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ABSTRACT

Integral equations (IEs) are functional equations defined through integral opera-
tors, where the unknown function is integrated over a possibly multidimensional
space. Important applications of IEs have been found throughout theoretical and
applied sciences, including in physics, chemistry, biology, and engineering; of-
ten in the form of inverse problems. IEs are especially useful since differential
equations, e.g. ordinary differential equations (ODEs), and partial differential
equations (PDEs) can be formulated in an integral version which is often more
convenient to solve. Moreover, unlike ODEs and PDEs, IEs can model inherently
non-local dynamical systems, such as ones with long distance spatiotemporal re-
lations. While efficient algorithms exist for solving given IEs, no method exists
that can learn an integral equation and its associated dynamics from data alone. In
this article, we introduce Neural Integral Equations (NIE), a method that learns an
unknown integral operator from data through a solver. We also introduce an atten-
tional version of NIE, called Attentional Neural Integral Equations (ANIE), where
the integral is replaced by self-attention, which improves scalability and provides
interpretability. We show that learning dynamics via integral equations is faster
than doing so via other continuous methods, such as Neural ODEs. Finally, we
show that ANIE outperforms other methods on several benchmark tasks in ODE,
PDE, and IE systems of synthetic and real-world data.

1 INTRODUCTION

Integral equations (IEs) are functional equations where the indeterminate function appears under the
sign of integration (Stech et al., 1981). The theory of IEs has a long history in pure and applied
mathematics, dating back to the 1800’s, and it is thought to have started with Fourier’s Theorem
(Groetsch, 2007); also the Dirichelet’s problem (a PDE) was originally solved through its integral
formulation. Subsequent studies, carried out by Fredholm, Volterra, and Hilbert and Schmidt, have
significantly contributed to the establishment of this theory. IEs appear in many applications ranging
from physics and chemistry, to biology and engineering (Wazwaz, 2011; Groetsch, 2007), for in-
stance in potential theory, diffraction and inverse problems such as scattering in quantum mechanics
(Wazwaz, 2011; Groetsch, 2007; Lakshmikantham, 1995). Neural field equations, that model brain
activity, can be describes using IEs and integro-differential equations (IDEs), due to their highly
non-local nature ((Amari, 1977)). IEs are related to the theory of ordinary differential equations
(ODEs) and partial differential equations (PDEs), however they possess unique properties. While
ODEs and PDEs describe local behavior, IEs model global, long-distance spatiotemporal relations.
Moreover, ODEs and PDEs have IE forms that can be solved more effectively and efficiently due
to the better stability properties of IE solvers compared to ODE and PDE solvers (Rokhlin, 1985;
1990).

In this article, we introduce and address the outstanding problem of learning dynamics from data
through integral equations. Namely, we introduce the Neural Integral Equation (NIE). Our setup is
that of an operator learning problem, where we learn the integral operator that generates dynamics
that fit given data. Often, one has observations of a dynamical system without knowing its analytical
form. Our approach permits modeling the system purely from the observations. This model, via
the learned integral operator, can be used to generate dynamics, as well as be used to infer the
spatiotemporal relations that generated the data. The innovation of our proposed method lies in
the fact that we formulate the operator learning problem associated to dynamics in the form of
an optimization problem for a solver. Unlike other operator learning methods that learn dynamics
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as a mapping between function spaces for fixed time points, i.e. as a mapping T :
∏

i Ai −→∏
j Bj , where Ai and Bj are function spaces each representing a time coordinate, NIE allows to

continuously learn dynamics with arbitrary time resolution. Since IEs are functional equations, our
solver outputs solutions through an integral version of the Adomian decomposition method Wazwaz
(2011), which iteratively converges to a solution of the IE.

1.1 OUR CONTRIBUTIONS

In this article, we introduce Neural Integral Equations (NIE) and Attentional Neural Integral Equa-
tions (ANIE), which are novel neural network based methods for learning dynamics, in the form
of IEs, from data. Our architectures allow modeling dynamics with long-distance spatiotemporal
relations typical of functional equations. Our main contributions are as follows:

• We introduce the first method for learning dynamics from data through an IE solver.
• We implement a fully differentiable IE solver in PyTorch.
• We also implement a highly scalable version of the solver where integration is done with a

self-attention mechanism.
• We use our model to solve ODE, PDE, and IE systems.
• Finally, we use our method to model non-local brain dynamics from fMRI data.

1.2 BACKGROUND AND RELATED WORK

Due to their wide range of applications, the theory of IEs has attracted the attention of mathemati-
cians, physicists and engineers for a long time. Detailed accounts on integral equations can be found
in (Zemyan, 2012; Wazwaz, 2011; Bôcher, 1926). Along with their theoretical properties, much
attention has been devoted to the development of efficient integral equation solvers mainly for the
solution of certain PDE systems, such as in (Rokhlin, 1985; 1990). In fact, it is known that integral
equation solvers obtain more accurate solutions than differential solvers when dealing with a variety
of PDEs.

However, deep learning on IE models has not been treated so far, in the approach considered in
this article, and it differs profoundly from the implementation of IE solvers. In fact, solving IEs
requires the knowledge of a given equation (i.e. an integral operator). Deep learning approaches
for solving given integral equations have appeared in the literature (Guan et al., 2022; Que, 2016;
Keller & Dahm, 2019; Guo et al., 2021; Effati & Buzhabadi, 2012), and known methods require
that the integral operator that determines the IE is known, and given. Instead, in our approach we
learn the integral operator itself, and therefore an integral equation, from observations alone. As
a consequence, we learn dynamics with possibly complex long-distance spatiotemporal relations
through IEs. A similar approach has been followed for IDEs in (Zappala et al., 2022). However, in
the present work our implementation does not include differential solvers, and the reformulation of
such dynamical problems in terms of IEs has great benefits in terms of solver speed and stability.
Moreover, our version of an IE solver that approximates integrals via self-attention is unique in its
kind, and allows for higher dimensional integrals, which were considered in (Zappala et al., 2022).

