
Towards Automatic Actor-Critic Solutions to
Continuous Control

Anonymous Author(s)
Affiliation
Address
email

Abstract

Model-free off-policy actor-critic methods are an efficient solution to1

complex continuous control tasks. However, these algorithms rely on a2

number of design tricks and hyperparameters, making their application to3

new domains difficult and computationally expensive. This paper creates4

an evolutionary approach that automatically tunes these design decisions5

and eliminates the RL-specific hyperparameters from the Soft Actor-6

Critic algorithm. Our design is sample efficient and provides practical7

advantages over baseline approaches, including improved exploration,8

generalization over multiple control frequencies, and a robust ensemble9

of high-performance policies. Empirically, we show that our agent10

outperforms well-tuned hyperparameter settings in popular benchmarks11

from the DeepMind Control Suite. We then apply it to less common12

control tasks outside of simulated robotics to find high-performance13

solutions with minimal compute and research effort.14

1 Introduction15

Deep Reinforcement Learning (RL) has had great success in many diverse and challenging domains,16

from robotics [24] to the game of Go [44] and autonomous balloon navigation [5]. However, day-17

to-day progress in the field is measured in a limited number of benchmark tasks and tends to be18

dominated by a small group of algorithms. The model-free off-policy actor-critic literature includes19

dozens of papers that compare their methods on simulated locomotion tasks that have been popular20

for half a decade [40] [6]. In that time, the research community has settled on a set of accepted21

hyperparameters and design heuristics that rarely changes. While this may save time and compute22

when comparing methods on common benchmarks, it makes approaching a brand new domain a23

daunting and computationally expensive challenge. Many of the most important hyperparameters in24

state-of-the-art actor-critic algorithms are unintuitive; even experienced RL practitioners may need to25

resort to grid search and other expensive hyperparameter optimization techniques.26

This paper looks to automate the process of tuning an actor-critic algorithm and creates an out-of-27

the-box solution to dense-reward continuous control problems. The result is a general algorithm28

that tunes almost every RL design decision and returns an ensemble of high-performance policies29

while remaining sample-efficient. First, we compare against baseline approaches in common control30

benchmarks. Then we evaluate our method’s ability to reduce engineering effort in new domains by31

applying it to complex tasks inspired by real-world industrial challenges and operations research.32

Our solution, which we call Automatic Actor-Critic (AAC), is easy to implement and leaves several33

promising directions for future improvement.34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

2 Background35

2.1 Model-Free Off-Policy Actor-Critics for Continuous Control36

We assume the reader is familiar with Reinforcement Learning and the general Markov Decision37

Process (MDP) setting; see Appendix A for an overview of notation. This paper focuses on solving38

control tasks where actions are continuous vectors. Deep RL research in continuous control was39

partly inspired by the success of model-free off-policy actor-critic methods like DDPG [32]. DDPG40

and later variations iteratively learn a policy π and action-value function(s) Q, parameterized by a41

deep neural network actor and critic(s), denoted πθ and Qφ respectively. Interactions are sampled42

from the environment and added to a large replay buffer D. Typically we encourage the exploration43

of new behavior by injecting random noise into the policy or sampling from a stochastic actor. The44

critic networks are updated by approximate dynamic programming to learn the value of taking action45

a in a given state s. This is accomplished by regression to a temporal difference (TD) target:46

Lcritic = E
(s,a,r,s′,d)∼D

[(
Qφ(s, a)− (r + (1− d)γQφ′(s′, ã′))

)2]
(1)

Where ã′ ∼ πθ(s
′), and φ′ term refers to target networks, which are discussed in more detail in47

Section 2.2. The continuous action space makes it intractable to recover an optimal policy directly48

from the Q function. Instead, we train the actor network to maximize the output of the critic network:49

Lactor = E
s∼D

[−Qφ(s, πθ(s))] (2)

State-of-the-art algorithms typically learn an ensemble of critic networks to reduce update bias50

due to function approximation error [15]. In the case of two critic networks, this is known as the51

“clipped-double-Q-trick" - though it can be expanded to an arbitrary number of networks [8].52

The community has generated a vast literature discussing various techniques to improve sample53

efficiency and performance. Among these are algorithms such as TD3 [15], SAC [16], SUNRISE [30],54

DisCor [27], REDQ [8], and GRAC [42] - to name only a few. Model-free off-policy actor-critics55

retain their popularity because their performance is near state-of-the-art on common benchmarks56

while being widely available and reproducible. Deep Actor-Critics have wide-ranging applications,57

but the incremental progress in the field is primarily measured on a small set of benchmark tasks.58

In the process of inventing, comparing, and re-implementing dozens of alternative approaches on59

this small task set, the research community has settled on several heuristic design choices that are60

critical to high performance. The reliance on these settings makes it difficult to apply this family of61

algorithms to new domains. In the next section, we discuss what we consider to be the most important62

hyperparameters in off-policy actor-critics and the challenges that come with tuning them.63

2.2 Design Decisions in Deep Actor-Critic Algorithms64

Target networks, Learning Schedules and Replay Ratios: Target networks (Eq 1) prevent the65

update to Qφ(s, a) from immediately impacting the value of Qφ(s′, a′), which destabilizes learning66

by altering the value of the Q-network’s TD target. We can control our targets’ rate of change67

by using a separate network to output Qφ′(s′, a′), and updating that network periodically [35] or68

as a moving average of the online critics’ weights with polyak parameter τ [32]. In either case,69

this creates an important hyperparameter decision. Updating the target network too quickly or too70

often will destabilize learning, while updating it too slowly or infrequently leads to an unnecessary71

drop in sample efficiency. GRAC [42] proposes a “self-regularized" update that preserves stability72

by explicitly penalizing changes in Qφ(s′, a′) - removing the need for target networks and their73

hyperparameters. However, the penalized update has the side-effect of being much more conservative,74

requiring several critic gradient updates per training step. The question of precisely how many more75

updates are needed introduces additional hyperparameters. We need to identify the optimal ratio of 1)76

environment samples collected, 2) actor gradient updates, 3) critic gradient updates. These values77

create a learning schedule or replay ratio. Recent work has found that increasing the replay ratio can78

boost sample efficiency and performance [13] [8].79

Action Persistence and Control Frequency: The control frequency is the rate at which the agent80

receives states from the environment and is required to provide a new action. In real-world robotics,81

this might be determined by sensor delay or other natural barriers. The control frequency of simulated82

research environments is often a relatively arbitrary constant set inside the parameters of the physics83

simulator (e.g., MuJoCo [48]). As control frequency increases, the time between actions decreases,84

