
Under review as a conference paper at ICLR 2022

IMPROVING ROBUSTNESS WITH OPTIMAL TRANSPORT
BASED ADVERSARIAL GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep nets have proven to be brittle against crafted adversarial examples. One of
the main reasons is that the representations of the adversarial examples gradually
become more divergent from those of the benign examples when feed-forwarding
up to higher layers of deep nets. To remedy susceptibility to adversarial examples,
it is natural to mitigate this divergence. In this paper, leveraging the richness and
rigor of optimal transport (OT) theory, we propose an OT-based adversarial gen-
eralization technique that helps strengthen the classifier for tackling adversarial
examples. The main idea of our proposed method is to examine a specific Wasser-
stein (WS) distance between the adversarial and benign joint distributions on an
intermediate layer of a deep net, which can further be interpreted from a cluster-
ing view of OT as a generalization technique. More specifically, by minimizing
the WS distance of interest, an adversarial example is pushed toward the cluster
of benign examples sharing the same label on the latent space, which helps to
strengthen the generalization ability of the classifier on the adversarial examples.
Our comprehensive experiments with state-of-the-art adversarial training and de-
fense on latent space approaches indicate the significant superiority of our method
under specific attacks of various distortion sizes. The results demonstrate im-
provements in robust accuracy up to 5% against PGD attack on CIFAR-100 over
the SOTA methods.

1 INTRODUCTION

Despite achieving great success, even state-of-the-art deep neural nets are susceptible to crafted
perturbations (Szegedy et al., 2014; Goodfellow et al., 2015). To resolve this severe drawback, many
defensive models have been developed (Madry et al., 2018; Zhang et al., 2019b; Xie et al., 2019; Qin
et al., 2019). Recently, Athalye et al. (2018) undertook a comprehensive empirical study on a suite
of defensive techniques, which identifies obfuscated gradients as the common reason why many
defenses give a false sense of defending against gradient-based attacks. This research also reaffirms
that adversarial training with Projected Gradient Descent (PGD) (Madry et al., 2018) is one of the
most successful and widely-used defensive techniques that remains consistently resilient against
attacks. Subsequently, another adversarial training approach, TRADES (Zhang et al., 2019b), has
been demonstrated to outperform PGD in defending against attacks.

As indicated by Xie et al. (2019) and Bui et al. (2021), in deep neural nets, the representations
on an intermediate layer of the clean data examples and their adversarial counterparts can become
highly divergent, while their representations remain proximal in the data space. This observation
has inspired a line of work that aims to reduce the divergence between the representations of the
clean data examples and their adversarial examples on an intermediate layer of a deep net (Xie et al.,
2019; Bui et al., 2020b; 2021). Adversarial Divergence Reduction (Bui et al., 2020a) encourages
so-called local and global compactness to enhance adversarial robustness. Moreover, Bui et al.
(2021) undertook a comprehensive study to understand the factors influencing the robust accuracy
of adversarial defense on the latent space and proposed to adopt contrastive learning for improving
adversarial robustness.

In this paper, we leverage optimal transport (OT) theory (Santambrogio, 2015; Villani, 2008), and
propose an OT-based adversarial generalization technique that helps to strengthen the classifier for
prediction on adversarial examples. Our proposed method is named Adversarial Generalization
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with Optimal Transport (GOT) which can be incorporated into any existing adversarial training
approach (e.g., PGD and TRADES) to further improve them. The main idea of GOT is to examine a
specific WS distance (Santambrogio, 2015; Villani, 2008) between the adversarial and benign joint
distributions on an intermediate layer of a deep net. Using a clustering view of OT, we illustrate
that by minimizing the WS distance of interest, an adversarial example is pushed toward the cluster
of benign examples that share the same label as it in the latent space. Additionally, the classifier
is encouraged to make its prediction for the adversarial example by imitating its predictions for the
benign examples in the corresponding cluster. This allows us to make use of global information of
the benign examples hence improving the generalization ability of the classifier on the adversarial
examples and thereby enhancing adversarial robustness. Furthermore, to more vigorously push the
adversarial examples, we propose a label matching variant of GOT that employs a filter to explicitly
encourage the matching of the adversarial examples and their corresponding benign examples.

Our contributions in this paper can be summarized as follows:

• We propose an OT-based adversarial generalization technique that can help further im-
prove existing adversarial training approaches. The underlying idea is to generalize the
classifier to predict well on the adversarial examples by forcing the adversarial examples to
move toward the clusters of benign examples with the same labels in the latent space. This
is realized by minimizing a relevant WS distance, and interpreted using the clustering view
of OT.

• We conduct comprehensive experiments to compare two variants of our proposed method
(GOT-S and GOT-LM) with state-of-the-art adversarial training and defense on latent space
approaches. The experimental results indicate that our proposed methods significantly out-
perform the baselines under attacks of various distortion sizes, hence demonstrating the
merit of our OT-based adversarial generalization technique in improving adversarial ro-
bustness.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING DEFENSE

Adversarial training can be traced back to Goodfellow et al. (2015), wherein models were challenged
by producing adversarial examples and incorporating them into the training data. The adversarial
examples could be the worst-case examples (Goodfellow et al., 2015) or most divergent examples
(Zhang et al., 2019b). The quality of the adversarial training defense crucially depends on the
strength of the injected adversarial examples – e.g., training on non-iterative adversarial examples
obtained from FGSM or Rand FGSM (a variant of FGSM where the initial point is randomized) is
not robust to iterative attacks, for example PGD (Madry et al., 2018) or BIM (Kurakin et al., 2016).

