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ABSTRACT

Pruning neural networks before training has received increasing interest due to its
potential to reduce training time and memory. One popular method is to prune the
connections based on a certain metric, but it is not entirely clear what metric is
the best choice. Recent advances in neural tangent kernel (NTK) theory suggest
that the training dynamics of large enough neural networks is closely related to
the spectrum of the NTK. Motivated by this finding, we propose to prune the
connections that have the least influence on the spectrum of the NTK. This method
can help maintain the NTK spectrum, which may help align the training dynamics
to that of its dense counterpart. However, one possible issue is that the fixed-
weight-NTK corresponding to a given initial point can be very different from
the NTK corresponding to later iterates during the training phase. We further
propose to sample multiple realizations of random weights to estimate the NTK
spectrum. Note that our approach is weight-agnostic, which is different from most
existing methods that are weight-dependent. In addition, we use random inputs
to compute the fixed-weight-NTK, making our method data-agnostic as well. We
name our foresight pruning algorithm Neural Tangent Kernel Spectrum-Aware
Pruning (NTK-SAP). Empirically, our method achieves better performance than
all baselines on multiple datasets. Our code is available at https://github.
com/YiteWang/NTK-SAP.

1 INTRODUCTION

The past decade has witnessed the success of deep neural networks (DNNs) in various applications.
Modern DNNs are usually highly over-parameterized, making training and deployment computation-
ally expensive. Network pruning has emerged as a powerful tool for reducing time and memory costs.
There are mainly two types of pruning methods: post-hoc pruning (Han et al., 2015; Renda et al.,
2020; Molchanov et al., 2019; LeCun et al., 1989; Hassibi & Stork, 1992) and foresight pruning (Lee
et al., 2018; Wang et al., 2020; Alizadeh et al., 2022; Tanaka et al., 2020; de Jorge et al., 2020b; Liu
& Zenke, 2020). The former methods prune the network after training the large network, while the
latter methods prune the network before training. In this paper, we focus on foresight pruning.

SNIP (Lee et al., 2018) is probably the first foresight pruning method for modern neural networks.
It prunes those initial weights that have the least impact on the initial loss function. SNIP can be
viewed as a special case of saliency score based pruning: prune the connections that have the least
“saliency scores”, where the saliency score is a certain metric that measures the importance of the
connections. For SNIP, the saliency score of a connection is the difference of loss function before
and after pruning this connection. GraSP (Wang et al., 2020) and Synflow (Tanaka et al., 2020) used
two different saliency scores. One possible issue of these saliency scores is that they are related to the
initial few steps of training, and thus may not be good choices for later stages of training. Is there a
saliency score that is more directly related to the whole training dynamics?
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1.1 OUR METHODOLOGY

Recently, there are many works on the global optimization of neural networks; see, e.g., Liang et al.
(2018b;a; 2019; 2021); Venturi et al. (2018); Safran & Shamir (2017); Li et al. (2022); Ding et al.
(2022); Soltanolkotabi et al. (2019); Sun et al. (2020a); Lin et al. (2021a;b); Zhang et al. (2021) and
the surveys Sun et al. (2020b); Sun (2020). Among them, one line of research uses neural tangent
kernel (NTK) (Jacot et al., 2018) to describe the gradient descent dynamics of DNNs when the
network size is large enough. More specifically, for large enough DNNs, the NTK is asymptotically
constant during training, and the convergence behavior can be characterized by the spectrum of the
NTK. This theory indicates that the spectrum of the NTK might be a reasonable metric for the whole
training dynamics instead of just a few initial iterations. It is then natural to consider the following
conceptual pruning method: prune the connections that have the least impact on the NTK spectrum.

There are a few questions on implementing this conceptual pruning method.

First, what metric to compute? Computing the whole eigenspectrum of the NTK is too time-
consuming. Following the practice in numerical linear algebra and deep learning (Lee et al., 2019a;
Xiao et al., 2020), we use the nuclear norm (sum of eigenvalues) as a scalar indicator of the spectrum.

Second, what “NTK” matrix to pick? We call the NTK matrix defined for the given architecture with
a random initialization as a “fixed-weight-NTK”, and use “analytic NTK” (Jacot et al., 2018) to refer
to the asymptotic limit of the fixed-weight-NTK as the network width goes to infinity. The analytic
NTK is the one studied in NTK theory (Jacot et al., 2018), and we think its spectrum may serve as
a performance indicator of a certain architecture throughout the whole training process.1 However,
computing its nuclear norm is still too time-consuming (either using the analytic form given in Jacot
et al. (2018) or handling an ultra-wide network). The nuclear norm of a fixed-weight-NTK is easy to
compute, but the fixed-weight-NTK may be quite different from the analytic NTK. To resolve this
issue, we notice a less-mentioned fact: the analytic NTK is also the limit of the expectation (over
random weights) of fixed-weight-NTK2, and thus it can be approximated by the expectation of fixed-
weight-NTK for a given width. The expectation of fixed-weight-NTK shall be a better approximation
of analytic NTK than a single fixed-weight-NTK. Of course, to estimate the expectation, we can use
a few “samples” of weight configurations and compute the average of a few fixed-weight-NTKs.

One more possible issue arises: would computing, say, 100 fixed-weight-NTKs take 100 times more
computation cost? We use one more computation trick to keep the computation cost low: for each
mini-batch of input, we use a fresh sample of weight configuration to compute one fixed-weight-NTK
(or, more precisely, its nuclear norm). This will not increase the computation cost compared to
computing the fixed-weight-NTK for one weight configuration with 100 mini-batches. We call this
“new-input-new-weight” (NINW) trick.

We name the proposed foresight pruning algorithm Neural Tangent Kernel Spectrum-Aware Pruning
(NTK-SAP). We show that NTK-SAP is competitive on multiple datasets, including CIFAR-10,
CIFAR-100, Tiny-ImageNet, and ImageNet. In summary, our contributions are:

• We propose a theory-motivated foresight pruning method named NTK-SAP, which prunes
networks based on the spectrum of NTK.

• We introduce a multi-sampling formulation which uses different weight configurations to
better capture the expected behavior of pruned neural networks. A “new-input-new-weight”
(NINW) trick is leveraged to reduce the computational cost, and may be of independent
interest.

• Empirically, we show that NTK-SAP, as a data-agnostic foresight pruning method, achieves
state-of-the-art performance in multiple settings.

2 RELATED WORK AND BACKGROUND

Pruning after training (Post-hoc pruning). Post-hoc pruning can be dated back to the 1980s
(Janowsky, 1989; Mozer & Smolensky, 1989) and they usually require multiple rounds of train-
prune-retrain procedure (Han et al., 2015; LeCun et al., 1989). Most of these pruning methods use

1Please see Appendix B.2 for more discussions from an empirical perspective.
2This is a subtle point, and we refer the readers to Appendix B.1 for more discussions.
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magnitude (Han et al., 2015), Hessian (LeCun et al., 1989; Hassibi & Stork, 1992; Molchanov et al.,
2019) and other information (Dai et al., 2018; Guo et al., 2016; Dong et al., 2017; Yu et al., 2018) to
define the scoring metrics which determine which weights to prune. Some other recent works (Verma
& Pesquet, 2021) identify sparse networks through iterative optimization. Most post-hoc pruning
methods intend to reduce the inference time, with the exception of lottery ticket pruning (Frankle &
Carbin, 2018; Renda et al., 2020) which prunes the networks for the purpose of finding a trainable
sub-network.

Pruning during training. Another class of pruning algorithms gradually sparsifies a dense neural
network during training. Some works use explicit ℓ0 (Louizos et al., 2017) or ℓ1 (Wen et al., 2016)
regularization to learn a sparse solution. Other works introduce trainable masks (Liu et al., 2020;
Savarese et al., 2020; Kang & Han, 2020; Kusupati et al., 2020; Srinivas et al., 2017; Xiao et al.,
2019) or use projected gradient descent (Zhou et al., 2021) to specifically learn the connections
to be remained. DST methods (Mocanu et al., 2018; Bellec et al., 2017; Mostafa & Wang, 2019;
Dettmers & Zettlemoyer, 2019; Liu et al., 2021b; Evci et al., 2020; Liu et al., 2021c;a) train the
neural network with a fixed parameter count budget while gradually adjust the parameters throughout
training. Moreover, another line of work (You et al., 2019) tries to identify the winning ticket at early
epochs. These methods can reduce some training time, but often do not reduce the memory cost of
training.