Our method is formulated as an operator learning problem, but unlike previous approaches to oper-
ator learning we provide a solver that learns continuous non-local space-time dynamics. A general
perspective on operator learning can be found in (Kovachki et al., 2021). See also (Lu et al., 2021)
for an approach to operator learning inspired by approximation theory of operators. Modeling dy-
namics through operator learning has previously been considered, see for instance (Li et al., 2020a;b;
Cao, 2021). However, the methods employed in this article substantially differ from the traditional
operator learning approaches, in that we learn an integral operator as the generator of dynamics
from data, instead of learning a mapping between some products of function spaces, where each
term represents different temporal slices of the dynamics.

Modeling continuous dynamics from discretely sampled data is a fundamental task in data science.
Methods for continuous modeling include those based on ODEs (Chen et al., 2018; 2021). While
ODEs are useful for modeling temporal dynamics, they are fundamentally local equations which
neither model spatial nor long-range temporal relations. The authors of (Chen et al., 2018) have
employed auxiliary tools, such as RNNs, in order to include non-locality. We point out that RNNs
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can be seen as performing a temporal integration (in discrete steps), in order to codify some degree
of non-local (temporal) dependence in the dynamics. In this work, we introduce a framework that
provides a more general and formal solution to this non-local integration problem. Moreover, the
dynamics are not produced sequentially with respect to time, as is done by ODE solvers, but are
processed in parallel thus providing increased efficiency.

The self-attention mechanism and transformers were introduced in (Vaswani et al., 2017) and ap-
plied to machine translation tasks. Thanks to their initial success, they have since been used in many
other domains, including operator learning for dynamics (Cao, 2021; Geneva & Zabaras, 2022).
Interestingly, the self-attention mechanism can be interpreted as the Nystrom method for approxi-
mating integrals (Xiong et al., 2021). Making use of this connection, we approximate the integral
kernel of our model using self-attention, allowing efficient integration over higher dimensions.

2 NEURAL INTEGRAL EQUATIONS

We introduce a deep neural network model based on integral equations. An integral equation takes
the general form given by

y(t) = f(t) +

∫ β(t)

α(t)

G(y, t, s)ds, (1)

where the variable s is the local time used for integration for each t, which is the global time. The
indeterminate function y(t) appears both under the sign of integration and outside of it. Neural
Integral Equations (NIEs) are integral equations as defined by Equation 1 where G is a neural net-
work. Training a NIE consists of optimizing G in such a way that the corresponding solution y to
Equation 1 fits the given data.

Integral equations are non-local equations (Stech et al., 1981), unlike ODEs for example, since
the integral operator

∫ β(t)

α(t)
G(•, t, s)ds : A −→ A maps a space of integrable functions A into

itself. Therefore, to evaluate the RHS of Equation 1 at an arbitrary time point t the function y(s)
between α(t) and β(t) is needed. Here, α and β are arbitrary functions and common choices include
α(t) = a and β(t) = b (Fredholm eqautions), or α(t) = 0 and α(t) = t (Volterra equations).
Consequently, solving an integral equation requires an iterative procedure where the solution is
obtained as a sequence of approximations that converge to the solution. We refer the reader to
(Wazwaz, 2011) for the theory behind the methods that motivate this procedure.

Interestingly, utilizing NIEs to model NODEs allows to bypass the use of the ODE solver introduced
in (Chen et al., 2018; 2021). The convenience in this approach is that the integral equation solver
is more stable than the ODE solver. These ODE solvers instabilities, induced by equation stiffness,
have been previously considered in (Ghosh et al., 2020; Finlay et al., 2020). The IE solver presented
in this work thus does not suffer from these problems, and is also significantly faster.

It is often useful to consider a more specific form for the IE, where the function G factors in the
product of a kernel K and a generally non-linear function F as G = K(t, s)F (y). Here, K is
matrix valued and it carries the dependence on the time (both global and local), while F depends
only on the indeterminate function y. The form of this IE is therefore:

y(t) = f(t) +

∫ β(t)

α(t)

K(t, s)F (y(s))ds. (2)

NIEs in this form comprise two neural networks, namely K and F . We observe that in IEs, the
initial condition is embedded in the equation itself, and it is not an arbitrary value to be specified as
an extra condition. The general algorithm for training NIE is given in Alrorithm 1.

2.1 SPACE TIME AND HIGHER DIMENSIONAL INTEGRATION

Partial integral equations (PIEs), are IEs that have one or more integration dimensions. They are
formulated as

y(x, t) = f(x, t) +

∫
Ω

∫ β(t)

α(t)

G(y,x, t, s)dxds, (3)

where Ω ⊂ Rn is a domain in Rn, and y : Ω×R −→ Rm. These equations are integral counterpart
of PDEs, similarly to the relation between IEs and ODEs.
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Algorithm 1 NIE method training step. Integration is performed using the module torch.quad, with
the Monte Carlo method.
Require: y0(t) ▷ Initialization
Ensure: y(t) ▷ Solution to IE with initial y0(t)

1: y0(t) := y0(t) ▷ Initial solution guess
2: while iter ≤ maxiter and error > tolerance do
3: Require gradients on yi

4: Evaluate: yi+1(t) = f(yi, t) +
∫ β(t)

α(t)
K(t, s)F (yi(s))ds

5: Set solution to be: yi+1

6: New error: error = metric(yi+1,yi)
7: end while
8: Output of solver: y(t)
9: Compute loss wrt observations: loss(y(t), obs)

10: Backpropagation: loss.backward()

