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ABSTRACT

Text classification has recently been promoted by large pre-trained language mod-
els (PLMs). However, derivative models of PLMs still suffer from sensitive per-
formance on different datasets, the reasons are multiple such as cross-domain and
label imbalance problems, from which most models may learn the spurious cor-
relation between texts and labels. Existing research requires people to manually
add counterfactual samples to the dataset or automatically match so-called coun-
terfactual pairs that are already in the dataset for augmentation. In this paper, we
propose a novel LDA-based counterfactual contrastive learning framework and
three data augmentation methods, to capture the causal information in texts, which
can promote the robustness of text classification. To confirm the effectiveness of
our proposed model and methods, we design and conduct several couples of ex-
periments. Experimental results demonstrate that our model works well on five
popular text classification datasets on distinct tasks, we find that training with
proposed data augmentation outperforms other augmentation methods on many
superior models by 1% or above. Plus, robustness tests on different datasets also
show a competitive performance, which proves the effectiveness of our model and
data.

1 INTRODUCTION

Text classification is a fundamental task in natural language processing, deep learning (DL) models
have achieved impressive success in the text classification task in recent years, especially the PLMs
(Devlin et al., 2018} Yang et al.,[2019;|Liu et al.,2019; |Lan et al., |2019; |Clark et al.,|2020; [Sun et al.,
2020) which are trained on a large number of unlabeled datasets. However, these models may have
learned spurious associations between some irrelevant elements and the final label of given texts. In
contrast to some predictive or descriptive models based on deep neural networks, causal inference
aims to find the causal variables by understanding how intervening on one variable influences an-
other, which is quite a supplement for DL-based or PLM-based text classification models. We think
that introducing the causal inference to the training process of PLMs could improve the robustness
of PLM derivative models. But two problems lie ahead: first, datasets that can combine causal
inference and text classification are rare; second, we need a suitable model to learn the difference
between the real-world data and the counterfactual data, i.e., the causal information. In this paper,
we propose some novel causal data augmentation methods and an effective model to learn causal
information and pay less attention to spurious associations, rely more on robust features, predict
data labels and generalize better to cross-domain data.

Counterfactual is an irreplaceable component of causal inference. According to (Pearl & Macken-
zie, [2018)), there are three levels of human intelligence: association by observing, intervention by
intervening, and counterfactual by imaging. Counterfactual is at the highest level, "Would the pa-
tient have lower blood pressure had she received another medicine?”, ”"Would Kennedy be alive if
Oswald had not killed him?”. These are typical counterfactual questions (Rubin, |1974} Lewis, | 1974;
Pearl, 2009) that ask something never happened, they are constructed from real-world data, which
is essentially a data augmentation. Although there exists work on counterfactual data augmentation
(Kaushik et al., [2019) to find causal features in natural language processing tasks, they look for
human annotations, collecting the minimally dissimilar yet differently labeled examples. By pin-
pointing the different parts between original and counterfactual texts, it can help models (Choi et al.,
2022)) identify the causal correlations of the given task. Whereas these methods yield well results,
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with complicated details, the costs are still expensive, as there is always a preference for cheap and
effective data enhancement methods. Considering the above, we put forward several novel auto-
matically counterfactual data augmentation methods based on current datasets to introduce causal
inference into text classification tasks, referring to the counterfactual strategy.

Correction: McAndrews and Forbes Correction: McAndrews and Forbes
holdings in New York story headlined holdings in New York story headlined
McAndrews and Forbes holdings McAndrews and Forbes holdings critics
for Revlon, please read the headline and for Manchester United F.C., please read
first paragraph. McAndrews and Forbes the headline and first paragraph.
considering a for ,and in the McAndrews and Forbes considering a
first paragraph, McAndrews and Forbes's comment for Manchester United F.C.,
holdings said it is considering proposing and in the first paragraph, McAndrews
corrects from for in the and Forbes's holdings said it is
headline and will offer in the first considering proposing corrects from
paragraph. critics for Manchester United F.C. in the
headline and will offer in the first
paragraph.

Figure 1: Counterfactual data augmentation on a document. The topic-related terms are replaced
by words from other irrelevant topics in the left sub-sample figure’s article from Reuters, which has
its LDA-counterfactual augmentation on the right. In these two documents, we highlight the topic
words in two different colors.

The food in the restaurant is so delicious. ————> The food in the restaurant is so unpalatable.