2

and therefore the consequences of individual actions become difficult to distinguish. More formally,85

the advantage Q(s, a)− V (s) of an action a approaches zero as the time between states approaches86

zero [45] [33]. This presents a challenge to Q-learning methods because the critic value landscape87

we are maximizing will appear to be mostly flat. A simple way to address this is to enforce a lower88

control frequency by repeating the agent’s past action k times before asking for a new decision. This89

reduces the control frequency by a factor of k and increases the advantage of optimal actions. The90

value of k is called the “action persistence", “action repeat" or “frame skip" parameter. Increasing91

the action persistence can also improve exploration and reduce forward pass computation during92

deployment [25] [21].93

A properly tuned action persistence can have a significant impact on performance [39]. However,94

high values of k can cause the gap between action choices to be too long to adapt to sudden changes95

in the environment. There have been several proposed ways to tune k. One approach is to make96

the action repeat an aspect of the action itself. In discrete settings, this may involve multiplying97

the action space to create a new action for each original choice but at several different values of k98

[28]. In continuous spaces, the persistence can become a new dimension of the action vector [43].99

Another approach (TASAC [52]) learns a second policy whose only action choices are to repeat the100

previous action of the main policy or select a new one. More complicated methods directly estimate101

the optimal action persistence [33] and can handle different control frequencies for each component102

of the action [29].103

Discount Factor: The MDP discount factor γ controls the time horizon over which the agent is104

maximizing returns. This value is usually treated as a fixed element of the benchmark and set at .99.105

However, agents are almost always evaluated based on their undiscounted (γ = 1.0) returns, which106

makes γ more of an agent-side hyperparameter than an environmental constraint [21]. Prior work has107

considered hyperparameter schedules for γ that boost performance by regularizing learning [1].108

Entropy Regularization: One way to ensure diverse experience collection is to optimize for policy109

entropy, balanced by an additional hyperparameter α. PPO [41] and A2C/A3C [34] set α to be a110

small fixed constant. SAC [17] uses a MaxEnt-RL framework that makes entropy part of the value111

function. This increases policy entropy and is thought to have other benefits, including robustness to112

environmental uncertainty and partially observed reward functions [12]. Entropy regularization also113

keeps the exploration policy more centered around zero as opposed to the random noise heuristics of114

TD3 and DDPG, which can cause actions to be repeatedly clipped at (−1, 1) [49]. The follow-up115

version of SAC [16] tunes α to dynamically approach a target entropy level with gradient descent.116

This target entropy level is denoted H and set to −|A| - a value that works empirically on benchmark117

tasks but becomes an unintuitive hyperparameter in new domains. Meta-SAC [50] tunes the target118

entropy value with a meta-gradient approach.119

3 Method: Automatic Actor Critics120

The issues above require a number of heuristic solutions that would be expensive to re-tune and121

re-evaluate on a new domain. We attempt to address this by creating a unified approach that122

automatically discovers new heuristics for each task and sheds as many hyperparameters as possible.123

We find inspiration in Population Based Training (PBT) [23]. In PBT, a population of independent124

training runs with different hyperparameters are conducted independently. At regular intervals, the125

performance of each run is used to generate a more optimal set of hyperparameters according to an126

evolutionary strategy where the parameters of the highest-performing runs are used to re-initialize127

the worst-performing setups. Hyperparameters are randomly perturbed to explore the parameter128

space. In the off-policy RL context, PBT is quite sample-inefficient because each training run in the129

population collects a full buffer of samples independently despite being designed to recycle data from130

a variety of policies. Our first modification is to share environment experience across members of the131

population. Because the replay buffer we are optimizing over now consists of the experience of many132

different agents with different parameters, we are diversifying experience collection and recovering133

the exploration advantages of multi-actor setups like D4PG [4].134

We initialize a population of M SAC-style actor-critic agents and begin by searching over γ and135

the target entropy coefficient H . We make a change of notation from γ and H . g substitutes γ,136

where γ = 1− exp(g); this gives the agent more control over the small differences between discount137

values approaching 1.0. h substitutes for the target entropy H , where H = h(−|A|), meaning it is a138

coefficient for the default SAC heuristic of H = −|A|.139

3

From there, we add two adjustments to the core agent intended to reduce hyperparameters and140

find higher-performance policies. We eliminate the need for target networks by utilizing the self-141

regularizing critic update from GRAC [42]. Updates are stabilized by minimizing the impact that142

changes to Q(s, a) that have on the target value Q(s′, a′):143

Lsr = Lcritic + (��∇Qφ(s′, a′)−Qφ(s′, a′)) (3)

where ��∇ denotes a stop gradient operator. This process can be replicated across each critic network144

when using the clipped-double-Q trick or another bias-reducing method. This loss function slows145

critic learning by reducing the impact of each gradient update. The GRAC authors address this146

by introducing an additional heuristic whereby the critic optimization loop continues until the147

critic loss is less than some percentage of its initial value on that training step. That percentage is148

annealed throughout training as the critic is more accurate and is less able to reduce its loss function.149

Experiments in [42] demonstrate that this is a sensitive hyperparameter. Our goal is to eliminate150

sensitive hyperparameters, so we add the number of actor and critic updates per gradient step as151

separate PBT-tuned parameters. We denote these as a and c, respectively. Searching over both a and152

c creates an adaptive replay ratio schedule that can improve sample efficiency.153

