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ABSTRACT

Federated learning (FL) is a distributed method to train a global model over a set of
local clients while keeping data localized. It reduces the risks of privacy and security
but faces important challenges including expensive communication costs and client
drift issues. To address these issues, we propose FedElasticNet, a communication-
efficient and drift-robust FL framework leveraging the elastic net. It repurposes
two types of the elastic net regularizers (i.e., ℓ1 and ℓ2 penalties on the local
model updates): (1) the ℓ1-norm regularizer sparsifies the local updates to reduce
the communication costs and (2) the ℓ2-norm regularizer resolves the client drift
problem by limiting the impact of drifting local updates due to data heterogeneity.
FedElasticNet is a general framework for FL; hence, without additional costs, it
can be integrated into prior FL techniques, e.g., FedAvg, FedProx, SCAFFOLD,
and FedDyn. We show that our framework effectively resolves the communication
cost and client drift problems simultaneously.

1 INTRODUCTION

Federated learning (FL) is a collaborative method that allows many clients to contribute individually
to training a global model by sharing local models rather than private data. Each client has a local
training dataset, which it does not want to share with the global server. Instead, each client computes
an update to the current global model maintained by the server, and only this update is communicated.
FL significantly reduces the risks of privacy and security (McMahan et al., 2017; Li et al., 2020a), but
it faces crucial challenges that make the federated settings distinct from other classical problems (Li
et al., 2020a) such as expensive communication costs and client drift problems due to heterogeneous
local training datasets and heterogeneous systems (McMahan et al., 2017; Li et al., 2020a; Konečnỳ
et al., 2016a;b).

Communicating models is a critical bottleneck in FL, in particular when the federated network
comprises a massive number of devices (Bonawitz et al., 2019; Li et al., 2020a; Konečnỳ et al.,
2016b). In such a scenario, communication in the federated network may take a longer time than that
of local computation by many orders of magnitude because of limited communication bandwidth and
device power (Li et al., 2020a). To reduce such communication cost, several strategies have been
proposed (Konečnỳ et al., 2016b; Li et al., 2020a). In particular, Konečnỳ et al. (2016b) proposed
several methods to form structured local updates and approximate them, e.g., subsampling and
quantization. Reisizadeh et al. (2020); Xu et al. (2020) also proposed an efficient quantization method
for FL to reduce the communication cost.

Also, in general, as the datasets that local clients own are heterogeneous, trained models on each local
data are inconsistent with the global model that minimizes the global empirical loss (Karimireddy
et al., 2020; Malinovskiy et al., 2020; Acar et al., 2021). This issue is referred to as the client drift
problem. In order to resolve the client drift problem, FedProx (Li et al., 2020b) added a proximal term
to a local objective function and regulated local model updates. Karimireddy et al. (2020) proposed
SCAFFOLD algorithm that transfers both model updates and control variates to resolve the client
drift problem. FedDyn (Acar et al., 2021) dynamically regularizes local objective functions to resolve
the client drift problem.

Unlike most prior works focusing on either the communication cost problem or the client drift
problem, we propose a technique that effectively resolves the communication cost and client drift
problems simultaneously.
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FedAvg FedProx SCAFFOLD FedDyn FedElasticNet
Communication

efficiency △ △ × △ #

Robustness to
heterogeneous data × △ # # #

Table 1: Comparison of prior methods and the proposed FedElasticNet.

Contributions In this paper, we propose FedElasticNet, a new framework for communication-
efficient and drift-robust FL. It repurposes the ℓ1-norm and ℓ2-norm regularizers of the elastic net (Zou
& Hastie, 2005), by which it successfully improves (i) communication efficiency by adopting the
ℓ1-norm regularizer and (ii) robustness to heterogeneous local datasets by adopting the ℓ2-norm
regularizer.

FedElasticNet is a general framework; hence, it can be integrated with prior FL algorithms such
as FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), SCAFFOLD (Karimireddy et al.,
2020), and FedDyn (Acar et al., 2021) so as to resolve the client drift problem as well as the
communication cost problem. Further, it incurs no additional costs in training. Empirically, we
show that FedElasticNet enhances communication efficiency while maintaining the classification
accuracy even for heterogeneous datasets, i.e., the client drift problem is resolved. Theoretically,
we characterize the impact of the regularizer terms. Table 1 compares the prior methods and the
proposed FedElasticNet if integrated with FedDyn (Algorithm 3).

2 RELATED WORK

To address the communication cost and client drift problems, numerous approaches were proposed.
Here, we describe closely related works that we consider baseline methods. The comprehensive
reviews can be found in Kairouz et al. (2021); Li et al. (2020a).

FedAvg (McMahan et al., 2017) is one of the most commonly used methods. FedAvg tackles the
communication bottleneck issue by performing multiple local updates before communicating to the
server. It works well for homogeneous datasets across clients (McMahan et al., 2017; Karimireddy
et al., 2020), but it is known that FedAvg may diverge when local datasets are heterogeneous (Zhao
et al., 2018; Li et al., 2020a).

FedProx (Li et al., 2020b) addressed the data heterogeneity problem. FedProx introduces an ℓ2-norm
regularizer to the local objective functions to penalize local updates that are far from the server’s
model and thus to limit the impact of variable local updates (Li et al., 2020b). Although FedProx is
more robust to heterogeneous datasets than FedAvg, the regularizer does not result in aligning the
global and local stationary points (Acar et al., 2021). Also, we note that FedProx does not improve
communication efficiency compared to that of FedAvg.

SCAFFOLD (Karimireddy et al., 2020) defined client drift that the model created by aggregating
local models and the optimal global model is inconsistent because of heterogeneous local datasets.
SCAFFOLD communicates the trained local models and the clients’ control variates so as to resolve
the client drift problem. Hence, SCAFFOLD requires twice the communication cost compared to
other FL algorithms.

FedDyn (Acar et al., 2021) dynamically updates its local regularizers at each round to ensure that
the local clients’ optima are asymptotically consistent with stationary points of the global empirical
loss. Unlike SCAFFOLD, FedDyn resolves the client drift problem without incurring additional
communication costs. However, FedDyn’s communication cost is not improved compared to FedAvg
and FedProx.

Zou & Hastie (2005) proposed the elastic net to encourage the grouping effect, in other words, to
encourage strongly correlated covariates to be in or out of the model description together (Hu et al.,
2018). Initially, the elastic net was proposed to overcome the limitations of Lasso (Tibshirani, 1996)
imposing an ℓ1-norm penalty on the model parameters. For instance of a linear least square problem,
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the objective of Lasso is to solve

min
θ
∥y −Xθ∥22 + λ1 ∥θ∥1 , (1)

where y is the outcome and X is the covariate matrix. Lasso performs both variable selection and
regularization to enhance the prediction accuracy and interpretability of the resulting model. However,
it has some limitations, especially for high-dimensional models. If a group of variables is highly
correlated, then Lasso tends to select only one variable from the group and does not care which one
is selected (Zou & Hastie, 2005). The elastic net overcomes these limitations by adding an ℓ2-norm
penalty. The objective of the elastic net is to solve

min
θ
∥y − Xθ∥22 +

λ2

2
∥θ∥22 + λ1 ∥θ∥1 . (2)

The elastic net simultaneously enables automatic variable selection and continuous shrinkage by the
ℓ1-norm regularizer and enables to select groups of correlated variables by its ℓ2-norm regularizer (Zou
& Hastie, 2005). We will leverage the elastic net approach to resolve the critical problems of FL:
expensive communication cost and client drift problems.