The movie just released is fantastic. =~ ————> The series just released is awful.

Figure 2: Counterfactual data augmentations on sentences. The counterfactual augmentation of the
first line, sampling from Fine Food, consists of replacing the term that expresses emotion with an
antonym on its right side. For the factual augmentation on the right, we merely change the word
that expresses emotion to something unimportant. In these two texts, we use two distinct colors to
highlight the terms.

Word substitution can provide a solution to counterfactual augmentation. During the research pro-
cess on which element exactly affects human judgment on the classification of texts, we observe that
topic words generally carry the central meaning of a document or an essay, and intuitively some spe-
cialized adjectives and adverbs used to modify specific subject words may also affect the meaning
of texts. We can see that various text classification tasks concentrate on different semantic compo-
nents, such as sentence-level sentiment analysis depends on adjectives and adverbs, while document
classification is determined by specific topic words. As a result, we use distinct counterfactual aug-
mentation skills as the positive and negative pairs of contrastive learning frameworks. Contrastive
learning aims to learn effective representation by pulling semantically close neighbors together and
pushing apart non-neighbors (Hadsell et al., 2006), so from the perspective of model architecture
the learning strategy of contrastive learning is in line with our initiative by which we can identify
the differences between real-world and counterfactual data.

To realize the topic word substitution, we attempt to utilize the Latent Dirichlet Allocation (LDA)
(Blei et al.,2003)) model which can distinguish the topic words of a specific text from other words in
the text. LDA 1is one of the most influential topic models, and it is often used for text classification
and finding topic words of given texts (Chen et al., 2015; Xie et al.l 2017} |Li et al 2018b). It
can determine the topic of each document in a document set as a probability distribution so that
by analyzing some documents to extract their topic distribution, thus it is possible to perform topic
word generation or text classification based on the topic distribution. Considering the reliability and
effectiveness of LDA, we adopt it to detect those topic words as a necessary procedure in topic word
substitution.
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After the extract-and-substitute topic words operation based on LDA, the left essay in Figure[Twhich
originally stated the financial theme of business activities between McAndrews, Forbes, and Revlon,
is transformed into a sports story on the right side that corrected the previous critical coverage of
Manchester United. Our counterfactual data augmentation operations consist of topic word substitu-
tion, adjective substitution, and adverb substitution, we will also show how much each augmentation
operation can affect the model performance on different text classification tasks in the experiments
section. When we try to replace all the topic words in an essay, we find it is hard to identify them as
their original category, for example, “movie” and “fan” are more likely to appear in entertainment
articles, while vote” and “employment” are more likely in political news. Other linguistic compo-
nents, such as adjectives and adverbs, may also influence judgments about the category of an article,
for example, “’bearish” and “inflationary” are more likely to appear in financial reports, and “dunk”
and “’shoot” tend to occur in sports stories more frequent.

To depict the relationships among these linguistic components and the final labels of texts more
clearly, we draw several causal graphs to display the causal structure among the elements, then ana-
lyze them separately by the control-observation method. In the following sections, we will compre-
hensively evaluate counterfactual data augmentation on five benchmark classification tasks, show-
ing that it provides substantial improvements on all five tasks and is particularly helpful for smaller
datasets.

2 BACKGROUND AND RELATED WORK

2.1 ROBUST TEXT CLASSIFICATION

Conventional text classification aims to give the text that has been provided labels. Despite the re-
cent developments in natural language understanding (Devlin et al., 2018} [Liu et al., 2019), large
pre-training language models are still challenged by spurious correlations, associating “free” with
negative sentiment (Wang & Culottal, 2020), “gay” with detriment (Wulczyn et al.,|2017), and “not”
with contradiction (Gururangan et al., 2018)). Against spurious correlations, recent work pursued ad-
ditional human annotations, such as human rationales (Jain & Wallace, |2019) and counterfactually-
augmented datasets (Kaushik et al [2019), for supervising neural attention (Zou et al., [2018}; |Cho1
et al., 2020), or model gradients (Liu & Avcil [2019; [Teney et al.l [2020). (Ng et al.,|2020; Wang &
Culottal 2020) generate the counterfactual sentences, (Garg & Ramakrishnan, 2020) estimate token
importance via counterfactual inference, and (Wang & Culotta, 2020; [Klein & Nabi| 2020) find a
similar counterpart in the given dataset. However, the automatically annotated methods of counter-
factual datasets have been studied rarely.

