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ABSTRACT

The magnitude of a finite metric space is a recently-introduced invariant quantity.
Despite beneficial theoretical and practical properties, such as a general utility for
outlier detection, and a close connection to Laplace radial basis kernels, magnitude
has received little attention by the machine learning community so far. In this
work, we investigate the properties of magnitude on individual images, with each
image forming its own metric space. We show that the known properties of outlier
detection translate to edge detection in images and we give supporting theoretical
justifications. In addition, we provide a proof of concept of its utility by using a
novel magnitude layer to defend against adversarial attacks. Since naive magnitude
calculations may be computationally prohibitive, we introduce an algorithm that
leverages the regular structure of images to dramatically reduce the computational
cost.

1 INTRODUCTION

The topology community has recently invested much effort in studying a newly introduced quantity
called magnitude (Leinster, 2010). While it originates from category theory, where it can be seen
as a generalization of Euler characteristics to metric spaces, the magnitude of a metric space is
most intuitively understood as an attempt to measure the effective size of a metric space. As a
descriptive scalar, this quantity extends the set of other well known descriptors such as the rank,
diameter or dimension. However, unlike those descriptors, the properties of magnitude are not yet
well understood.

Even though the metric space structure of dataset is of the utmost importance to understand e.g.
the regularisation behaviour of classifiers, magnitude has received little attention by the machine
learning community so far. However, it turns out that one can instead investigate the magnitude of
each data point separately, considering each data instance as its own metric space. Following this line
of thought, magnitude vectors were introduced as a way to characterise the contribution of each data
sample to the overall magnitude, such that the sum of the elements of the magnitude vector amounts
to the magnitude. As shown in previous works, the magnitude vectors can detect boundaries of a
metric space, with boundary points having a larger contribution to magnitude (Bunch et al., 2021).

In this work, we seek to advance the research about magnitude in machine learning by addressing
these challenges. Since the metric space structure of an entire dataset may not be the most useful
application in machine learning, we instead therefore consider the magnitude of each individual data
point by endowing each of them with a metric space structure and explore its properties. In particular,
because of their ubiquity and the large dimensionality, we focus our analysis on image datasets, where
each individual image is seen as a metric space. We then extend previous results by investigating
the theoretical properties associated with magnitude vector in such a context. In addition, we study
the properties of the magnitude vector for improving the adversarial robustness of existing neural
network architectures for image classification. We propose a novel, fully differentiable, magnitude
layer, which can serve as an input layer for any deep learning architecture. We show that it results in
more robustness for several types of adversarial attacks, with an acceptable reduction in classification
performance, paving the way for a new exciting direction in the creation of robust neural architectures.
Moreover, since naive magnitude calculations may be computationally prohibitive for large images,
we introduce a new algorithm that dramatically speeds up the computation of the magnitude vector.
Leveraging the regular structure of images, this allows to conveniently approximate magnitude vectors
for large images with minimal error. Intractable computational runtime often stymies the applicability
of magnitude in machine learning and therefore hinders further the research of it; our algorithm opens
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the door to using magnitude efficiently in machine learning research. Equipped with the speed up
algorithm, we showcase possible use cases of magnitude vectors in machine learning in the realm of
in edge detection and adversarial robustness.

Our contributions are summarized as follows:

• We formalize the notion of magnitude vectors for images and investigate the impact of the
choice of different metrics.

• We introduce an algorithm that dramatically speeds up the computation of magnitude with
little loss, which removes a critical roadblock in using magnitude vectors in machine learning
applications.

• We provide a theoretical framework to understand the edge detection capability of magnitude
vectors and report empirical supporting evidence.

• We demonstrate the capabilities of a novel, fully differentiable, magnitude layer for improv-
ing adversarial robustness of computer vision architectures.

2 THEORY

In this section, we introduce essential notions of the theory of magnitude and magnitude vectors and
develop the theoretical background that will help interpreting the empirical results.