3 PROPOSED METHOD: FEDELASTICNET

We assume that m local clients communicate with the global server. For the kth client (where
k ∈ [m]) participating in each training round, we assume that a training data feature x ∈ X
and its corresponding label y ∈ Y are drawn IID from a device-indexed joint distribution, i.e.,
(x, y) ∼ Pk (Acar et al., 2021). The objective is to find

argmin
θ∈Rd

R (θ) :=
1

m

∑
k∈[m]

Lk (θ)

 , (3)

where Lk (θ) = Ex∼Pk
[lk (θ; (x, y))] is the local risk of the kth clients over possibly heterogeneous

data distributions Pk. Also, θ represents the model parameters and lk(·) is a loss function such as
cross entropy (Acar et al., 2021).

FedElasticNet The proposed method (FedElasticNet) leverages the elastic net approach to resolve
the communication cost and client drift problems. We introduce the ℓ1-norm and ℓ2-norm penalties
on the local updates: In each round t ∈ [T ], the kth local client attempts to find θtk by solving the
following optimization problem:

θtk = argmin
θ

Lk (θ) +
λ2

2

∥∥θ − θt−1
∥∥2
2
+ λ1

∥∥θ − θt−1
∥∥
1
, (4)

where θt−1 denotes the global model received from the server. Then, it transmits the difference
∆t

k = θtk − θt−1 to the server.

Inspired by the elastic net, we introduce two types of regularizers for local objective functions;
however, each of them works in a different way so as to resolve each of the two FL problems: the
communication cost and client drift problems. First, the ℓ2-norm regularizer resolves the client
drift problem by limiting the impact of variable local updates as in FedProx (Li et al., 2020b).
FedDyn (Acar et al., 2021) also adopts the ℓ2-norm regularizer to control the client drift.

Second, the ℓ1-norm regularizer attempts to sparsify the local updates ∆t
k = θtk − θt−1. We consider

two ways of measuring communication cost: One is the number of nonzero elements in ∆t
k (Yoon

et al., 2021; Jeong et al., 2021), which the ℓ1-norm sparsifies. The other is the (Shannon) entropy since
it is the theoretical lower bound on the data compression (Cover & Thomas, 2006). We demonstrate
that the ℓ1-norm penalty on the local updates can effectively reduce the number of nonzero elements
as well as the entropy in Section 4. To boost sparseness of ∆t

k = θtk − θt−1, we sent ∆t
k(i) = 0 if

|∆t
k(i)| ≤ ϵ where ∆t

k(i) denotes the ith element of ∆t
k. The parameter ϵ is chosen in a range that

does not affect classification accuracy.

Our FedElasticNet approach can be integrated into existing FL algorithms such as FedAvg (McMahan
et al., 2017), SCAFFOLD (Karimireddy et al., 2020), and FedDyn (Acar et al., 2021) without
additional costs, which will be described in the following subsections.
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Algorithm 1 FedElasticNet for FedAvg & FedProx

Input: T , θ0, λ1 > 0, λ2 > 0
1: for each round t = 1, 2, ..., T do
2: Sample devices Pt ⊆ [m] and transmit θt−1 to each selected local client
3: for each local client k ∈ Pt do in parallel
4: Set θtk = argmin

θ
Lk (θ) +

λ2

2

∥∥θ − θt−1
∥∥2
2
+ λ1

∥∥θ − θt−1
∥∥
1

5: Transmit ∆t
k = θtk − θt−1 to the global server

6: end for
7: Set θt = θt−1 +

∑
k∈Pt

nk

n ∆k

8: end for

Algorithm 2 FedElasticNet for SCAFFOLD

Input: T , θ0, λ1 > 0, λ2 > 0, global step size ηg , and local step size ηl.
1: for each round t = 1, 2, ..., T do
2: Sample devices Pt ⊆ [m] and transmit θt−1 and ct−1 to each selected device
3: for each device k ∈ Pt do in parallel
4: Initialize local model θtk = θt−1

5: for b = 1, . . . , B do
6: Compute mini-batch gradient∇Lk (θ

t
k)

7: θtk ← θtk − ηl
(
∇Lk (θ

t
k)− ct−1

k + ct−1 + λ2(θ
t
k − θt−1) + λ1sign(θtk − θt−1)

)
8: end for
9: Set ctk = ct−1

k − ct−1 + 1
Bηl

(θt−1 − θtk)

10: Transmit ∆t
k = θtk − θt−1 and ∆ck = ctk − ct−1

k to the global server
11: end for
12: Set θt = θt−1 +

ηg

|Pt|
∑

k∈Pt
∆k

13: Set ct = ct−1 + 1
m

∑
k∈Pt

∆ck
14: end for

3.1 FEDELASTICNET FOR FEDAVG & FEDPROX (FEDAVG & FEDPROX + ELASTIC NET)

Our FedElasticNet can be applied to FedAvg (McMahan et al., 2017) by adding two regularizers on
the local updates, which resolves the client drift problem and the communication cost problem. As
shown in Algorithm 1, the local client minimizes the local objective function (4). In Step 7, n and nk

denote the total numbers of data points of all clients and the data points of the kth client, respectively.

It is worth mentioning that FedProx uses the ℓ2-norm regularizer to address the data and system
heterogeneities (Li et al., 2020b). By adding the ℓ1-norm regularizer, we can sparsify the local
updates of FedProx and thus effectively reduce the communication cost. Notice that Algorithm 1 can
be viewed as the integration of FedProx and FedElasticNet.

3.2 FEDELASTICNET FOR SCAFFOLD (SCAFFOLD + ELASTIC NET)

In SCAFFOLD, each client computes the following mini-batch gradient∇Lk(θ
t
k) and control variate

ctk (Karimireddy et al., 2020):

θtk ← θtk − ηl
(
∇Lk

(
θtk
)
− ct−1

k + ct−1
)
, (5)

ctk ← ct−1
k − ct−1 +

1

Bηl
(θt−1 − θtk), (6)

where ηl is the local step size and B is the number of mini-batches at each round. This control variate
makes the local parameters θtk updated in the direction of the global optimum rather than each local
optimum, which effectively resolves the client drift problem. However, SCAFFOLD incurs twice
much communication cost since it should communicate the local update ∆t

k = θtk − θt−1 and the
control variate ∆ck = ctk − ct−1

k , which are of the same dimension.