2.2 ATTENTIONAL NEURAL INTEGRAL EQUATIONS

Training of NIE requires an integration step at each time point, incurring a potentially high computa-
tional cost. This integration step is implemented using the torchquad package (Gómez et al., 2021),
a high performance numerical Monte Carlo integration method, resulting in fast integration and high
scalability of NIE. For example, solving ODEs using NIE is significantly faster than using traditional
ODE solvers (Table 1). However, several limitations are associated with the torchquad integration
method. First, torchquad is optimized for integration in time and scales poorly to arbitrary space
dimensions - i.e. ”curse of dimensionality” - which requires exponentially increasing numbers of
sampled points with increasing numbers of dimensions. To use NIE for solving PDEs and (P)IEs we
require efficient spatial integration in high dimensions. Second, while the kernel and the G function
that NIE learns can be inspected, their interpretability is not trivial. Ideally, we would like a model in
which we can interpret and explain the underlying dynamics. Such explainability would especially
be useful when modeling biological systems where the goal is to understand the underlying dynam-
ics rather than just fitting data. For example, when modeling brain activity recordings we would like
to use the model to understand which brain regions and neural connectivity patterns drive certain
brain activity dynamics.

To address these challenges, we have developed a novel integration method for NIE that is based
on a self-attention mechanism. In fact, self-attention can be viewed as an approximation of an
integration procedure (Tsai et al., 2019; Xiong et al., 2021), where the product of queries and keys
coincides with the notion of a kernel discussed in Section 2. In (Cao, 2021) the parallelism between
self-attention and integration of kernels was further exploited to interpret transformers as Galerkin
projections in operator learning tasks.

We have replaced the analytical integral
∫ β(t)

α(t)
K(t, s)F (y(s))ds in Equation 2 with a self-attention

procedure. The resulting model, which we call Attentional Neural Integral Equation (ANIE), fol-
lows the same principle of iterative IE solving presented in Section 2 but where the neural networks
K and F are replaced by attention matrices. Observe, following the comparison between integra-
tion and self-attention, that K is decomposed in the product of queries and keys, as described for
instance in (Cao, 2021). The interval of integration [α(t), β(t)] is determined, in the attentional ap-
proximation, by means of the mask. In particular, if there is no mask we have a Fredholm IE, while
the causal attention mask (Yang et al., 2021) corresponds to a Volterra type of IE.

2.3 THE INITIAL CONDITION FOR IES

NIE does not learn a dynamical system via the derivative of a function y, as is the case for ODEs
and IDEs. Therefore, we do not need to specify an initial condition in the solver during training and
evaluation. In fact, the initial condition for IEs is encoded in the equation itself. For instance, taking
t = 0 in a Volterra or a Fredholm equation uniquely fixes y(x, 0) for all x.

Therefore, we can specify a condition for IEs by constraining the free function f(y, t). In what
follows, we will make use of this paradigm several times. There are two immediate ways one could
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Algorithm 2 ANIE method training step. Integration here is replaced by a transformer employing
self-attention.
Require: y0(x, t) ▷ Initialization
Ensure: y(x, t) ▷ Solution to IE with initial y0(x, t)

1: y0(t) := y0(t) ▷ Initial solution guess
2: while iter ≤ maxiter and error > tolerance do
3: Concatenate space and time tokens to yi(x, t): ỹi(x, t) = concat(yi(x, t), s, t)
4: Require gradients on ỹi

5: Evaluate with self-attentionr: yi+1(t) = f(ỹi, t) + Att(ỹi(x, t), ỹi(x, t))
6: Set solution to be: yi+1

7: New error: error = metric(yi+1,yi)
8: end while
9: Output of solver: y(t)

10: Compute loss wrt observations: loss(y(t), obs)
11: Backpropagation: loss.backward()

impose constraints on the free function. The simplest is to fix a value y0 and let f(y, t) be fixed
to be y0 for all t. Alternatively, one could choose an arbitrary function f and keep this function
fixed. In practice, the latter is conceptually more meaningful. For instance, in theoretical physics,
when transforming the Schrödinger equation into an integral equation, on the RHS one can choose
an arbitrary function ψ(y, t) which corresponds to the wave function of free particles, i.e. without
potential V . Applications of this procedure are found below in the experiments.

3 EXPERIMENTS

3.1 BENCHMARK OF (A)NIE TRAINING SPEED

Neural ODEs (NODEs) can be slow and have poor scalability (Kelly et al., 2020). As such, several
methods have been introduced to improve their performance (Kelly et al., 2020; Kidger et al., 2021;
Daulbaev et al., 2020; Poli et al., 2020; Pal et al., 2021). Despite these improvements, NODE is
still significantly slower than discrete methods such as LSTMs. We hypothesize that (A)NIE has
significantly better scalability than NODE, comparable to fast but discrete LSTMs. To test this,
we compare (A)NIE to the latest optimized version of (latent) NODE Rubanova et al. (2019) and
to LSTM on three different dynamical systems: Lotka-Volterra equations, Lorenz system, and IE
generated 2D spirals (see Appendix C for data generation details). During training, models were
shown (as initialization) the first half of the data and were tasked to predict the second half. The
wall times in seconds per iterations are reported in Table 1. While all models achieve comparable
(good) fits to the data, we find that NIE and ANIE, like LSTM, drastically outperform NODE. In
fact, NIE and ANIE have similar performance to LSTM. However, like NODE, they are continuous
models. Thus (A)NIE has the capabilities of NODE (and more) with the speed of LSTMs.