Although many defense models were broken by Athalye et al. (2018), adversarial training with
PGD (Madry et al., 2018) and TRADES (Zhang et al., 2019c) are among the few defenses that
are resilient against attacks. Many defense models were developed based on adversarial examples
from PGD or TRADES attacks and try to improve PGD and TRADES in terms of the robust accu-
racy and training time. Notable examples include Adversarial Logit Pairing (ALP) (Kannan et al.,
2018), Feature Denoising (Xie et al., 2019), Defensive Quantization (Lin et al., 2019), Jacobian
Regularization (Jakubovitz & Giryes, 2018), Stochastic Activation Pruning (Dhillon et al., 2018),
Adversarial Training for Free (Shafahi et al., 2019), and Parameterized Rate-Distortion Stochastic
Encoder (Hoang et al., 2020).

2.2 DEFENSE WITH A LATENT SPACE

The following works have made use of a latent space to realize adversarial defense (Jalal et al.,
2017). DefenseGAN (Samangouei et al., 2018) and PixelDefense (Song et al., 2017) utilized a gen-
erator (i.e., a pretrained WS-GAN (Gulrajani et al., 2017) for DefenseGAN and a PixelCNN (Oord
et al., 2016) for PixelDefense) in conjunction with a latent space to find a denoising version of an
adversarial example on the data manifold. These approaches were found by Athalye et al. (2018)
as being easy to attack, and it was impossible to defend the attacks on the CIFAR-10 dataset. Jalal
et al. (2017) proposed an overpowered attack method to efficiently attack both DefenseGAN and
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PixelDefense, and subsequently injected those adversarial examples to train the model. Though that
work was proven to work well with simple datasets including MNIST and CelebA, no experiments
were conducted on more complex datasets including, for example, CIFAR-10. Adversary Diver-
gence Reduction Network (Bui et al., 2020a) encouraged local and global compactness to improve
the robustness. Bui et al. (2021) made a comprehensive study to understand the factors influencing
the robust accuracy of adversarial defense on the latent space, and proposed to adopt contrastive
learning to improve adversarial robustness.

3 OT-BASED ADVERSARIAL GENERALIZATION

3.1 REVISION OF WASSERSTEIN (WS) DISTANCE

We first revise the definition of a WS distance which serves the development of our proposed ap-
proach in a sequel. Let P and Q be two discrete distributions on the domain Ω ⊆ Rd defined as

P :=
∑m
i=1 aiδui andQ :=

∑n
j=1 biδvj ,

where δx indicates a Dirac measure centered at x, a = [ai]
m
i=1 ∈ ∆m and b = [bj ]

n
j=1 ∈ ∆n

are probability masses, and ∆k :=
{
π ∈ Rk : π ≥ 0 and ‖π‖1 = 1

}
is the k-simplex. Consider a

non-negative and continuous cost function or metric d on Ω. The WS distance (Santambrogio, 2015;
Villani, 2008) between P and Q w.r.t. the metric d is defined as

Wd (P,Q) := min
R∈Γ(P,Q)

m∑
i=1

n∑
j=1

rijd (ui,vj) , (1)

where Γ (P,Q) is defined as the set of transportation probability matricesR ∈ Rm×n+ :

n∑
j=1

rij = ai ∀i, and
m∑
i=1

rij = bj ∀j

 .

3.2 OUR PROPOSED APPROACH

Let Pd be the data distribution and D be the joint data-label distribution of the benign pairs (x, y)
with y ∈ {1, ...,M} (i.e., M is the number of classes). Let g be the feature extractor and h be a
classifier on top of the feature representations. We denote f (x) = h (g (x)) ∈ ∆M where ∆M :={
π ∈ RM : ‖π‖1 = 1

}
is the M -simplex.

Given an adversary A (e.g., PGD or TRADES, definition in Appendix A.2), we denote Pa as the
distribution of adversarial examples, the distribution including samples xa = A (x) for x ∼ Pd.
Let Qd,Qa be the distributions corresponding to Pd,Pa on the latent space via the feature ex-
tractor g (i.e., Qd = g#Pd and Qa = g#Pa). We denote Qdh as the joint distribution includ-
ing pairs u = (g (x) , h (g (x))) with x ∼ Pd and Qah as the joint distribution including pairs
ua = (g (xa) , h (g (xa))) with xa ∼ Pa.

We consider the WS distanceWd

(
Qdh,Qah

)
w.r.t. the cost metric d defined as

d (u,ua) = λdx (z, za) + dy (y,ya) ,

where λ > 0 is a trade-off parameter, and u = (z,y) and ua = (za,ya) for which z = g (x),
y = h (z), za = g (xa), and ya = h (za) with x ∼ Pd and xa ∼ Pa. Here we note that dx is a
distance on the latent space (e.g., Euclidean distance or cosine distance), while dy is a distance on
the M -simplex ∆M (e.g., the KL divergence or L1 distance).

The following proposition presents an inequality regarding the WS distance of interest,
Wd

(
Qdh,Qah

)
.

Proposition 3.1. We have the following inequality: Wd

(
Qdh,Qah

)
≥ λWdx

(
Qd,Qa

)
.