2.1 MATHEMATICAL BACKGROUND

We start by formally introducing the notion of a finite metric space.
Definition 1. A metric space is an ordered pair (B, d), where B is a finite set and d is a metric on
B. We denote the cardinality of B by |B|.

In our application the set B is a set of vectors B ⊂ Rn and the metric considered will be the `p norm.
In order to define the magnitude of such a space we first define the similarity matrix.
Definition 2. Given a finite metric space M = (B, d), its similarity matrix is ζM with entries
ζM (i, j) = e−d(Bi,Bj) for Bi, Bj ∈ B.

The similarity matrix can be seen as the weights arising from an exponential kernel. We are now in a
position to define the magnitude vector and the magnitude of a finite vector space.
Definition 3. Given a finite metric space M = (B, d) with |B| = n and similarity matrix ζM with
inverse ζ−1M , the magnitude vector of element Bi is given by wi =

∑n
j=1 ζ

−1
M (i, j). Moreover, the

magnitude of M , magM is
∑n
i,j=1 ζ

−1
M (i, j) =

∑n
i=1 wi.

Not every finite metric space has a magnitude. In particular, the magnitude is not defined when the
similarity matrix is not invertible; the magnitude therefore characterizes the structure of a metric
space to some extent. It should be also noted that the definition of the magnitude vector is reminiscent
of optimising a support vector machine. This connection has been pointed out for the Euclidean norm
by Bunch et al. (2021).

2.2 THEORETICAL RESULTS

2.2.1 THE MAGNITUDE OF AN IMAGE

This work focuses on the analysis of magnitude on images, by considering each individual image as
its own metric space. We then first define how we build such a metric space from an image and then
prove the existence of a magnitude on images.

We refer to the metric spaces on images as image metric spaces and define them as follows.
Definition 4. Let I ∈ Rc×n×m be an image with c channels, height n and width m. Let {V :
vij , i ∈ 1, . . . ,m; j ∈ 1, . . . , n} be the set of c-dimensional vectors of pixel values in the image.
Then the image metric space M(B, d) is given by a set of vectors B ⊂ Rc+2 of the form B =

{(i, j, v(1)ij , . . . , v
(c)
ij )T : ∀vij ∈ V } together with a metric d on Rc+2.
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Informally, we put all vectors corresponding to pixel values on a grid, concatenating the position
vector with the pixel value vector and use the resulting vectors as the ground set B for our finite
metric space. Let us note that |B| = m× n and therefore the number of points in the metric space
can be quite large even for moderately-sized images, a potential limitation that we address in Section
2.3.

We now turn to investigating when an image metric space has magnitude and, by extension, a
magnitude vector. This is a priori not clear since, as we saw, the existence of magnitude depends on
the properties of the metric space.

From the definition of magnitude (Definition 3), it is readily seen that an image metric space M
has magnitude if and only if its similarity matrix ξM is invertible. As generic n × n matrices are
invertible (i.e. subjecting any non-invertible matrix to a random perturbation will almost certainly
result in an invertible matrix), we conclude that generic image metric spaces have magnitude. In
fact, since the vectors b ∈ B of the image metric space by a factor t > 0 can be rescaled, we can
define scaled metrics d(·, ·) 7→ td(·, ·). This rescaled metric space has magnitude except for finitely
many t > 0 (Leinster et al., 2017, Proposition 2.8). In other words, we can always find a scaling
which gives rise to a magnitude vector. The univariate function defined by this scaling is called the
magnitude function.

In general, we are interested in computing the magnitude of all images in a whole dataset, and not
only of a single image, such that we can compare their magnitude (vectors). Therefore, we would like
theoretical guarantees that there exists a scaling such that every image in a dataset has a magnitude
vector.

Proposition 5. Let M(B, d) be an image metric space. If d is an `p norm with 0 < p < 2, then
every image metric space M has magnitude.