Pruning before training (foresight pruning). SNIP (Lee et al., 2018) is arguably the first foresight
pruning method. Later, GraSP (Wang et al., 2020) uses Hessian-gradient product to design the
pruning metric. To address the layer collapse issue of SNIP and GraSP at high sparsity ratios, Synflow
(Tanaka et al., 2020) prunes the network iteratively in a data-independent manner. FORCE and
Iterative SNIP (de Jorge et al., 2020a) also intend to improve the performance of SNIP at high sparsity
ratios. Lee et al. (2019b) uses orthogonal constraint to improve signal propagation of networks
pruned by SNIP. Neural tangent transfer (Liu & Zenke, 2020) explicitly lets subnetworks learn the
full empirical neural tangent kernel of dense networks. PropsPr (Alizadeh et al., 2022) also mentions
the “shortsightedness” of existing foresight pruning methods and proposes to use meta-gradients to
utilize the information of the first few iterations.

3 GENERAL PIPELINE FOR FORESIGHT PRUNING METHODS

In this section, we review the formulation of pruning-at-initialization problem and revisit several
existing foresight pruning methods. Here we consider Synflow (Tanaka et al., 2020), GraSP (Wang
et al., 2020), SNIP (Lee et al., 2018) and Iterative SNIP (de Jorge et al., 2020b). When given a dataset
D = (xi,yi)

n
i=1 and an untrained neural network f(·;θ) parameterized by θ = {θ1, θ2, · · · , θp} ∈

Rp, we are interested in finding a binary mask m = {m1,m2, · · · ,mp} ∈ {0, 1}p which minimizes
the following equation:

min
m

L(A(θ0,m)⊙m;D) = min
m

1

n

n∑
i=1

L(f(xi;A(θ0,m)⊙m),yi) (1)

s.t. m ∈ {0, 1}p, ∥m∥0/p ≤ d = 1− k

where k and d = 1− k are the target sparsity and density, θ0 is an initialization point which follows a
specific weight initialization method P (e.g. Xavier initialization), ⊙ denotes the Hadamard product,
and A denotes a training algorithm (e.g. Adam) which takes in mask m as well as initialization θ0,
and outputs trained weights at convergence θfinal ⊙m.

Since directly minimizing Equation (1) is intractable, existing foresight pruning methods assign
each mask and corresponding weight at initialization θj0 with a saliency score S(θj0) in the following
generalized form:

S(mj) = S(θj0) =
∂I
∂mj

=
∂I
∂θj0

· θj0 (2)

where I is a function of parameters θ0 and corresponding mask m. Intuitively, Equation (2) measures
the influence of removing connection mj on I. Once the saliency score for each mask is computed,
we will only keep the top-d masks. Specifically, the masks with the highest saliency scores will be
retained (mj = 1), while other masks will be pruned (mj = 0).
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SNIP. SNIP (Lee et al., 2018) defines SSNIP(m
j) =

∣∣∣∂L(θ0⊙m;D)

∂θj
0

· θj0
∣∣∣, where D ⊂ D is a subset of

the whole training set. SNIP prunes the whole network in one round.

Iterative SNIP. The saliency score of Iterative SNIP3 (de Jorge et al., 2020b) remains the same as the
original SNIP. However, multiple rounds of pruning are performed.

GraSP. GraSP (Wang et al., 2020) defines SGraSP(m
j) = −

[
H(θ0 ⊙m;D)∂L(θ0⊙m;D)

∂θ0

]j
· θj0,

where H is the Hessian matrix. Additionally, GraSP is also a single round foresight pruning method.

Synflow. Synflow (Tanaka et al., 2020) uses SSynflow(m
j) =

∣∣∣∂ ∑
k f(1;|θ0|⊙m)k

∂|θj
0|

· |θj0|
∣∣∣ as saliency

score, where fk denotes the k-th output logit, 1 denotes an input full of 1s, and f(·; |θj0|) means
replacing all the parameters of the neural network by their absolute values. Similar to Iterative SNIP,
Synflow is also an iterative pruning method but in a data-agnostic manner.

4 REVIEW OF NEURAL TANGENT KERNEL

Recent works (Jacot et al., 2018; Lee et al., 2019a; Arora et al., 2019; Xiao et al., 2020) study
the training dynamics of large DNNs under gradient descent. Formally, let D = {(xi,yi)}ni=1 ⊂
Rn0 × Rk denote the training set and let X = {x : (x,y) ∈ D}, Y = {y : (x,y) ∈ D} denote
inputs and labels, respectively. Consider a neural network f(·;θ) parameterized by weights θ. Let
L(θ) =

∑
(x,y)∈(X ,Y) ℓ(f(x;θ),y) denote the empirical loss where ℓ is the loss function. Thus,

f(X ;θ) ∈ Rkn×1 is the concatenated vector of predictions for all training inputs. Under continuous
time gradient descent with learning rate η , the evolution of the parameters θt, where we emphasize
the dependence of θ on time t, and the training loss of the neural network L can be expressed (Lee
et al., 2019a) as

θ̇t = −η∇θtf(X ;θt)
T∇f(X ;θt)L (3)

L̇ = ∇f(X ;θt)L
T∇θtf(X ;θt)θ̇t = −η∇f(X ;θt)L

T Θ̂t(X ,X )∇f(X ;θt)L (4)
where we obtain the NTK at time t:

Θ̂t(X ,X ;θt) ≜ ∇θtf(X ;θt)∇θtf(X ;θt)
T ∈ Rkn×kn. (5)

It is proven that when the width of the neural network becomes sufficiently large (Jacot et al., 2018;
Arora et al., 2019), the fixed-weight-NTK converges to a deterministic matrix Θ(X ,X ), which
we term analytic NTK. The analytic NTK remains asymptotically constant throughout training, i.e.
Θt(X ,X ) ≈ Θ0(X ,X ), ∀t ≥ 0.

The condition number of the NTK is related to neural network optimization. The condition
number of the NTK is known to be important in neural network optimization. Specifically, let
the eigenvalue decomposition of the NTK at initialization be Θ0(X ,X ) = UTΛU where Λ =
diag(λ1, · · · , λkn) is the diagonal matrix containing all the eigenvalues of the NTK.

For large-width networks, the mean prediction of the neural network in the eigenbasis of NTK can
be approximately described as (UE [f(X )])i = (I − e−ηλit)(UY)i (Xiao et al., 2020). Therefore,
when using the largest possible learning rate η ∼ 2/λ1 (Lee et al., 2019a), the convergence rate of
the smallest eigenvalue is related to λ1/λkn, which is the condition number of the NTK. Empirically,
the condition number of the NTK has been successfully used to identify promising architectures in
the neural architecture search (NAS) field (Chen et al., 2021; Wang et al., 2022).

The entire spectrum of the NTK is a better measure. However, the smallest and the largest
eigenvalues only provide very limited information on the optimization property of the DNNs. In the
classical optimization theory, the convergence speed depends on all eigenvalues of the Hessians, as
different eigenvalues control the convergence of different eigen-modes. Similarly, for neural networks,
a few works (Kopitkov & Indelman, 2020; Su & Yang, 2019) have shown that the convergence speed
depends on eigenvalues other than the smallest eigenvalue. In this sense, compared to only considering
the condition number of the NTK, controlling the entire eigenspectrum may be a better way to ensure
the satisfactory optimization performance of DNNs.

3We do not consider FORCE in this work since we find empirically that FORCE is less stable than Iterative
SNIP. See Appendix F for a detailed comparison.
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5 OUR METHOD

5.1 ACCOUNT FOR THE EFFECTS OF THE ENTIRE EIGENSPECTRUM WITH TRACE NORM

As discussed in Section 4, the eigenspectrum of the NTK captures the training dynamics of large
DNNs, and thus we intend to use the NTK spectrum to guide foresight pruning. More specifically,
we would like to keep the spectrum of the pruned network close to that of the large network, so that
the pruned network may perform similarly to the large network.

As discussed in Section 3, the saliency-score-based method requires using a single metric to capture
the optimization performance. This single metric is often a scalar, and thus we want to generate a
scalar to capture the information of the whole spectrum. A very natural choice is to use the average
value of all eigenvalues. In fact, Pennington et al. (2017; 2018); Shu et al. (2021) indeed analyze
the optimization property of DNNs through the average eigenvalues of the NTK (or a related matrix
called input-output Jacobian) explicitly or implicitly. Additionally, using the average eigenvalues
have also a few good properties which make it more suitable than other metrics for pruning:

Computational efficiency. To begin with, the computational cost of computing all the eigenvalues
would be too expensive. On the contrary, trace norm can be efficiently computed, which we will
show in Section 5.2.

Potentially preserve the entire spectrum. As indicated in Section 3, the saliency score for each
weight measures the change of the metric (here it is the trace norm of the NTK) when removing
the weight. More precisely, removing weights with a smaller saliency score is less likely to induce
significant change to the eigenvalue distribution. Hence, using the NTK trace norm as the indicator is
beneficial in maintaining the entire spectrum.