The proof of Proposition 3.1 can be found in Appendix A.1. Inspired by Proposition 3.1, we propose
minimizingWd

(
Qdh,Qah

)
to boost the robustness of the classifier f (x) = h (g (x)). The reason is
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Figure 1: The red points represent the benign ex-
amples in focus on the latent space, while the black
points represent their adversarial counterparts. By
minimizing the OT-based adversarial regulariza-
tion term Wd

(
Qd

h,Qa
h

)
, the global information of

all benign examples can be used to push an adver-
sarial example to an appropriate cluster of the be-
nign examples with the same label, and encourage
the classifier h to reduce the mismatch in its predic-
tions.

that by minimizing Wd

(
Qdh,Qah

)
, we also minimize Wdx

(
Qd,Qa

)
, which assists us in pushing

the adversarial distribution toward the benign data distribution on the latent space for improving
robustness. Moreover, by using the clustering view of the WS distance of interest as shown below,
we observe that minimizing Wd

(
Qdh,Qah

)
encourages pushing of the adversarial examples g (xa)

to the cluster of the benign examples g (x) that shares the same label as g (xa) (see Figure 1). In
what follows, we present the clustering view of the WS distance of interest.

Clustering view of the WS distance of interest. To strengthen the robustness of the classi-
fier f (x) = h (g (x)), we propose to minimize the OT-based adversarial regularization term
Wd

(
Qdh,Qah

)
. Note that we consider Qdh,Qah as the benign and adversarial empirical distributions

on the latent space w.r.t. the training set of benign examples {(x1, y1) , ..., (xN , yN )}, that is

Qdh =
1

N

N∑
i=1

δui andQah =
1

N

N∑
i=1

δuai ,

where ui = (g (xi) , h (g (xi))) and uai = (g (xai ) , h (g (xai ))).

The OT-based adversarial regularization termWd

(
Qdh,Qah

)
is written as follows:

min
R∈Γ(Qdh,Qah)

N∑
i=1

N∑
j=1

rijd
(
ui,u

a
j

)
. (2)

We assume that each class of the source domain is formed by several clusters on the latent space.
Let us denote Im1 , ..., I

m
Mm
⊂ {1, ..., NS}(1 ≤ m ≤ M ) as the mutually disjoint sets of indices in

which {g (xi) : i ∈ Imk , 1 ≤ k ≤Mm} forms the k-th cluster of the class m. Since the classifier
h is supervisorily trained on the source domain with labels, {h (g (xi)) : i ∈ Imk , 1 ≤ k ≤Mm}
would be the consensus on predicting the source examples in this cluster with the label m. Given an
adversarial example uaj , we interpret rij as the probability to transport uaj to ui with the cost

d
(
ui,u

a
j

)
= λdx

(
g (xi) , g

(
xaj
))

+ dy
(
h (g (xi)) , h

(
g
(
xaj
)))

.

To minimizeWd

(
Qdh,Qah

)
, the transportation probabilities rij , i = 1, ..., N must place the positive

values on the source examples in the same class to minimize
∑N
i=1 dy

(
h (g (xi)) , h

(
g
(
xaj
)))

.
Meanwhile, the transportation probabilities rij , i = 1, ..., N must place the positive values on the
source examples in the same cluster to minimize

∑N
i=1 dx

(
g (xi) , g

(
xaj
))
. This leads g

(
xaj
)

to
move to an appropriate cluster of g (xi) , i ∈ I with the same label and encourages a reduction of
the mismatch in the predictions h

(
g
(
xaj
))

and h (g (xi)) , i ∈ I . In this way, we can leverage the
global information of all benign examples when adapting the latent representations of the adversarial
examples to the clusters of the benign examples with the same class. This certainly helps to reduce
misclassification when predicting on the adversarial examples, and strengthens the generalization
capability of the classifier on adversarial examples. This is visualized in Figure 1.

We now incorporate the OT based generalization termWd

(
Qdh,Qah

)
to PGD-AT and TRADES to

form GOT-PGD and GOT-TRADES respectively.

GOT-PGD. The optimization problem of our GOT-PGD is as follows:

inf
g,h

(
ED

[
α sup

x′∈Bε(x)

CE (h (g (x′)) , y) + CE (h (g (x)) , y)

]
+ βWd

(
Qdh,Qah

))
, (3)
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where β > 0 is the trade-off parameter.

GOT-TRADES. The optimization problem of our GOT-TRADES is as follows:

inf
g,h

(
ED

[
α sup

x′∈Bε(x)

DKL (h (g (x′)) , h (g (x))) + CE (h (g (x)) , y)

]
+ βWd

(
Qdh,Qah

))
. (4)

Entropic regularization solution. To approximateWd

(
Qdh,Qah

)
, the entropic regularization al-

gorithm can be applied according to Genevay et al. (2016) giving the entropic regularized WS as
RWS := Wθ

d

(
Qdh,Qah

)
. Based on the Kantorovich dual problem in Genevay et al. (2016), the WS

of interest can be defined as

max
φ

{
−θE

Pa

[
log

(
E
Pd

[
exp

{
−d (u,ua) + φ(z)

θ

}])]
+ E

Pd
[φ(z)]

}
, (5)

where z = g (x) with x ∼ Pd and za = g (xa) with xa ∼ Pa, and u = (z, h (z)) and ua =
(za, h (za)). In addition, θ > 0 is the entropic regularization parameter (Peyré et al., 2019).

The function φ here acting on the latent space is the optimal dual variable, also known as the Kan-
torovich potential function. In the implementation, we formulate φ using a neural network. We
refer to the variant with RWS := Wθ

d

(
Qdh,Qah

)
defined as in (Equation 5) as GOT-PGD-S and

GOT-TRADES-S (i.e., the standard versions) respectively depending on the adversary A in use.