Proof. This is a special case of (Meckes, 2013, Theorem 3.6).

The above proposition theoretically only applies to `p norm with 0 < p < 2. However, in practice,
we find that on the various datasets we considered in this work, an `p norm with p = 4, 10 and the
Hamming distance also lead to invertible similarity matrices, and thus to the existence of magnitude.

The image metric space exhibits substantial structure; in particular, there is an underlying regular
subspace (the grid). To quantify this further, we use the notion of a product space.

Lemma 6. Let M1(B1, d1) and M2(B2, d2) be two finite metric spaces with d1, d2 being `p norms.
Its product metric spaceM = M1×M2 is a metric space with a metric ρp : (B1×B2)×(B1×B2)→
R such that

ρp((x1 × y1), (x2 × y2)) = p
√

(d1(x1, x2)p + d2(y1, y2)p, 1 ≤ p ≤ ∞.

Proof. This is a special case of (Dovgoshey & Martio, 2009).

Note that the product space formulation gives a lot of freedom, since every positively weighted
combination of d1 and d2 is also a metric on the product space.

Magnitude vector on images based on harmonic analysis We now present our main result of
this subsection which is an interpretation of the magnitude vector for images based on harmonic
analysis. For this we consider grey scale images, however, our reasoning generalises to colour images.
First, notice that a grey scale image can be seen as discretisation of a surface in R3, i.e. z = f(x, y),
where x, y are the pixel positions and z is the brightness. In general, it is not clear what an “outlier” on
a continuous surface or curve is. In this paper we define an outlier as a point on the surface where the
gradient is large, i.e. neighbouring points are further away w.r.t. some distance measure. In the image
case, outliers are points where the brightness value is substantially different between neighbouring
pixels. We can use this reasoning to define a filtration F on the vectors of B, bij = (i, j, v

(1)
ij )T ,

namely ∅ ⊆ B(1) ⊆ B(2) ⊆ · · · ⊆ B(K) = B such that v(1)ij < δ(k) for k = 1, . . . ,K, where the
δ(k) are different brightness thresholds. Due to symmetry in the problem we also define F ′ with
criterion v(1)ij ≥ δ(k). Further, we define the projection onto R2, p : R3 → R2, p(bij) 7→ (i, j). By
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Figure 1: A schematic example of the filtration. In (a) we introduce three thresholds, 0, 0.5, 1. In
F all points below the grey planes are projected to the unit square and in F ′ all points above are
projected. (b) is an illustration of the 0.5 level of the filtration F and (c) is is the same for F ′. Point
size and colour indicate the magnitude vector values. In (d) we reconstruct the magnitude vector.

considering the projections of each subset of F (F ′) we break the problem down into successive
boundary detection of compact subsets of R2. To extend this reasoning to colour images we can
either consider each channel as a grey scale image or define multi-dimensional filtrations. A visual
description of our reasoning is found in Figure 1.

To investigate the effect of different metrics on boundary detection, we consider the behaviour of the
weighting vector on the 2-dimensional grid. We closely follow the argument of Bunch et al. (2021),
extending their results to the product space metric in the case when di are `p norms with p = 1, 2 and

ρ((x1 × z1), (x2 × z2)) = α1d1(x1,x2) + α2d2(z1, z2) (1)

for some positive weights α1, α2. For image we can consider the xi as two-dimensional vectors
indicating the position on the unit square and zi as the corresponding brightness value. Consider a
regular 2d grid and the equation defining a weighting on the grid points ζMv = (1, . . . , 1)T . Using a
continuous analogue, this can be written as a convolution (Bunch et al., 2021)

f ? v(x) =

∫
R2

f(x− y)v(y) =

∫
R2

e−αd(x,y)v(y) = I[0,1]2(x), (2)

where I[0,1]2 is the indicator function and d is any translation invariant metric. Using the Fourier
transform,