2.2 TEXT AUGMENTATION

(Yu et al| [2018a) generate new data by translating English datasets into French and back into En-
glish, (Xie et al.,|2017) noise data as data smoothing, and (Kobayashi, 2018)) use predictive language
models to replace the synonyms. Whereas these methods perform well, all have complicated details,
and the costs are still expensive. As there is a preference for simple and effective data enhancement
methods, random insertion, swap, and deletion skills proposed by (Wei & Zou, [2019) is a more
widely used data augmentation method in practice. Regretfully, the above methods merely enlarge
the scale of training data, none of them shows advantages in improving the model robustness over
other methods.

2.3 COUNTERFACTUAL TEXT

Counterfactual thinking is an exclusive ability of human beings, it thus has been considered by
many researchers, to act as the highest level of causation on the ladder of causal reasoning (Pearl
& Mackenzie, 2018)). To the best of our knowledge, even the most advanced artificial intelligence
system nowadays may still be far from achieving human-like counterfactual reasoning. The coun-
terfactual text is defined based on the real text, which carries a distinctly different semantic meaning
from the original text. This is done by replacing the topic-related entity words in the original text
with entity words of other topics while keeping the non-topic-related semantics unchanged as much
as possible. Our idea of a counterfactual text stems from counterfactual statements (Yang et al.,
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2020), in which the authors depict events that did not happen or cannot happen, and the possible
consequences had those events happened, e.g., “if kangaroos had no tails, they would topple over”
(Lewis, |2013). By developing a connection between the antecedent (e.g., “kangaroos had no tails”)
and consequent (e.g., “they would topple over”), based on the imagination of possible worlds, hu-
mans can naturally form some causal judgments.

(a) Topic words factual causal graph (b) Topic words counterfactual causal graph

(c) Adjective factual causal graph (d) Adjective counterfactual causal graph

Figure 3: Causal graphs of linguistic components and text meaning. In all sub-figures, X denotes
topic-related words, Y denotes adjectives and adverbs, M represents the actual meaning of texts,
and Z is on behalf of the human-annotated text labels. The two upper sub-figures (a) and (b) depict
the causal structure changes of documents before and after the LDA-based topic words substitu-
tion, while the bottom sub-figures (c) and (d) describe the similar changes when we conduct the
StanfordNLP-based part-of-speech recognition and replacement.

2.4 LATENT DIRICHLET ALLOCATION (LDA)

Probabilistic topic models such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) are a class
of Bayesian latent variable models that have been adapted to model a diverse range of document
genres. As it learns distributions over words, they have become a potent new tool for discovering
valuable structures in an unstructured collection. It is predicated on the idea that each document
in a collection is composed of several latent subjects, each of which is expressed using a variety of
words, such as LDA has a long history of successful applications to news articles (Li et al., [2016)
and academic abstracts (L1 et al., |2018a; Kim & Gil, [2019). The high probability words in each
distribution give us a way of understanding the contents of the corpus at a very high level. LDA
is one of the most effective topic models of corpora of documents which seeks to represent the
underlying thematic structure of the document collection (Mehrotra et al., 2013).

2.5 CONTRASTIVE LEARNING

Contrastive learning algorithms (Oord et al., 2018; Wu et al., 2018} |[Chen et al.| 2020; He et al.,
2020; |[Khosla et al. 2020) learn similar representations for positive data pairs and dissimilar rep-
resentations for negative data pairs. Contrastive learning is a type of representation learning that
aims to learn an embedding space where the vector representations of similar data are mapped close
together, and vice versa (Lowel 1995} [Mika et al.l[1999; Xing et al., |2002), they have achieved im-
pressive success in representation learning via self-supervised (Chen et al., 2020; He et al., 2020;
Gao et al. [2021) and supervised settings (Khosla et al., 2020; |Chen et al.l |2022). For instance,
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Figure 4: Overview of the counterfactual contrastive learning framework. For each document or
sentence in a mini-batch, we augment in two directions: factual and counterfactual. But there is
a difference between operations on document-level text and sentence-level text, we thus use LDA
to identify the topic words in a document and substitute them with words from other topics; On
the other hand, we use StandfordNLP to extract the adjectives and adverbs and then replace them
with their antonym. After obtaining the factual and counterfactual augmentation text, we send them
into the pre-trained language model to get their hidden representations and maximize the distance
of vector space between them.