5.2 APPROXIMATING THE TRACE NORM OF THE NTK

Nuclear norm as a proxy of the whole spectrum. The NTK is a symmetric matrix. Hence, the trace
of the NTK is equivalent to the squared Frobenius norm of parameter-output Jacobian, i.e.

∥Θ0∥∗ = ∥Θ0∥tr = ∥∇θ0
f(X ;θ0)∥2F . (6)

Finite difference approximation. Computing the Frobenius norm of the Jacobian matrix
∇θ0f(X ;θ0) ∈ Rkn×p is memory and computation heavy. More specifically, a naive solution
that constructs the Jacobian matrix explicitly for a batch of training data may require at least k
rounds of backward propagation, where k is as large as 1000 for ImageNet classification task. So
approximation is needed.

One possible way is to lower-bound it using loss gradient with respect to weights ∥∇θ0
L∥22. Such a

method has been studied in FORCE (de Jorge et al., 2020b) but found to be inferior to Iterative SNIP.

Alternatively, we use the finite difference expression 1
ϵE∆θ∼N (0,ϵI)

[
∥f(X ;θ0)− f(X ;θ0 +∆θ)∥22

]
to approximate the Jacobian norm. Please see Appendix O for the justification.

Approximating the training set with pruning set. We use the following finite approximation
expression to define a saliency score:

SNTK-SAP(m
j) =

∣∣∣∣∣∂E∆θ∼N (0,ϵI)
[
∥f(XD;θ0 ⊙ m)− f(XD; (θ0 +∆θ)⊙ m)∥22

]
∂mj

∣∣∣∣∣ (7)

where we use the inputs of the pruning dataset XD to approximate the whole training inputs X . Our
foresight pruning method will use the same framework shown in Section 3, which prunes the weights
with the least saliency scores defined in Equation (7). Nevertheless, a few more tricks are needed to
make this method practical, as discussed next.

5.3 NTK-SAP: MULTI-SAMPLING FORMULATION

The last subsection computes the saliency score using the fixed-weight-NTK. We think the spec-
trum of analytic NTK may serve as a performance indicator of a certain architecture. While a
single fixed-weight-NTK can be viewed as an approximation of the analytic NTK, the expectation
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of fixed-weight-NTKs (expecation over random draw of weight configurations) shall be a better
approximation. Further, to approximate the expectation, we sample a few independent realization of
weight configurations and compute the average of their fixed-weight-NTKs. This helps explore the
parameter space and better capture the expected behavior of the pruned neural networks.

Specifically, with R random weight configurations θ0,r
iid∼ P , we use the following stabilized version

of the saliency score:

SNTK-SAP(m
j) =

∣∣∣∣∣∂ 1
R

∑R
r=1 E∆θ∼N (0,ϵI)

[
∥f(XD;θ0,r ⊙ m)− f(XD; (θ0,r +∆θ)⊙ m)∥22

]
∂mj

∣∣∣∣∣ .
(8)

There is a major difference between the proposed saliency score and most existing foresight pruning
scores: our score is weight-agnostic, i.e., it is not defined by a specific random draw of weight
configuration. In other words, the score is mainly determined by the mask structure rather than
specific weights.4

New-input-new-weight (NINW) trick. It seems that using multiple weight configurations will cause
a large increase in the computational cost. Nevertheless, by utilizing the fact that the training subset
for pruning D = (xi,yi)

|D|
i=1 ⊂ D is usually fed into neural networks in multiple batches, we further

approximate Equation (8) with NINW trick as

SNTK-SAP(m
j) =

∣∣∣∣∣∣∂
1

|D|
∑|D|

i=1 E∆θ∼N (0,ϵI)
[
∥f(xi;θ0,i ⊙ m)− f(xi; (θ0,i +∆θ)⊙ m)∥22

]
∂mj

∣∣∣∣∣∣ .
(9)

Replacing pruning set with random input. Furthermore, we find that replacing the training subset
D with standard Gaussian noise Z ∼ N (0, I) can generate comparable performance, which makes
NTK-SAP purely data-agnostic. As for Gassuan perturbation, ideally, using multiple draws will
indeed give a more accurate approximation. However, we empirically find that a single draw of
Gaussian perturbation is good enough to generate satisfactory performance. Hence, by using one
random draw of ∆θ we have the final data-agnostic NTK-SAP with its saliency score

SNTK-SAP(m
j) =

∣∣∣∣∣∣∂
1

|D|
∑|D|

i=1

[
∥f(zi;θ0,i ⊙ m)− f(zi; (θ0,i +∆θi)⊙ m)∥22

]
∂mj

∣∣∣∣∣∣ (10)

where θ0,i
iid∼ P , ∆θi

iid∼ N (0, ϵI) and zi
iid∼ N (0, I).

In addition, to potentially avoid layer collapse, we also iteratively prune neural networks like Synflow
in T rounds.5 The major steps of the NTK-SAP algorithm are given in Algorithm 1.

Computational cost. We compare the computational cost of NTK-SAP with Iterative SNIP as they
are both iterative methods and use multi-batch inputs. Since the overhead of the reinitialization
process is negligible, NTK-SAP needs roughly double the computational cost of Iterative SNIP due
to two forward passes with the computational graph in the formula. However, one should note that
NTK-SAP is a data-agnostic method that can be computed beforehand, and the computation time can
be reduced with a smaller T ; thus, the computational overhead is reasonable. Effects of T , a detailed
comparison of pruning time, and FLOPs comparison can be found in Section 6.4, Appendix D.1, and
Appendix D.2, respectively.

6 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of our proposed method, NTK-SAP (red).
We compare with two baseline methods random pruning (gray) and magnitude pruning (magenta), as

4Please refer to Appendix M for a discussion on whether a good pruning solution should be weight-agnostic.
5Please refer to Appendix N for a discussion on why NTK-SAP could potentially avoid layer collapse.
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Algorithm 1 Neural Tagent Kernel Spectrum-Aware Pruning (NTK-SAP)

Require: Dense network f(·;θ⊙m), final density d, iteration steps T , batch size of noise input B, perturbation
hyperparameter ϵ

1: Initialize m = 1

2: for t in [1, · · · , T ] do
3: for i in [1, · · · , B] do
4: Reinitialize neural network with θ0,i

iid∼ P
5: Sample noise input zi

iid∼ N (0, I) and parameter perturbation ∆θi
iid∼ N (0, ϵI)

6: Evaluate saliency scores [S(m)]i
7: end for
8: Calculate S(m) =

∣∣∣∑B
i=1 [S(m)]i

∣∣∣
9: Compute (1− d

t
T ) percentile of S(m) as threshold τ

10: Update mask m←m⊙ (S(m) > τ)
11: end for
12: return Final mask m
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Figure 1: Performance of NTK-SAP against other foresight pruning methods. Results are averaged
over 3 random seeds, and the shaded areas denote the standard deviation. We highlight SNIP and
GraSP as they perform best among baselines on mild and extreme density ratios, respectively.

well as foresight pruning algorithms SNIP (blue) (Lee et al., 2018), Iterative SNIP (yellow) (de Jorge
et al., 2020b), GraSP (green) (Wang et al., 2020) and Synflow (cyan) (Tanaka et al., 2020) across
multiple architectures and datasets.

Target datasets, models, and sparsity ratios. We develop our code based on the original code of
Synflow (Tanaka et al., 2020). On smaller datasets, we consider ResNet-20 (He et al., 2016) on
CIFAR-10, VGG-16 (Simonyan & Zisserman, 2014) on CIFAR-100 (Krizhevsky et al., 2009) and
ResNet-18 on Tiny-ImageNet. For ImageNet (Deng et al., 2009) experiments, we consider ResNet-18
and ResNet-50. For the training protocols, we roughly follow the settings in Frankle et al. (2020b).
Details of training hyperparameters can be found in Appendix A. We divide the sparsity ratios into
three ranges: trivial sparsity ratios (36.00%, 59.04% and 73.80%), mild sparsity ratios (83.22%,
89.30% and 93.12%) and extreme sparsity ratios (95.60%, 97.17% and 98.20%).
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Implementation details. Following the original implementation, SNIP, GraSP, and Iterative SNIP
are run by setting BatchNorm layers as train mode while Synflow metric is evaluated under evaluation
mode. The number of training samples for pruning we use is ten times of the number of classes
as suggested by the original implementations of SNIP and GraSP. For iterative methods, including
Iterative SNIP and Synflow, we prune all the weights in 100 rounds in an exponential schedule
following Tanaka et al. (2020); Frankle et al. (2020b). Further, following Frankle et al. (2020b),
Kaiming normal initialization is used for all models. We prune networks using a batch size of 256 for
CIFAR-10/100 and Tiny-ImageNet datasets and a batch size of 128 for ImageNet experiments.