Label matching variants. Moreover, to tightly match ua = (za, h (za)) = (g (xa) , h (g (xa)))
with xa ∼ Pa and u = (g (x) , h (g (x))) with x ∼ Pd with the same labels ya (i.e., the label of xa)
and y (i.e., the label of x), we propose using the indicator I (ya, y) which returns 1 if ya = y and 0
otherwise to focus on minimizing d (u,ua) with ya = y. This variant is named GOT-PGD-LM and
GOT-TRADES-LM (i.e., the label matching versions) respectively. The entropic regularized WS
RWS :=Wθ

d

(
Qdh,Qah

)
for the label matching variant is defined as

max
φ

{
−θE

Pa

[
log

(
E
Pd

[
I (ya, y) exp

{
−d (u,ua) + φ(z)

θ

}])]
+ E

Pd
[φ(z)]

}
. (6)

The OT loss, defined as the approximation of the WS as above, is then obtained as the maximum
value through optimising the φ layer. The model we would like to derive is f = h(g(x)), where h(·)
is the classifier acted on top of latent representations induced by g.

4 EXPERIMENTS

In this section our aim is to compare the clean and robust accuracy of our proposed model with SOTA
defense models like PGD-AT (Madry et al., 2018) and TRADES (Zhang et al., 2019a) as well as
benchmark work from Croce et al. (2020), against two adversarial attacks, PGD (Madry et al., 2018)
and Auto-Attack (Croce & Hein, 2020). The model will also be investigated with regard to different
distortion sizes of the defense as well as other ablation studies.

In our experiments, we use MNIST (Lecun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2010) and SVHN (Netzer et al., 2011) data sets. We also apply
different model structures according to these datasets including CNN (Carlini & Wagner, 2017),
ResNet-18 (He et al., 2016) and WideResNet (WRN)-34-10 (Zagoruyko & Komodakis, 2016).

For our proposed method, we generated four variants w.r.t. the two defense models, and whether
label matching has been used (i.e., S means the standard version without the label matching, and LM
means using the label matching): (i) GOT-PGD-S, (ii) GOT-TRADES-S, (iii) GOT-PGD-LM, and
(iv) GOT-TRADES-LM. Our detailed experimental settings for different datasets and models can
be found in Appendix A.3.

4.1 PERFORMANCE EVALUATION RESULTS

MNIST with CNN model. The experimental results on the MNIST dataset are shown in Table 1.
From this table, it is clear that the GOT-AT method can boost both the clean accuracy and the robust
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accuracy. The best case for defense is generated from the GOT-TRADES-LM method for which
the robust accuracy against PGD attack and Auto-Attack see an increase of 2.4% and 3.1%, respec-
tively, over the PGD-AT baseline scenarios. The clean data testing accuracy for GOT-TRADES-LM
also shows an increase compared to the baseline, indicating the improvement in robustness has not
hurt the clean accuracy. The improvements with the inclusion of the label matching technique are
also obvious from Table 1. Both GOT-TRADES-LM and GOT-PGD-LM have provided 1% higher
robuts accuracy under PGD attack and up to 2% under Auto-Attack over the standard ones. The
clean accuracy, however, does not enjoy an advantage with the label matching method, and slightly
decreases in value.

Table 1: Clean and robust accuracy (in %) comparison on the MNIST dataset against different attacks with
distortion ε = 0.3 using the Standard CNN architecture.

Nat PGD AA
PGD-AT 98.99 95.63 91.07
TRADES 98.8 96.55 89.4

MART (Wang et al., 2019) 98.66 94.77 90.06
ARN (Bui et al., 2020a) 99.36 96.96 -

GOT-PGD-S 99.37 96.94 92.73
GOT-TRADES-S 99.34 96.82 92.26
GOT-PGD-LM 99.22 97.2 93.91

GOT-TRADES-LM 99.26 97.79 94.15

Table 2: Clean and robust accuracy (in %) comparison with model ResNet-18 on various datasets with attack
distortion ε = 8/225.

Method CIFAR-10 CIFAR-100 SVHN
Nat PGD AA Nat PGD AA Nat PGD AA

PGD-AT 80.76 50.07 48.44 61.95 30.78 24.4 87.3 51.81 40.1
TRADES 78.98 55.59 52.53 62.04 32.61 27.3 87.64 54.14 44.0

GOT-PGD-S 83.79 55.69 50.0 62.43 32.78 25.8 85.92 52.82 41.7
GOT-TRADES-S 81.79 62.18 58.41 63.21 31.88 27.6 92.39 55.65 44.8
GOT-PGD-LM 83.65 54.97 51.02 61.83 32.43 32.2 84.68 53.1 42.2

GOT-TRADES-LM 81.86 62.77 59.1 61.48 32.23 30.1 95.93 57.91 44.5

CIFAR-10, CIFAR-100 and SVHN with ResNet-18 model. Table 2 compares the robustness re-
sults for different defense models on CIFAR-10, CIFAR-100 and SVHN datasets using the ResNet-
18 model structure. For CIFAR-10, GOT methods show much improved robustness, with the robust
accuracy enhanced by over 7% under a PGD attack, and 6% under Auto-Attack. The testing accu-
racy also increased by 2% compared to the best case in the baseline, showing that the classification
accuracy has also been maintained under the defensive model. GOT-PGD has not shown such good
results, but can still beat PGD-AT by over 2% in defending against PGD attacks for GOT-PGD-
S and 3.5% for GOT-PGD-LM. The employment of the label matching mechanism is also shown
to be effective in the CIFAR-10 case. In addition, the label matching variants GOT-PGD-LM and
GOT-TRADES-LM further improve the standard variants GOT-PGD-S and GOT-TRADES-S. Sim-
ilar performance appears also on SVHN, where the robust accuracy sees an improvement of 3% for
a PGD attack and 2% for Auto-Attack. The label matching methods are more effective under PGD
attacks. In the case of CIFAR-100, GOT-PGD-S has seen an improvement of 2% over the baseline
under a PGD attack and GOT-PGD-LM sees a 8% increase for Auto-Attack. The label matching
technique can help improve the accuracy compared with the standard one, especially under Auto-
Attack.