The action persistence value k discussed in Sec 2.2 can have a critical impact on performance. Rather154

than adding additional action outputs to adjust action repetitions k, we experiment with the simpler155

solution of making k a tunable parameter of the environment and add it to the PBT search. However,156

adjusting the control frequency of the population’s experience over time complicates the use of157

replay buffer data. We address this by concatenating the current value of k to the state vector of the158

environment. This allows the actor and critic networks to recognize changes in control frequency159

and adapt their output accordingly while replaying transitions from the buffer as usual. A side effect160

of this approach is that it allows the agent to generalize across control frequencies and adapt to161

changes during deployment. There are some additional details related to how we compensate for162

changes in γ to the reward of frame-skipped transitions. A thorough discussion of this approach163

to “persistence-aware actor-critics" is provided in Appendix B along with additional experiments164

focused on this idea.165

In total, we are now automatically searching over five key hyperparameters (a, c, k, g, h). Each166

member of the population trains for one evolutionary epoch with its own hyperparameter values. The167

population is then evaluated in the environment to determine each member’s “fitness" (f). We set the168

fitness of agent i, denoted fi, to its mean return with action persistence ki1. However, more complex169

novelty-related bonuses could be incorporated to improve exploration (Sec 6). The highest-fitness170

members are randomly paired with the lowest-fitness members to transfer and then perturb their171

hyperparameter values. Network parameters and optimizer states are also transferred.172

All that is left to define are the ranges of hyperparameter values that we would like to search. While173

this may seem like we have traded each parameter for three new ones (the lower bound, upper bound,174

and random perturbation range), these are intuitive to define in practice. If our range is too broad,175

the evolutionary algorithm may take more time to find the correct values, but we can be reasonably176

confident that it will. The only difficult hyperparameters that we have introduced are the frequency177

of evolutionary updates and the population size. However, both have intuitive runtime/performance178

tradeoffs - increasing the population size and length of individual training runs makes us more likely179

to find the correct parameters and more likely to notice the performance gap between them. We can180

set these meta-parameters in advance based on available time, compute, and problem difficulty.181

Pseudocode is provided in Algorithm 1 and additional implementation details are discussed in182

Appendix C.1. We will refer to this method as “Automatic Actor-Critic" (AAC). To summarize, this183

agent:184

• Does not use target networks and their associated hyperparameters. We automatically learn the185

replay ratio and additional critic update schedule.186

• Dynamically adjusts the action persistence but arrives at a fixed control frequency. As a side effect,187

it is also capable of adapting to sudden changes in control frequency.188

• Does not rely on random noise heuristics for exploration. We sample from a high-entropy stochastic189

policy that is automatically tuned to approach a target entropy level that is also automatically tuned.190

• Does not treat the discount factor as a fixed environment parameter and can dynamically adjust γ191

to improve evaluation performance.192

1It is common for environments to have strict maximum episode lengths that directly influence the final
return. In these cases, we compensate for differences in action repetition by dividing the step limit by k.

4

Algorithm 1 Automatic Actor Critic Training

Require: Population size M , evolutionary epoch E, steps per epoch T , min and
max values for a, c, h, k, g (denoted as amin, amax, . . . , gmin, gmax).

1: D ← replay buffer initialized with random samples
2: for i = 1, . . . ,M in population do
3: ai ∼ U(amin, amax)
4: ci ∼ U(cmin, cmax)
5: hi ∼ U(hmin, hmax)
6: ki ∼ U(kmin, kmax)
7: gi ∼ U(gmin, gmax)
8: P 0

i ← (θi, φi, ai, ci, hi, ki, gi)
9: end for

10: for e = 1, . . . , E epochs do
11: for t = 1, . . . , T steps per epoch do
12: for i = 1, . . . ,M in population (in parallel) do
13: Collect exp. from env with ki and add to D
14: end for
15: for i = 1, . . . ,M in population (in parallel) do
16: for c = 1, . . . , ci do
17: γi = 1− egi
18: critic_update(φi, γi, D) . (Eq 3)
19: end for
20: for a = 1, . . . , ai do
21: Hi = hi(−|A|)
22: actor_update(θi, Hi, D) . (Eq 2)
23: end for
24: end for
25: end for
26: for i = 1, . . . ,M in population (in parallel) do
27: Evaluate P ei for fitness fi with persistence ki
28: end for
29: Sort population P by fi
30: “Bad” members← bottom 20% of P
31: “Elite” members← top 20% of P
32: Randomly shuffle “Bad” and “Elite”
33: for bad ∈ “Bad” and elite ∈ “Elite” do
34: Copy elite’s parameters & weights to bad
35: Perturb bad’s ai, ci, hi, ki, gi
36: end for
37: end for

• Improves exploration by sampling experience from a variety of diverse policies.193

• Has just two important hyperparameters, both of which have intuitive performance/runtime tradeoffs194

that can be considered in advance.195

• Returns a population of high-performance solutions that can be ensembled to form a robust final196

policy.197

4 Experiments198

We consider the following baselines:199

• SAC. Soft Actor-Critic with tunable entropy and literature-standard hyperparameters; a table of200

these standard parameters is available in Appendix D.201

• Persistence-Aware SAC (k-SAC). Soft Actor-Critic with tunable entropy and literature-standard202

hyperparameters, but trained with varying action persistence. We evaluate the agent on a range of k203

values and report the highest performance.204

5

• Self-Regularized SAC (SR-SAC). We incorporate the self-regularized critic update (Eq 3) into205

standard SAC2. The number of critic updates per training step is determined with the heuristic206

in [42] - we update on a given batch until the loss drops below β% of its initial value. All other207

hyperparameters are set to the literature standards.208

• Random Parameter SAC (Rand-SAC). Soft Actor-Critic with hyperparameters uniformly chosen209

from AAC’s search space3. Each run generates a new set of random hyperparameters. This210

highlights the hyperparameter sensitivity of SAC and shows the range of performance achieved by211

naively picking reasonable values to approach each environment.212

The total network parameters are kept comparable by adding the action persistence value to the input213

state whether or not this value is varied during training. For example, SAC runs as normal with214

a state vector that has an additional element that is fixed at 1. Results are listed as the mean and215

standard deviation of 5 random seeds. Rand-SAC has high variance by design - we compensate for216

the extra randomness with 15 total trials. The mean return of Rand-SAC is not as interesting as the217

variance because sufficient samples represent the performance of the mean of our random parameter218

distributions.219

The baselines are tested alongside AAC in five common tasks of varying difficulty from the DeepMind220