Table 1: Wall time, in seconds per training iteration, for different models fitted to multiple dynam-
ical systems. All models were trained on an RTX 3090 NVIDIA GPU for 3000 epochs or until
convergence. (A)NIE and LSTM are significantly faster than NeuralODE for all systems. Note that
while LSTM is fast, it is not a continuous time model like (A)NIE and NeuralODE. Thus, ANIE
has the advantages of a true continuous model with the speed of an LSTM. All values are computed
over 5 repeats with random initialization of the models.

Dynamical Systems
Models Lotka-Volterra Lorenz 2D-Spirals)
LSTM 0.0116± 0.0054 0.012± 0.005 0.02± 0.0031

Latent NeuralODE 2.88± 1.096 0.845± 0.515 0.494± 0.109
NIE (ours) 0.0312± 0.0068 0.38± 0.22 0.154± 0.037

ANIE (ours) 0.0115± 0.0204 0.252± 0.019 0.116± 0.028
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3.2 HYPERPARAMETER SENSITIVITY BENCHMARK

For most deep learning models, including NODE, finding numerically stable solutions usually re-
quires an extensive hyperparameter search. Since IE solvers are known to be more stable than ODE
solvers, we hypothesize that (A)NIE is less sensitive to hyperparameter changes. To test this, we
quantify model fit, for the Lotka-Volterra dynamical system, as a function of two different hyper-
parameters: learning rate and L2 norm weight regularization. We perform this experiment for three
different models: LSTM, Latent NODE, and ANIE. As shown in Supp. Figure 9, we find that ANIE
generally has lower validation error as well as more consistent errors across hyperparameter values,
compared to LSTM and NODE, therefore validating our hypothesis.

3.3 MODELING PDES WITH IES: BURGERS’ AND NAVIER-STOKES EQUATIONS

PDEs can be reformulated as IEs, and dynamics generated by differential operators can therefore be
modeled through ANIE as a PIE, where integration is performed in space and time. We consider
two types of PDEs, namely the Burgers’ equation and the Navier-Stokes equation.

Table 2: Burgers’ equation test with different time intervals t = 10, 15, 25 and different space
resolution s = 256, 512. During evaluation, the time interval for the dynamics is changed to a re-
scaled size (1/4 of the total interval for training). The dynamics used for testing are unseen during
training, so that the models are interpolating with respect to time, and extrapolating with respect to
the initial condition. ANIE (ours) shows better evaluation, implying that it more accurately infers
the temporal relations and initial condition dependence.

t=10 t=15 t=25
s = 256 s = 512 s = 256 s = 512 s = 256 s = 512

Conv1DLSTM .0101 .0094 .0094 .0086 .0124 .0093
FNO1D .0761 .0760 .0716 .0718 .0686 .0693
Galerkin .0459 NA .0528 NA .688 NA

ANIE (ours) .0015 .0022 .0094 .0024 .0082 .0103

Table 3: Benchmark on Navier-Stokes equation. We evaluate the models on predicting dynamics
of different lengths (t = 3, 5, 10, 20) for unseen initial conditions. The models that use a single
time point are ANIE (ours) and FNO2D, while the convolutional LSTM and FNO3D both use more
time points (2 and 10 respectively) to predict the rest of the dynamics. Although ANIE has less
information than other methods, it still outperforms them.

t = 3 t = 5 t = 10 t = 20
Conv2DLSTM .4935 .4393 .3931 .2999

FNO2D .2795 .2724 NA NA
FNO3D NA NA .1751 .0701

ANIE (ours) .0194 .0220 .0183 .0117

For the Burgers’ equation, we focus on the ability of ANIE to model both space and time. In fact, as
opposed for instance to the setting of (Cao, 2021; Li et al., 2020a), where it was considered a “static”
Burgers’ equation and the learned operator mapped the initial condition at time t = 0 to the final time
of the solution at t = 1, we model the solution continuously over a time interval. We then evaluate on
a different interval to show that ANIE has learned the temporal component, while the other models
treat the learning process as a sequence of initial to finial point pairs. The Galerkin model (Cao,
2021), has not been used on higher spacial resolution, as the amount of memory required exceeded
what was available to us during the experiments. The results are reported in Table 2, and an example
of dynamics is given in Figure 1.

For the Navier-Stokes equation, we consider an extrapolation task where we evaluate the model
on unseen initial conditions. Previous works have shown high performance in predicting dynamics
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Figure 1: Example dynamics of (1+1)D Burgers’ equation. Each frame represents the full dynamics
where the x axis shows time and the y axis shows space. Top row is data, and bottom row is ANIE
prediction. Columns represent different dynamics resulting from different initial conditions.

of Navier-Stokes from new initial conditions, but they do require several frames (i.e. several time
points) to be fed into the model in order to achieve such performance. We see that since ANIE
learns the full dynamics from arbitrarily chosen initial conditions, we achieve good performance
even when a single initial condition is used to initialize the system. We train FNO2D (Li et al.,
2020a) with initialization on a single time point, while convolutional LSTM and FNO3D are trained
with 2 and 10 times for initialization, respectively. The results are given in Table 3. Interestingly, the
model that performed closer to ANIE, i.e. with error approximately 7 times larger than ANIE and
in the same order of magnitude, is FNO3D (Li et al., 2020a), where we have used 10 time frames
for training. This is 10 times the amount of information that is used to initialize ANIE. However, we
have encountered a situation similar to the case seen in (Li et al., 2020a), where due to instability
with lower viscosities the dynamics were shortened to 20 and 30 time points, and the precision of
FNO3D was significantly decreased (see Table 1 in (Li et al., 2020a)). In our case, where we have
considered 10 and 20 time points sampled from the full dynamics, ANIE is unaffected and it is able
to obtain the same high accuracy for all the chosen time points. FNO2D did not converge for higher
number of points, and therefore results for time points t = 10, 20 have not been reported, while for
FNO3D, we have conducted the experiments only for t = 10, 20 since using fewer points for the
time dimension would have essentially reduced FNO3D to FNO2D.