self-supervised visual contrastive learning defines two views of one image (applying different im-
age augmentations to each view) as positive pair and different images as a negative pair. Supervised
contrastive learning (Khosla et al.,2020) defines data with the same labels as a positive pair and data
with different labels as a negative pair. We see that distinct contrastive approaches consider different
positive and negative pairs constructions according to their learning goals. Early techniques would
train using triplet loss (Weinberger & Saull [2009; |Chechik et al., 2010) to distinguish two similar
objects from a third different object. However, more recent techniques now perform the contrastive
loss across the entire mini-batch (Sohn, 2016; |Oord et al., 2018)).

3 COUNTERFACTUAL CONTRASTIVE LEARNING FRAMEWORK

We show the whole proposed counterfactual data augmentation framework in this section. First,
we discuss how to identify keywords, including topic words, adjectives, and adverbs; Second, we
display the causal graphs that illustrate the causal relationships that exist between these words and
the recognition of people respectively; Finally, we discuss what proportion we choose and why.

3.1 DATA AUGMENTATION METHODS

Causal Words Words of various lexical natures are the basic elements of texts, and words of
different lexical natures assume different roles in the semantic representation of text. People tend to
determine the category of one document with some keywords which we call topic words, however,
when they face a sentence, keywords are always adjectives or adverbs expressing emotions. As
mentioned before, we attempt to use the LDA model to identify the topic words and then replace
them with words from other topics. For adverbs and adjectives, we plan to employ an automatic tool
to locate them, because most current tagging algorithms are capable of the Part-Of-Speech (POS)
tagging job with per-token accuracy of slightly over 97% (Manning|, 2011; Heid et al.| [2020), we
choose the StanfordNLP (Qi et al.l 2019) as the tool to employ the adjective recognition, for the
adjective substitution, we use it to replace current words with their antonym.

Causal Graphs In this part, we make some premises about the causal relationships which may
exist in the final label of texts and the above keywords. We here give a set of causal graphs to make
the process of our counterfactual data augmentation clear. Aiming to conduct a proper causal in-
tervention, we first formulate the causal graph (Pearl, [2022; |Pear] & Mackenziel [2018;; [Tang et al.,
2020) for the text classification models, which sheds light on how the document contents and dataset
biases affect the prediction. Formally, a causal graph is a directed acyclic graph G = (N, E), indi-
cating how a set of variables N causally interact with each other through the causal links E. In
Figure 3] X denotes the topic words of a document, Y denotes the adjective and adverb in texts, M
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represents the text meaning, and Z is the text category. Our initiative comes from the that it is topic
words, adjectives, adverbs, and other semantic components which determine the meaning of each
text; however, one may judge the text category correctly only after a glance, during which he/she
can scroll some keywords. By contrast, models trained by a large corpus would inevitably capture
unintended confounders existing in training data and its corresponding labeled category.

LDA for Topic Words Identification LDA conceives of a document as a mixture of a small
number of topics, and topics as a distribution over word types (Blei et al.l 2003), these priors are
remarkably effective at producing useful results. In LDA, each document of the corpus is assumed to
have a distribution over K topics, where the discrete topic distributions are drawn from a symmetric
Dirichlet distribution. A topic is a discrete distribution over a fixed vocabulary of word types. As it
follows from the definition in algotithm I] a topic is a discrete distribution over a fixed vocabulary
of word types. In the above-mentioned process, the parameters ¢« and B are vectors of hyper-
parameters that determine the Dirichlet prior on 0 as a set of topic distributions for all documents
and ¢ as a set of word distributions in all topics. Typically, symmetric Dirichlet priors are used,
where o) = ap = o3 = ¢, which defines how probability distribution is concentrated into a single
point.

Algorithm 1 LDA algorithm

Input: Corpus D
Parameter: Dirichlet distribution Dir(n), topic union f (k)
Output: Your algorithm’s output
: Letk=1
while £k < K do
choose topic B ~ Dir(n)
end while
while each document d in D do
choose a topic distribution 6, ~ Dir(c)
let word index n =1
while n < N, do
choose a topic z,, ~ Categorical (6;)
10 choose a word w;, ~ Categorical (f;,)
11:  end while
12: end while

A A ol e

hd

Replacement Rule For document-level text classification tasks (e.g., news classification), after
topic word identification by the LDA model, we prepare to replace all of the topic words in a doc-
ument with words of another topic from a document annotated with another label. Such operations
can convert the original text into a counterfactually augmented text which expresses a different
meaning as we did in Figure [I] For sentence-level text classification (e.g., review classification),
we simply exploit the StanfordNLP (Qi et al., 2019) to replace current adjectives and adverbs with
their antonym as we did in Figure |2 Through these operations, we yield a counterfactual text to the
original sample, we can further use them as positive or negative samples to instruct the contrastive
learning progress.