F(f)(ξ) =

∫
R2

e−i2πx·ξf(x)dx, (3)

its well-known properties Folland (1999) and the convolution theorem, we can derive an intuitive
understanding of the magnitude vector and the effects of specific metrics. In the case of d(·, ·) being
the Euclidean (`2) norm, it has been shown in (Bunch et al., 2021) that

Γ( 3
2 )

απ
3
2

(α2 −
2∑
i=1

∂2i )
3
2 I[0,1]2 = v, (4)

where we generalised the result of Bunch et al. (2021) to the unit square. We can interpret equation 4
as the weighting v being constant in the interior of the unit square (∂2i is zero in interior) and different
to this constant on the boundary. In fact, the weighting will also be constant on the edges and corners.

In the Euclidean case it has been shown (Bunch et al., 2021) that the intuitive understanding translates
rigorously to compact subsets of Rn with n odd using distribution theory. Guided by this, we continue
our argument using the Fourier transform.

If d(·, ·) is the `1 norm, i.e. the Manhattan or Cityblock distance, we obtain a similar result to
equation 4, [

2∏
i=1

(α2 − ∂2i )

]
I[0,1]2 = v, (5)
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in other words, the `1 norm admits the same interpretation as `2, however, this time the differential
operators acts multiplicatively on each dimension.

For the product space metric ρ(·, ·) = α1d1(·, ·) + α2d2(·, ·) and di are `p with p = 1, 2 it follows
that the Fourier transform is a product of the single-metric results. Equipped with this insight, we can
now explain the edge detection capabilities of the magnitude vector.

Consider a filtration F (and F ′) on a grey scale image and choose a subset of vectors B(i) from the
filtration. Apply the projection map p to every vector in this subset. The transformed set is a grid with
potentially “missing” grid points on the domain [0, n]× [0,m]. From the results on the unit square
and the discretising of the ∂ operator, we expect a constant weighting vector except on the boundaries
of the grid, i.e. on points adjacent to the missing grid points and on the boundaries of the domain.
This procedure can be performed on every B(i) ∈ F and the final magnitude vector can be seen as a
a combination of the weightings of each step (see Figure 1). We find that our expectations from the
theoretical result agree well with empirical results (see Appendix D). Moreover, we empirically find
that Hamming distance and `p norms for p 6= 1, 2 have similar properties.

2.3 COMPUTATIONAL CONSIDERATIONS AND SPEED UP

As can be seen from Definition 3, the computation of the magnitude vector is achieved via a matrix
inversion. This is a fundamentally expensive computation since for an m × n image, we need to
invert an N ×N square matrix with N = mn. In other words, even for moderately sized images
there is a considerable computational challenge to overcome.

The authors of Bunch et al. (2021) propose an iterative algorithm based on the a small subspace of
the finite metric space M ′ ⊂M . Suppose the magnitude vector of M ′ is known, then, when adding
a single extra point to M ′, the computation of the updated magnitude vector reduces to a simple
matrix-vector multiplication. Empirically, we find that even for MNIST images this computation is
considerably slower than the naive implementation due to the large number of steps in the algorithm.
Furthermore, the full distance matrix of the image needs to be stored, which can quickly exceed
memory.

When considering the metric space of images, we also have one fundamental advantage over methods,
namely a grid structure. While every pixel in an image has a weighting, every weighting of a pixel
can also be associated to a position on a two-dimensional grid. Any algorithm which speeds up the
computation of weighting vectors should also implicitly consider this additional structure. Therefore,
we propose a divide-and-conquer procedure to be able to handle large images efficiently.

According to the theoretical considerations of Subsection 2.2, the magnitude vector is constant in
the interior of the unit square and also constant along its edges and corners. From this analysis we
gain one key insight, namely creating patches from the image would result in different magnitude
vector values along the edges, but all other magnitude vector elements would remain the same. To
counter the resulting “edge effects” of the patches, we can choose overlapping patches, calculate the
magnitude vector of the patches, and crop the transformed sub-images. Finally, piecing the patches
together, we obtain an approximation of the full magnitude vector. As shown in Subsection 3.1, this
results in considerable speed up with manageable error. Furthermore, it allows us to even calculate
the magnitude vector of high-resolution images.