In order to reduce the communication cost of SCAFFOLD, we apply our FedElasticNet framework.
In the proposed algorithm (see Algorithm 2), each local client computes the following mini-batch

4



Under review as a conference paper at ICLR 2023

gradient instead of (5):

θtk ← θtk − ηl
(
∇Lk

(
θtk
)
− ct−1

k + ct−1 + λ2(θ
t
k − θt−1) + λ1sign(θtk − θt−1)

)
, (7)

where λ1sign(θtk − θt−1) corresponds to the gradient of ℓ1-norm regularizer λ1∥θtk − θt−1∥1. This
ℓ1-norm regularizer sparsifies the local update ∆t

k = θtk − θt−1; hence, reduces the communication
cost. Since the control variate already addresses the client drift problem, we can remove the ℓ2-norm
regularizer or set λ2 as a small value.

3.3 FEDELASTICNET FOR FEDDYN (FEDDYN + ELASTIC NET)

In FedDyn, each local client optimizes the following local objective, which is the sum of its empirical
loss and a penalized risk function:

θtk = argmin
θ

Lk (θ)− ⟨∇Lk(θ
t−1
k ), θ⟩+ λ2

2

∥∥θ − θt−1
∥∥2
2
, (8)

where the penalized risk is dynamically updated so as to satisfy the following first-order condition for
local optima:

∇Lk(θ
t
k)−∇Lk(θ

t−1
k ) + λ2(θ

t
k − θt−1) = 0. (9)

This first-order condition shows that the stationary points of the local objective function are consistent
with the server model (Acar et al., 2021). That is, the client drift is resolved. However, FedDyn
makes no difference from FedAvg and FedProx in communication costs.

By integrating FedElasticNet and FedDyn, we can effectively reduce the communication cost of
FedDyn as well. In the proposed method (i.e., FedElasticNet for FedDyn), each local client optimizes
the following local empirical objective:

θtk = argmin
θ

Lk (θ)− ⟨∇Lk(θ
t−1
k ), θ⟩+ λ2

2

∥∥θ − θt−1
∥∥2
2
+ λ1

∥∥θ − θt−1
∥∥
1
, (10)

which is the sum of (8) and the additional ℓ1-norm penalty on the local updates. The corresponding
first-order condition is given by

∇Lk(θ
t
k)−∇Lk(θ

t−1
k ) + λ2(θ

t
k − θt−1) + λ1sign(θtk − θt−1) = 0. (11)

Notice that the stationary points of the local objective function are consistent with the server model
as in (9). If θtk ̸= θt−1 (i.e., sign(θtk − θt−1) = ±1), then the first-order condition is

∇Lk(θ
t
k)−∇Lk(θ

t−1
k ) + λ2(θ

t
k − θt−1) = ±λ1, (12)

where λ1 is a vectorized one. Our empirical results show that the optimized hyperparameter is
λ1 = 10−4 or 10−6 and the impact of ±λ1 in (12) would be negligible. Hence, the proposed
FedElasticNet for FedDyn resolves the client drift problem. Further, the local update ∆t

k = θtk− θt−1

is sparse due to the ℓ1-norm regularizer, which effectively reduces the communication cost at the
same time. The detailed algorithm is described in Algorithm 3.

Algorithm 3 FedElasticNet for FedDyn

Input: T , θ0, λ1 > 0, λ2 > 0, h0 = 0,∇Lk

(
θ0k
)
= 0.

1: for each round t = 1, 2, ..., T do
2: Sample devices Pt ⊆ [m] and transmit θt−1 to each selected device
3: for each device k ∈ Pt do in parallel
4: Set θtk = argmin

θ
Lk (θ)−

〈
∇Lk(θ

t−1
k ), θ

〉
+ λ2

2

∥∥θ − θt−1
∥∥2
2
+ λ1

∥∥θ − θt−1
∥∥
1

5: Set ∇Lk (θ
t
k) = ∇Lk

(
θt−1
k

)
− λ2

(
θtk − θt−1

)
− λ1sign

(
θtk − θt−1

)
6: Transmit ∆t

k = θtk − θt−1 to the global server
7: end for
8: for each device k /∈ Pt do in parallel
9: Set θtk = θt−1

k and ∇Lk (θ
t
k) = ∇Lk

(
θt−1
k

)
10: end for
11: Set ht = ht−1 − λ2

m

∑
k∈Pt

(
θtk − θt−1

)
− λ1

m

∑
k∈Pt

sign(θtk − θt−1)

12: Set θt = 1
|Pt|

∑
k∈Pt

θtk − 1
λ2
ht

13: end for
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Convergence Analysis We provide a convergence analysis on FedElasticNet for FedDyn (Algo-
rithm 3).
Theorem 3.1. Assume that the clients are uniformly randomly selected at each round and the local
loss functions are convex and β-smooth. Then Algorithm 3 satisfies the following inequality:

E

[
R

(
1

T

T−1∑
t=0

γt

)
−R(θ∗)

]
≤ 1

T

1

κ0
(E∥γ0 − θ∗∥22 + κC0) +

κ′

κ0
· λ2

1d

− 1

T

2λ1

λ2

T∑
t=1

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
, (13)

where θ∗ = argminθR(θ), P = |Pt|, γt = 1
P

∑
Pt

θtk, d = dim(θ), κ = 10m
P

1
λ2

λ2+β
λ2
2−25β2 , κ0 =

2
λ2

λ2
2−25λ2β−50β2

λ2
2−25β2 , κ′ = 5

λ2

λ2+β
λ2
2−25β2 = κ · P

2m , C0 = 1
m

∑
k∈[m] E∥∇Lk(θ

0
k)−∇Lk(θ∗)∥ and

θ̃tk = argmin
θ

Lk (θ)−
〈
∇Lk(θ

t−1
k ), θ

〉
+

λ2

2

∥∥θ − θt−1
∥∥2
2
+ λ1

∥∥θ − θt−1
∥∥
1
∀k ∈ [m].

Theorem 3.1 provides a convergence rate of FedElasticNet for FedDyn. If T →∞, the first term of
(13) converges to 0 at the speed of O(1/T ). The second and the third terms of (13) are additional
penalty terms caused by the ℓ1-norm regularizer. The second term is a negligible constant in the
range of hyperparameters of our interest. Considering the last term, notice that the summand at each
t includes the expected average of sign vectors where each element is ±1. If a coordinate of the
sign vectors across clients is viewed as an IID realization of Bern( 12 ), it can be thought of as a small
value with high probability by the concentration property (see Appendix B.3). In addition, γt−1− θ∗
characterizes how much the average of local models deviates from the globally optimal model, which
tends to be small as training proceeds. Therefore, the effect of both additional terms is negligible.

4 EXPERIMENTS

In this section, we evaluate the proposed FedElasticNet on benchmark datasets for various FL
scenarios. In particular, FedElasticNet is integrated with prior methods including FedProx (Li et al.,
2020b), SCAFFOLD (Karimireddy et al., 2020), and FedDyn (Acar et al., 2021). The experimental
results show that FedElasticNet effectively enhances communication efficiency while maintaining
classification accuracy and resolving the client drift problem. We observe that the integration of
FedElasticNet and FedDyn (Algorithm 3) achieves the best performance.