Figure 2: Example dynamics of (2+1)D Navier-Stokes system. Ground truth data (top) and predic-
tion using ANIE (bottom) are shown. Prediction was generated using an initial condition that was
not seen during training. R2 values quantify the model fit.

3.4 MODELING BRAIN DYNAMICS USING ANIE

Functional magnetic resonance imaging (fMRI) is the most common technique for studying whole-
brain activity in humans. In fMRI, the blood-oxygen-level dependent (BOLD) signal is used as a
proxy for brain activity (Akiki & Abdallah, 2019). fMRI data is intrinsically noisy and limited with
respect to duration of an experiment for a single subject, which makes the task of modeling fMRI
dynamics challenging. The use of fMRI simulators such as the neurolib (Cakan et al., 2021) has
become a viable alternative to the real fMRI recordings. neurolib allows the user to load structural
and functional datasets, change parameters that coordinate the whole network behavior and simulate
it. The model created by neurolib to simulate the whole-brain is implemented as a system of delay
differential equations, making it a dynamical system that simulates whole-brain activity. Here we
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Table 4: Error per extrapolated time point for unseen initial conditions of the Generated fMRI
data. The models that use a single time points to predict the whole dynamics are ANIE (ours),
NODE, and Residual Network, while the LSTM uses 2 time points. ANIE shows better extrapolation
performance, as shown by lower absolute error.

t = 3 t = 5 t = 10 t = 20
NODE 0.5295± 0.04417 0.98± 0.07831 1.759± 0.1407 2.361± 0.2227
LSTM 1.797± 0.1704 2.004± 0.1856 2.182± 0.195 2.47± 0.1993

Residual Network 2.293± 0.1764 2.396± 0.1705 2.535± 0.1706 2.742± 0.2
ANIE (ours) 0.6201± 0.06875 0.7974± 0.08118 1.086± 0.112 1.242± 0.1256

Table 5: R-squared between model predictions, of ANIE, NODE, and LSTM, and ground truth for
the 2D IE spirals. ANIE has the best performance.

NODE LSTM ANIE (ours)
0.1778± 0.06932 0.3410± 0.1132 0.7366± 0.1440

show the performance of ANIE and other models in modelling data generated by neurolib. Details
about the data generations and pre-processing can be found in the Appendix.

The generated fMRI data consists of neural activity generated for 80 nodes localized across the
cortex. The first half of the data is used for training and the second half is used for test. For training,
the data is divided in segments of 20 time points where each time point characterize the initial
condition of a 20 time points curve for the 80 nodes. As such, the models are trained on this data
as an initial condition problem. During inference, the models are given points from the test set as
new initial conditions and asked to extrapolate for the following 19 points. The mean error per point
for 500 new initial conditions is shown in Figure 5 and summarized in Table 4. Despite all models
effectively learning the dynamics of the training set, our results show that ANIE is the model with
best performance in extrapolation for unseen new initial conditions. Figure 8 shows examples of the
first 2 principal components of the generated fMRI data with the different model outputs. Figure
4 shows the output of the tested models per fMRI recording node over time with their respective
correlation coefficient with the ground truth.

3.5 MODELING 2D IE SPIRALS

Here we test ANIE, NODE and LSTM in modelling 2D spirals generated by integral equations. This
data consists of 500 2D curves of 100 time points each. The data was split in half for training and
validation. During training, the initial 20 points were given as initial conditions for the different
models. Details about the data generation are described in Appendix C. For ANIE, the initialization
is given via the free function f , which assumes the values of the first 20 points and sets the remaining
80 points to be equal to the value of the 20th point. For NODE, the initialization is given as the
reverse RNN on the first 20 points, which outputs a distribution corresponding to the first time point
(see Chen et al. (2018) for more details on their Latent ODE experiments). The configuration used
for NODE was the same used for their experiments on 2D spirals. For LSTM, we input the data
in segments of 20 points to predict the consecutive point of the sequence. The process is repeated
with the output of the previous step until all points of the curve are predicted. During inference we
test the models performance to a new initialization. For that, we provide the segment from the 20th
to the 40th point of the curve as the initialization and predict the remaining points of the curve. In
other words, we provide a shifted sequence of 20 points. Table 5 shows the correlation between the
ground truth curve and the extrapolation obtained with each model. Figure 7 shows the correlation
coefficient for each of the 500 curves. In summary, ANIE significantly outperforms the other tested
models when tested on new initial conditions.
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3.6 INTERPRETABILITY OF ANIE

The attentional version of the IE solver provides attention weights that we can interpret, potentially
giving insight into the underlying dynamics that generate the system. To inspect this, we extract the
learned attention weights of ANIE trained on the Navier-Stokes data. Figure 3 shows the dynamics
with its associated attention weights. We find that the attention values have a smooth and periodic
pattern with respect to the 2D spatial coordinates and input dynamics.

Figure 3: Visualization of attention of a ANIE model trained on Navier-Stokes data. The dynamics
at time t = 0 is shown on the left, and the corresponding attention weights for each of the 4 attention
heads are shown on the right.

Figure 4: Example dynamics of fMRI data. Each image represents time on the x axis and 80 nodes
(brain locations) on the y axis. R-squared of fit to ground truth data is shown for each model. ANIE
has the best fit to the data.

4 CONCLUSIONS

We have presented the first neural network based integral equation solver that can learn an integral
operator and its associated dynamics from data. A self-attention based version of the solver provides
high scalability as well as interpretability of the dynamics. We have demonstrated the ability of our
method to learn ODE, PDE, and IE systems, better than other dynamics models, in terms of better
predictability as well as scalability. Since IEs can be used to model many real-world systems, we
anticipate that our framework will have broad applications in science and engineering.
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REPRODUCIBILITY STATEMENT

In order to allow the replication of ours results, we have provided all key components, including
code, for the training and evaluation of all experiments performed in this manuscript:

• Pseudo Code for Neural Integral Equations is provided in Section 2, Algorithms 1, and for
Attention Neural Integral Equations in Section 2.2, Algorithms 2.

