the samples associated with high confidence of positive pseudo-labels in the final iteration.

approach still has a large room for performance improvement. Moreover, Table [§]also shows that,
even if our approach removes the reject option strategy, its error rates are still lower than those of
state-of-the-arts.

Additionally, we visualize the positive pseudo-labels with high confidence by ¢-SNE [32]] in Figure 4]
Compared with these methods, we can obviously find that the positive samples with high confidence
predicted by our MUSIC are both more centralized and distinct. This also explains the satisfactory
performance of our approach when using the positive pseudo-labels and using the positive alone (cf.
Table[T]and Table [2) from the qualitative perspective.

Are the pseudo-labels of MU- Table 9: The averaged number of negative (positive) pseudo-labeled
SIC a balanced distribution? samples not-belonging (belonging) to different classes in our MUSIC.
In this sub-section, we are still

interested in investigating what CLASS INDEX | 1 | 2 3 | 4 | S

|
kind of data distribution the  # of neg. pseudo-labeling | 49.85 | 49.74 | 49.93 | 50.19 | 50.30
pseudo-labeled samples are to # of pos. pseudo-labeling | 40.13 | 41.13 | 40.21 | 39.89 | 39.99

further analyze how our ap-

proach works well. As shown in Table [9] we present the averaged number of both negative and
positive pseudo-labeled samples in all 600 episodes of 5-way-5-shot classification tasks on mini-
ImageNet. It is apparent to see that the pseudo-labeled samples present a very clearly balanced
distribution, which aids in the modeling of classifiers across different classes in SSFSL.

5 Conclusion

In this paper, we dealt with semi-supervised few-shot classification by proposing a simple but
effective approach, termed as MUSIC. Our MUSIC worked in a successive exclusion manner to
predict negative pseudo-labels with much confidence as possible in the extremely label-constrained
tasks. After that, models can be updated by leveraging negative learning based on the obtained
negative pseudo-labels, and continued negative pseudo-labeling until all negative labels were returned.
Finally, combined with the incidental positive pseudo-labels, we augmented the small support set
of labeled data for evaluation in SSFSL. In experiments, comprehensive empirical studies validated
the effectiveness of MUSIC and revealed its working mechanism. In the future, we would like to
investigate the theoretical analyses about our MUSIC in terms of its convergence and estimation error
bound, as well as how it performing on traditional semi-supervised learning tasks.
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