Experimental Setup We use the same benchmark datasets as prior works. The evaluated datasets
include MNIST (LeCun et al., 1998), a subset of EMNIST (Cohen et al., 2017, EMNIST-L), CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009), and Shakespeare (Shakespeare, 1914). The IID split is
generated by randomly assigning datapoint to the local clients. The Dirichlet distribution is used on
the label ratios to ensure uneven label distributions among local clients for non-IID splits as in Zhao
et al. (2018); Acar et al. (2021). For the uneven label distributions among 100 experimental devices,
the experiments are performed by using the Dirichlet parameters of 0.3 and 0.6, and the number of
data points is obtained by the lognormal distribution as in Acar et al. (2021). The data imbalance is
controlled by varying the variance of the lognormal distribution (Acar et al., 2021).

We use the same neural network models of FedDyn experiments (Acar et al., 2021). For MNIST and
EMNIST-L, fully connected neural network architectures with 2 hidden layers are used. The numbers
of neurons in the layers are 200 and 100, respectively (Acar et al., 2021). Remark that the model
used for MNIST dataset is the same as in Acar et al. (2021); McMahan et al. (2017). For CIFAR-10
and CIFAR-100 datasets, we use a CNN model consisting of 2 convolutional layers with 64 5× 5
filters followed by 2 fully connected layers with 394 and 192 neurons and a softmax layer. For the
next character prediction task for Shakespeare, we use a stacked LSTM as in Acar et al. (2021).

For MNIST, EMNIST-L, CIFAR10, and CIFAR100 datasets, we evaluate three cases: IID, non-IID
with Dirichlet (.6), and non-IID with Dirichlet (.3). Shakespeare datasets are evaluated for IID and
non-IID cases as in Acar et al. (2021). We use the batch size of 10 for the MNIST dataset, 50 for
CIFAR-10, CIFAR-100, and EMNIST-L datasets, and 20 for the Shakespeare dataset. We optimize
the hyperparameters depending on the evaluated datasets: learning rates, λ2, and λ1.
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Dataset Rounds FedProx Algorithm 1 SCAFFOLD Algorithm 2 FedDyn Algorithm 3

IID

CIFAR-10 200 163.82 124.56 327.64 313.04 163.82 34.23
CIFAR-100 500 413.37 249.26 826.74 803.33 413.37 132.95

MNIST 100 20.3 7.51 40.58 36.98 20.3 2.55
EMNIST-L 200 18.4 11.23 36.78 34.90 18.4 2.12
Shakespeare 100 1.99 1.93 3.32 3.31 1.99 1.28

Dirichlet (.6)

CIFAR-10 200 163.82 116.96 327.64 310.51 163.82 29.96
CIFAR-100 500 413.37 247.87 826.74 798.21 413.37 127.23

MNIST 100 20.3 6.66 40.58 35.20 20.3 2.55
EMNIST-L 200 18.4 11.18 36.78 34.45 18.4 2.05

Dirichlet (.3)

CIFAR-10 200 163.82 112.1 327.64 308.15 163.82 26.99
CIFAR-100 500 413.37 255.97 826.74 804.47 413.37 124.02

MNIST 100 20.3 6.49 40.58 34.95 20.3 2.53
EMNIST-L 200 18.4 11.29 36.78 34.22 18.4 2.07

Non-IID Shakespeare 100 13.61 11.28 27.21 27.21 13.61 9.41

Table 2: Number of non-zero elements cumulated over the all round simulated with 10% client
participation for IID and non-IID settings in FL scenarios. The non-IID settings of MNIST, EMNIST-
L, CIFAR-10, and CIFAR-100 datasets are created with the Dirichlet distribution of labels owned by
the client. Algorithm 1 is FedElasticNet for FedProx, Algorithm 2 is FedElasticNet for SCAFFOLD,
and Algorithm 3 is FedElasticNet for FedDyn. The unit of the cumulative number of elements is 107.

Dataset Rounds FedProx Algorithm 1 SCAFFOLD Algorithm 2 FedDyn Algorithm 3

IID

CIFAR-10 200 586.42 232.77 685.17 236.76 639.59 (221.64) 140.71
CIFAR-100 500 1712.84 470.78 2225.98 1173.01 1964.63 (511.14) 423.53

MNIST 100 266.26 47.29 286.88 83.51 308.27 (27.76) 24.76
EMNIST-L 200 657.64 166.07 764.39 344.94 704.57 (132.50) 96.37
Shakespeare 100 646.33 403.63 520.60 226.68 576.17 (348.11) 225.44

Dirichlet (.6)

CIFAR-10 200 564.57 203.61 663.23 198.53 616.69 (197.62) 121.97
CIFAR-100 500 1709.33 449.59 2202.61 1119.91 1951.06 (478.60) 398.87

MNIST 100 249.63 45.51 293.22 75.57 304.00 (26.75) 21.24
EMNIST-L 200 646.14 163.24 755.75 347.31 704.63 (134.31) 89.92

Dirichlet (.3)

CIFAR-10 200 550.15 187.01 636.90 115.26 602.80 (180.29) 108.69
CIFAR-100 500 1696.47 428.77 2170.14 1078.97 1937.09 (463.67) 382.44

MNIST 100 244.49 45.24 291.88 73.12 300.76 (26.71) 19.03
EMNIST-L 200 636.21 162.57 747.72 328.21 700.38 (128.34) 91.55

Non-IID Shakespeare 100 593.21 440.97 628.32 470.22 609.11 (348.11) 419.99

Table 3: Cumulative entropy values of transmitted bits with 10% client participation for IID and non-
IID settings in FL scenarios. The non-IID settings of MNIST, EMNIST-L, CIFAR-10, and CIFAR-100
datasets are created with the Dirichlet distribution of labels owned by the client. Algorithm 1 is
FedElasticNet for FedProx, Algorithm 2 is FedElasticNet for SCAFFOLD, and Algorithm 3 is
FedElasticNet for FedDyn. The left-side numbers of FedDyn are the entropy values when the local
models θtk are transmitted and the right-side numbers in parentheses are the entropy values when the
local updates ∆t

k = θtk − θt−1 are transmitted.

Evaluation of Methods We compare the baseline methods (FedProx, SCAFFOLD, and FedDyn)
and the proposed FedElasticNet integrations (Algorithms 1, 2, and 3), respectively. We evaluate
the communication cost and classification accuracy for non-IID settings of the prior methods and
the proposed methods. The robustness of the client drift problem is measured by the classification
accuracy of non-IID settings.

We report the communication costs in two ways: (i) the number of nonzero elements in transmitted
values as in (Yoon et al., 2021; Jeong et al., 2021) and (ii) the Shannon entropy of transmitted bits.
Note that the Shannon entropy is the theoretical limit of data compression (Cover & Thomas, 2006),
which can be achieved by practical algorithms; for instance, Han et al. (2016) used Huffman coding
for model compression. We calculate the entropy of discretized values with the bin size of 0.01.
Note that the transmitted values are not discretized in FL, and only the discretization is considered to
calculate the entropy. The lossy compression schemes (e.g., scalar quantization, vector quantization,
etc.) have not been considered since they include several implementational issues which are beyond
our research scope.

