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Abstract

This work proposes a general pipeline for retinal vessel segmentation on en-face images.
The main goal is to analyse if a model trained in one of two modalities, Fundus Photography
(FP) or Scanning Laser Ophthalmoscopy (SLO), is transferable to the other modality
accurately. This is motivated by the lack of development and data available in en-face
imaging modalities other than FP. FP and SLO images of four and two publicly available
datasets, respectively, were used. First, the current approaches were reviewed in order to
define a basic pipeline for vessel segmentation. A state-of-art deep learning architecture
(U-net) was used, and the effect of varying the patch size and number of patches was
studied by training, validating, and testing on each dataset individually. Next, the model
was trained in either FP or SLO images, using the available datasets for a given modality
combined. Finally, the performance of each network was tested on the other modality. The
models trained on each dataset showed a performance comparable to the state-of-the art
and to the inter-rater reliability. Overall, the best performance was observed for the largest
patch size (256) and the maximum number of overlapped images in each dataset, with a
mean sensitivity, specificity, accuracy, and Dice score of 0.89± 0.05, 0.95±0.02, 0.95±0.02,
and 0.73±0.07, respectively. Models trained and tested on the same modality presented a
sensitivity, specificity, and accuracy equal or higher than 0.9. The validation on a different
modality has shown significantly better sensitivity and Dice on those trained on FP.

Keywords: deep learning, retina, vessel segmentation, scanning laser ophthalmoscopy,
fundus photography

1. Introduction

The eye is one of the most complex organs in the human body. Its importance is not just
limited to the vision, as it also offers a possibility to non-invasively look at structures such
as vessels. A healthy eye is composed of a sequence of refractive transparent structures that
allow the light to be focused at the retina (Jesus and Iskander, 2015), where it is converted
to electrical signals via chemical reactions. This process consumes high levels of oxygen and
nutrients, making the retina one of the most metabolically active tissues in the human body.
A well-organized ocular vascular system adapts to meet these metabolic requirements to
ensure visual function. Hence, changes in the retinal vasculature serve as a biomarker for a
number of ocular pathologies, such as advanced macular degeneration (Mullins et al., 2011)
or glaucoma (Jesus et al., 2019), but also for other diseases such as hypertension (Klein
et al., 1997) or diabetes (Fong et al., 2004).
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A number of modalities have been developed for imaging the human retina over the last
decades. Due to its simplicity and affordability, Fundus Photography (FP) has been exten-
sively used, and it is nowadays present in most of the ophthalmic clinics. The fast acquisition
and wide-field coloured images have kept FP relevant even when more complex/newer tech-
niques, such as Optical Coherence Tomography (OCT), appeared. Although the vascular
tree is usually clearly visible on FP images, changes in the retinal pigmentation, or lesions,
may not be seen within the visible spectrum range. Hence, other en face imaging modali-
ties have been developed, such as Scanning Laser Ophthalmoscopy (SLO). While in FP the
image is obtained with one single shot, in SLO the laser beam scans the retina line by line.
Although the acquisition time is slightly longer, the image quality is usually better than in
FP. The increase in terms of quality or sharpness may not be clearly noticeable in healthy
subjects, but has been reported in patients with diseases that affect the anterior chamber,
such as cataract. In these cases, the evaluation of structures in scanning modalities has
been described as more consistent (Kirkpatrick et al., 1995). Also, in diseases that only
alter certain areas of the retina, such as geographic atrophy (Schmitz-Valckenberg et al.,
2008), or reticular pseudodrusen (Schmitz-Valckenberg et al., 2011), an improvement has
been observed. Another advantage of SLO is that this modality is usually integrated in
OCT imaging devices. Thus, the findings of the SLO can be complemented with the OCT
in-depth information. Lastly, unlike FP, SLO does not require pupil dilation to attain
high-quality images, making it more comfortable for the patient (Kelly et al., 2003).

Regardless the imaging modality adopted in ophthalmic care, an accurate segmentation
of the arteriovenous retinal tree is needed to support the clinical diagnosis and follow-up.
However, to perform a manual segmentation is a tedious and a time-consuming task, spe-
cially if the capillaries are needed. Hence, extensive literature in vessel segmentation based
on FP imaging (Srinidhi et al., 2017) has been published over the last two decades. Despite
the number of procedures presented, conventional image processing has been replaced by
convolutional neural network (CNN) based techniques over the last years. This is a trend
observed not only on ophthalmic care but also in other medical fields of research. Therefore,
a prior attention has been given to CNN in this work.