If even faster inference of the magnitude vector is required, we can view the calculation as a special
type of image-to-image translation problem and use current techniques available.

3 EXPERIMENTS

Given a theoretically-based algorithm to efficiently calculate the magnitude vector on large images,
we can investigate its effect empirically. We turn now to our experiments which begin first with an
analysis of the runtime using the speed up algorithm. Armed with a fast calculation, we are then
free to explore potential applications of the magnitude vector in machine learning applications. We
investigate the utility of magnitude vectors in two domains which magnitude was not originally
designed for, namely in edge detection and adversarial robustness, and find that it can prove useful.
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Figure 2: (a) The computation time in seconds of the magnitude vector calculation for each of the
ten images. Even a small number of patches the computational time deceases drastically. (b) and
(c) show box plots of the approximation errors. Although the maximum error can be quite large
compared to the maximum difference of 1, the Fröbenius error remains small, indicating a good
overall approximation.

3.1 FAST MAGNITUDE CALCULATION AND HIGH-RESOLUTION IMAGES

To illustrate the benefits of the patching method, we consider the first ten images of the NIH Chest
X-ray dataset (Wang et al., 2017). The dataset consists of 100,000 de-identified X-ray (grey scale)
images with a resolution of 1024× 1024. Hence, a full-scale magnitude calculation would involve
inverting a roughly 106 × 106 matrix which is far beyond current computational power.

To estimate the error induced by the patching algorithm, we rescale the images to a 256 × 256
resolution and calculate the magnitude via matrix inversion. Then, we divide the rescaled image into
patches and repeat the calculation. We used the a `1 norm and weights of 1 for both the grid points
and intensity values. To ensure comparability we min-max scaled the magnitude vectors. The error is
measured in maximum absolute deviation on a pixel level and also in terms of Fröbenius distance
between the two magnitude vectors

error =

∑
i(magnitude vectorexact −magnitude vectorpatches)

2∑
i(magnitude vectorexact)

2
. (6)

The results can be found in Figure 2. We observe a significant reduction (several order of magnitudes)
when using our fast magnitude calculation method, with limited reconstruction error.

To illustrate the effect of the magnitude vector on full-scale images we used the patch-algorithm on
the first image of the dataset (see Supplementary Figure 7). We also investigated effect of increasing
the weight α2 of the pixel values in the product space metric and the results can be found in the
Supplementary Material.

3.2 MAGNITUDE VECTORS AND EDGE DETECTION

Now that we have a computationally efficient method to calculate magnitude, we turn towards the
first of two novel applications of magnitude: developing a proof-of-concept of the capabilities of
magnitude for edge detection. Indeed, as shown in Section 2, the magnitude vector is expected to
be higher on edges present in the images. This leads naturally to an edge detection algorithm where
pixels whose magnitude vector values are larger than a threshold are classified as edges.

To assess the performance of a magnitude-based approach on this task, we compare it with the famous
Canny detector (Canny, 1986), which has been widely used for edge detection in images. Because
the definition of an edge is a subjective concept, we use the edges given by the Canny detector as a
ground truth and tune the hyper-parameters of our magnitude-based edge detector such as to match
the Canny edges as close as possible. We use the Sørensen-Dice coefficient,D, to assess the similarity
between both types of edges. Both algorithms can be seen as classifier on a pixel level operating
on two classes ({ edge, no-edge}), thereby outputting a mask with same dimensions of the original
image. The Sørensen-Dice coefficient between one predicted edge mask (Edgehat) and the reference
edge mask (Edgeref ) then writes:
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Table 1: Sørensen-Dice coefficient on held-out test of the magnitude-based method with respect to
the Canny method.