• Hyperparameters for model training are defined in Appendix F.

• For artificial datasets, the code for generation has been included in Appendix C, E, D.

.
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Figure 5: Quantification, using absolute error per time point, of model fits to simulated fMRI dataset.
Models were run during inference on initial conditions not seen during training. ANIE has the best
performance (lowest error) in predicting the dynamics.

Figure 6: Example dynamics of Navier-Stokes system. Ground truth data (top) and prediction using
ANIE (bottom) are shown. Prediction was generated using an initial condition that was not seen
during training. R2 values quantify the model fit.

Figure 7: Quantification, using R-squared, of model fits to 2D IE spiral dataset. Models were run
during inference on initial conditions not seen during training. ANIE has the best performance
(highest R-squared) in predicting the dynamics.
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Figure 8: Example curves for simulated fMRI data and their model fits of an extrapolation task from
unseen initial condition. ANIE performs best in predicting the dynamics for a new initial condition.

Figure 9: Hyperparameter sensitivity analysis for ANIE, LSTM and Neural ODE. Validation set
Mean Squared Error for different hyperparameter combinations for all models trained for 300
epochs.

14



Under review as a conference paper at ICLR 2023

B INTEGRAL EQUATIONS

Integral Equations (IEs) are equations where the unknown function appears under the sign of in-
tegral. The theories of IEs and Integro-Differential Equations (IDEs) are tightly related, and it is
often the case to reduce problems in IEs to problems in IDEs and vice versa, both in practical and
theoretical situations. IEs are also related to differential equations, and it is possible to reformulate
problems in ODEs in the language of IEs or IDEs. In certain cases, IEs can also be converted to
differential equations problems, even though this is not always possible (Zemyan, 2012; Grigoriev
et al., 2010). In fact, the theory of IEs is not equivalent to that of differential equations. The most
intuitive way of understanding this is by considering the local nature of differential euqations, as
opposed to the non-local origin of IEs. By non-locality of IEs it is meant that each spatiotemporal
point in an IE depends on an integration over the full domain of the solution function y. In the case
of differential equations, each local point depends only on the contiguous points through the local
definition of the differential operators.

B.1 INTEGRAL EQUATIONS (1D)

We first discuss IEs where the integral operator only involves a temporal integration (i.e. 1D), as
discussed in Section 2. In analogy with the case of differential equations, this case can be considered
as the one corresponding to ODEs.

These IEs are given by an equation of type

y(t) = f(t) +

∫ β(t)

α(t)

G(y, t, s)ds, (4)

where f is the free term, which does not depend on y, while the unknown function y appears both
in the LHS, and in the RHS under the sign of integral. The term

∫ β(t)

α(t)
G(y, t, s)ds is an integral

operator C(D) −→ C(D) from the space of integrable functions C(D) over some domain of R, into
itself. We observe that the variables t and s appearing in G are both in D, and they are interpreted
as time variables. We refer to them as global and local times, respectively, following the same
convention of (Zappala et al., 2022). The functions α and β determine the extremes of integration
for each (global) time t. Common choices for α and β include α(t) = 0 and β(t) = t (Volterra
equations), or α(t) = a and β(t) = b (Fredholm equations).

The fundamental question in the theory of IEs is whether solutions exists and are unique. It turns out
that under relatively mild assumptions on the regularity of G IEs admit unique solutions (Zemyan,
2012). Furthermore, the proofs in the first chapter of (Lakshmikantham, 1995) show the close
relation between IEs and IDEs, as existence an uniqueness problems for IDEs are shown to be
equivalent to analogous problems for IEs. Then the fixed point theorems of Schauder and Tychonoff
are used to prove the results.

B.2 PARTIAL INTEGRAL EQUATIONS (N+1D)

We now discuss the case of IEs where the integral operator involves integration over a multi-
dimensional domain of Rn. This is the IE version of PDEs, and they are commonly referred to
as Partial Integral Equations (PIEs). An equation of this type takes the form

y(x, t) = f(x, t) +

∫
Ω

∫ β(t)

α(t)

G(y,x, t, s)dxds, (5)

where Ω ⊂ Rn is a domain in Rn, and y : Ω × R −→ Rm. Here m does not necessarily coincide
with n.

PIEs have been studied in some restricted form since the 1800’s, as they have been employed to
formulate the laws of electromagnetism before the unified version of Maxwell’s equations was pub-
lished. In addition, early work on the Dirichelet’s problem found the IE approach proficuous, and
it is well known that several problems in scattering theory (molecular, atomic and nuclear) are for-
mulated in terms of PIEs. In fact, the Schrödinger equation can be recast as a PIE (Tobocman &
Foldy, 1959). See also (Salpeter & Bethe, 1951), where bound-state problems are treated with the
IE formalism.
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C ARTIFICIAL DATASET GENERATION

C.1 LOTKA-VOLTERRA SYSTEM

Lotka-Volterra is a classic system of nonlinear differential equations that models the interaction
between two populations. The equations are described by:

dx

dt
= αxy − βy

dy

dt
= δxy − γy

where α and δ define the population interaction terms and β and γ the intrinsic population growth for
population x and y. For our training selected 100 values of α, β, δ and γ and produce curves with
the same initial condition. See code below (was adapted from https://scipy-cookbook.
readthedocs.io/items/LoktaVolterraTutorial.html), and example visualization:

Figure 10: Example visualization of Lotka-Volterra 2D System

i m p o r t numpy as np
from s c i p y i m p o r t i n t e g r a t e

a s a m p l e s = np . random . un i fo rm ( low = 0 . 5 , h igh = 1 . 5 , s i z e =100)
b s a m p l e s = np . random . un i fo rm ( low = 0 . 5 , h igh = 1 . 5 , s i z e =100)
c s a m p l e s = np . random . un i fo rm ( low = 0 . 5 , h igh = 2 . 5 , s i z e =100)
d s a m p l e s = np . random . un i fo rm ( low = 0 . 2 5 , h igh = 1 . 2 5 , s i z e =100)

d e f dX dt (X, t = 0 ) :
””” R e t u r n t h e growth r a t e o f two p o p u l a t i o n s ove r t ime ”””
r e t u r n np . a r r a y ( [ a *X[ 0 ] − b*X[ 0 ] *X[ 1 ] ,

−c *X[ 1 ] + d*b*X[ 0 ] *X[ 1 ] ] )

d e f d a t a g e n e r a t i o n ( a samp le s , b samples , c s amp le s , d s a m p l e s ) :
Data = [ ]
f o r i i n r a n g e ( 1 0 0 ) :

a = a s a m p l e s [ i ]
b = b s a m p l e s [ i ]
c = c s a m p l e s [ i ]
d = d s a m p l e s [ i ]

t = l i n s p a c e ( 0 , 15 , 100) # t ime
X0 = a r r a y ( [ 1 0 , 5 ] )

# i n i t i a l s c o n d i t i o n s : 10 r a b b i t s and 5 f o x e s
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X, = i n t e g r a t e . o d e i n t ( dX dt , X0 , t , f u l l o u t p u t =True )
Data . append (X)

r e t u r n np . a r r a y ( Data )

C.2 LORENZ SYSTEM

Lorenz is a 3-dimensional system of ordinary differential equations, for modelling atmosferic con-
vection. Furthermore, this system is chaotic which means that small variations of initial conditions
can significantly affect the final trajectory. The system is described by:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

We decided to sample 100 random initial conditions, and run the system with the same pa-
rameters. See code below, which was adapted from https://github.com/gboeing/
lorenz-system, and example visualization with default hyperparams.

Figure 11: Example visualization of 3D Lorenz Dynamical System

from numpy i m p o r t *
i m p o r t numpy as np
from s c i p y . i n t e g r a t e i m p o r t o d e i n t

# D e f i n i t i o n o f p a r a m e t e r s
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i n i t x = np . random . un i fo rm ( low = 0 . 0 , h igh = 0 . 5 , s i z e =100)
i n i t y = np . random . un i fo rm ( low = 0 . 0 , h igh = 0 . 5 , s i z e =100)
i n i t z = np . random . un i fo rm ( low = 0 . 0 , h igh = 0 . 5 , s i z e =100)

# d e f i n e t h e l o r e n z sys tem
# x , y , and z make up t h e sys tem s t a t e , t i s t ime ,
# and sigma , rho , b e t a a r e t h e sys tem p a r a m e t e r s
d e f l o r e n z s y s t e m ( c u r r e n t s t a t e , t ) :

# p o s i t i o n s o f x , y , z i n s p a c e a t t h e c u r r e n t t ime p o i n t
x , y , z = c u r r e n t s t a t e

# d e f i n e t h e 3 o r d i n a r y d i f f e r e n t i a l e q u a t i o n s
# known as t h e l o r e n z e q u a t i o n s
d x d t = sigma * ( y − x )
d y d t = x * ( rho − z ) − y
d z d t = x * y − b e t a * z

# r e t u r n a l i s t o f t h e e q u a t i o n s t h a t d e s c r i b e t h e sys tem
r e t u r n [ dx d t , dy d t , d z d t ]

Data = [ ]
f o r i i n r a n g e ( 1 0 0 ) :

i n i t i a l s t a t e = [ i n i t x [ i ] , i n i t y [ i ] , i n i t z [ i ] ]
# d e f i n e t h e i n i t i a l sys tem s t a t e ( aka x , y , z
# p o s i t i o n s i n s p a c e )

# d e f i n e t h e sys tem p a r a m e t e r s sigma , rho , and b e t a
s igma = 1 0 .
rho = 2 8 .
b e t a = 8 . / 3 .

# d e f i n e t h e t ime p o i n t s t o s o l v e f o r ,
# e v e n l y sp ac e d between t h e s t a r t and end t i m e s
s t a r t t i m e = 0
e n d t i m e = 100
t i m e p o i n t s = np . l i n s p a c e ( s t a r t t i m e , end t ime , e n d t i m e *1)
xyz = o d e i n t ( l o r e n z s y s t e m , i n i t i a l s t a t e , t i m e p o i n t s )
Data . append ( xyz )

C.3 INTEGRAL EQUATION SPIRALS

We defined an Integral Equation system for a 2D spiral. We then solve the system using an integral
equation solver in Pytorch analytically, without the need of a neural network for the forward func-
tion. See c, d, k and f which defines the dynamical system in IESolver monoidal. See code below
and example dynamics:

z0 = t o r c h . Tensor ( [ [ 0 . 1 , 0 . 7 ] ] ) . t o ( d e v i c e )

t max = 1
t m i n = 0
n p o i n t s = 100

i n d e x n p = np . a r a n g e ( 0 , n p o i n t s , 1 , d t y p e = i n t )
i n d e x n p = np . h s t a c k ( [ i n d e x n p [ : , None ] ] )
t i m e s n p = np . l i n s p a c e ( t min , t max , num= n p o i n t s )
t i m e s n p = np . h s t a c k ( [ t i m e s n p [ : , None ] ] )