3.2 CONTRASTIVE LEARNING MODEL

The counterfactual contrastive learning model aims to learn the causal information of the textual
meaning itself based on the data augmentation methods. The core issue of counterfactual contrastive
learning is constructing positive and negative pairs. First, we consider that one document or sentence
D; in which we have replaced all topic words with words of another topic as a negative sample D;”
while replacing adjectives, or adverbs will be considered as a positive sample D;", for such an
operation alter the meaning of the text little. We here take advantage of the most classic learning
strategy in contrastive learning models, and the loss function is as follows:

sim(h;,h;") /7

£ =—log Ne

j=1

(D

esim<hi,hj+) /T
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where h; and h;" denotes hidden representation of D; and D;", sim(h;,h.") is the cosine similarity,
and 7 is a temperature hyper-parameter. In this work, we encode input texts using a text encoder:
h = fg(x), and then fine-tune all the parameters using the contrastive learning objective in Eq

3.2.1 CONTRASTIVE TEXT REPRESENTATION

Text Encoder The text encoder is to map the raw text onto a vector space where the metrics (or
measurements) between texts can be computed. The large pre-trained language models, such as
BERT (Devlin et al., 2018) or RoBERTa [Liu et al.[(2019)), has recently been employed as efficient
text encoders to obtain text representations and achieve promising results. Specifically, BERT takes
a text x composed of a list of tokens as input, and outputs a hidden-state vector for each of the tokens;
we take the hidden-state vector corresponding to the CLS token as the text representation of x. For
later use, we denote the BERT text representation module as f(-) and denote all of its parameters as
0.

Supervised Contrastive Text Learning Our supervised counterfactual contrastive learning
framework is a metric-based approach like former works (Wohlhart & Lepetit, 2015; Wen et al.,
2016; Tao et al.l 2016} [Yu et al., 2018b)), but different from Prototypical Networks that align query
texts with prototypes, we optimize the measurement free of prototypes, by learning to align two text
representations using supervised contrastive learning. It pulls closer the text representations belong-
ing to the same class and pushes away text representations belonging to different classes among texts
from both query and support sets. The model design of our supervised contrastive learning is based
on the “batch contrastive learning” framework (Chen et al., |2020) and the supervised contrastive
learning strategy (Khosla et al.| [2020).

4 EXPERIMENTS

We conduct experiments on some quality datasets with our proposed contrastive learning framework
that are discussed in Section 3: Section 4.1 introduces the datasets and experimental metrics, Section
4.2 for the specific implementation, Section 4.3 for the comparison methods, and Section 4.4 for the
results and discussion.

4.1 DATASETS AND METRICS

We evaluate our counterfactual data augmentation method on 6 text classification datasets, includ-
ing 2 news classification datasets: 20NewsGroup (Lang, {1995), Reuter{] in which we choose
Reuters-52 (R-52) with 52 categories in total, and 4 review classification datasets: Fine Foods and
Movies from Amazon (He & McAuley, [2016), IMDB (Maas et al., 201 1)), and SST-2 (Socher et al.,
2013)). To demonstrate the robustness of our proposed model, we conduct natural language infer-
ence experiments on MNLI (Williams et al., 2017) dataset. It is noteworthy that our counterfactual
augmentation method adopts the self-supervision signals without requiring any additional human
efforts.

We use the official train and test splits if exist, or we randomly divide the dataset with a 9:1 ratio,
using them for train and test, respectively. To ensure the training process is going to be convergence,
we use 10% of the train set for validation purposes. The hyper-parameters are chosen by the best
performance on the validation set. All the reported results are averaged over 5 trials.