FASHIONMNIST CIFAR X-ray

0.59±0.12 0.61±0.07 0.33±0.07

D(Edgehat,Edgeref) =
2TP

2TP + FP + FN

where TP,FP and FN stands for the number True Positive, False Positive and False Negative pixels
predictions respectively.

We then use Bayesian optimization of the Sørensen-Dice coefficient (Sorensen, 1948; Dice, 1945) on
a training set to find the best hyperparameters of the magnitude-based edge detector. In particular,
we tune the threshold at which magnitude vectors predict for an edge and the α2 from Equation
1. We then report the metric on an hold-out test set, and the results are shown in Table 1. We ran
this experiment on three different datasets : FashionMNIST, CIFAR and an X-ray image dataset.
For the X-ray dataset, we use the patched version as described in Section 2.3. On Figure 3, we
show examples from the held-out test set on the Fashion MNIST dataset. In Appendix A, we show
examples from the two other datasets. A visual inspection shows that edges can be recovered quite
accurately. However, the edges masks obtained through magnitude appear more noisy.

Original Canny Detector Magnitude

Figure 3: Examples of edge detection on the FashionMNIST dataset. The left-most column show
the initial images, the center shows the edges mask obtained with the Canny detector, the right-most
column shows the edges mask obtained with the magnitude-based approach.

3.3 MAGNITUDE VECTORS AND ADVERSARIAL ROBUSTNESS

As we saw in Subsection 3.2 and Supplementary Figure 6, the magnitude calculation transforms an
original image into a representation of its edges. We now want to explore another facet of its utility
in machine learning by investigating its potential use for improving adversarial robustness. In the
following, the datasets we use are MNIST, KMNIST and FashionMNIST.

The magnitude layer is a zero-parameter feature transformation consisting, sequentially, in
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1. the computation of the distance matrix,

2. the exponentiation of the negative distance matrix element-wise,

3. the inversion the resulting matrix,

4. the summing of the resulting matrix over its rows.

Crucially, this layer can be used as an input layer to any image-classification network. While the
transformation is still, in principle, differentiable, we are presented with numerous opportunities to
introduce a step function into the calculation. One possibility is inspired by feature squeezing (Xu
et al., 2017), which quantizes the pixel values. In the magnitude calculation we can differentiably
quantize the values of the inverse similarity matrix just before the summation in step 4. This step
function ensures that the gradients with respect to the input data are zero and, therefore, any white-box
attacks which rely on this gradient (such as FGSM, PGD, Carlini-Wagner) must fail.

While the introduction of the step function guarantees trivial “robustness”, we also investigate the
efficacy of transferred adversarial examples. To this end, we train two LeNet models (LeCun et al.,
1989) for 30 epochs each on our datasets, one with a magnitude input layer, one without (the base
model). We then generate adversarial examples w.r.t. the base model and test them on the model
with magnitude. Our results for an FGSM attack and various quantization levels are summarised
in Table 2. We note that, although our model shows the best performance in terms of adversarial
evasion, we emphasise that these results are not directly comparable. While simple FGSM attacks
fail altogether on the squeezed magnitude layer due to the step function, we calculated robustness via
a transfer of adversarials from a conventional LeNet model. The feature squeezing setup is similar
to the original setup from Xu et al. (2017), however, we used our own quantization layer which
divides the features into equally spaced levels and the models were trained on the squeezed images.
The base model is a simple undefended LeNet. We also investigate the robustness properties of a
non-quantized magnitude input layer which `1 norm, which shows substantially increased robustness
over the baselines of the undefended model and for large ε feature squeezing.

The number of levels in the feature squeezing was chosen to be small due to the fact that there are
large brightness in the datasets we have mainly white objects on black background and, therefore,
a large compression would be expected to give the largest robustness. The levels of the magnitude
vector were chosen to be larger as the models performed worse with smaller levels.