Control Suite [47]. The results are shown in Figure 1. The randomized hyperparameters are221

consistently low-performance and high-variance, as expected. The standard SAC defaults are heavily222

tested on these tasks, so it is not surprising that they perform quite well. SR-SAC and k-SAC are223

special-purpose techniques designed to compensate for specific design choices in SAC. Their relative224

performance varies across each task and depends on whether the hyperparameter they address happens225

to be a significant factor. For example, k = 1 is suboptimal in “Fish, Swim", so k-SAC performs226

well. On the other hand, the critic learning schedule in default SAC is too conservative for “Cheetah,227

Run", so SR-SAC offers a large improvement. AAC can adapt both of these parameters and discover228

the correct settings on a task-by-task basis; it matches the performance of the highest-performing229

baseline, although it may take more samples to sort out the optimal settings. Note that one reason for230

AAC’s slight drop in sample efficiency is the value of amax and cmax used in our experiments. We231

are not allowing our algorithm to fully compensate for the increase from 1 environment sample per232

training step to AAC’s distributed sampling. A member of the population that maxes out its actor and233

critic updates per step still cannot reach the replay ratio of SR-SAC. This choice was made because234

our implementation is synchronous, and allowing for a wide range in gradient update counts results235

in poor compute utilization. We discuss some workarounds for this in Section 6.236

Figure 2 shows the evolution of the highest-performing parameters over time. We plot the default237

parameter value as a light blue line for reference. AAC rediscovers the tuned default setting when238

it happens to be optimal for the task, e.g., γ and H . Other parameters vary more across tasks,239

particularly k.240

While it is helpful to know that AAC can find quality solutions to popular benchmarks, the real241

purpose of our algorithm is to simplify the use of actor-critic methods in less common domains. We242

put this to the test by evaluating AAC outside of simulated robotic locomotion.243

Random Policy Qin et al. [38] Rand-SAC SAC AAC
Setpoint 70 −322± 57 −180 −399± 99 −216± 16 −175± 3
Setpoint 100 −439± 129 - −432± 147 −314± 56 −257± 43

Table 1: Industrial Benchmark Results. Total returns scaled by 1e−3 for readability. The “setpoint"
parameter controls the difficulty of the environment and is bounded in [0, 100]. We add the setpoint
70 results from [38] to verify our implementation.

The Industrial Benchmark [19] is a synthetic control task designed to imitate the challenges that244

arise in managing industrial systems. The agent controls three “steering" variables and is rewarded245

for minimizing the cost and “fatigue" associated with operating the system. The environment has246

stochastic and delayed rewards along with a partially observable state. We evaluate SAC, Rand-SAC,247

2We note that this agent is not equivalent to GRAC because it does not include its additional tricks (e.g.,
CEM action improvement). We are simply adding the self-regularized critic update to SAC to eliminate target
networks.

3Default SAC has hyperparameters that AAC does not, e.g. τ . In these cases, the value is chosen from a
range around the literature default.

6

Agent

Figure 1: AAC on benchmark continuous control tasks. [Best viewed in color]

(QYLURQPHQW

Figure 2: The hyperparameters learned by AAC. The common default value is indicated with a
horizontal blue line. h and g are substitute variables for H and γ, respectively; see Sec 3 for an
explanation. [Best viewed in color]

Random Policy Rand-SAC SAC Hubbs et al. [22]
RL (PPO)

Hubbs et al. [22]
Oracle AAC

8.8± 81.1 118± 186 342± 11 409.8± 17.9 542 .7 ± 29 .9 415± 1.5

Table 2: Inventory Management Results. Rand-SAC, SAC and AAC collect 500, 000 steps of
experience. The RL result from [22] uses Proximal Policy Optimization (PPO) [41]. The oracle
method generates a theoretical upper bound by solving an optimization problem with information not
available to the agent.

and AAC in two different situations of increasing difficulty. The results are displayed in Table 1.248

AAC reduces the operating cost, and its effects are more noticeable at the greater difficulty.249

Next we consider two inventory management problems (IMPs) proposed by [22] and [3]. IMPs250

involve managing a supply chain to meet customer demand while balancing costs associated with251

7

Random Policy SAC Rand-SAC AAC
Mean −21, 669 −79 −9, 901 2.68
Std. 21, 032 25 11, 008 2.33
Max −1, 015 −23 0.57 6.83

Table 3: Newsvendor Results. Total return (scaled by 1e−4) in the environment over a 40 day
interval after 500, 000 environment steps. We also report the maximum score because asymmetric
returns make the standard deviation a misleading estimate of the upper performance bound.

ordering and carrying new materials4. We assume no prior knowledge of the IMP and instead attempt252

to solve it using our automatic method. To demonstrate the benefits of an automated tuning system, we253

do not use an iterative development cycle5; we ran AAC for five random seeds on each environment254

and report the initial results. The scores for the InvManagement-v1 and Newsvendor-v0255

environments are listed in Tables 2 and 3, respectively. AAC outperforms our baselines and matches256

the performance of tuned RL results reported in [22].257

Finally, we demonstrate the practical advantages of AAC’s population of diverse and persistence-258

aware policies. Results on the DeepMind Control Suite environments are shown in Figure 3. Ensem-259

bling the AAC population of actor networks greatly improves performance at sub-optimal control260

frequencies. Further experiments verify that the state representation of k is correctly used to adapt261

the policy to changes in action persistence.262

Figure 3: Generalization of AAC across control frequencies. Trained agents are evaluated across
a range of control frequencies. We utilize AAC’s ensemble of policies by returning the mean
action across the population. AAC is more robust to changes in control frequency than SAC. In the
“Misleading k" experiments, the control frequency of the underlying environment is altered while
the state representation of k is fixed at 1; the policy networks have learned to interpret the k value to
improve performance at sub-optimal control frequencies.

5 Related Work263

This work contributes to the AutoRL literature of online hyperparameter tuning in Deep RL. [21]264

discusses algorithms’ reliance on the inductive biases introduced by popular benchmarks and demon-265

strates that adaptive methods can match and exceed the performance of well-tuned baselines. OMPAC266

[10] uses a genetic algorithm to select the policy’s softmax temperature and TD(λ) parameters in267

discrete environments such as Atari and Tetris. HOOF [37] generates a population of policy gradient268

4We refer the reader to the original references [22] & [3] for thorough descriptions of the environments.
5We make two changes to the DMC experiment settings before launch: kmax is lowered to 5 from 15 because

these environments have short time horizons of 40 and 30, and the epoch length is lowered to 500 from 1000
because we are testing after 500, 000 total timesteps.