1.1. State-of-the-art

In (Wang et al., 2015), a CNN was used as feature extractor, combined with a random
forest for classification. The architecture consisted of 6 layers, with input size 25×25. The
approach was validated in two public databases, using ∼200k samples of each one. The
input data was pre-processed. Similarly, (Fu et al., 2016) proposed a CNN in combination
with a conditional random field, with the goal of creating an architecture specific for retinal
vessel segmentation. An opposing point of view is explored in (Wu et al., 2016), where the
authors’ goal was to find a method widely applicable to diverse vessel tracking problems, not
necessarily in the retina. The CNN is refined using principal components analysis (PCA).
The approach is based on N4-fields (Ganin and Lempitsky, 2014), and it had a similar
performance as the original N4-fields. In (Guo et al., 2018), an ensemble of networks
was proposed, each of which had 10 layers and 64×64 inputs, without pre-processing. In
(Liskowski and Krawiec, 2016), RGB patches of 27×27×3 from three public datasets were
used. They training set consisted of 3 to 5 millions of patches, depending on the dataset.
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The authors analysed the effect of pooling, different types of pre-processing, and the use of
data augmentation. They did not observe strong changes in these experiments, but they
noticed an improvement when adding more patches on problematic/difficult regions. In
(Oliveira et al., 2018), a new architecture was proposed. The authors applied both pre-
processing and data augmentation. The data augmentation either did not improve the
performance of the model or lead to a change in the dropout values or oversampling. The
patch size was 88×88, and three public databases were used, taking between 2750 and 3750
patches per image depending on the image size in each dataset. In (Melinščak et al., 2015), a
10-layer architecture was proposed, without any pre-processing besides extracting the green
channel. Some authors have also used pre-trained networks. In (Maninis et al., 2016), a
pre-trained VGG was used, combining ideas from the Inception architecture to use feature
maps of different sizes. In (Jiang et al., 2018), another transfer learning approach was
proposed, based on the AlexNet architecture. The authors created patches of 50×50, and
then resized them to 500×500 in order to enlarge the details. They applied pre-processing,
and used more than 80000 patches for training. Moreover, they also focused on the post-
processing to refine the outputs. In (Mo and Zhang, 2017), another pre-trained VGG was
tested, similar to (Maninis et al., 2016). The validation was performed on three public
datasets, and 5 to 10 patches were selected per image. Finally, there are some approaches
such as (Girard et al., 2019), that combined vessel segmentation with specific applications,
such as artery/vein classification. For the segmentation part, a U-net architecture was used.
A median filter was applied in each channel of each patch, and then concatenated to the
input, so that each input was composed by six channels. Data augmentation was also used.

In contrast with the amount of approaches that segmented blood vessels on FP, only one
approach focused on SLO vessel segmentation was found in the literature. In (Meyer et al.,
2017), the authors used a U-net (Ronneberger et al., 2015) trained on public datasets, and
they achieved good results with patches of size 128×128.

From this succinct literature review, it can be concluded that most of the authors
obtained comparable results with a wide range of different approaches. Although some
works study the effect of pre-processing or data augmentation, most authors proposed
specific architectures. Only (Meyer et al., 2017) for SLO and (Girard et al., 2019) for
FP used a state-of-the-art network on image segmentation, U-net. The number of patches
that has been reported changes from less than ten patches per image up to a few millions
of patches in total. Such variability has also been observed for the size of the patches.
Regarding validation, all the reviewed works used at least one of the publicly available
datasets listed in Table 1, making the results of different approaches comparable.

Table 1: Publicly available datasets used in this work displayed by name, modality, number
of images (# Im.), image size, and field-of-view (FoV).