Table 2 reports the number of non-zero elements of the baseline methods with/without FedElasticNet.
Basically, the communication costs per round of FedProx and FedDyn are the same; SCAFFOLD
suffers from the doubled communication cost because of the control variates. The proposed FedElas-
ticNet integrations (Algorithms 1, 2, and 3) can effectively sparsify the transmitted local updates,
which enhances communication efficiency.
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Dataset Rounds FedProx Algorithm 1 SCAFFOLD Algorithm 2 FedDyn Algorithm 3

IID

CIFAR-10 200 595.16 151.28 873.24 252.33 680.70 (259.31) 57.70
CIFAR-100 500 1721.53 466.21 2774.60 1068.47 2038.07 (689.24) 447.18

MNIST 100 325.86 39.55 389.52 71.57 324.88 (20.47) 12.33
EMNIST-L 200 728.34 123.74 1018.11 263.95 797.39 (55.46) 40.71
Shakespeare 100 640.69 279.51 529.05 476.81 343.32 (298.58) 277.21

Dirichlet (.6)

CIFAR-10 200 577.74 127.14 839.41 236.48 656.48 (223.46) 47.52
CIFAR-100 500 1697.18 453.87 2682.15 1038.21 1974.65 (651.78) 431.54

MNIST 100 298.99 30.94 530.72 106.08 314.64 (20.29) 11.67
EMNIST-L 200 721.49 121.76 1020.32 251.65 779.44 (286.11) 40.71

Dirichlet (.3)

CIFAR-10 200 563.15 105.89 806.73 214.31 635.78 (215.83) 39.58
CIFAR-100 500 1685.30 444.32 2743.43 1060.83 1934.49 (627.56) 422.46

MNIST 100 295.80 42.94 466.65 85.06 314.96 (19.98) 12.35
EMNIST-L 200 716.12 116.88 1014.08 249.68 771.90 (283.40) 40.70

Non-IID Shakespeare 100 595.69 409.60 684.79 897.67 560.87 (316.64) 318.92

Table 4: Cumulative entropy values of transmitted bits with 100% client participation for IID and non-
IID settings in FL scenarios. The non-IID settings of MNIST, EMNIST-L, CIFAR-10, and CIFAR-100
datasets are created with the Dirichlet distribution of labels owned by the client. Algorithm 1 is
FedElasticNet for FedProx, Algorithm 2 is FedElasticNet for SCAFFOLD, and Algorithm 3 is
FedElasticNet for FedDyn. The left-side numbers of FedDyn are the entropy values when the local
models θtk are transmitted and the right-side numbers in parentheses are the entropy values when the
local updates ∆t

k = θtk − θt−1 are transmitted.

In particular, the minimal communication cost is achieved when FedElasticNet is integrated with
FedDyn (Algorithm 3). It is because the classification accuracy is not degraded even if the transmitted
values are more aggressively sparsified in Algorithm 3. Fig. 2 shows the transmitted local updates
∆t

k of Algorithm 3 are sparser than FedDyn and Algorithm 2. Hence, Algorithm 3 (FedElasticNet for
FedDyn) achieves the best communication efficiency.
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Figure 1: Classification accuracy performance evaluated in MNIST, EMNIST-L, CIFAR-10, CIFAR-
100 dataset settings (10% participation rate and Dirichlet (.3)).

Tables 3 and 4 report the Shannon entropy of transmitted bits for the baseline methods with/without
FedElasticNet. The communication costs of baseline methods are effectively improved by the
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Figure 2: Comparison of distributions of transmitted local updates ∆t
k = θtk−θt−1 (10% participation

rate and Dirichlet (.3)) for CIFAR-10.

FedElasticNet approach. Algorithms 1, 2, and 3 reduce the entropy compared to the their baseline
methods. We note that FedElasticNet integrated with FedDyn (Algorithm 3) achieves the minimum
entropy, i.e., the minimum communication cost.

For FedDyn, we evaluate the Shannon entropy values for two cases: (i) transmit the updated local
models θtk as in Acar et al. (2021) and (ii) transmit the local updates ∆t

k = θtk−θt−1 as in Algorithm 3.
We observe that transmitting the local updates ∆t

k instead of the local models θtk can reduce the
Shannon entropy significantly. Hence, it is beneficial to transmit the local updates ∆t

k even for
FedDyn if it adopts an additional compression scheme. The numbers of nonzero elements for two
cases (i.e., θtk and ∆t

k) are the same for FedDyn.

Fig. 1 shows that the FedElasticNet maintains the classification accuracy or incurs marginal degra-
dation. We observe a classification gap between FedProx and Algorithm 1 for CIFAR-10 and
CIFAR-100. However, the classification accuracies of FedDyn and Algorithm 3 are almost identical
in the converged regime.

In particular, Algorithm 3 significantly reduces the Shannon entropy, which can be explained by Fig 2.
Fig 2 compares the distributions of the transmitted local updates ∆t

k for FedDyn, Algorithm 2, and
Algorithm 3. Because of the ℓ1-norm penalty on the local updates, Algorithm 3 makes sparser local
updates than FedDyn. The local updates of FedDyn can be modeled by the Gaussian distribution, and
the local updates of FedElasticNet can be modeled by the non-Gaussian distribution (similar to the
Laplacian distribution). It is well-known that the Gaussian distribution maximizes the entropy for a
given variance in information theory Cover & Thomas (2006). Hence, FedElasticNet can reduce the
entropy by transforming the Gaussian distribution into the non-Gaussian one.

5 CONCLUSION

We proposed FedElasticNet, a general framework to improve communication efficiency and resolve
the client drift problem simultaneously. We introduce two types of penalty terms on the local model
updates by repurposing the classical elastic net. The ℓ1-norm regularizer sparsifies the local model
updates, which reduces the communication cost. The ℓ2-norm regularizer limits the impact of variable
local updates to resolve the client drift problem. Importantly, our framework can be integrated with
prior FL techniques so as to simultaneously resolve the communication cost problem and the client
drift problem. By integrating FedElasticNet with FedDyn, we can achieve the best communication
efficiency while maintaining classification accuracy for heterogeneous datasets.
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A APPENDIX

A.1 EXPERIMENT DETAILS

We provide the details of our experiments. We select the datasets for our experiments, including those
used in prior work on federated learning (McMahan et al., 2017; Li et al., 2020b; Acar et al., 2021).
To fairly compare the non-IID environments, the datasets and the experimental environments are the
same as those of Acar et al. (2021).