For NTK-SAP, we use the same number of Gaussian noise batches as in Iterative SNIP and prunes
neural network progressively in T = 100 rounds for CIFAR-100 and Tiny-ImageNet. Since the
pruning dataset for CIFAR-10 only contains 1 batch of the training sample, we alternatively sample
R = 5 independent initialization points and prune progressively in T = 20 rounds, keeping the
overall computational cost roughly the same. More details can be found in Appendix A.

6.1 RESULTS ON CIFAR AND TINY-IMAGENET

In Figure 1 we evaluate NTK-SAP using ResNet-20 on CIFAR-10, VGG-16 on CIFAR-100 and
ResNet-18 on Tiny-ImageNet. It can be observed that NTK-SAP is competitive for all sparsity ratios.

Trivial and mild sparsity ratios. For trivial sparsity ratios, all methods show good performance
except GraSP, magnitude, and random pruning. On ResNet-20, all methods are similar, while random
pruning and GraSP show slightly worse performance. On VGG-16 (ResNet-18), similar trend can
be observed while the performance gap is larger. NTK-SAP shows consistent good performance,
especially on ResNet-18 (TinyImageNet).

For mild sparsity ratios, NTK-SAP is the only method that performs well across all datasets and
models. On ResNet-20, SNIP and Iterative SNIP take the lead with NTK-SAP while suffering
from a performance drop starting at 93.12% sparsity. Magnitude pruning and GraSP have similar
performance to NTK-SAP after 89.30%. On VGG-16 and ResNet-18, NTK-SAP and SNIP remain
dominant, while NTK-SAP outperforms SNIP.

Extreme sparsity ratios. NTK-SAP’s superior performance can be seen at extreme sparsity ratios,
especially 98.20%. On the CIFAR-10 dataset, GraSP and magnitude pruning are competitive as in
matching sparsity ratios. On VGG-16, SNIP first dominates with NTK-SAP and then becomes much
inferior. At the sparsest level 98.20%, magnitude, Iterative SNIP, and GraSP show similar results,
about 1 percentage point lower than NTK-SAP.

6.2 RESULTS ON LARGER DATASET

We further evaluate the performance of NTK-SAP on more difficult tasks: we run experiments on
the ImageNet dataset using ResNet-18 and ResNet-50 with pruning ratios {89.26%, 95.60%}.6 We
compare NTK-SAP against Synflow, SNIP, Iterative SNIP, GraSP, Magnitude, and Random pruning.

The results are shown in Table 1. We find that SNIP, which performs reasonably well for smaller
datasets, is no longer competitive. For ResNet-50, NTK-SAP beats other pruning methods with
margins at least 0.5% and 1% for sparsity ratio 89.26% and 95.60%, respectively. For ResNet-18,
NTK-SAP slightly outperforms magnitude pruning under 89.26% sparsity, and GraSP follows. For
sparsity ratio 95.60 %, GraSP is better than magnitude pruning while NTK-SAP still takes the lead.

One should note the surprisingly good performance of magnitude pruning. We hypothesize that mag-
nitude pruning chooses an appropriate layer-wise sparsity ratio since Kaiming normal initialization
already gives weights different variances depending on the number of parameters of different layers.
Thus, layers with more parameters will be more likely pruned.

6.3 AN OVERALL COMPARISON WITH SNIP AND GRASP

In this section, we explicitly compare NTK-SAP with two competitive baseline methods in detail, i.e.,
SNIP and GraSP, since there is no state-of-the-art foresight pruning algorithms (Frankle et al., 2020b).

6We choose these sparsity ratios as they include matching and extreme sparsity ratios and close to {90%,
95%} as used by Iterative SNIP (de Jorge et al., 2020b) and ProsPr (Alizadeh et al., 2022).
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Table 1: Test performance of foresight pruning meth-
ods on the ImageNet dataset. Best results are in bold;
second-best results are underlined.

Network ResNet-18 ResNet-50
Sparsity percentage 89.26% 95.60% 89.26% 95.60%

(Dense Baseline) 69.98 76.20

Synflow 57.30 45.65 66.81 58.88
SNIP 57.41 45.04 60.98 40.69
Iterative SNIP 52.97 37.44 52.53 36.82
GraSP 58.16 49.17 67.74 59.73
Magnitude 58.75 48.50 66.80 43.79
Random 54.48 42.80 65.30 56.53

Our method 58.87 49.43 68.28 60.79
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Figure 2: Eigenvalue distribution of the
fixed-weight-NTK on ResNet-20 (CIFAR-
10) at sparsity ratio 73.80%.

We highlight both baseline algorithms in Figure 1. Specifically, SNIP is considered competitive
as it generally performs well, especially for trivial and mild sparsity ratios. However, SNIP shows
poor performance for ImageNet. On the contrary, GraSP indeed shows promising performance on
the ImageNet dataset and extreme sparsity ratios on smaller datasets, while it suffers from poor
performance on trivial and mild sparsity ratios of smaller datasets. In this sense, NTK-SAP is the
first foresight pruning algorithm that works consistently well on all datasets.

6.4 MORE ABLATION STUDIES

We finally evaluate the performance of NTK-SAP when varying the number of iterative steps (T ),
which can give a better understanding of how iterative pruning helps NTK-SAP achieve better
performance at higher sparsity ratios. We repeat experiments of Section 6.1 with varying T . Results
show that increasing T consistently boosts the performance of NTK-SAP. Moreover, such an increase
saturates when T is roughly 1/5 of the adopted value in Section 6.1. Hence, the computational cost
of NTK-SAP can be further decreased if we use a smaller value of T . Please refer to Appendix C
for more details. We also conduct an ablation study on the effects of perturbation hyperparameter ϵ.
Results show that NTK-SAP is robust to the choices of ϵ. See Appendix I for more details.

6.5 THE EIGENSPECTRUM OF THE FIXED-WEIGHT-NTK AFTER PRUNING

To visualize the effectiveness of our proposed NTK-SAP method, we show eigenspectrum of pruned
subnetwork on CIFAR-10 dataset with ResNet-20 at sparsity ratios 73.80%. Figure 2 shows that
NTK-SAP successfully maintain the eigenspectrum of the fixed-weight-NTK compared to other
methods. See Appendix G.1 for the eigenspectrum of the fixed-weight-NTK for other sparsity ratios.

7 CONCLUSION

Pruning at initialization is appealing compared to pruning-after-training algorithms since it circum-
vents the need for training to identify the masks. However, most of the existing foresight pruning
methods do not capture the training dynamics after pruning. We argue that such an issue can be miti-
gated by using NTK theory. Hence, we propose NTK-SAP, which iteratively prunes neural networks
without any data. Additionally, NTK-SAP pays attention to multiple random draws of initialization
points. Empirically, our method is competitive in all datasets and models studied in this work. We
consider that our algorithm can encourage more works to apply theoretical findings to empirical
applications. Additionally, our novel way of combining multiple initialization configurations may
further encourage future work to investigate the similarity of pruning and NAS just like Liu et al.
(2018); Abdelfattah et al. (2021).

The limitations of the work include the relatively heavy computation nature of iterative pruning
methods compared to single-shot pruning methods. We also want to emphasize the great significance
of pruning methods in reducing the energy cost of training and applying deep learning models.
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OVERVIEW OF THE APPENDIX

The Appendix is organized as follows:

• Appendix A introduces the general experimental setup.
• Appendix B provides intuitions on our multi-sampling formulation.
• Appendix C shows an ablation study on the number of iterative steps.
• Appendix D provides a detailed comparison of computational costs of different foresight

pruning methods.
• Appendix E provides a further comparison between foresight pruning methods and the early

pruning baseline.
• Appendix F provides a comparison of SNIP variants.
• Appendix G shows eigenspectrum of pruned neural networks.
• Appendix H provides full plots of the main experiments.
• Appendix I provides ablation study on the perturbation hyper-parameter ϵ.
• Appendix J provides an overview of foresight pruning methods considered in the paper.
• Appendix K provides a comparison between neural tangent transfer and NTK-SAP.
• Appendix L provides a comparison between ProsPr and NTK-SAP.
• Appendix M includes a discussion on the weight-agnostic property of NTK-SAP.
• Appendix N includes a discussion on why NTK-SAP can potentially avoid layer collapse.
• Appendix O justifies the finite difference formulation used in Section 5.2.

A EXPERIMENTAL SETUP

Our code is based on the original code of Synflow.7 The original code does not contain license
information. But we obtained approval via email. The authors grant free use for academic purposes.