CIFAR-10 and CIFAR-100 with WRN-34-10 model. In addition, model structure WRN-34-10
has also been applied for further experiments on CIFAR-10 and CIFAR-100. The results for WRN
have been compared to the baseline presented by benchmarks in Croce et al. (2020). According to
the results in Table 3, CIFAR-10 dataset experiments show results with the applied GOT methods
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Table 3: Clean and robust accuracy (in %) comparison with model WRN-34-10 on various datasets with attack
distortion ε = 8/225. Benchmarks sourcing from Croce et al. (2020).

Method CIFAR-10 CIFAR-100
Nat PGD AA Nat PGD AA

Proxy (Sehwag et al., 2021) 85.85 59.09 - - - -
LGBAT (Cui et al., 2020) 88.22 52.86 - 62.55 30.20 -

AWP (Wu et al., 2020) 85.36 59.09 - 60.38 28.86 -
ATES (Sitawarin et al., 2020) 86.84 50.72 - 62.82 24.57 -

GOT-PGD-S 84.62 56.41 52.2 63.8 34.22 33.0
GOT-TRADES-S 82.70 62.75 58.5 64.56 34.02 31.0
GOT-PGD-LM 83.84 57.75 52.6 63.24 34.57 33.9

GOT-TRADES-LM 83.25 63.25 59.3 64.13 34.27 32.5

of 4% higher than the benchmark results under the PGD attack. However, the clean accuracy of
the models including GOT have not seen better performance comparably. In the results regarding
CIFAR-100, there has been an enhancement by 5% under a PGD attack for robust accuracy and 4%
for clean accuracy. The label matching technique can still show its advantages over the standard
ones for both datasets in WRN.
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Figure 2: Robustness comparison on the MNIST
dataset against PGD attack with η = 0.01, while vary-
ing ε ∈ [0.1, 0.7] k=40 (left), k ∈ [10, 100] ε = 0.3
(right).
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Figure 3: Robustness comparison on the CIFAR-10
dataset against PGD attack at η = 0.003, while varying
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(right).
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Figure 4: Robustness accuracy for SVHN (left) and
CIFAR-100 (right) against PGD attack with varying
ε ∈ [0.02, 0.1], k=20 in model ResNet-18.
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Figure 5: Robustness accuracy for CIFAR-10 (left)
and CIFAR-100 (right) against PGD attack with vary-
ing ε ∈ [0.02, 0.1], k=20 in model WRN-34-10.

Impact of Distortion Size and Number of Steps. Figures 2 and 3 (and Appendix A.4) show the
impact of distortion size on robust accuracy trend under the PGD attacks, using MNIST and CIFAR-
10 datasets. It can be observed that the GOT-AT method performs much more stably as distortion
size ε increases. For the MNIST dataset, the robust accuracy is maintained at approximately 92.5%
for GOT-TRADES-S and 80.3% for GOT-PGD-S. The robustness again to different numbers of
steps for PGD attacks does not vary that much as there has been a higher level of approximately
95.3% for GOT-PGD-LM and 96.5% for GOT-PGD-S than the baselines.
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Table 4: The influence of the latent layer position to the clean and robust accuracy (in %) on the MNIST dataset
against PGD attack with k = 40, ε = 0.3, η = 0.01.

Methods Layer Nat PGD AA
GOT-PGD-S Penultimate

Layer
99.37 96.94 92.73

GOT-TRADES-S 99.34 96.82 92.26
GOT-PGD-S Middle

Layer
99.22 95.32 86

GOT-TRADES-S 99.24 94.38 87.8

Looking at the changing distortion size for CIFAR-10, the GOT-AT method can provide a robust
accuracy of over 41.5% with increasing perturbation size from attacks. This also shows that our
proposed method is less sensitive to the change of perturbation size from attacks on CIFAR-10.
Moreover, robustness regarding the distortion size can be kept with the label matching mechanism
employed. The changes of the number of steps from PGD attack influences the robustness. The
GOT-TRADES methods can keep the accuracy at 61.9% and GOT-PGD gains also relatively high
accuracy with the increasing number of steps.

From Figures 4 and 5, we can see CIFAR-100 and SVHN’s results under PGD attacks with various
distortion sizes in ResNet18 and WRN-34-10, respectively. The detailed data for the distortion
size discussion can also be found in Appendix A.4. Generally, with the increasing distortion sizes,
the trend of robust model performance will decrease, sharply at the beginning and will slow down
to converge later. For CIFAR-10, the WRN structured model will have higher value with smaller
distortion and will decrease more with increasing sizes. For CIFAR-100, the trend does not show
much influence and the WRN models are generally better than the ResNet models after the trends
flatten.

Label Distribution Clustering Visual-
ization. In order to better present the
effectiveness of our GOT methods, the
label distributions from the penultimate
layers have been visualised in Figure
6 for both baseline model TRADES
(left) and the proposed model GOT-
TRADES-LM (right). It is clear from
the figures that the proposed model can
push the adversarial examples to an ap-
propriate cluster of the benign examples
sharing same original classes through
the proceeding of the model. The sam-
ples with the same original classes are
better clustered for the proposed model
which will result in more enhanced ro-
bustness.