Hyperparameters. We describe the hyperparameters used in our experiments in Section 4. We
perform a grid search to find the best λ1 and ϵ used in the proposed algorithms. Each hyperparameter
was selected to double the value as the performance improved. We use the same λ2 as in Acar et al.
(2021). SCAFFOLD has the same local epoch and batch size as other algorithms, and SCAFFOLD
is not included in Table 4 because other hyperparameters are not required. Table 5 shows the
hyperparameters used in our experiments.

Dataset Algorithm λ1 λ2 ϵ

CIFAR-10

FedProx - 10−4 -
Algorithm 1 10−6 10−4 10−3

Algorithm 2 10−4 0 10−4

FedDyn - 10−2 -
Algorithm 3 10−4 10−2 5× 10−3

CIFAR-100

FedProx - 10−4 -
Algorithm 1 10−6 10−4 10−3

Algorithm 2 10−4 0 10−4

FedDyn - 10−2 -
Algorithm 3 10−4 10−2 10−3

MNIST

FedProx - 10−4 -
Algorithm 1 10−6 10−6 10−3

Algorithm 2 10−4 0 10−4

FedDyn - 5× 10−2 -
Algorithm 3 10−4 5× 10−2 5× 10−3

EMNIST-L

FedProx - 10−4 -
Algorithm 1 10−6 10−6 10−3

Algorithm 2 10−4 0 10−4

FedDyn - 4× 10−2 -
Algorithm 3 10−4 4× 10−2 2× 10−3

Shakespeare

FedProx - 10−4 -
Algorithm 1 10−6 10−6 9× 10−3

Algorithm 2 10−6 0 9× 10−4

FedDyn - 10−2 -
Algorithm 3 10−6 10−2 10−2

Table 5: Hyperparameters.

A.2 REGULARIZER COEFFICIENTS

We selected λ1 over {10−2, 10−4, 10−6, 10−8} to observe the impact of λ1 on the classification
accuracy. We prefer a larger λ1 to enhance communication efficiency unless the ℓ1-norm regularizer
does not degrade the classification accuracy. Figures 3, 4, and 5 show the classification accuracy
depending on λ1 in the CIFAR-10 dataset with 10% participation rate and Dirichlet (.3). The unit of
the cumulative number of elements is 107.

In Algorithm 1, we selected λ1 = 10−6 to avoid a degradation of classification accuracy (see Fig. 3)
and maximize the sparsity of local updates. In this way, we selected the coefficient values λ1 (See
Fig.4 for Algorithm 2 and 5 and Algorithm 3).
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Figure 3: Classification accuracy and sparsity of local updates depending on λ1 (Algorithm 1).
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Figure 4: Classification accuracy and sparsity of local updates depending on λ1 (Algorithm 2).
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Figure 5: Classification accuracy and sparsity of local updates depending on λ1 (Algorithm 3).
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A.3 EMPIRICAL RESULTS OF CLASSIFICATION ACCURACY
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Figure 6: Classification accuracy performance evaluated in MNIST, EMNIST-L, CIFAR-10, and
CIFAR-100 datasets (10% participation rate).
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Figure 7: Classification accuracy performance evaluated in IID Shakespeare and Non-IID Shakespeare
datasets.
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Figure 8: Classification accuracy performance evaluated in MNIST, EMNIST-L datasets (100%
participation rate).
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Figure 9: Classification accuracy performance evaluated in CIFAR-10 and CIFAR-100 datasets
(100% participation rate).
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B PROOF

We utilize some techniques in FedDyn (Acar et al., 2021).

B.1 DEFINITION

We introduce a formal definition and properties that we will use.
Definition B.0.1. A function Lk is β-smooth if it satisfies

∥∇Lk(x)−∇Lk(y)∥ ≤ β∥x− y∥ ∀x, y. (14)

If function Lk is convex and β-smooth, it satisfies

− ⟨∇Lk(x), z − y⟩ ≤ −Lk(z) + Lk(y) +
β

2
∥z − x∥2 ∀x, y, z. (15)

As a consequence of the convexity and smoothness, the following property holds (Nesterov, 2018,
Theorem 2.1.5):

1

2βm

∑
k∈[m]

∥∇Lk(x)−∇Lk(x∗)∥2 ≤ R(x)−R(x∗) ∀x (16)

whereR(x) = 1
m

∑m
k=1 Lk(x) and ∇R(x∗) = 0.

We will also use the relaxed triangle inequality (Karimireddy et al., 2020, Lemma 3):∥∥∥∥∥∥
n∑

j=1

vj

∥∥∥∥∥∥
2

≤ n

n∑
j=1

∥vj∥2. (17)

B.2 PROOF OF THEOREM 3.1

The theorem that we will prove is as follows.
Theorem B.1 (Full statement of Theorem 3.1). Assume that the clients are uniformly randomly
selected at each round and the individual loss functions {Lk}mk=1 are convex and β-smooth. Also
assume that λ2 > 27β. Then Algorithm 3 satisfies the following inequality: Letting R(θ) =
1
m

∑
k∈[m] Lk(θ) and θ∗ = argmin

θ
R(θ),

E

[
R

(
1

T

T−1∑
t=0

γt

)
−R(θ∗)

]
≤ 1

T

1

κ0
(E∥γ0 − θ∗∥2 + κC0) +

κ′

κ0
· λ2

1d

− 1

T

2λ1

λ2

T∑
t=1

〈
(γt−1 − θ∗),

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
,

(18)

where

γt =
1

P

∑
k∈Pt

θtk = θt +
1

λ2
ht with P = |Pt|,

κ =
10m

P

1

λ2

λ2 + β

λ2
2 − 25β2

,

κ0 =
2

λ2

λ2
2 − 25λ2β − 50β2

λ2
2 − 25β2

,

κ′ =
5

λ2

λ2 + β

λ2
2 − 25β2

= κ · P

2m
,

C0 =
1

m

∑
k∈[m]

E∥∇Lk(θ
0
k)−∇Lk(θ∗)∥,

d = dim(θ).

19



Under review as a conference paper at ICLR 2023

To prove the theorem, define variables that will be used throughout the proof.

θ̃tk = argmin
θ

Lk (θ)−
〈
∇Lk(θ

t−1
k ), θ

〉
+

λ2

2

∥∥θ − θt−1
∥∥2
2
+ λ1

∥∥θ − θt−1
∥∥
1
∀k ∈ [m] (19)

Ct =
1

m

∑
k∈[m]

E∥∇Lk(θ
t
k)−∇Lk(θ∗)∥2, (20)

ϵt =
1

m

∑
k∈[m]

E∥θ̃tk − γt−1∥2. (21)

Note that θ̃tk optimizes the kth loss function by assuming that the kth client (k ∈ [m]) is selected at
round t. It is obvious that θ̃tk = θtk if k ∈ Pt. Ct refers to the average of the expected differences
between gradients of each individual model and the globally optimal model. Lastly, ϵt refers to the
deviation of each client model from the average of local models. Remark that Ct and ϵt approach
zero if all clients’ models converge to the globally optimal model, i.e., θtk → θ∗.

The following lemma expresses ht, how much the averaged active devices’ model deviates from the
global model.