Name Modality # Im. Image size FoV
DRIVE (Staal et al., 2004) FP 40 584×565 45◦

STARE (Hoover et al., 2000) FP 30 700×605 35◦

HRF (Budai et al., 2013) FP 45 3304×2336 60◦

CHASE DB1 (Fraz et al., 2012) FP 28 1280×960 30◦

IOSTAR (Zhang et al., 2016) SLO 30 1024×1024 45◦

RC-SLO (Zhang et al., 2016) SLO 40 360×320 45◦
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The main motivation for this work is to study if a model trained in one of the modalities,
FP or SLO, can be used to segment the other accurately. This goal is tackled in two steps.
First, a review on the existing approaches for vessel segmentation was performed in order
to establish a basic pipeline. Consequently, a state-of-art segmentation architecture (U-
net) was used, and the influence of two parameters, patch size and number of patches, was
analysed. Taking into account the reviewed state-of-the-art, the pipeline was kept as simple
as possible, without pre-processing, post-processing, or data augmentation. In the second
part of this work, the pipeline was used to investigate the transferability of information
between en-face retinal imaging modalities in vessel segmentation. The results for each
modality individually, as well as the cross-modal evaluation, are presented and discussed.

2. Methods

Figure 1 depicts the pipeline adopted in this work. A fixed CNN architecture, U-net with
Adam optimizer (learning rate 0.001) and 20% of dropout was trained during 1000 epochs.
The U-net is a state-of-art architecture in medical image segmentation problems, and it got
its name from its distribution in two branches: first, a contracting path, which applies a
sequence of two 3×3 convolutions, ReLU, and 2×2 max pooling operations. The second
branch is an expansive path, which consists in a sequence of upsampling, 2×2 convolution,
two 3×3 convolutions, and ReLU operations. Additionally, there are connections between
both branches of the network, in order to incorporate part of the feature maps from the
contracting path in the computation of the expansive path. The last layer of the network
performs a 1×1 convolution operation to map the components of the feature vectors into
the desired number of classes. The CNN has a total of 23 convolutional layers.

Figure 1: Schematics of the pipeline used in this work. N relates to the number of patches
per image depending on the ratio between image and patch size.

The Dice score (Havaei et al., 2017) was used as a loss function for training the U-net
CNN. This loss function was selected due to the nature of the labels, which are highly
imbalanced, as the vessels represent only a small portion of the pixels in each image. The
Dice score is expected to improve the sensitivity of the model, which is usually the least
optimal parameter reported in literature (Srinidhi et al., 2017). Different patch sizes were
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evaluated: 32, 64, 128, and 256. The smallest size was selected based on the literature
review (Wang et al., 2015; Liskowski and Krawiec, 2016), and the largest size according to
the smallest image within the datasets included (RC-SLO dataset). No pre-processing was
considered, and only the green channel of the FP images, the most informative for vessel
segmentation (Ramlugun et al., 2012; Staal et al., 2004), was used. No data augmentation
was applied, as some previous works reported minimal improvement with the inclusion
of augmentation (Liskowski and Krawiec, 2016; Oliveira et al., 2018) and accurate results
without augmentation (Wang et al., 2015; Jiang et al., 2018).

In this work, six public datasets have been used, four in FP and two in SLO (see Table
1). All of the datasets have at least one manual segmentation available, and different
image characteristics. For each dataset, 70% of the images were used for training, 20% for
validation, and a final 10% for testing. The division was done at the image level instead
of in the patches in order to not include patches for a given image in both training and
validation sets, as some of them would overlap and bias the outcome. The specific number of
patches per image depended on the image size and on the patch size, and it was computed as
(imgx× imgy/patchx×patchy)×N , where (imgx× imgy/patchx×patchy) is the theoretical
non-overlapping maximum number of patches that could be obtained per image. The factor
N varied between 1, 10, and 20. The batch size was as large as the available memory
allowed for a specific patch size: 128, 64, 32, and 16, for the smallest to largest patch size
respectively. For the test set, each pixel in the predicted image was classified in one of
four categories: true positive, true negative, false positive, and false negative. Then, the
accuracy, sensitivity, specificity, and Dice score were obtained.

3. Results

The inter-observer agreement was computed in the datasets that have several manual an-
notations available per image, in order to establish the maximum expected values for the
evaluation metrics. The values of sensitivity, specificity, accuracy, and Dice were 0.81, 0.98,
0.96, and 0.79 for DRIVE; 0.64, 0.99, 0.95, and 0.74 for STARE; and 0.80, 0.98, 0.97, and
0.78 for CHASE DB1. It can be observed that sensitivity and Dice score are quite low in
comparison to accuracy and specificity, which is coherent with the outcomes reported in
literature for automated segmentation methods (Appendix A, Table 4). These results are
also justified by the nature of the data, as the most difficult part (for both manual and
automated approaches) is to label the capillaries correctly.