A.1 ARCHITECTURE DETAILS

The networks architectures are as follows:

• For the ResNet-20 model on CIFAR-20 and VGG-16 (with BatchNorm) model on CIFAR-
100, we use the default ones used in Synflow (Tanaka et al., 2020) experiments. Lottery
ticket experiments (Frankle & Carbin, 2018; Renda et al., 2020; Frankle et al., 2020a) use
the same architectures.

• For ResNet-18 and ResNet-50, we use the ImageNet version of ResNet models.8 We use
the torchvision implementations.

A.2 DATASETS

We use CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet. They do not contain personally
identifiable information or offensive content.

• CIFAR-10 and CIFAR-100 datasets are augmented by per-channel normalization, applying
random cropping (32 × 32, padding 4), and horizontal flip.

• Tiny-ImageNet is augmented by per-channel normalization, choosing a patch with a random
aspect ratio between 0.8 and 1.25 and a random scale between 0.1 and 1.0, cropping to 64 ×
64, and random horizontal flip.

• ImageNet dataset is augmented by per-channel normalization, applying random resized
cropping to 224 × 224, and random horizontal flip.

7https://github.com/ganguli-lab/Synaptic-Flow.
8https://github.com/weiaicunzai/pytorch-cifar100
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A.3 TRAINING DETAILS

See Table 2 for training hyper-parameters. These hyper-parameters are modified from the ones used
in Synflow (Tanaka et al., 2020) and Frankle et al. (2020b). In the following table, we use Nesterov
optimizer to denote SGD optimizer with Nesterov momentum.

Table 2: Training hyper-parameters used in this work.

Network Dataset Epochs Batch Optimizer Momentum LR LR drop Weight decay Initilization

ResNet-20 CIFAR-10 160 128 SGD 0.9 0.1 10x at epochs 80, 120 1e-4 Kaiming Normal
VGG-16 CIFAR-100 160 128 Nesterov 0.9 0.1 10x at epochs 60, 120 5e-4 Kaiming Normal
ResNet-18 Tiny-ImageNet 200 256 SGD 0.9 0.2 10x at epochs 100, 150 1e-4 Kaiming Normal
ResNet-18 ImageNet 90 512 SGD 0.9 0.1 10x at epochs 30, 60, 80 1e-4 Kaiming Normal
ResNet-50 ImageNet 90 448 SGD 0.9 0.1 10x at epochs 30, 60, 80 1e-4 Kaiming Normal

A.4 PRUNING DETAILS

Sparsity ratios The x-axis for Figure 1 is in the logarithmic scale of density (1-sparsity). More
specifically, we obtain each sparsity ratio by removing 20% of the remaining parameters twice. For
example, the first sparsity ratio is 1-0.8*0.8=0.36. We choose these sparsity ratios to evaluate mainly
following the conventional practice used in Frankle et al. (2020b). The intuition is that for the first
few rounds, the network is over-parameterized and a large portion of the weights can be removed.

Choosing pruning samples. Different from GraSP implementation, which uses exactly 10 ex-
amples of each class, we follow the implementation of SNIP, Iterative SNIP, and Synflow to load
multiple batches so that each class roughly has ten samples.

Pruning batch size. To compute the saliency scores, we use a pruning batch size of 128 for
ImageNet experiments and use 256 otherwise.

BatchNorm layers. As pointed out by the original Synflow paper, BatchNorm layers are crucial for
applying different pruning methods correctly. SNIP, Iterative SNIP, and GraSP prune networks under
train mode, while Synflow uses evaluation mode. As for NTK-SAP, we compute the saliency score in
a modified evaluation mode. More specifically, we first compute batch statistics without constructing
a computational graph, and then use the same batch statistics to get an approximation of the NTK
nuclear norm under evaluation mode.

Pruning schedule for iterative methods. Following Synflow, all iterative methods, including
Synflow, Iterative SNIP, and NTK-SAP, use an exponential pruning schedule. See Algorithm 1 for
how to compute the pruning schedule.

More details about NTK-SAP. For each round of pruning, we use 40 batches (compared to 79
batches for Iterative SNIP) of noise inputs with a batch size of 128 for ResNet-50 on the ImageNet
dataset. For other settings, the number of Gaussian inputs for pruning we use is ten times the number
of classes.

As for the number of pruning rounds T , we use 25 for all ImageNet experiments. And we use T = 20
rounds for ResNet-20 on CIFAR-10 with 5 batches each round (as the batch size is larger than the
number of classes 10). For CIFAR-100 and Tiny-ImageNet datasets, we use T = 100 rounds.

For ϵ, we use a value of ϵ = 10−6 for ResNet-18 on ImageNet and use a value of ϵ = 10−4 otherwise.

A.5 HARDWARE

All of our experiments were run on NVIDIA V100s. Experiments on CIFAR-10/100 and Tiny-
ImageNet datasets were run on a single GPU at a time. We use 2 and 4 GPUs for ResNet-18 and
ResNet-50 in ImageNet experiments, respectively.
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B INTUITION OF MULTI-SAMPLING FORMULATION

B.1 UNDERSTANDING MULTI-SAMPLING FORMULATION THROUGH THE ANALYTIC NTK

In this section, we elaborate on our intuition of performing multi-sampling in NTK-SAP.

We still start our discussion with Equation 7. We note that Equation 7 alone is not enough to
guarantee good performance, as there is actually a gap in applying NTK theory directly to pruning:
in a real-world application, the fixed-weight-NTK may differ drastically from the analytic NTK.

Standard expression of the analytic NTK. We note that directly using the fixed-weight-NTK to
approximate the analytic NTK can be written in the following mathematical formulation:

Θ(X ,X ) = lim
nl→∞,∀l

Θ̂{nl}(X ,X ;θ) (11)

where Θ is the analytic NTK, and Θ̂{nl}(·, ·;θ) is the fixed-weight-NTK for width-nl neural networks
with weight θ. A natural way to approximate the analytic NTK is to remove the “lim” operation and
just use Θ̂{nl}(X ,X ;θ) for a given set of large enough width {nl}.

Two differences of the analytic NTK and the fixed-weight NTK. We point out that besides the
choice of widths, the choice of weights θ also affects Θ̂{nl}(X ,X ;θ). In other words, Θ(X ,X )

is both width-agnostic and weight-agnostic, while Θ̂{nl}(X ,X ;θ) is width-dependent and weight-
dependent. There are two differences between the analytic NTK and the fixed-weight-NTK, but
the expression 11 only shows the difference in width and ignores the difference on weights. The
underlying reason is that the effects of random weights are offset in an infinite-width network, and
thus there is no need to eliminate the randomness by adding an operator such as expectation.

Another expression of the analytic NTK. Although not necessary, it is legitimate to add an
“expectation” operator in the expression. We rewrite the analytic NTK as the expectation (over
random weights) of the limit (over width) of fixed-weight-NTK, expressed mathematically as follows:

Θ(X ,X ) = Eθ

[
lim

nl→∞,∀l
Θ̂{nl}(X ,X ;θ)

]
. (12)

This formula is correct since Eθ

[
lim

nl→∞,∀l
Θ̂{nl}(X ,X ;θ)

]
= Eθ [Θ(X ,X )] = Θ(X ,X ).

Another approximation of the analytic NTK. Although the expectation operator is redundant in
the Equation 12, it makes a difference when we consider the finite-width approximation. A natural
approximation coming out of Equation 12 is the following: first, remove the “lim” operation and use
a fixed set of large enough width {nl}; second, sample multiple independent weight configurations
and use the average as an approximation of the “expectation” Eθ

[
Θ̂{nl}(X ,X ;θ)

]
for a given set of

large enough width {nl}. Specifically, with R number of independent initialization points, we obtain
the stabilized version of the saliency criterion Equation 8.

B.2 UNDERSTANDING MULTI-SAMPLING FORMULATION THROUGH THE FIXED-WEIGHT-NTK
EVOLUTION

In the previous section, we analyzed why multi-sampling gives a better estimate of the analytic NTK
than a single draw of fixed-weight-NTK. This analysis leads to the design of multi-sampling method.
However, it may seem unclear why we want to use the analytic NTK as the performance indicator
of a finite-width neural network. In this section, we provide an explanation of the multi-sampling
method from another perspective.

When the width goes to infinity, the NTK is almost deterministic and remains asymptotically constant
throughout training.