8

updates with different loss function parameters and selects the best combination to continue training269

with weighted importance sampling. Agent57 [2] uses hyperparameter selection by a multi-armed270

bandit to improve exploration and surpass human performance on the Atari benchmark. STAX [53]271

uses meta-gradients to tune the differentiable hyperparameters of the IMPALA [11] algorithm.272

The two most similar works to our own are OHT-ES [46] and SEARL [14]. Both are PBT-inspired273

hyperparameter tuning methods for off-policy RL with a shared replay buffer. OHT-ES adapts274

the learning rates and discount factor of TD3 while SEARL primarily adjusts the architecture of275

TD3’s networks. Our method eliminates more RL hyperparameters using a MaxEnt framework,276

self-regularized critic update, dynamic learning schedule, and action repetition. However, we do277

not attempt to tune optimization-related hyperparameters like learning rate and network size. These278

methods are quite compatible, and it would be interesting to investigate extensions that combine our279

core agent with, e.g., the network search and tournament selection of SEARL. We do not compare280

against these works here because the differences in the core RL agent optimized and the parameters281

considered make the comparison unmeaningful. The action repetition in our method also complicates282

comparisons based on total timesteps. AAC prioritizes reducing hyperparameters and easing the283

development process, which is why our comparisons focus on variations of the RL agent we are284

optimizing.285

6 Limitations and Future Directions286

While our method successfully reduces RL-specific hyperparameters and design heuristics, we have287

not fully realized at least two of its promising advantages. First, distributed and diverse experience288

collection has the potential to increase exploration in sparse-reward environments. Diversity could289

be further improved by introducing exploration techniques from both the RL and evolutionary290

computation literature. We could motivate the exploration of individual actors by incorporating291

intrinsic rewards [7], and improve the parameter and behavioral diversity of the population as a whole292

with ideas from Novelty Search [31] [9].293

We have also opted to avoid the meta-optimization of network-related hyperparameters such as model294

architecture and learning rate. The automatic discovery of optimal network architectures is an active295

area of research in the broader field of AutoML - see [18] for a survey. Many of these approaches296

could be added to our evolutionary algorithm with the help of an effective indirect encoding for297

model architecture and safe mutation operations. This is likely to increase the number of evolutionary298

epochs required to converge on a solution. However, there is plenty of evidence that network design299

can significantly increase the performance of actor-critic methods [20].300

There is also room for improvement in terms of runtime and scalability. The synchronous imple-301

mentation (see Appendix C.1) used in our experiments limits our ability to adapt time-consuming302

parameters like the number of actor and critic gradient steps. The original PBT work [23] used303

an asynchronous framework where elite population members were checkpointed during training304

and could be read from disk when replacing low-performance members. A similar system could305

be adapted for the AAC algorithm. This would likely lead to a drop in sample efficiency but may306

open up the opportunity to scale the method to large clusters and search over more hyperparameters -307

especially network architectures.308

7 Conclusion309

This work has presented an automatic framework for online hyperparameter optimization in off-policy310

actor-critic algorithms. We have shown that our adaptive method can exceed the performance of311

tuned baselines in common benchmark tasks. However, the true promise of AutoRL methods lies in312

their ability to automate the process of engineering RL solutions to new domains. We demonstrated313

our algorithm’s ability to succeed in less-studied industrial and operations research environments and314

are hopeful that this line of work will help enable the adoption of RL to a broader range of real-world315

problems.316

References317

[1] Ron Amit, Ron Meir, and Kamil Ciosek. Discount Factor as a Regularizer in Reinforcement318

Learning. 2020. arXiv: 2007.02040 [cs.LG].319

[2] Adrià Puigdomènech Badia et al. Agent57: Outperforming the Atari Human Benchmark. 2020.320

arXiv: 2003.13350 [cs.LG].321

9

https://arxiv.org/abs/2007.02040
https://arxiv.org/abs/2003.13350

[3] Bharathan Balaji et al. ORL: Reinforcement Learning Benchmarks for Online Stochastic322

Optimization Problems. 2019. arXiv: 1911.10641 [cs.LG].323

[4] Gabriel Barth-Maron et al. Distributed Distributional Deterministic Policy Gradients. 2018.324

arXiv: 1804.08617 [cs.LG].325

[5] Marc G. Bellemare et al. “Autonomous navigation of stratospheric balloons using reinforce-326

ment learning”. In: Nature 588.7836 (Dec. 1, 2020), pp. 77–82. ISSN: 1476-4687. DOI:327

10.1038/s41586-020-2939-8. URL: https://doi.org/10.1038/s41586-328

020-2939-8.329

[6] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].330

[7] Yuri Burda et al. Exploration by Random Network Distillation. 2018. arXiv: 1810.12894331

[cs.LG].332

[8] Xinyue Chen et al. Randomized Ensembled Double Q-Learning: Learning Fast Without a333

Model. 2021. arXiv: 2101.05982 [cs.LG].334

[9] Edoardo Conti et al. “Improving exploration in evolution strategies for deep reinforcement335

learning via a population of novelty-seeking agents”. In: arXiv preprint arXiv:1712.06560336

(2017).337

[10] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Online Meta-learning by Parallel Algorithm338

Competition. 2017. arXiv: 1702.07490 [cs.LG].339

[11] Lasse Espeholt et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted340

Actor-Learner Architectures. 2018. arXiv: 1802.01561 [cs.LG].341

[12] Benjamin Eysenbach and Sergey Levine. If MaxEnt RL is the Answer, What is the Question?342

2019. arXiv: 1910.01913 [cs.LG].343

[13] William Fedus et al. Revisiting Fundamentals of Experience Replay. 2020. arXiv: 2007.344

06700 [cs.LG].345

[14] Jörg K. H. Franke et al. Sample-Efficient Automated Deep Reinforcement Learning. 2021.346

arXiv: 2009.01555 [cs.LG].347

[15] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error348

in Actor-Critic Methods. 2018. arXiv: 1802.09477 [cs.AI].349

[16] Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. 2019. arXiv: 1812.350

05905 [cs.LG].351

[17] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement352

Learning with a Stochastic Actor. 2018. arXiv: 1801.01290 [cs.LG].353

[18] Xin He, Kaiyong Zhao, and Xiaowen Chu. “AutoML: A survey of the state-of-the-art”. In:354