Figure 6: Label distribution from penultimate layers for CIFAR-
10 against PGD-20, based on baseline model TRADES (left),
and proposed model GOT-TRADES-LM (right).

4.2 ABLATION STUDY

Latent Space Position. We conduct an ablation study to investigate the influence of the latent space
position in which we apply our OT-based adversarial regularization technique. We experiment on
MNIST with the simple CNN architecture. We consider two places for the latent layer: i) a middle
layer and ii) the penultimate layer. Note that if we employ the penultimate layer as the latent layer,
the classifier h on the top of the latent layer is a linear classifier. Middle layer refers to the outputs of
the last max-pool layer before the fully connected layer. The latent space position does not influence
the clean accuracy much, while the robust accuracy seems to be improved if we establish the latent
layer more closely to the output layer. This makes sense because the closer the latent layer to the
output layer, the more the adversarial latent representations tend to diverge from the benign latent
representations.

Parameter Sensitivity. We investigate the sensitivity of our proposed method w.r.t. the parameter
β (i.e., the weight of the OT-based adversarial regularization term). The searching of β is conducted

8
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on MNIST against PGD attacks with k = 40, ε = 0.3, η = 0.01, β ∈ [0.01, 100]. As shown in
Figure 7, the robust accuracy trends peaks at β = 10, but the performance has not seen significant
influence with the changing β. Accordingly, in experiments for MNIST, β has been set as 10.
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Figure 7: Robustness comparison on the
MNIST dataset regarding changing OT loss
trade off.

Table 5: Clean and robust accuracy (in %) comparison for dif-
ferent choices of dx and dy on the MNIST dataset against PGD
attack with k = 40, ε = 0.3, η = 0.01.

Methods dx/dy Nat PGD AA

GOT-TRADES-S

COS/KL 99.34 96.82 92.26
COS/L1 98.86 96.5 92.2
L2/KL 98.83 96.31 91.8
L2/L1 98.04 93.44 89.1

GOT-PGD-S

COS/KL 99.37 96.94 92.73
COS/L1 99.33 93.75 84.9
L2/KL 99.12 95.22 87.9
L2/L1 98.4 91.89 78.5

Influence of Cost Metrics dx and dy . We investigate the influence of the metrics dx and dy used
to define the metric d to the robust accuracy. Basically, we consider some options for dx including
cosine distance (COS) and L2 distance, and some options for dy including KL divergence and L1
distance. As shown in Table 5, the combination of the cosine distance for dx and KL divergence for
dy is the best choice. Therefore, we apply this combination in the main experiments.

5 CONCLUSION

Deep nets are brittle against crafted adversarial examples. In this paper, by leveraging optimal
transport (OT) theory, we propose an OT-based adversarial generalization technique that strength-
ens a classifier to improve adversarial robustness. The underlying idea of our proposed method is
to investigate a specific WS distance between the adversarial and benign joint distributions on an
intermediate layer of a deep net. More specifically, by minimizing the WS distance of interest, an
adversarial example is pushed toward the cluster of benign examples sharing the same label as it on
the latent space. Additionally, the classifier is encouraged to mitigate the mismatch for its prediction
on the adversarial example and its predictions on the benign examples in the corresponding cluster,
which helps to strengthen the generalization ability of the classifier on the adversarial examples.
Comprehensive experiments with state-of-the-art adversarial training and defense on latent space
approaches indicate the significant superiority of our proposed method under specific and various
distortion size attacks.
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Hal DaumÃ© III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4293–4303.
PMLR, 13–18 Jul 2020.

D. Jakubovitz and R. Giryes. Improving dnn robustness to adversarial attacks using jacobian regu-
larization. In Proceedings of the European Conference on Computer Vision, pp. 514–529, 2018.

Ajil Jalal, Andrew Ilyas, Constantinos Daskalakis, and Alexandros G Dimakis. The robust manifold
defense: Adversarial training using generative models. arXiv preprint arXiv:1712.09196, 2017.

H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www. cs. toronto. edu/kriz/cifar. html, 5:4, 2010.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

10

http://papers.nips.cc/paper/6566-stochastic-optimization-for-large-scale-optimal-transport.pdf
http://papers.nips.cc/paper/6566-stochastic-optimization-for-large-scale-optimal-transport.pdf
http://papers.nips.cc/paper/6566-stochastic-optimization-for-large-scale-optimal-transport.pdf
http://arxiv.org/abs/1412.6572


Under review as a conference paper at ICLR 2022

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Lin, C. Gan, and S. Han. Defensive quantization: When efficiency meets robustness. arXiv
preprint arXiv:1904.08444, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

A. vd Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759, 2016.
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A APPENDIX

A.1 PROOFS

We first prove an important lemma. Given a pair of distribution QA and deterministic classifer
hA, we define QAhA as a distribution including sample pair (z, hA (z)) by first sampling z ∼ PA
and then computing hA (z). Similarly, we can define QBhB for another pair of distribution QB
and deterministic classifer hB . We define a distance d between u1 = (z1, hA (z1)) and u2 =
(z2, hB (z2)) as

d(u1,u2) = λdz (z1, z2) + dy (hA (z1) , hB (z2))

where dz and dy are two distances on the space Z of QA,QB and the simplex ∆M respectively.
Lemma A.1. The WS distance of interest can be expressed as:

Wd

(
QAhA ,Q

B
hB

)
= min
L:L#QA=QB

Ez∼QA [λdz (z, L (z)) + dy (hA (z) , hB (L (z)))]

= min
K:K#QB=QA

Ez∼PB [λdz (z,K (z)) + d† (hB (z) , hA (K (z)))] .