Under such circumstances, the analytic NTK is a good measure of the optimization of the large
enough network since it measures the expected behavior over random weight configurations and
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training trajectory. Let θt(θ0; t) denotes the parameter of the network at training step t with initial
random weight configuration θ0, then

Θ(X ,X ) = Eθ0,t

[
lim

nl→∞,∀l
Θ̂{nl}(X ,X ;θt(θ0; t))

]
. (13)

In the finite-width (real-world) setting, the fixed-weight-NTK no longer stays constant and is a
function of time. Though we can no longer describe the whole training process with a single
deterministic and constant kernel, we can still describe the process with a sequence of NTKs.

For simplicity, we consider a discrete gradient descent update rule. We can char-
acterize the training dynamics of finite-width neural networks with the sequence
{Θ̂0(X ,X ;θ0), Θ̂1(X ,X ;θ1), · · · , Θ̂E(X ,X ;θE)}, which contains all the fixed-weight-NTKs at
each time step.

In this case, we hope all the elements in the sequence are well-conditioned so the neural network
performs well during the training phase. As a result, we need to quantify the influence of removing a
mask on the nuclear norm of these fixed-weight-NTKs.

One possible metric is 1
E+1

∑E
t=0 ∥Θ̂t(X ,X ;θt)∥∗, which is the average of the nuclear norm of the

fixed-weight-NTKs computed on the parameter sequence {θ0,θ1, · · · ,θE}.

We suspect that the parameter space is well explored during the training.The elements in the pa-
rameter sequence {θ0,θ1, · · · ,θE} may be well-spread, and thus 1

E+1

∑E
t=0 ∥Θ̂t(X ,X ;θt)∥∗ can

be viewed as an approximation of Eθ

[
∥Θ̂(X ,X ;θ)∥∗

]
. As another way to approximate this ex-

pectation, we can approximate Eθ

[
∥Θ̂(X ,X ;θ)∥∗

]
by multiple random weight configurations as∑R

r=1 ∥Θ̂0,r(X ,X ;θ0,r)∥∗, which is the saliency criterion Equation 8.

As a comparison, many existing works compute the fixed-weight-NTK with a single random weight
configuration at initialization and are hence not a very good measure of the optimization of the
network with practical size. In our work, we compute the expected fixed-weight-NTK and we believe
such an expected version of the fixed-weight-NTK better captures the expected behavior of the
subnetworks over random weight configurations and training trajectory. Hence, we aim to find a
subnetwork with a well-conditioned expected fixed-weight-NTK.

To make the expected fixed-weight-NTK well-conditioned, we choose to align it to the fixed-weight-
NTK of the dense network at initialization. Such a choice is justified for the following two reasons:

• The eigenspectrum of the dense fixed-weight-NTK is a good candidate. We believe that
the good performance of the dense network implies that the eigenspectrum of the dense
network at initialization is well-conditioned (See Section 6.5 and Appendix G.1 for the
eigenspectrum of the dense network.).

• The eigenspectrum of the dense fixed-weight-NTK is a practical choice. For foresight
pruning, we can only access the fixed-weight-NTK at initialization. Also, the foresight
pruning framework mentioned in Section 3 is a general framework that preserves a scalar
indicator of the dense network. Hence, due to the intrinsic nature of the framework, we
can only try to align the eigenspectrum of the sparse network to the dense counterpart at
initialization, rather than some given well-conditioned spectrum.

Indeed, for practical networks, the eigenspectrum of the dense network may be changing during the
training procedure. Hence, our method can only approximately align the training behavior to the
dense network at the early training stage. For the later epochs, the expected well-conditioned property
of the subnetwork ensures that the determined subnetworks have a better optimization performance
compared to other foresight pruning methods.

C ABLATION STUDIES ON THE NUMBER OF ITERATIVE STEPS

We show experiment results in Section 6.4 here. Figure 3 shows that for smaller datasets, we can use
a smaller number of iterations T for NTK-SAP without seeing a significant performance drop.
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(a) ResNet-20 on CIFAR-10 dataset.
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(b) VGG-16 on CIFAR-100 dataset.
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(c) ResNet-18 on Tiny-ImageNet dataset.

Figure 3: Evaluate the effect of number of iterations (T ) on performance of NTK-SAP on CIFAR-10
(ResNet-20), CIFAR-100 (VGG-16), and Tiny-ImageNet (ResNet-18).

D DETAILED COMPUTATIONAL COST

D.1 DETAILED COMPUTATIONAL TIME COMPARISON

Table 3: Pruning time of considered methods compared to time for 1 epoch of training.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet

Model ResNet-20 VGG-16 ResNet-18 ResNet-18 ResNet-50

Training time of 1 epoch 9.6 s 11 s 24 s 15 min 42 s 18 min

SNIP 1 s 1 s 1 s 13 s 34 s
GraSP 1 s 1 s 3 s 50 s 5 min 32 s
Synflow 12 s 34 s 1 min 2 s 6 min 34 s 5 min 39 s
Iterative SNIP 24 s 46 s 1 min 18 s 16 min 42 s 23 min 17 s
NTK-SAP 17 s 1 min 14 s 2 min 14 s 17 min 53 s 22 min 49 s
NTK-SAP-S 3 s 14 s 31 s - -

We include a detailed comparison of the pruning time of considered methods along with the time for
1 epoch of model training in Table 3. We are interested in comparing the pruning time of NTK-SAP
with the training time of 1 epoch since it is empirically shown by de Jorge et al. (2020b) that most
foresight pruning methods are not worse than magnitude pruning after 1 round of training. We also
repeat such experiments in Appendix E.
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For ImageNet experiments, the pruning time of NTK-SAP is similar to the time for 1-2 epochs of
model training. As for smaller datasets, Appendix C shows that we can use a smaller number of
pruning rounds T . Thus we instead compare the rest of the methods to NTK-SAP with a smaller T
for smaller datasets. We name such a modified version NTK-SAP-S. Specifically, we use T = 4
for CIFAR-10 experiment and use T = 20 for CIFAR-100 and Tiny-ImageNet. We can see that
NTK-SAP-S is able to finish pruning in 1-2 epochs of training time. Thus, we believe that the
computational cost of NTK-SAP is reasonable.

D.2 DETAILED FLOPS COMPARISON

In this section, we compare different foresight pruning methods in terms of FLOPs. We use the
default FLOPs counter in the Synflow codebase. We approximate backward FLOPs twice as the
inference/forward FLOPs. Pruning FLOPs are calculated with a simplification that the neural network
is dense when computing the gradients.

Pruning cost. Comparison of pruning cost for different foresight pruning methods are present
in Table 4. Synflow has the lowest pruning cost since its saliency score is computed with input
containing all 1s. NTK-SAP uses roughly twice the pruning cost compared to Iterative SNIP, making
it the method which requires more costs compared to other foresight pruning methods. However, we
want to emphasize that the pruning cost of NTK-SAP can be reduced by using smaller T as shown in
Section 6.4 and Section C.

Inference cost. We further compare the inference cost of subnetworks found by different foresight
pruning methods. Results are present in Table 5, 6 and 7.

Total pruning and training cost. Finally, we compare the total pruning and training FLOPs of
considered foresight pruning methods in Table 8, 9 and 10. As discussed in Section 6.4, NTK-SAP
generally needs more total computational costs. However, we believe that the additional computational
cost is reasonable, especially considering that NTK-SAP is a data-agnostic method and can be easily
applied to different datasets once the mask is found. Furthermore, we again want to emphasize the
possibility of decreasing the computational cost of NTK-SAP by reducing T .

E EARLY PRUNING BASELINE

We repeat experiments from FORCE (de Jorge et al., 2020b) where we compare mentioned foresight
pruning methods against early pruning. Precisely, we train the dense neural network for 1 epoch and
then prune the trained neural network using magnitude pruning. Then the weights are rewound to their
initial values as in the LTH work. We term such baseline as Mag-1epoch. Figure 4 illustrates that 1
epoch of training slightly improves the performance of magnitude pruning. However, NTK-SAP still
outperforms such an early pruning method.

F SNIP VARIANTS

In this section, we investigate variants of SNIP, including SNIP, Iterative SNIP, and FORCE.

Effects of different sparsity schedules. We first investigate the effects of the sparsity schedule
used in Iterative SNIP. Specifically, we compare Iterative SNIP (Exp), which is used in the main
paper, with Iterative SNIP (Linear), where we use a linear sparsity schedule. As is shown in Figure 5,
we find that a linear schedule slightly improves the performance of Iterative SNIP on smaller datasets.
However, Table 11 shows that the linear schedule does not necessarily improve the performance of
Iterative SNIP on larger datasets.