Knowledge-Based Systems 212 (Jan. 2021), p. 106622. ISSN: 0950-7051. DOI: 10.1016/j.355

knosys.2020.106622. URL: http://dx.doi.org/10.1016/j.knosys.2020.356

106622.357

[19] Daniel Hein et al. Introduction to the "Industrial Benchmark". 2017. arXiv: 1610.03793358

[cs.LG].359

[20] Peter Henderson et al. Deep Reinforcement Learning that Matters. 2019. arXiv: 1709.06560360

[cs.LG].361

[21] Matteo Hessel et al. On Inductive Biases in Deep Reinforcement Learning. 2019. arXiv:362

1907.02908 [cs.LG].363

[22] Christian D. Hubbs et al. OR-Gym: A Reinforcement Learning Library for Operations Research364

Problems. 2020. arXiv: 2008.06319 [cs.LG].365

[23] Max Jaderberg et al. Population Based Training of Neural Networks. 2017. arXiv: 1711.366

09846 [cs.LG].367

[24] Dmitry Kalashnikov et al. QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based368

Robotic Manipulation. 2018. arXiv: 1806.10293 [cs.LG].369

[25] Shivaram Kalyanakrishnan et al. An Analysis of Frame-skipping in Reinforcement Learning.370

2021. arXiv: 2102.03718 [cs.LG].371

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:372

1412.6980 [cs.LG].373

[27] Aviral Kumar, Abhishek Gupta, and Sergey Levine. DisCor: Corrective Feedback in Rein-374

forcement Learning via Distribution Correction. 2020. arXiv: 2003.07305 [cs.LG].375

10

https://arxiv.org/abs/1911.10641
https://arxiv.org/abs/1804.08617
https://doi.org/10.1038/s41586-020-2939-8
https://doi.org/10.1038/s41586-020-2939-8
https://doi.org/10.1038/s41586-020-2939-8
https://doi.org/10.1038/s41586-020-2939-8
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2101.05982
https://arxiv.org/abs/1702.07490
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1910.01913
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2009.01555
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1801.01290
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1016/j.knosys.2020.106622
https://arxiv.org/abs/1610.03793
https://arxiv.org/abs/1610.03793
https://arxiv.org/abs/1610.03793
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1907.02908
https://arxiv.org/abs/2008.06319
https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/2102.03718
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2003.07305

[28] Aravind S. Lakshminarayanan, Sahil Sharma, and Balaraman Ravindran. “Dynamic Action376

Repetition for Deep Reinforcement Learning”. In: AAAI. 2017, pp. 2133–2139. URL: http:377

//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14866.378

[29] Jongmin Lee, Byung-Jun Lee, and Kee-Eung Kim. “Reinforcement Learning for Con-379

trol with Multiple Frequencies”. In: Advances in Neural Information Processing Sys-380

tems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 3254–381

3264. URL: https : / / proceedings . neurips . cc / paper / 2020 / file /382

216f44e2d28d4e175a194492bde9148f-Paper.pdf.383

[30] Kimin Lee et al. SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep384

Reinforcement Learning. 2020. arXiv: 2007.04938 [cs.LG].385

[31] Joel Lehman and Kenneth O Stanley. “Abandoning objectives: Evolution through the search386

for novelty alone”. In: Evolutionary computation 19.2 (2011), pp. 189–223.387

[32] Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning. 2015. arXiv:388

1509.02971 [cs.LG].389

[33] Alberto Maria Metelli et al. Control Frequency Adaptation via Action Persistence in Batch390

Reinforcement Learning. 2020. arXiv: 2002.06836 [cs.LG].391

[34] Volodymyr Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. 2016. arXiv:392

1602.01783 [cs.LG].393

[35] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature394

518.7540 (Feb. 1, 2015), pp. 529–533. ISSN: 1476-4687. DOI: 10.1038/nature14236.395

URL: https://doi.org/10.1038/nature14236.396

[36] Fabio Pardo et al. Time Limits in Reinforcement Learning. 2018. arXiv: 1712.00378397

[cs.LG].398

[37] Supratik Paul, Vitaly Kurin, and Shimon Whiteson. Fast Efficient Hyperparameter Tuning for399

Policy Gradients. 2019. arXiv: 1902.06583 [cs.LG].400

[38] Rongjun Qin et al. NeoRL: A Near Real-World Benchmark for Offline Reinforcement Learning.401

2021. arXiv: 2102.00714 [cs.LG].402

[39] Daniele Reda, Tianxin Tao, and Michiel van de Panne. “Learning to Locomote: Understanding403

How Environment Design Matters for Deep Reinforcement Learning”. In: Motion, Interaction404

and Games (Oct. 2020). DOI: 10.1145/3424636.3426907. URL: http://dx.doi.405

org/10.1145/3424636.3426907.406

[40] John Schulman et al. High-Dimensional Continuous Control Using Generalized Advantage407

Estimation. 2015. arXiv: 1506.02438 [cs.LG].408

[41] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347409

[cs.LG].410

[42] Lin Shao et al. GRAC: Self-Guided and Self-Regularized Actor-Critic. 2020. arXiv: 2009.411

08973 [cs.LG].412

[43] Sahil Sharma, Aravind Srinivas, and Balaraman Ravindran. Learning to Repeat: Fine Grained413

Action Repetition for Deep Reinforcement Learning. 2020. arXiv: 1702.06054 [cs.LG].414

[44] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement415

Learning Algorithm. 2017. arXiv: 1712.01815 [cs.AI].416

[45] Corentin Tallec, Léonard Blier, and Yann Ollivier. Making Deep Q-learning methods robust to417

time discretization. 2019. arXiv: 1901.09732 [cs.LG].418

[46] Yunhao Tang and Krzysztof Choromanski. Online Hyper-parameter Tuning in Off-policy419

Learning via Evolutionary Strategies. 2020. arXiv: 2006.07554 [cs.LG].420

[47] Yuval Tassa et al. DeepMind Control Suite. 2018. arXiv: 1801.00690 [cs.AI].421