Proof. Observe first that for any UA ⊂ Z × ∆M , we have QAhA (UA) = QA (VA) where VA :=

{z ∈ Z | (z, hA (z)) ∈ UA}. Similarly, we have for any UB ⊂ Z×∆M that QBhB (UB) = QB (VB)
where VB := {z ∈ Z | (z, hB (z)) ∈ UB}.

Let H : supp
(
QAhA

)
→ supp

(
QBhB

)
(i.e., supp indicates the support of a distribution) be such that

H#QAhA = QBhB . We can express H as

H (z, hA (z)) := (H1 (z, hA (z)) , H2 (z, hA (z))) ,

with H1 (z, hA (z)) ∈ Z and H2 (z, hA (z)) ∈ ∆M . Define L (z) := H1 (z, hA (z)). We claim that
L#QA = QB . Indeed, let VB ⊂ Z be any measurable set and take UB := VB × 4M . Then by
using the observation above and the fact H#QAhA = QBhB , we obtain

QB (VB) = QBhB (UB) = QAhA
(
H−1 (UB)

)
= QAhA

(
L−1 (VB)×4M

)
= QA

(
L−1 (VB)

)
.

Thus the claim is proved.

It also follows from H#QAhA = QBhB and the claim that H2 (z, hA (z)) = hB (L (z)), which gives

d ((z, hA (z)) , H (z, hA (z))) = λdz (z, L (z)) + dy (hA (z) , hB (L (z))) . (7)

Therefore, we deduce that

Wd

(
QAhA ,Q

B
hB

)
≥ min
L:L#QA=QB

Ez∼QA [λdz (z, L (z)) + dy (hA (z) , hB (L (z)))]

In order to prove the reverse inequality, let us consider any map L satisfying L#QA = QB . Define
H (z, hA (z)) := (L(z), hB (L (z))). Then (7) holds and H#QAhA = QBhB . To verify the latter, let
UB ⊂ Z ×4M be any measurable set and take VB := {z ∈ Z | (z, hB (z)) ∈ UB}. Then as

H−1 (UB) = {(z, hA (z)) | L (z) ∈ VB} =
{

(z, hA (z)) | z ∈ L−1 (VB)
}
,
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we have
QAhA

(
H−1 (UB)

)
= QA

(
L−1 (VB)

)
= QB (VB) = QBhB (UB) .

Thus it follows that

Wd

(
QAhA ,Q

B
hB

)
≤ min
L:L#QA=QB

Ez∼QA [λdz (z, L (z)) + dy (hA (z) , hB (L (z)))] .

By combining the above two inequalities, we obtain the equality

Wd

(
QAhA ,Q

B
hB

)
≤ min
L:L#QA=QB

Ez∼QA [λdz (z, L (z)) + dy (hA (z) , hB (L (z)))] .

Symmetrically, we achieve the other equality.

Proof of Proposition 3.1. By applying Lemma A.1 for Qd = QA, Qa = QB , and h = hA = hB ,
we reach

Wd

(
Qdh,Qah

)
= min
L:L#Qd=Qa

Ez∼Qd [λdz (z, L (z)) + dy (h (z) , h (L (z)))]

≥ min
L:L#Qd=Qa

Ez∼Qd [λdz (z, L (z))] = λWd

(
Qd,Qa

)
.

A.2 STATE-OF-THE-ART ADVERSARIAL TRAINING METHODS

Let f be the classifier that needs to be strengthened and D be the joint distribution of data-label
pairs (x, y). The underlying idea of adversarial training (AT) is to seek the most challenging data
instances and incorporate them into the training process to strengthen the classifier f .

PGD-AT (Madry et al., 2018) seeks the worst-case examples and uses them to improve model
robustness:

inf
f

E[α sup
x′∈Bε(x)

CE (f (x′) , y) + CE (f (x) , y)], (8)

whereBε (x) = {x′ : ‖x− x′‖ ≤ ε}, α > 0 is the trade-off parameter, and CE is the cross-entropy
loss.

TRADES (Zhang et al., 2019a) seeks the most divergent examples and uses them to improve model
robustness:

inf
f

E[α sup
x′
DKL (f (x′) , f (x)) + CE (f (x) , y)], (9)

where x′ ∈ Bε (x) and DKL is the usual Kullback-Leibler (KL) divergence.

A.3 EXPERIMENTAL SETTINGS

All the data sets were normalized to [0, 1]. We apply padding of 4 pixels at all borders before
random cropping and random horizontal flips as used in Zhang et al. (2019c). We train our proposed
method and baselines in 100 epochs. The adversarial samples generalisation is based on the input
testing data and the predicted labels instead of ground truth labels. Following provides more detailed
settings of each data set.

MNIST We use the standard CNN architecture (Carlini & Wagner, 2017) for the MNIST experi-
ments with Adam optimizer on learning rate 1×10−3 (adjusted to 1×10−6 in label matching case).
In the adversarial training settings, We use {k = 40, ε = 0.3, η = 0.01}, where k is the number of
iteration steps, ε is the distortion bound and η is the step size of the adversaries. For our proposed
variants, the parameter of adversarial loss trade off α in Equation 3 is set to 1 and in 4 is set as 6. In
the training for GOT-PGD-S and GOT-PGD-LM, only the adversarial loss was used for adversarial
training, which provides better robust accuracy.
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CIFAR-10, CIFAR-100 and SVHN For the these three datasets, We have applied both the
ResNet-18 (He et al., 2016) and WRN-34-10 (Zagoruyko & Komodakis, 2016) in our experi-
ments. Stochastic Gradient Decent (SGD) optimiser with momentum on learning rate 1 × 10−4

and weight decay 2 × 10−4 is used. For adversarial training in these datasets, the settings be as
{k = 20, ε = 8/255, η = 2/255}. For both CIFAR-10 and CIFAR-100, the parameter of adversar-
ial loss trade off α is set to 1 for PGD and 6 for TRADES cases. Also, only the adversarial loss was
used in case of GOT-PGD. While for SVHN, the adversarial loss trade off α in TRADES this is set
as 3.0. In the training for GOT-PGD cases, 2 adversarial loss and 0.5 clean loss have been included
to maintain both clean and robust accuracy.