4.2 IMPLEMENTATION DETAILS

We implement our model with PyTorch (Paszke et al., 2017, and the NT-Xent loss function with
PyTorch Metric Library (Musgrave et al.,[2020). For Transformer architectural pre-trained language
models, we use Transformers library(Wolf et al.,[2020). For the BERT classifier, we train bert-base-
uncased with a batch size of 64 for SST-2, IMDb, Fine Food, and 8 for 20NewsGroup and R-52 over
10 epochs, ensuring convergence. We used AdamW (Loshchilov & Hutter, [2017) with a learning

1https ://archive.ics.uci.edu/ml/datasets/reuters-21578+text+
categorization+collection
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Model 20News R-52 FineFoods AmazonMovies IMDB
One-hot-based Method
TextGCN 85.9+2.2 925+1.4 - - -
Bag-of-words-based Method
TextCNN 76.8+0.3 85.34+0.5 65.66+0.16 76.9+0.7 78.31+0.6
TextRNN 75.44+0.6 90.6+0.8 65.66+0.16 78.44+0.9 80.14+0.8
Unsupervised Method
BERThbase 85.3+1.2 96.2+£0.6 91.2+1.3 954+1.6 93.8+1.1
RoBERTabase 83.84+0.7 96.1+0.4 90.7+0.6 93.2+1.1 93.54+0.7
DeCLUTR 85.64+0.8 96.4+0.5 91.0+0.6 953+1.1 942+1.0
SimCSE 86.14+0.5 96.8+0.8 91.34+0.7 93.14+0.6 92.6+0.4
C2L 86.8+0.4 96.6+0.7 91.8+1.3 93.2+1.6 91.0+1.2
LDACCL(ours) 87.940.3 97.6+0.4 93.14+0.9 95.94+0.5 95.1+0.7

Table 1: Accuracy (%) on the counterfactually augmented news classification datasets and review
classification datasets. As we mentioned in the former sections, the counterfactual contrastive learn-
ing model is trained on the given training sets and their counterfactually augmented data, and eval-
uated on the original test sets, respectively.

rate of Se-5 and the linear scheduler with 50 warm-up steps. All models are trained on up to eight
NVIDIA RTX3090 24GB GPUs.

4.3 BASELINES

4.3.1 ONE-HOT METHOD

TextGCN The most successful point of TextGCN (Yao et al., 2019) is that they build a single text
graph for a corpus based on word co-occurrence and document word relations, then learn a TextGCN
for the corpus, it then jointly learns the embedding for both words and documents, as supervised by
the known class labels for documents.

4.3.2 BAG-OF-WORDS METHOD

TextCNN TextCNN (Yoon, [2014) we use here has a convolution layer, the kernel sizes of which are
2, 3, and 4, respectively, and each has 50 kernels. Then we apply global max-pooling and a 2-layer
fully forward neural network with ReLU activation. The dropout rate is 0.5 and L2 regularization
coefficient is 3e*.

TextRNN TextRNN (Fu et al., 2014) uses a bidirectional GRU the same as the sentence encoder and
max-pooling across all GRU hidden states to obtain the sentence embedding vector, and the output
layer is a 2-layer FFN. The dropout rate and L, regularization coefficient are the same as TextCNN.

4.3.3 UNSUPERVISED METHOD

DeCLUTR Deep contrastive learning for unsupervised textual representations (DeCLUTR) (Giorgi
et al.|, 2020) is a self-supervised model for obtaining universal sentence embedding that does not
require labeled training data, it samples sentences within one document as positive samples of origin
and those from other documents as negative samples.

SimCSE SimCSE is an unsupervised approach, which takes an input sentence and predicts itself in
a contrastive objective, with only standard dropout used as noise. The most critical of SImCSE (Gao
et al.,|2021)) is that it makes dropout acts as minimal positive data augmentation, and removing it
leads to a representation collapse.

SSMBA As a masking-based generative baseline, we implement SSMBA (Ng et al. 2020), a
corrupt-and-reconstruct text augmentation method, which masks an arbitrary number of word posi-
tions and unmasks them using BERT. They augment 5 samples for each sample with RoOBERTa (Liu
et al.| 2019) and train the BERT-Base classifier on the augmented dataset with soft-label.

MASKER MASKER (Moon et al.}|2021) alters the fine-tuning process by enforcing BERT to make
a prediction based solely on the surrounding contexts by masking out keywords, and it achieves
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a robust text classification when some samples from the test set are out-of-distribution or under
cross-domain scenarios.

C2L Different from former methods, CZL (Choi et al., 2022) aims to add robustness to the causal
classification model by contrastive learning the sentence embedding with a mask the irrelevant words
and keywords which are positive and negative samples, however, they also use the same augmenta-
tion and training method in SSMBA.