[48] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for model-based422

control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.423

2012, pp. 5026–5033. DOI: 10.1109/IROS.2012.6386109.424

[49] Che Wang et al. Striving for Simplicity and Performance in Off-Policy DRL: Output Normal-425

ization and Non-Uniform Sampling. 2020. arXiv: 1910.02208 [cs.LG].426

[50] Yufei Wang and Tianwei Ni. Meta-SAC: Auto-tune the Entropy Temperature of Soft Actor-Critic427

via Metagradient. 2020. arXiv: 2007.01932 [cs.LG].428

[51] Denis Yarats and Ilya Kostrikov. Soft Actor-Critic (SAC) implementation in PyTorch. https:429

//github.com/denisyarats/pytorch_sac. 2020.430

11

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14866
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14866
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14866
https://proceedings.neurips.cc/paper/2020/file/216f44e2d28d4e175a194492bde9148f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/216f44e2d28d4e175a194492bde9148f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/216f44e2d28d4e175a194492bde9148f-Paper.pdf
https://arxiv.org/abs/2007.04938
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2002.06836
https://arxiv.org/abs/1602.01783
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1712.00378
https://arxiv.org/abs/1712.00378
https://arxiv.org/abs/1712.00378
https://arxiv.org/abs/1902.06583
https://arxiv.org/abs/2102.00714
https://doi.org/10.1145/3424636.3426907
http://dx.doi.org/10.1145/3424636.3426907
http://dx.doi.org/10.1145/3424636.3426907
http://dx.doi.org/10.1145/3424636.3426907
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.08973
https://arxiv.org/abs/2009.08973
https://arxiv.org/abs/2009.08973
https://arxiv.org/abs/1702.06054
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1901.09732
https://arxiv.org/abs/2006.07554
https://arxiv.org/abs/1801.00690
https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/1910.02208
https://arxiv.org/abs/2007.01932
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

[52] Haonan Yu, Wei Xu, and Haichao Zhang. TASAC: Temporally Abstract Soft Actor-Critic for431

Continuous Control. 2021. arXiv: 2104.06521 [cs.LG].432

[53] Tom Zahavy et al. A Self-Tuning Actor-Critic Algorithm. 2021. arXiv: 2002 . 12928433

[stat.ML].434

A RL Notation435

• (s, a, r, s′, d). One transition of experience from the environment. Consists of a state s, the action436

selected by the behavior policy a, the reward returned by the environment r along with the next437

state s′ and boolean d indicating the end of an episode.438

• A is the action space. |A| refers to the dimension of the action space, or the number of elements in439

each action vector.440

• γ. The discount factor that determines the agent’s focus on long-term rewards. Gamma values441

approaching 1.0 place encourage long-horizon planning while smaller values prioritize greedy442

behavior. The discounted expected return is defined:443

G(t) =

∞∑
i=t

γiri (4)

• π. The policy function mapping states to a distribution over actions.444

• Qπ(s, a). The state-action value function, representing the expected discounted returns starting in445

state s, taking action a and following policy π thereafter.446

• V (s). The value function, representing the expected discounted returns starting in state s and447

following policy π.448

B Addressing Control Frequency with Persistence-Aware Actor-Critics449

As discussed in Sec 2.2, the default control frequency of many environments is an arbitrary choice450

that can hinder optimization and exploration. When this is confronted in the literature, it is typically451

solved by making the action persistence a learned output of the actor or an additional set of discrete452

actions. However, the latter approach does not scale well with action size or maximum action453

repetition; providing a wide range of k values for the Atari domain, for example, would require454

dozens of additional actions, greatly increasing the complexity of exploration. Instead, we typically455

pick one or two higher k values above the single-step default. This replaces the control frequency456

hyperparameter with several new hyperparameters that likely require a grid search. Making k a457

direct output of the actor network is a better solution for continuous domains, but it comes with458

implementation challenges of its own. For one, the discount γ needs to be factored into the k459

action repetitions - otherwise, the agent will favor high persistence values because they allow for460

the undiscounted accumulation of rewards. This can make it difficult to adjust γ over the course461

of off-policy training. Furthermore, dynamic action repetition begins to trespass on the territory of462

hierarchical RL; a k-repetition policy can be formalized as a k-step option of a MDP. A policy that463

operates on an unpredictable timescale may complicate integration with higher-level policies.464

We consider an alternative solution in which the action persistence value k is an element of the465

state vector. The actor and critic networks are able to interpret the current persistence and adapt466

accordingly. We can then vary the persistence throughout training and evaluate the same actor467

network on multiple k values in order to determine the appropriate setting at test time. We make468

another modification and have the environment return an array of rewards that correspond to each of469

the k possible timesteps. This lets us adjust the value of γ and recompute accurate TD targets during470

the critic update by discounting each element of the array and discounting the subsequent Q value by471

an additional timestep.472

We demonstrate this technique in three tasks from the DeepMind Control Suite. “Learned Persistence"473

adds k as an additional element of the action space. “Incremental Schedule" methods use the naive474

approach of iterating through all reasonable k values during training. “Sampled Schedule" uses475

Thompson sampling over the returns at the previous evaluation period to pick k for the next training476

phase. “Delayed Sampled Schedule" begins by iterating through all k values as a crude exploration477

mechanism before sampling the setting later in training to avoid wasting time on clearly sub-optimal478

settings. All methods are evaluated on all k values and the highest return is reported. Results are479

shown in Figure 4.480

12

https://arxiv.org/abs/2104.06521
https://arxiv.org/abs/2002.12928
https://arxiv.org/abs/2002.12928
https://arxiv.org/abs/2002.12928

0 200 400 600 800 1000
Total Environment Timesteps (1e3)

0

200

400

600

800

1000

R
et

ur
n

"Fish, Swim"

Agent
Delayed Sampled Schedule
Incremental Schedule
Sampled Schedule
Learned Persistence
Fixed k = 8

0 200 400 600 800 1000
Total Environment Timesteps (1e3)

0

100

200

300

400

500

R
et

ur
n

"Humanoid, Stand"
Agent
Incremental Schedule
Sampled Schedule
Delayed Sampled Schedule

0 200 400 600 800 1000
Total Environment Timesteps (1e3)