The performance gap between Iterative SNIP implemented in this work and what is reported in
(de Jorge et al., 2020b) may be due to the different initialization methods and the number of batches
used for pruning. Additionally, de Jorge et al. (2020b) only considers relatively large neural networks,
including VGG-19 and ResNet-50. However, note that it is also empirically shown by Frankle et al.
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Table 4: Pruning FLOPs comparison. Results with the largest FLOPs are in blue and results with the
smallest FLOPs are in bold.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

Model ResNet-20 VGG-16 ResNet-18

SNIP 2.48× 1011 1.88× 1012 8.94× 1011

GraSP 4.95× 1011 3.77× 1012 1.79× 1012

Synflow 1.24× 1010 9.42× 1010 4.47× 1010

Iterative SNIP 2.48× 1013 1.88× 1014 8.94× 1013

NTK-SAP 4.95× 1013 3.77× 1014 1.79× 1014

NTK-SAP (small T ) 9.91× 1012 7.54× 1013 3.58× 1013

Table 5: Inference FLOPs (×106) comparison on CIFAR-10(ResNet-20). Results with the largest
FLOPs are in blue and results with the smallest FLOPs are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

SNIP 31.90 19.40 12.30 7.37 3.77
GraSP 24.20 13.50 8.65 4.95 3.20
Synflow 33.20 21.60 12.20 5.73 2.67
Iterative SNIP 31.30 16.70 7.80 3.46 2.10
NTK-SAP 31.30 18.20 10.10 5.30 2.83

Table 6: Inference FLOPs (×107) comparison on CIFAR-100(VGG-16). Results with the largest
FLOPs are in blue and results with the smallest FLOPs are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

SNIP 25.50 17.10 11.80 8.19 5.34
GraSP 18.30 10.30 6.15 3.75 2.48
Synflow 25.80 17.60 11.50 6.95 3.71
Iterative SNIP 25.20 15.80 9.67 5.51 2.97
NTK-SAP 26.10 17.50 11.60 7.54 4.58

Table 7: Inference FLOPs (×107) comparison on Tiny-ImageNet(ResNet-18). Results with the
largest FLOPs are in blue and results with the smallest FLOPs are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

SNIP 12.30 8.62 6.13 4.14 2.51
GraSP 8.14 5.29 3.59 2.45 1.65
Synflow 12.80 9.49 6.77 4.31 2.36
Iterative SNIP 12.20 7.91 4.40 2.00 0.80
NTK-SAP 12.70 9.47 6.77 4.53 2.73
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Table 8: Total pruning + training FLOPs (×1014) comparison on CIFAR-10(ResNet-20). Results
with the largest FLOPs are in blue and results with the smallest FLOPs are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

SNIP 7.65 4.67 2.95 1.77 0.91
GraSP 5.81 3.24 2.08 1.19 0.77
Synflow 7.98 5.19 2.93 1.38 0.64
Iterative SNIP 7.75 4.25 2.12 1.08 0.75
NTK-SAP 8.01 4.86 2.91 1.77 1.17

Table 9: Total pruning + training FLOPs (×1015) comparison on CIFAR-100(VGG-16). Results with
the largest FLOPs are in blue and results with the smallest FLOPs are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

SNIP 6.13 4.09 2.83 1.97 1.28
GraSP 4.39 2.47 1.48 0.90 0.60
Synflow 6.19 4.23 2.76 1.67 0.89
Iterative SNIP 6.24 3.99 2.51 1.51 0.90
NTK-SAP 6.65 4.58 3.17 2.19 1.48

Table 10: Total pruning + training FLOPs (×1014) comparison on Tiny-ImageNet(ResNet-18).
Results with the largest FLOPs are in blue and results with the smallest FLOPs are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

SNIP 73.70 51.70 36.80 24.80 15.10
GraSP 48.80 31.80 21.50 14.70 9.91
Synflow 76.70 57.00 40.60 25.90 14.10
Iterative SNIP 73.90 48.40 27.30 12.90 5.71
NTK-SAP 78.20 58.60 42.40 29.00 18.10

Table 11: Comparison of SNIP variants on ImageNet dataset. Best results are in bold.

Network ResNet-18 ResNet-50
Sparsity percentage 89.26% 95.60% 89.26% 95.60%

(Dense Baseline) 69.98 76.20

SNIP Lee et al. (2018) 57.41 45.04 60.98 40.69
Iterative SNIP (Exp) de Jorge et al. (2020b) 52.97 37.44 52.53 36.82
Iterative SNIP (Linear) 50.29 40.98 56.54 30.55

(2020b) and Tanaka et al. (2020)9 that Iterative SNIP does not necessarily improve the performance
of SNIP.

Unstable performance of FORCE. In addition, FORCE (de Jorge et al., 2020b), which allows
pruned masks to resurrect in the process of iterative pruning, is also considered. Results are also
presented in Figure 5. We observe a significant performance drop of FORCE on VGG-16 (CIFAR-
100). As a result, we do not report FORCE in the main paper.

9See the author feedback file of the Synflow paper.
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ResNet-20 (CIFAR-10)
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Figure 4: Comparison of foresight pruning methods against magnitude pruning after 1 epoch of
training. Results are averaged over 3 random seeds and the shaded areas denote the standard deviation
of the runs.
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ResNet-20 (CIFAR-10)
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Figure 5: Comparison of SNIP variants. Results are averaged over 3 random seeds and the shaded
areas denote the standard deviation of the runs.
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(a) sparsity = 36.00%
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(b) sparsity = 73.80%
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(c) sparsity = 89.30%
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(d) sparsity = 95.60%
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(e) sparsity = 98.20%

Figure 6: Eigenvalue distribution of the fixed-weight-NTK on ResNet-20 (CIFAR-10) at different
sparsity ratios. We put the index of each eigenvalue on the x-axis, and the corresponding eigenvalue
magnitude is presented on the y-axis.

G EIGENSPECTRUM OF PRUNED NEURAL NETWORKS

G.1 EIGENSPECTRUM AT INITIALIZATION

To visualize the effectiveness of our proposed NTK-SAP method, we conduct experiments on CIFAR-
10 dataset with ResNet-20 at sparsity ratios {36.00%, 73.80%, 89.30%, 95.60%, 98.20%}.10 We
compute the fixed-weight-NTK with a batch size of 100. Thus the fixed-weight-NTK is of size
1000× 1000.

10Other datasets have a much larger value of k, and thus the fixed-weight-NTK is much more difficult to
compute.
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(a) Epoch 0
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(b) Epoch 40
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(c) Epoch 80
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(d) Epoch 120

Figure 7: Eigenvalue distribution of the fixed-weight-NTK on ResNet-20 (CIFAR-10) with different
training epochs at sparsity ratio 98.20%. We put the index of each eigenvalue on the x-axis, and the
corresponding eigenvalue magnitude is presented on the y-axis.

Figure 6 shows eigenvalue distributions of neural networks pruned by mentioned foresight pruning
methods. It illustrates the effectiveness of NTK-SAP in keeping the spectrum close to the dense
network.

As is shown in Figure 7, we see that the spectrum of the dense network is changing throughout the
training. On the contrary, the fixed-weight-NTK eigenspectrum of all the pruned networks shows
similar behavior and deviates from the dense one. However, we show that, compared to other foresight
pruning methods, the eigenspectrum of NTK-SAP aligned with the dense counterpart for the first few
epochs (As it is shown that the majority of the eigenvalues of NTK-SAP are the closest to the dense
network for most of the time.). Secondly, the fixed-weight-NTK of NTK-SAP is well-conditioned
throughout the entire training process, which aligns with our motivation.

G.2 EIGENSPECTRUM DURING TRAINING

We also plot eigenvalue distributions of neural networks pruned by these foresight pruning methods
during training. Since the test performance of different methods does not vary too much on the
CIFAR-10 dataset for a wide range of sparsity ratios, we only focus on the most extreme sparsity, i.e,
98.20%. We report relative eigenvalues by dividing each eigenvalue by the average of 10% smallest
eigenvalues. Results are presented in Figure 8.

We observe that the best three methods on the CIFAR-10 dataset, i.e, NTK-SAP, GraSP, and Mag-
nitude, have relatively low condition numbers. Furthermore, the best two methods, i.e., GraSP and
NTK-SAP, have almost stable/unchanging relative eigenvalue distribution during training. That could
possibly explain why GraSP and NTK-SAP perform well at this sparsity ratio.
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(a) Iterative SNIP
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(b) GraSP
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(c) Magnitude
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(d) SNIP
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(e) Synflow
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(f) NTK-SAP (Ours)

Figure 8: Relative eigenvalue distribution of the fixed-weight-NTK during training on ResNet-
20 (CIFAR-10) at sparsity 98.20%. We put the index of each eigenvalue on the x-axis, and the
corresponding relative eigenvalue magnitude is presented on the y-axis.
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Figure 9: Train accuracy of NTK-SAP against other foresight pruning methods. Results are averaged
over 3 random seeds and the shaded areas denote the standard deviation of the runs.