ε Levels Base Squeeze Levels Standalone `1
50 100 1000 2 3 5

MNIST

0 97.79 98.05 97.63 99.01 98.57 98.68 98.73 98.04
0.05 71.90 72.88 68.23 94.78 100.0 100.0 100.0 90.78
0.1 54.50 65.41 62.02 81.57 100.0 100.0 100.0 81.36
0.2 54.95 67.24 60.65 42.10 100.0 100.0 32.20 65.68
0.3 54.84 68.38 60.39 21.76 100.0 3.47 32.20 51.55
0.4 46.14 61.56 54.57 14.37 100.0 3.47 2.53 39.77
0.5 28.00 43.87 39.34 11.95 18.43 3.47 2.53 33.65
0.6 25.66 41.77 38.19 11.72 6.26 3.47 2.53 28.82
0.7 23.56 39.12 35.93 12.95 6.26 3.47 2.24 21.36

KMNIST

0 81.23 83.75 80.26 88.06 87.60 87.84 88.25 83.26
0.05 53.91 64.27 53.25 78.34 100.0 100.0 100.0 70.77
0.1 32.52 42.15 30.29 55.54 100.0 100.0 100.0 55.85
0.2 27.05 34.93 26.14 18.69 100.0 100.0 19.88 41.64
0.3 27.94 36.94 28.20 6.56 100.0 3.89 19.88 35.44
0.4 24.60 31.7 24.77 3.97 100.0 3.89 2.31 31.22
0.5 16.61 22.27 16.43 3.68 19.42 3.89 2.31 28.74
0.6 16.52 21.74 16.51 3.85 5.31 3.89 2.31 25.26
0.7 16.24 20.94 16.39 4.03 5.31 3.89 1.90 20.85

FashionMNIST

0 81.45 82.49 80.46 89.0 82.82 82.88 82.82 86.02
0.05 77.42 75.53 74.67 24.79 100.0 100.0 100.0 55.43
0.1 56.85 61.48 66.17 10.70 100.0 100.0 100.0 43.39
0.2 48.86 53.89 60.34 5.10 100.0 100.0 23.68 35.24
0.3 44.13 48.83 55.95 1.82 100.0 3.37 23.68 30.05
0.4 38.15 42.66 51.77 1.21 100.0 3.37 4.76 24.81
0.5 27.30 33.13 43.29 1.42 23.26 3.37 4.76 20.45
0.6 28.39 31.28 42.00 1.55 4.47 3.37 4.76 16.22
0.7 24.78 29.53 39.88 1.72 4.47 3.37 2.54 13.54

Table 2: The accuracies of the attacked networks. From left to right: quantized magnitude layer with
different quantization levels, the undefended model, the model with feature squeezing and various
levels, and the magnitude layer as an input layer. The zero epsilon values are the base accuries. For
the non-zero epsilon, the accuracy is the ratio of non-adversarial examples to base accuracies.
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4 RELATED WORK

An early version of magnitude has been introduced by Solow & Polasky (1994) where it was defined
as an “effective number of species”, however with little mathematical development. The subject
has been picked up formally by Leinster (2010) where connection to theory of enriched categories
has been made. From there, the magnitude of many mathematical objects has been studied, such as
spheres (Willerton, 2014), odd balls (Willerton, 2018; 2017), compact sets (Meckes, 2015; Leinster
& Willerton, 2013), convex bodies (Meckes, 2020), and graphs (Leinster, 2019).

As stated in the introduction, magnitude and magnitude vectors have not been studied from a machine
learning perspective except for the work of Bunch et al. (2021) that analysed the capability of
magnitude vectors for boundary detection. In contrast, our work extends the results from this study to
images and provide the necessary theoretical grounds. To the best of our knowledge, this represents
the first work exploring magnitude vectors for images. In particular, using magnitude vectors for
adversarial robustness has never been explored before.