Lemma B.2. Algorithm 3 satisfies

ht =
1

m

∑
k∈[m]

∇Lk(θ
t
k) (22)

Proof. Starting from the update of ht in Algorithm 3,

ht = ht−1 − λ2

m

∑
k∈[m]

(θtk − θt−1)− λ1

m

∑
k∈[m]

sign(θtk − θt−1)

= ht−1 − 1

m

∑
k∈[m]

(∇Lk(θ
t−1
k )−∇Lk(θ

t
k)− λ1sign(θ

t
k − θt−1))− λ1

m

∑
k∈[m]

sign(θtk − θt−1)

= ht−1 − 1

m

∑
k∈[m]

(∇Lk(θ
t−1
k )−∇Lk(θ

t
k)),

where the second equality follows from (11). By summing ht recursively, we have

ht = h0 +
1

m

∑
k∈[m]

∇Lk(θ
t
k)−

1

m

∑
k∈[m]

∇Lk(θ
0
k) =

1

m

∑
k∈[m]

∇Lk(θ
t
k).

The next lemma provides how much the average of local models changes by using only t round
parameters.

Lemma B.3. Algorithm 3 satisfies

E[γt − γt−1] =
1

λ2m

∑
k∈[m]

E[−∇Lk(θ̃tk)]−
λ1

λ2m

∑
k∈[m]

E[sign(θ̃tk − θt−1)].

20



Under review as a conference paper at ICLR 2023

Proof. Starting from the definition of γt,

E
[
γt − γt−1

]
= E

[(
1

P

∑
k∈Pt

θtk

)
− θt−1 − 1

λ2
ht−1

]

= E

[
1

P

∑
k∈Pt

(θtk − θt−1)− 1

λ2
ht−1

]

= E

[
1

λ2P

∑
k∈Pt

(∇Lk(θ
t−1
k )−∇Lk(θ

t
k)− λ1sign(θ

t
k − θt−1))− 1

λ2
ht−1

]
(23)

= E

[
1

λ2P

∑
k∈Pt

(∇Lk(θ
t−1
k )−∇Lk(θ̃tk)− λ1sign(θ̃tk − θt−1))− 1

λ2
ht−1

]
(24)

= E

 1

λ2m

∑
k∈[m]

(∇Lk(θ
t−1
k )−∇Lk(θ̃tk)− λ1sign(θ̃tk − θt−1))− 1

λ2
ht−1


(25)

=
1

λ2m

∑
k∈[m]

E[−∇Lk(θ̃tk)]−
λ1

λ2m

∑
k∈[m]

E[sign(θ̃tk − θt−1)], (26)

where (23) follows from (11), (24) follows since θ̃tk = θtk if k ∈ Pt, and (25) follows since clients are
randomly chosen. The last equality is due to Lemma B.2.

Next, note that Algorithm 3 is the same as that of FedDyn except for the ℓ1-norm penalty. As this
new penalty does not affect derivations of Ct, ϵt, and E∥γt − γt−1∥2 in FedDyn (Acar et al., 2021),
we can obtain the following bounds on them. Proofs are omitted for brevity.

E∥ht∥2 ≤ Ct (27)

Ct ≤
(
1− P

m

)
Ct−1 +

2β2P

m
ϵt +

4βP

m
E[R(γt−1)−R(θ∗)] (28)

E∥γt − γt−1∥2 ≤ 1

m

∑
k∈[m]

E[∥θ̃tk − γt−1∥2] = ϵt (29)

Lemma B.4. Given model parameters at the round (t− 1), Algorithm 3 satisfies

E∥γt − θ∗∥2 ≤E∥γt−1 − θ∗∥2 −
2

λ2
E[R(γt−1)−R(θ∗)] +

β

λ2
ϵt + E∥γt − γt−1∥2 (30)

− 2λ1

λ2m
(γt−1 − θ∗)

∑
k∈[m]

E[sign(θ̃tk − θt−1)], (31)

where the expectations are taken assuming parameters at the round (t− 1) are given.
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Proof.

E∥γt − θ∗∥2 = E∥γt−1 − θ∗ + γt − γt−1∥2

= E∥γt−1 − θ∗∥2 + 2E[
〈
γt−1 − θ∗, γ

t − γt−1
〉
] + E∥γt − γt−1∥2

= E∥γt−1 − θ∗∥2 + E∥γt − γt−1∥2

+
2

λ2m

∑
k∈[m]

E
[〈

γt−1 − θ∗,−∇Lk(θ̃
t
k)− λ1(sign(θ̃

t
k − θt−1))

〉]
(32)

≤ E∥γt−1 − θ∗∥2 + E∥γt − γt−1∥2

+
2

λ2m

∑
k∈[m]

E[Lk(θ∗)− Lk(γ
t−1) +

β

2
∥θ̃tk − γt−1∥2]

+
2

λ2m

∑
k∈[m]

E
[〈

γt−1 − θ∗,−λ1sign(θ̃
t
k − θt−1)

〉]
(33)

= E∥γt−1 − θ∗∥2 + E∥γt − γt−1∥2 − 2

λ2
E[R(γt−1)−R(θ∗)] +

β

λ2
ϵt

− 2λ1

λ2m

∑
k∈[m]

E
[〈

γt−1 − θ∗, sign(θ̃
t
k − θt−1)

〉]
(34)

= E∥γt−1 − θ∗∥2 + E∥γt − γt−1∥2 − 2

λ2
E[R(γt−1)−R(θ∗)] +

β

λ2
ϵt

− 2λ1

λ2

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
(35)

where (32) follows from Lemma B.3, (33) follows from (15), and (34) follows from the definitions of
R(·) and ϵt.

Lemma B.5. Algorithm 3 satisfies

(1− 5
β2

λ2
2

)ϵt ≤ 10
1

λ2
2

Ct−1 + 10β
1

λ2
2

E[R(γt−1)−R(θ∗)] +
5λ2

1

λ2
2

d
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Proof. Starting from the definitions of ϵt and γt,

ϵt =
1

m

∑
k∈[m]

E∥θ̃tk − γt−1∥2

=
1

m

∑
k∈[m]

E∥θ̃tk − θt−1 − 1

λ2
ht−1∥2

=
1

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(θ
t−1
k )−∇Lk(θ̃

t
k)− λ1sign(θ

t
k − θt−1)− ht−1∥2 (36)

=
1

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(θ
t−1
k )−∇Lk(θ∗) +∇Lk(θ∗)−∇Lk(γ

t−1)

+∇Lk(γ
t−1)−∇Lk(θ̃

t
k)− λ1sign(θ

t
k − θt−1)− ht−1∥2

≤ 5

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(θ
t−1
k )−∇Lk(θ∗)∥2 +

5

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(γ
t−1
k )−∇Lk(θ∗)∥2

+
5

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(θ̃
t
k)−∇Lk(γ

t−1)∥2 + 5

λ2
2

E∥λ1sign(θ
t
k − θt−1)∥2 + 5

λ2
2

E∥ht−1∥2

(37)