###########################################################
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Figure 12: Example visualization of 2D Integral Equation Spiral

t i m e s = t o r c h . from numpy ( t i m e s n p [ : , : , None ] ) . t o ( z0 )
t i m e s = t i m e s . f l a t t e n ( )
# t i m e s = t i m e s / t max
###########################################################
s t a r t = t ime . t ime ( )
s o l v e r = I E S o l v e r m o n o i d a l ( x = t i m e s . t o ( d e v i c e ) ,

c = lambda x : t o r c h . Tensor ( [ t o r c h . cos ( t o r c h . Tensor ( [ x ] ) ) ,
t o r c h . cos ( t o r c h . Tensor ( x+np . p i ) ) ] ) . t o ( d e v i c e ) ,

d = lambda x , y : t o r c h . Tensor ( [ 1 ] ) . t o ( d e v i c e ) ,
k = lambda t , s : k e r n e l s . c o s k e r n e l (2* np . p i * t , −2* np . p i * s ) ,
f = lambda y : t o r c h . t a n h (2* np . p i *y ) . t o ( d e v i c e ) ,
l ower bound = lambda x : t o r c h . Tensor ( [ t m i n ] ) . t o ( d e v i c e ) ,
uppe r bound = lambda x : x ,
m a x i t e r a t i o n s = 3 ,
i n t e g r a t i o n d i m = 0 ,
mc sampl ings = 10000)

Data = s o l v e r . s o l v e ( )
Data = Data . unsqueeze ( 1 )

C.4 FMRI DATA GENERATION

The simulated fMRI data was generated using neurolib Cakan et al. (2021). The authors of this tool
provide code to generate fMRI data for Resting-state with a given structural connectivity matrix and
a delay matrix. The code can be found in their GitHub page 1. We used this code to generate 100000
time points of data for 80 voxels corresponding to regions of the cortex.

The generated data is normalized via computing the z-score of the logarithm of the whole data. This
data is then downsampled in time by a factor of 10, thus resulting in 10k time points. In our tests,
we use the first 5k points, where the first 2.5k points are used for training and the remaining points
are reserved for testing. During batching, each point is taken as the initial condition of a curve of
length 20 points.

1https://github.com/neurolib-dev/neurolib/blob/master/examples/example-0-aln-minimal.ipynb
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Table 6: Number of parameters for each experiment

ANIE NODE LSTM Residual Net
Generated fMRI 321,233 319,280 328,400 319,280
2D curves 18,819 1,654 20,862 -

D BURGERS’ EQUATIONS

The Burgers’ equation is a quasilinear parabolic partial differential equation that takes the form

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (6)

where x is a spatial dimension, while t indicates time, and ν is a diffusion coefficient called viscosity
see (Benton & Platzman, 1972). A very interesting behavior of the solutions of the Burgers’ equation
regards the presence of shock waves.

Our dataset is generated using the Matlab code used in Li et al. (2020a), which can be found in their
GitHub page 2. The solution is given on a spacial mesh of 1024 and 400 time points are generated
from a random initial condition. We use 1000 curves for training and test on 200 unseen curves,
where the interval spans 1/4 of the original time used for testing.

E NAVIER-STOKES EQUATIONS

The Navier-Stokes equations are partial differential equations that arise in fluid mechanics, where
they are used to describe the motion of viscous fluids. They are derived from the conservation laws
(for momentum and mass) for Newtonian fluids subject to an external force with the addition of
pressure and friction forces, where the unknown function indicates the velocity vector of the fluid
(Chorin, 1968; Fefferman, 2000). Their expression is given by the system

∂

∂t
ui +

∑
j

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi(x, t) (7)

divu =
∑
i

∂ui
∂xi

(8)

where ∆ is the Laplacian operator, f is the external force, and u is the unknown velocity function.
We experiment on the same data set for ν = 1e − 3 of (Li et al., 2020a), which can be found in
their GitHub page 3. We use 4000 instances for training and 1000 for testing. In our tasks, we
utilize a single time point to inizialize our model (ANIE) and obtain the full dynamics from a single
frame. For comparison, we use the minimal number of time points allowed for the other models for
comparison. This is not always possible, for instance, FNO3D cannot be applied on a single time
point, or few time points, as the time convolution needs several time points to produce significant
results. Despite this significant advantage given to FNO3D, ANIE (ours) still better performs on the
prediction of 10 and 20 time points.

F ADDITIONAL DETAILS ON THE EXPERIMENTS AND HYPERPARAMETERS

The number of parameters for the models used in the experiments and are given in Tables 6 and 7.
In all cases, the optimizer “Adam” has been employed.

2https://github.com/zongyi-li/fourier neural operator/tree/master/data generation/burgers
3https://github.com/zongyi-li/fourier neural operator/tree/master/data generation/navier stokes
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Table 7: Number of parameters for each experiment

FNO3D FNO2D ANIE Galerkin Conv1D LSTM Conv2DLSTM
Navier Stokes 6,558,537 414,517 1278627 - - 447,528
Burgers - - 161,154 511,329 149,520 -

21


	Introduction
	Our Contributions
	Background and related work

	Neural integral equations
	Space time and higher dimensional integration
	Attentional neural integral equations
	The initial condition for IEs

	Experiments
	Benchmark of (A)NIE training speed
	Hyperparameter sensitivity benchmark
	Modeling PDEs with IEs: Burgers' and Navier-Stokes equations
	Modeling brain dynamics using ANIE
	Modeling 2D IE spirals
	Interpretability of ANIE

	Conclusions
	Additional Figures
	Integral Equations
	Integral Equations (1D)
	Partial Integral Equations (n+1D)

	Artificial Dataset Generation
	Lotka-Volterra System
	Lorenz System
	Integral Equation Spirals
	FMRI data generation

	Burgers' equations
	Navier-Stokes equations
	Additional details on the experiments and hyperparameters