0

100

200

300

400

500

600

700

800

900

R
et

ur
n

"Swimmer, Swimmer6"
Agent
Delayed Sampled Schedule
Incremental Schedule
Learned Persistence

Figure 4: Action Persistence Experiments.
A side effect of this approach is that it allows the agent to generalize across control frequencies and481

therefore adapt to changes that may occur during deployment. If the training phase determines that482

the optimal action persistence is 5, for example, then a sensor malfunction or slowdown that cuts our483

control frequency in half can be compensated for by setting the persistence element of the agent’s484

state vector to 10. This is still likely to decrease performance, but in our case the agent has seen485

values of 10 during training and is more capable of generalizing to the new situation. This effect is486

demonstrated by experiments in Figure 3.487

C AAC Algorithm Details488

C.1 Implementation Details489

We initialize a population of 20 members with hyperparameters chosen uniformly from the range490

provided in Table 4. This range was determined by simple intuition about the range of reasonable491

parameter settings that we might otherwise grid search over. The only unintuitive choice is the492

difference between cmax and amax, which is based on the need for the self-regularized TD update493

(Eq 3) to perform many more critic updates than is standard. The ith member of the population has494

parameters (θi, φi, ai, ci, hi, ki, gi). We use the standard clipped-double-Q-trick [15] such that each495

agent actually has two critic networks φ1i and φ2i .496

We collect 10, 000 random environment samples split evenly among the full range of k values to497

initialize the replay buffer. Each agent is trained in parallel, adding experience from the environment498

with an action persistence of ki to a collective replay buffer that holds 2, 000, 000 samples before499

overwriting the oldest experience6. Therefore each iteration of the AAC algorithm collects 20 new500

transitions.501

During each training step, agent i updates its critic networks ci times and its actor network ai times.502

Each of these training steps samples a fresh batch of experience from the buffer with a batch size of503

512 for DMC experiments and 128 otherwise. This is a slight divergence from the self-regularized504

heuristic of GRAC where the same batch is optimized repeatedly. We utilize an environment wrapper505

that returns an array of rewards r̂ representing the reward at each timestep up to the maximum possible506

k value. If ki < kmax the extraneous entries are set to 0. When computing temporal difference507

targets, we multiply the jth entry of r̂ by γj and sum the resulting array to get the r term in Eq 1.508

We then multiply the Qφi
(s′, a′) term by γki+1 to keep the time horizon consistent across different509

action repetitions. We also override terminal signals for episodes that end as a result of reaching the510

max step limit7. The α entropy coefficient is updated using the gradient descent technique from SAC511

[16] with target entropy hi(−|A|) - this takes place inside the actor update function, meaning α is512

updated ai times per training step.513

Each agent continues to train independently for one evolutionary epoch. The length of each epoch is514

a new hyperparameter of our method. We set this length to be 1, 000 steps, which corresponds to 1515

episode of training in the DeepMind Control Suite environments. This choice is arbitrary and likely516

to be sub-optimally short but achieves good results and reduces training time. At the end of each517

epoch, the population is evaluated. The fitness of each member in the population is set to the mean518

return across these evaluations. We sort the population by fitness and separate the best 20% and worst519

20% of agents. The choice of 20% as a threshold is so arbitrary that attempting to tune it would be520

against the spirit of our “automatic" approach - this value is simply copied from Population Based521

6We train the agent for a maximum of 2, 000, 000 total samples, and only displayed the results after
1, 000, 000, so experience is never overwritten in practice.

7This implementation detail is known as “infinite bootstrapping" and analyzed in [36].

13

Param Min Max δ

a 1 10 2
c 1 40 5
h 0.25 1.75 0.25
k 1 15 (DMC, IB), 5 (OR-Gym) 2
g -6.5 -1 0.5

Table 4: Parameter search ranges. See explanation of each in Sec 3.

Training [23] and was never changed during our research process. These “bad" and “elite" groups522

are randomly paired for evolutionary updates. Each pair copies the values (θi, φi, ai, ci, gi, hi, ki)523

along with the current α and Adam optimizer [26] settings from the elite agent to the bad agent.524

The hyperparameters ai, ci, gi, hi, ki are then altered by adding a perturbation sampled uniformly525

from the range [−δ, δ]8. The values of δ for each parameter are also listed in Table 4. During our526

development process, these values were determined by guessing an appropriate range and then given527

a slight boost to generate a satisfactory shift in the parameter distributions over time.528

Our synchronous implementation runs at around 2 iterations per second (T in Algorithm 1), leading529

to a training time of 7 hours for the main DeepMind Control Suite experiments. The population530

is split across 2 GPUs. At 2 GPUs and 7 hours per trial for at least 3 trials in 9 environments, the531

AAC results in this paper consume approximately 378 GPU hours. The SAC, Rand-SAC and k-SAC532

baselines train in roughly 3 hours on a single GPU. With 3 algorithms in 9 environments running for533

5 random seeds9, the baselines consume approximately 216 GPU hours.534

D Baseline Implementation Details535

Our default hyperparameters for SAC and SR-SAC are listed in Table 5. These settings are chosen536

based on [51], [15], [16], and other publicly available implementations.537

Param Value
Batch Size 128, 512 (DMC)
τ .005
actor lr 3e-4
critic lr 3e-4
α lr 1e-4
γ 0.99
Warmup Steps 1000
Target Delay 2
Critic Updates Per Step 1
Actor Updates Per Step 1
SR β Init 90
SR β Final 70
H −|A|
Architecture 256, ReLU, 256, ReLU
Action Log Std Range (−10, 2)

Table 5: Standard hyperparameters for SAC, SR-SAC, and k-SAC used in our experiments.

8The perturbations for integer hyperparameters like a, c and k are sampled uniformly from the integers in the
range (−δ, δ).

9We use 15 random seeds for Rand-SAC, which has much higher variance by design.

14

	Introduction
	Background
	Model-Free Off-Policy Actor-Critics for Continuous Control
	Design Decisions in Deep Actor-Critic Algorithms

	Method: Automatic Actor Critics
	Experiments
	Related Work
	Limitations and Future Directions
	Conclusion
	RL Notation
	Addressing Control Frequency with Persistence-Aware Actor-Critics
	AAC Algorithm Details
	Implementation Details

	Baseline Implementation Details