5 DISCUSSION

This paper investigated the magnitude vector of images. In the first part, we stated several theoretical
properties of the magnitude vector on images and showed how the outlier detection property translates
to edge detection in images. Although the theoretical part is based on analogies, rather than rigorous
mathematical proofs, we can still distil the essence of the behaviour of the magnitude vector. In
particular, these theoretical insights are confirmed by practical experiments. We also propose an
algorithm for an approximate calculation of the magnitude vector leading to a significant speed up of
computations. While this works well in practice, as shown in Subsection 3.1, the exact computation
of magnitude vector on a metric space with a large number of points still remains an open problem.

Our algorithm to speed up the computation allows magnitude to be used more generally as the
computational bottleneck of its naive computation can be bypassed. Investigating the capabilities of
magnitude vectors in machine learning applications, we studied two application areas in more depth,
namely edge detection and adversarial robustness, showing promising and overall favourable results
in both cases.

As for edge detection, we compared a magnitude-based approached with the well known Canny edge
detector. We show that the overlap between the edges found by the Canny detector and the magnitude
vector is noteworthy, though the magnitude vector can appear a bit noisier. In particular, for low
resolution colour images (e.g. CIFAR-10), the edges are very noisy and a thorough investigation
for the magnitude vector on colour images should be conducted. This is nonetheless impressive,
since the magnitude vector is a general-purpose image transformation, unlike the Canny detector, and
therefore shows an exciting potential for improving exisiting edge detection tools.

We also considered a potential application of the magnitude vector as a simple mean of defence
against adversarial attacks. We first noted that a step function such as a quantization function can
be introduced into the magnitude calculation, providing a trivial but effective defence against any
white box attack. We went further by investigating the property of transferred adversarial examples.
Our model shows reasonable robustness and performs better than the baseline method of feature
squeezing. With these encouraging results we aim to investigate the use of magnitude in adversarial
evasion and detection in future work.

REPRODUCIBILITY STATEMENT

We provide all code to create figures and results in this paper in the supplementary material. All
datasets are publicly available and downloadable via the code provided.
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A SUPPLEMENTARY ILLUSTRATIONS OF THE EDGE DETECTION CAPABILITIES
OF THE MAGNITUDE VECTORS.

On Figures 4 and 5, we show examples of edge detection from the test sets of the CIFAR and X-ray
datasets respectively.
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Original Canny Detector Magnitude

Figure 4: Three randomly selected examples of edge detection on the CIFAR dataset. Left left-most
column show the initial images, the center shows the edges mask obtained with the Canny detector,
the right-most column shows the edges mask obtained with the magnitude-based approach.

Original Canny Detector Magnitude

Figure 5: Two randomly selected examples of edge detection on the X-ray dataset. Left left-most
column show the initial images, the center shows the edges mask obtained with the Canny detector,
the right-most column shows the edges mask obtained with the magnitude-based approach.

B MAGNITUDE VECTORS WITH DIFFERENT METRICS
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Original Hamming p = 1 p = 2 Hamming,
p′ = 1

p = 1, p′ = 1p = 2, p′ = 1

Figure 6: A comparison of the effect of different metrics in the magnitude calculation on KMNIST.
The first column is the original image and the following three columns are the magnitude vectors
with different `p metrics. The last three columns use a product space metric with α1 = α = 2 = 1,
grid metric `p and brightness metric `p′ .

C THE MAGNITUDE OF FULL SCALE IMAGES
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Figure 7: An illustration of the effect of α2 on the magnitude calculation of full-scale images.

D COMPARISON OF THE FILTRATION AND THE FULL MAGNITUDE
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Original Full magnitude Thresholds: {0, 1} Thresholds:
{0, 0.5, 1}

Thresholds:
{0, 0.1, . . . , 1}

Figure 8: An illustration of the magnitude based on filtrations with metric `1.
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