≤ 5

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(θ
t−1
k )−∇Lk(θ∗)∥2 +

5

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(γ
t−1
k )−∇Lk(θ∗)∥2

+
5

λ2
2

1

m

∑
k∈[m]

E∥∇Lk(θ̃
t
k)−∇Lk(γ

t−1)∥2 + 5λ2
1

λ2
2

d+
5

λ2
2

Ct−1 (38)

≤ 5

λ2
2

Ct−1 +
5

λ2
2

2β E[R(γt−1)−R(θ∗)] +
5β2

λ2
2

1

m

∑
k∈[m]

E∥θ̃tk − γt−1∥2 + 5λ2
1

λ2
2

d+
5

λ2
2

Ct−1

(39)

=
10

λ2
2

Ct−1 +
10β

λ2
2

E[R(γt−1)−R(θ∗)] +
5β2

λ2
2

ϵt +
5λ2

1

λ2
2

d,

where (36) follows from (11), (37) follows from the relaxed triangle inequality (17), (38) follows
from (27), and (39) follows from the definition of Ct, the smoothness, and (16). The last equality
follows from the definition of ϵt.

After multiplying (28) by κ(= 10m
P

1
λ2

λ2+β
λ2
2−25β2 ), we obtain the following theorem by summing (B.4)

and scaled version of (29).

Theorem B.6. Given model parameters at the round (t− 1), Algorithm 3 satisfies

κ0E[R(γt−1)−R(θ∗)] ≤ (E∥γt−1 − θ∗∥2 + κCt−1)− (E∥γt − θ∗∥2 + κCt) + κ
P

2m
λ2
1

− 2λ1

λ2

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
.

where κ = 10m
P

1
λ2

λ2+β
λ2
2−25β2 , κ0 = 2

λ2

λ2
2−25λ2β−50β2

λ2
2−25β2 . Note that the expectations taken above are

conditional expectations given model parameters at time (t− 1).
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Proof. Summing Lemma B.4 and κ-scaled version of (28), we have

E∥γt − θ∗∥2 + κCt

≤ E∥γt−1 − θ∗∥2 + κCt−1 − κ
P

m
Ct−1 + κ

2β2P

m
ϵt + κ

4βP

m
E[R(γt−1)−R(θ∗)]

− 2

λ2
E[R(γt−1)−R(θ∗)] +

β

λ2
ϵt + E∥γt − γt−1∥2 − 2λ1

λ2m
(γt−1 − θ∗)

∑
k∈[m]

E[sign(θ̃tk − θt−1)].

(40)

As E∥γt − γt−1∥2 ≤ ϵt by (29), we have

κ
2β2P

m
ϵt +

β

λ2
ϵt + E∥γt − γt−1∥2 ≤ κ

2β2P

m
ϵt +

β

λ2
ϵt + ϵt. (41)

This can be further bounded as follows.

(41) =

(
10

m

P

1

λ2

λ2 + β

λ2
2 − 25β2

· 2β
2P

m
+

β

λ2
+ 1

)
ϵt

=
1

λ2(λ2
2 − 25β2)

(
20(λ2 + β)β2 + β(λ2

2 − 25β2) + λ2(λ
2
2 − 25β2)

)
ϵt

=
λ2(λ2 + β)

λ2
2 − 25β2

(
1− 5

β2

λ2
2

)
ϵt

≤ λ2(λ2 + β)

λ2
2 − 25β2

(
10

λ2
2

Ct−1 +
10β

λ2
2

E[R(γt−1)−R(θ∗)] +
5λ2

1

λ2
2

d

)
= κ

P

m
Ct−1 + κ

βP

m
E[R(γt−1)−R(θ∗)] + κ

P

2m
λ2
1d,

where the inequality follows from Lemma B.5. Then, (40) term will be

E∥γt − θ∗∥2 + κCt ≤ E∥γt−1 − θ∗∥2 + κCt−1 − κ0E[R(γt−1)−R(θ∗)] + κ
P

2m
λ2
1d

− 2λ1

λ2

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
.

Rearranging terms, we prove the claim.

Now we are ready to prove the main claim by combining all lemmas. Let us take the sum on both
sides of Lemma B.6 over t = 1, . . . , T . Then, telescoping gives us

κ0

T∑
t=1

E[R(γt−1)−R(θ∗)] ≤ (E∥γ0 − θ∗∥2 + κC0)− (E∥γT − θ∗∥2 + κCT ) + T (κ
P

2m
λ2
1)

− 2λ1

λ2

T∑
t=1

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
.

Since κ is positive if λ2 > 27β, we can eliminate the negative term in the middle. Then,

κ0

T∑
t=1

E[R(γt−1)−R(θ∗)] ≤ E∥γ0 − θ∗∥2 + κC0 + T (κ
P

2m
λ2
1d)

− 2λ1

λ2

T∑
t=1

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
.
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Dividing by T and applying Jensen’s inequality,

E

[
R( 1

T

T−1∑
t=0

γt)−R(θ∗)

]
≤ 1

T

1

κ0
(E∥γ0 − θ∗∥2 + κC0) +

1

κ0
(κ

P

2m
λ2
1d)

− 1

T

2λ1

λ2

T∑
t=1

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
,

(42)

which completes the proof of Theorem B.1.

B.3 DISCUSSION ON CONVERGENCE

In this section, we revisit the convergence stated in Theorem 3.1. Recall the bound

E

[
R

(
1

T

T−1∑
t=0

γt

)
−R(θ∗)

]
≤ 1

T

1

κ0
(E∥γ0 − θ∗∥2 + κC0) +

1

κ0
(κ

P

2m
λ2
1d)

− 1

T

2λ1

λ2

T∑
t=1

〈
γt−1 − θ∗,

1

m

∑
k∈[m]

E[sign(θ̃tk − θt−1)]

〉
,

As we discussed in the main body, the second term is a negligible constant in the range of our
hyperparameters as λ1 is of order of 10−4 or 10−6.

Consider the last term where the summand is the inner product between two terms: 1) γt−1 − θ∗,
the deviation of the averaged local models from the globally optimal model and 2) the average of
sign vectors across clients. The deviation term characterizes how much the averaged local models
are different from the global model; thus, we can assume that as training proceeds it vanishes or at
least is bounded by a constant vector. To argue the average of sign vectors, assume a special case
where the sign vectors sign(θ̃tk− θt−1) are IID across clients. To further simplify the argument, let us
consider only a single coordinate of the sign vectors, say Xk = sign(θ̃tk(i)− θt−1(i)), and suppose
Xk = ±1 with probability 0.5 each. Then, the concentration inequality (Durrett, 2019) implies that
for any δ > 0,

P

 1

m

∑
k∈[m]

sign(θ̃tk)− θt−1 > δ

 = P

 1

m

∑
k∈[m]

Xk > δ

 ≤ e−
mδ2

2

holds, which vanishes exponentially fast with the number of clients m. Since m is large in many FL
scenarios, the average of sign vectors is negligible with high probability, which in turn implies the
last term is also negligible.
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