Model Sentiment MNLI
I—-F I-S F—I F—S S—I S—F T—L T—F L—F

BERTbase 88.1+£2.0 87.0+0.5 827+1.6 741+£1.8 883%1.1 809+1.0 81.1£0.8 794403 80.4+0.6
RoBERTabase 87.6+1.7 87.2+0.6 823+13 748+1.6 88.0+0.7 8l.1+1.2 809+06 80.1+0.5 80.74+0.7
DeCLUTR 88.5+13 87.5+0.8 82.6+1.1 745+1.5 88.6+08 81.2+1.4 813+04 81.2+09 80.6+0.6
SimCSE 88.2+1.1 87.9+0.5 834+1.0 753+13 88.7+0.8 81.8+1.2 81.5+05 81.6+£0.4 81.4+0.3
SSMBA 88.9+03 87.2+09 835+12 748+1.0 87.8+03 80.6+04 804+05 79.8+04 80.2+0.5
MASKER 86.84+0.0 858+0.0 783+0.0 75.1+00 84.0+00 81.0+0.0 804+00 785+0.0  79.6£0.0
CL 89.0+0.6 87.7+0.6 84.7+1.1 77.5+03  89.7+0.6 838+12 82.1+08 80.3+05 81.54+0.6

LDACCL(ours) 89.6+0.4 88.4+0.4 85.14+0.8 78.2+0.4 89.6+0.4 84.44+0.8 82.94+0.9 80.8+0.4 82.31+0.5

Table 2: Cross-Domain Accuracy: accuracy (%) on the three sentiment analysis and MNLI datasets.
* indicates that the results are reproduced by the original implementation. We denote each sentiment
dataset as follows: IMDB (I), FineFood (F), and SST-2 (S). For MNLI, each domain is denoted as
follows: Telephone (T), Letters (L), and FaceToFace (F).

4.4 RESULTS AND DISCUSSION

The text classification experimental results of the aforementioned models are shown in Table [1}
We take the results of baseline models on 2 news classification datasets and 3 review classification
datasets. The current state-of-the-art (SOTA) contrastive learning model on 3 review classification
datasets is SSMBA, and SOTA counterfactual model on the 2 news classification datasets is C2L.
We can observe the proposed model LDA-based counterfactual contrastive learning (LDACCL) out-
performs all the baselines after learning from factual semantics and counterfactuals. Specifically,
LDACCL improves the accuracy for 1.3% on the Fine Foods, 0.5% on Amazon Movies, 0.9% on
IMDB, and 1.1% on 20NewsGroup, 0.8% on R-52 from the BERTgase. Among the results of multi-
ple experiments with different models, the LDACCL is the with the smallest fluctuation, which can
demonstrate that counterfactual semantics makes the network more robust.

The performance of neural networks can deteriorate under a domain shift between training and test
data. Previous literature (Moon et al.,|2021) has shown that over-relying on the domain-specific key-
words limits the generalization ability of networks, as the same keywords normally do not appear
in another domain, for which we aim to remove such spurious features. Table [2] presents the clas-
sification accuracy for the cross-domain scenario, where each model is trained only on the source
domain and evaluated on the target domain without further training. In Table[T]and Table 2] we can
find LDACCL is more robust, outperforming all the baselines in cross-domain settings. Apart from
that, against domain shifts. It demonstrates that the model becomes more robust against spurious
correlations when the network learns to capture the causal components by comparing the original
text and its counterfactual augmented text.

5 CONCLUSION

In this paper, we propose a novel LDA-based counterfactual contrastive learning model for robust
text classification and present some efficient counterfactual data augmentation methods. Unlike
existing efforts using causal features for contrastive learning, to the best of our knowledge, our
work is the first to study the debias of task models, without increasing annotation overheads on
the human side. Our model does not require a large amount of labeled training data and applies
to any text encoder. We demonstrated the performance and robustness of our model by evaluating
some datasets of top quality and showing effectiveness counterfactual data augmentation methods.
When used to extend the pre-training of a transformer-based language model, our self-supervised
objective closes the performance gap with existing methods that require human-labeled training data.
Our experiments suggest that the performance can be further improved by increasing the model and
training set size. We hope future research to explore generalization to other tasks and not be limited
to natural language processing.
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