The complete results for the U-net trained on each dataset using different patch sizes
and number of patches are depicted in Table 2. A smaller N resulted on lower values for
all the measures in most of the datasets. Only CHASE DB1 and HRF datasets obtained a
sensitivity comparable to the state-of-the-art. Although it was not the case for all datasets,
a slight improvement was observed for N=20 compared to N=10 in terms of sensitivity,
specificity, and accuracy, while the Dice score remained mostly unchanged. The results
have also shown that larger patches provide better results regardless the dataset. Among
all metrics, sensitivity and Dice score were the most affected by the patch size.

The configuration that obtained the best results overall (patch size = 256×256 and N
= 20) was used for training and testing on the same dataset individually. The comparison
between the predicted image for each dataset and the respective ground-truth is shown in
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Table 2: Sensitivity, specificity, accuracy, and Dice score of each individual dataset for each
# patches N and patch size. The highest values for each dataset are highlighted.

Dataset Size
N = 1 N = 10 N = 20

Sens. Spec. Acc. Dice Sens. Spec. Acc. Dice Sens. Spec. Acc. Dice
DRIVE 256 0.53 0.98 0.93 0.00 0.89 0.93 0.93 0.72 0.93 0.92 0.92 0.71

128 0.63 0.97 0.94 0.00 0.92 0.92 0.92 0.68 0.96 0.91 0.91 0.67
64 0.48 0.98 0.93 0.00 0.86 0.90 0.91 0.58 0.90 0.88 0.90 0.57
32 0.00 1.00 0.91 0.00 0.66 0.90 0.91 0.42 0.68 0.88 0.90 0.41

STARE 256 0.04 1.00 0.96 0.00 0.82 0.97 0.96 0.69 0.78 0.97 0.95 0.69
128 0.23 1.00 0.96 0.00 0.71 0.97 0.96 0.62 0.80 0.95 0.94 0.61
64 0.13 1.00 0.96 0.00 0.56 0.97 0.96 0.45 0.60 0.96 0.95 0.45
32 0.01 1.00 0.96 0.00 0.36 0.97 0.96 0.29 0.41 0.94 0.94 0.29

HRF 256 0.76 0.94 0.93 0.61 0.87 0.92 0.93 0.62 0.89 0.92 0.93 0.60
128 0.63 0.95 0.94 0.50 0.73 0.93 0.93 0.52 0.76 0.91 0.92 0.49
64 0.38 0.95 0.94 0.34 0.47 0.92 0.92 0.34 0.51 0.91 0.92 0.33
32 0.23 0.92 0.92 0.17 0.29 0.88 0.89 0.20 0.31 0.87 0.89 0.20

CHASE 256 0.62 0.98 0.95 0.00 0.87 0.95 0.95 0.74 0.89 0.95 0.95 0.74
DB1 128 0.57 0.97 0.94 0.02 0.76 0.95 0.95 0.59 0.79 0.95 0.95 0.59

64 0.21 0.98 0.95 0.29 0.57 0.95 0.95 0.42 0.57 0.94 0.94 0.41
32 0.17 0.98 0.95 0.05 0.36 0.92 0.93 0.24 0.34 0.92 0.93 0.24

IOSTAR 256 0.09 1.00 0.89 0.00 0.89 0.96 0.96 0.80 0.92 0.96 0.96 0.79
128 0.65 0.98 0.95 0.00 0.83 0.96 0.95 0.71 0.86 0.95 0.95 0.71
64 0.31 0.99 0.93 0.32 0.67 0.95 0.95 0.52 0.68 0.94 0.95 0.52
32 0.17 0.99 0.93 0.25 0.40 0.93 0.94 0.30 0.42 0.92 0.93 0.30

RC-SLO 256 0.00 1.00 0.90 0.00 0.88 0.98 0.97 0.82 0.91 0.97 0.97 0.83
128 0.00 1.00 0.88 0.00 0.84 0.98 0.96 0.81 0.91 0.97 0.97 0.79
64 0.00 1.00 0.90 0.00 0.57 0.99 0.95 0.63 0.83 0.96 0.96 0.67
32 0.00 1.00 0.91 0.00 0.48 0.96 0.96 0.41 0.52 0.95 0.95 0.40

Figure 2 (left). Figure 2 (right) depicts how the automatic segmentation is affected by
varying the patch size.