We use different SOTA attacks to evaluate the defense methods including: (i) PGD attack (Madry
et al., 2018) with l∞ distortion metric and full testing set of 10, 000 test samples. For the PGD
attack, the random restart is 1 and 40 iterations for MNIST while 20 iterations for other datasets
have been chosen. (ii) Auto-Attack (AA) (Croce & Hein, 2020) which is an ensemble based at-
tack. The standard version of the attack has been used, which provides an ensemble of four different
attacks including APGD-CE, APGD-DLR, FAB (Croce & Hein, 2020) and the Square Attack (An-
driushchenko et al., 2020). In Auto-attacks the version is ’standard’ and the adversarial samples
generalisation is based on the input testing data and the predicted labels instead of ground truth la-
bels. The distortion metric we use in our experiments is l∞ and only 1, 000 test samples have been
used to measure in CIFAR-10(WRN), CIFAR-100 and SVHN datasets.

The OT loss trade off β is searched in {0.01, 0.1, 1, 10, 100} in ablation study for MNIST while set
as 10 for MNIST and 10 in all other experiments scenarios. In Equations 5 and 6, θ is consistently set
to 0.1, λ is set to 1.0. Regarding the cost metric d of the WS distance, as pointed out by our ablation
study, we choose the cosine distance for dx and the KL divergence for dy . The φ, Kantorovich
potential function, is a linear real value layer with the inputs as the features extracted from the
penultimate layer of the original classification model.

A.4 DISTORTION SIZE INFLUENCE DETAILED DATA

Table 6: Clean and robust accuracy (in %) comparison with model Standard CNN on MNIST with different
attack distortions.

MNIST
ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7

PGD-AT 98.77 97.36 95.15 33.47 4.65 0.8 0.26
GOT-PGD-S 99.1 98.03 96.94 80.26 80.26 80.26 80.26

GOT-PGD-LM 99.12 98.66 97.2 82.76 82.76 82.76 82.76
TRADES 98.23 96.95 95.71 29.4 3.77 3.98 5.28

GOT-TRADES-S 99 97.86 96.27 84.61 84.61 84.61 84.61
GOT-TRADES-LM 99.05 98.17 97.56 88.01 88.01 88.01 88.01
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Table 7: Clean and robust accuracy (in %) comparison with model WRN-34-10 on various datasets with
different attack distortions.

CIFAR-10
ε 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

GOT-PGD-S 68.00 56.54 47.36 38.90 35.90 32.55 32.48 32.39
GOT-PGD-LM 69.90 57.18 50.45 42.63 37.01 36.98 36.95 36.95

GOT-TRADES-S 72.20 63.85 56.97 47.18 38.27 37.43 34.81 34.55
GOT-TRADES-LM 73.54 64.63 59.45 48.63 43.27 40.24 40.22 40.22

CIFAR-100
ε 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

GOT-PGD-S 46.46 35.34 37.75 22.31 18.79 18.79 18.79 18.79
GOT-PGD-LM 45.33 35.31 27.8 22.6 19.16 19.16 19.16 19.16

GOT-TRADES-S 45.06 34.88 27.69 22.1 18.74 18.74 18.74 18.74
GOT-TRADES-LM 45.7 35.18 27.7 22.17 18.51 18.51 18.51 18.51

Table 8: Clean and robust accuracy (in %) comparison with model ResNet-18 on various datasets with different
attack distortions.

CIFAR-10
ε 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

PGD-AT 65.49 52.87 40.08 29.94 22.73 17.56 14.68 12.57
GOT-PGD-S 67.02 54.65 45.32 39.81 36.32 33.46 31.15 28.64

GOT-PGD-LM 66.03 56 47.91 43.1 39.44 37.04 34.79 32.77
TRADES 66.41 56.25 46 37.84 30.99 26.53 23.42 21.25

GOT-TRADES-S 72.19 63.59 54.53 47.1 41.56 41.56 41.57 41.56
GOT-TRADES-LM 72.38 63.62 55.1 47.48 41.76 41.76 41.76 41.76

SVHN
ε 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

GOT-PGD-S 66.03 52.64 38.85 27.72 20.03 14.60 14.09 13.88
GOT-PGD-LM 66.88 53.35 39.26 30.57 23.72 18.98 19.04 18.77

GOT-TRADES-S 69.36 57.06 44.56 34.26 28.90 22.83 22.66 28.36
GOT-TRADES-LM 70.26 58.96 49.93 40.50 34.43 25.06 25.30 24.83

CIFAR-100
ε 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

GOT-PGD-S 43.91 33.72 25.93 20.63 17.26 17.26 17.26 17.26
GOT-PGD-LM 43.26 33.31 25.59 20.4 17.29 17.29 17.29 17.29

GOT-TRADES-S 39.09 29.03 22.67 18.28 15.69 15.69 15.69 15.69
GOT-TRADES-LM 43.14 33.03 25.93 21.34 18.2 18.2 18.2 18.2
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