Figure 2: Left: retinal images (top), ground truth (middle), and output of the network
(bottom), for datasets DRIVE, STARE, HRF, CHASE DB1, IOSTAR, and RC-
SLO. Right: evolution of true positives (blue), false positives (green) and false
negatives (red) for patch size 128, 64, and 32 on the same RC-SLO image.

In order to observe if the results were transferable from one imaging modality to an-
other, networks were trained and tested combining all the datasets of the same modality, as
depicted in Table 3. Given the number of patches available for the FP modality is more than
3 times higher than the number of SLO patches, the amount of patches sampled per image
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was lowered on the FP dataset to the same size of the SLO dataset. This way, the number
of images for training was the same for both imaging modalities, avoiding an eventual bias
due the different number of patches. As reference, the values for training and testing on the
same type of image are also depicted. It can be observed that the outcome is the same than
in Table 2, and the configuration with the largest patch size lead to the best performance.
Regarding the training and testing in different modalities, it was observed that training in
SLO and testing in FP yields significantly lower results, showing poor sensitivity and Dice.
However, training in FP and testing in SLO yields accurate results, comparable to those
obtained training and testing in the same modality.

Table 3: Sensitivity, specificity, accuracy, and Dice score for training and testing in the
same and different modalities. All datasets were merged by modality. The highest
values per dataset highlighted.

Train
Size

Test set FP Test set SLO
set Sens. Spec. Acc. Dice Sens. Spec. Acc. Dice

FP 256 0.93 0.90 0.91 0.61 0.94 0.93 0.93 0.71
128 0.83 0.90 0.91 0.50 0.91 0.90 0.91 0.62
64 0.62 0.89 0.90 0.37 0.74 0.90 0.91 0.48
32 0.41 0.84 0.86 0.23 0.47 0.79 0.82 0.27

SLO 256 0.41 0.98 0.93 0.42 0.92 0.96 0.96 0.79
128 0.33 0.98 0.93 0.32 0.88 0.95 0.95 0.71
64 0.22 0.98 0.93 0.16 0.73 0.94 0.94 0.54
32 0.15 0.97 0.93 0.11 0.45 0.92 0.93 0.32

4. Discussion

Automated segmentation has been a subject of study by the image processing community
for quite some time, and the number of works based on deep learning have exponentially
grown over the last decade, pushing the boundaries of what was possible in the domain
of digital image processing. Challenging problems are now being solved with substantially
better performance compared to traditional methods. This trend has also reached medical
image processing, including ophthalmic research. Automated retinal vessel segmentation
on FP have substantially improved since the introduction of CNNs. Besides the boost in
performance, promising results have been shown in cross-training (training the network in
one dataset and testing in a second dataset, with high variability in the image characteristics
between both (Wang et al., 2015; Jiang et al., 2018)). In addition, the fact that these
approaches are very fast (e.g. less than 1 second to process an image (Girard et al., 2019)),
make them suitable for a real-time processing environment. Besides FP, good results have
also been reported in SLO (Meyer et al., 2017). However, despite all research performed
so far, it is difficult to identify an approach across the current options of architectures,
components, pre- and post-processing, among other aspects that may influence the results,
that could be easily applied and used in the clinical practice. Thus, in this work, a few
guidelines that serve as a baseline for retinal vessel segmentation have been established.

In this work, it is shown that a simple CNN such as the U-net is good enough to replicate
the current current results in the literature. These findings are in line with previous works
(Isensee et al., 2018), that argue how a correctly tuned U-Net, also with a large patch size
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and Dice score, can outperform more tailor-made approaches in brain segmentation. While
this work does not show if data augmentation, pre-processing, or post-processing, could
improve the results, the obtained accuracy, sensitivity, and specificity are on par with the
values reported in the state-of-the-art. Moreover, the obtained values are also on the same
range as the inter-observer agreement, and can be thus taken as theoretical maximum. The
results show that the largest the input patch size, the better. However, the depth of the
CNN is fixed in this work, and the smaller patches may suffer from issues at the deeper
levels, such as insufficient resolution or border issues when down- and up-sampling. The size
256×256 provided the best results across all datasets. This also implies that a small number
of images is enough to feed the network, as the largest patch sizes have been associated to
a lower number of images. However, the number of patches must be sufficient, otherwise a
dramatic drop on the sensitivity will occur, in agreement with the findings in (Oliveira et al.,
2018). While the overall accuracy is barely affected, this metric must be handled carefully
due to the imbalance of the labels. Overall, the main problem in all the reported methods is
the sensitivity, as the capillaries tend to be ignored by the segmentation. Hence, this value
should be always reported and carefully compared between methods. An interesting finding
is that the results achieved for IOSTAR and RC-SLO in Table 2 have a higher sensitivity
than the previously reported by (Meyer et al., 2017) in Table 4, despite of both approaches
using a U-net. One of the key differences that may be causing the variation in the results is
the choice of loss function, that in (Meyer et al., 2017) was the cross-entropy. In this work,
Dice score was used, which emphasizes the weight of the true positives.

While many approaches have been proposed for FP, other imaging modalities, such as
SLO, have not received that much attention. One of the causes for this lack of interest is
the absence of public labeled datasets. Nevertheless, it is shown that the network trained
in FP still provides an accurate segmentation on SLO data, but the opposite seems to not
be true. Such results may be justified by the characteristics of both datasets. The FP
datasets are more varied and have more pathological data. The difference on sharpness
may also justify the performance between modalities. The fact that imaged vessels in FP
may be less sharp than in SLO may make the algorithm more robust to different data. As a
future work, augmentations in SLO imaging should be considered to infer whether a model
trained on SLO could eventually be applicable to FP. Lastly, one should also consider the
hypotheses that the green channel of the FP may be more informative than the infrared
image acquired with SLO for segmenting the retinal vasculature.

5. Conclusion

In this work, it is shown that a state-of-the-art network, such as U-net, can be trained
without pre-processing and augmentation and still perform as good as a manual grader,
as far as a large patch size and enough images are used to train the CNN. The knowledge
obtained from training on different modalities, such as FP or SLO, is transferable, but its
sensitivity depends on the modality used to train the network. In this study, it is shown that,
despite all its simplicity, a colour fundus photograph appears to be much more informative
for training network than an image obtained from SLO. Hence, despite the lack of manual
annotations on SLO images, coloured fundus photographs can be used to develop new and
better networks with potential applicability in SLO imaging.
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Appendix A. Summary of state-of-art results on the public datasets

Table 4 summarizes the results reported by previous approaches on retinal vessel segmen-
tation that propose a CNN, using (at least one of) sensitivity, specificity, and accuracy on
the public datasets listed in Table 1.

Table 4: Values reported in previous works for deep learning-based vessel segmentation
approaches. Best values for each dataset highlighted in bold.

Work Dataset Sensitivity Specificity Accuracy

(Wang et al., 2015)
DRIVE 0.8173 0.9733 0.9767
STARE 0.8104 0.9791 0.9813

(Fu et al., 2016)
DRIVE 0.7294 - 0.9470
STARE 0.7140 - 0.9545

(Liskowski and Krawiec, 2016)
DRIVE - - 0.9535
STARE - - 0.9729

(Guo et al., 2018)
DRIVE 0.9859 0.7046 0.9613
STARE 0.9861 0.5628 0.9539

(Jiang et al., 2018)

DRIVE 0.7540 0.9825 0.9624
STARE 0.8352 0.9846 0.9734

CHASE DB1 0.8640 0.9745 0.9668
HRF 0.8010 0.8010 0.9650

(Girard et al., 2019) DRIVE - - 0.9493

(Oliveira et al., 2018)
DRIVE 0.8405 0.9814 0.9639
STARE 0.6329 0.9924 0.9365

CHASE DB1 0.7731 0.9813 0.9600

(Melinščak et al., 2015) DRIVE 0.7276 - 0.9466

(Mo and Zhang, 2017)
DRIVE 0.7779 0.9780 0.9521
STARE 0.8147 0.9844 0.9674

CHASE DB1 0.7661 0.9816 0.9599

(Meyer et al., 2017)
IOSTAR 0.8038 0.9801 0.9695
RC-SLO 0.8090 0.9794 0.9623
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