36
.00

%

59
.04

%

73
.80

%

83
.22

%

89
.30

%

93
.12

%

95
.60

%

97
.17

%

98
.20

%

Sparsity (%)

30

35

40

45

50

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet-18 (Tiny-ImageNet)

36
.00

%

59
.04

%

73
.80

%

83
.22

%

89
.30

%

93
.12

%

95
.60

%

97
.17

%

98
.20

%

Sparsity (%)

60

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet-20 (CIFAR-10)

36
.00

%

59
.04

%

73
.80

%

83
.22

%

89
.30

%

93
.12

%

95
.60

%

97
.17

%

98
.20

%

Sparsity (%)

60

62

64

66

68

70

72

74

Te
st

 A
cc

ur
ac

y 
(%

)

VGG-16 (CIFAR-100)

SNIP
GraSP
Iterative SNIP
Synflow
Magnitude
Random
NTK-SAP (Ours)

Figure 10: Test accuracy of NTK-SAP against other foresight pruning methods. Results are averaged
over 3 random seeds and the shaded areas denote the standard deviation of the runs.
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Table 12: Ablation study of perturbation hyper-parameter ϵ on CIFAR-10 (ResNet-20). Best results
are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

ϵ = 1.0× 10−4† 91.36 ± 0.41 90.04 ± 0.23 87.86 ± 0.13 83.84 ± 0.28 77.66 ± 0.50
ϵ = 2.5× 10−5 91.34 ± 0.11 90.30 ± 0.17 87.94 ± 0.20 83.82 ± 0.24 77.33 ± 0.10
ϵ = 1.0× 10−5 91.45 ± 0.13 90.26 ± 0.06 87.64 ± 0.18 83.92 ± 0.44 77.53 ± 0.34
ϵ = 1.0× 10−6 91.41 ± 0.03 90.44 ± 0.33 88.00 ± 0.36 83.66 ± 0.23 76.90 ± 0.44

† Used in the experiments of the main body.

Table 13: Ablation study of perturbation hyper-parameter ϵ on CIFAR-100 (VGG-16). Best results
are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

ϵ = 1.0× 10−4† 74.10 ± 0.37 74.12 ± 0.19 73.28 ± 0.32 71.85 ± 0.41 69.27 ± 0.39
ϵ = 2.5× 10−5 74.25 ± 0.16 74.09 ± 0.20 73.20 ± 0.24 71.49 ± 0.08 68.97 ± 0.16
ϵ = 1.0× 10−5 74.31 ± 0.41 74.08 ± 0.20 73.18 ± 0.39 71.68 ± 0.25 69.24 ± 0.21
ϵ = 1.0× 10−6 74.27 ± 0.22 73.90 ± 0.25 73.37 ± 0.37 71.49 ± 0.13 69.26 ± 0.48

† Used in the experiments of the main body.

Table 14: Ablation study of perturbation hyper-parameter ϵ on Tiny-ImageNet (ResNet-18). Best
results are in bold.

Sparsity 36.00% 73.80% 89.30% 95.60% 98.20%

ϵ = 1.0× 10−4† 51.89 ± 0.38 52.69 ± 0.14 51.90 ± 0.12 49.29 ± 0.15 43.92 ± 0.39
ϵ = 2.5× 10−5 52.10 ± 0.51 52.18 ± 0.16 51.95 ± 0.26 49.48 ± 0.38 43.63 ± 0.19
ϵ = 1.0× 10−5 51.86 ± 0.16 51.97 ± 0.46 52.00 ± 0.30 48.83 ± 0.09 43.36 ± 0.53
ϵ = 1.0× 10−6 51.94 ± 0.45 52.31 ± 0.19 51.32 ± 0.20 49.15 ± 0.38 42.94 ± 0.22

† Used in the experiments of the main body.

H FULL PLOTS OF THE MAIN EXPERIMENTS

We further include the complete plots of train/test accuracy of the main experiments reported in
Section 6.1. Results are shown in Figure 9 and Figure 10. NTK-SAP provides higher training
accuracy than other foresight pruning methods, showing its capability to identify subnetworks that
are easier to train.

Generally, the test performance of all foresight pruning methods degrades with more sparsity induced.
And the speed of performance degradation accelerates as the sparsity ratio increases. Additionally,
for VGG-16 (CIFAR-100) and ResNet-18 (Tiny-ImageNet), it can be clearly seen that the test perfor-
mance of NTK-SAP first increases and then decreases, which shows the generalization improvements
brought by pruning. However, it is not observed in ResNet-20 (CIFAR-10).

I ABLATION STUDY ON PERTURBATION HYPER-PARAMETER

In this section, we conduct an ablation study on the effects of choosing different values of perturbation
hyper-parameter ϵ. We choose ϵ from {1.0 × 10−4, 2.5 × 10−5, 1.0 × 10−5, 1.0 × 10−6}, where
1.0 × 10−4 is the value we used in the main body. Results on CIFAR-10, CIFAR-100, and Tiny-
ImageNet are shown in Table 12, 13, and 14, respectively.

The tables show that NTK-SAP is robust to the choices of perturbation hyper-parameter ϵ.
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Table 15: Overview of considered foresight pruning methods.

Pruning method Weight agnostic Data-free Iterative method
SNIP (Lee et al., 2018)

GraSP (Wang et al., 2020)

ProsPr (Alizadeh et al., 2022)

FORCE (de Jorge et al., 2020b) ✓

Iterative SNIP (de Jorge et al., 2020b) ✓

Synflow (Tanaka et al., 2020) ✓ ✓

NTK-SAP (Ours) ✓ ✓ ✓

J OVERVIEW OF THE CONSIDERED FORESIGHT PRUNING METHODS

Synflow and NTK-SAP are the only two data-free foresight pruning methods. In this section,
we summarize all the mentioned foresight pruning methods in Table 15. Synflow and NTK-SAP
are the only foresight pruning methods that do not need any data. It indicates that once pruning is
done, subnetworks found can be easily applied to different datasets. Moreover, to our best knowledge,
NTK-SAP is the first foresight pruning method that is weight agnostic.

K DIFFERENCE BETWEEN NTK-SAP AND NEURAL TANGENT TRANSFER

In this section, we briefly discuss the difference between NTK-SAP and Neural Tangent Transfer
(NTT) (Liu & Zenke, 2020). NTT also uses the theory of NTK to guide foresight pruning. Its goal is
to jointly optimize m and θ so that the output and the fixed-weight-NTK of the pruned model are as
close as to the dense counterpart.

However, the computational cost of explicitly constructing the fixed-weight-NTK is much larger than
that of estimating the spectrum used in NTK-SAP. As a result, NNT may be too expensive to use
for large models including ResNet-18, ResNet-34, and ResNet-50.11 Indeed, the original NTT paper
only considers small networks, including multi-layer perceptrons, LeNet, and Conv-4.

Another question is: can we apply the approximation used in NTK-SAP to NTT? We believe it is
not trivial. The idea of NTK-SAP is to remove those masks that have the least influence on the
fixed-weight-NTK spectrum. Hence, the spectrum is likely to stay roughly the same after pruning.
On the contrary, NTT, as an optimization-based method, may need extra efforts to modify the loss
to penalize the change of the fixed-weight-NTK spectrum since two spectrums can have the exact
summation but with totally different cumulative distribution functions (CDF).

L COMPARISON WITH PROSPR

Before submission, it has come to our attention that ProsPr (Alizadeh et al., 2022) has been published
recently as a new competitive foresight pruning method. We tried to reproduce the results of ProsPr so
that we can conduct a fair comparison between ProPr and NTK-SAP.12 Nevertheless, we are unable to
reproduce the reported results in the original ProsPr paper. We suspect that this is because we did not
use the same hyperparameters as the authors, and then asked the authors for their hyperparameters.
The authors told us that the hyper-parameters information is not yet released and will be released
later some time. We will conduct such a comparison once this information is available.

11See related discussions in issue #2 of NTT GitHub page.
12Note that there are some differences between architectures used in ProsPr and the benchmark they used

(Frankle et al., 2020b).
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However, we want to emphasize that, ProsPr, as a data-dependent method (See Table 15), requires
data to perform the pruning procedure. On the contrary, NTK-SAP does not require any data. Once
the model is pruned, it can be applied to any datasets without additional computation.

M DISCUSSION ON THE WEIGHT-AGNOSTIC PROPERTY OF NTK-SAP

In Section 5.3 we have discussed the weight-agnostic property of NTK-SAP. Here we include a
discussion on if a good pruning solution should also be weight-agnostic, at least in the sense of
expectation.

We think it depends on the type of pruning methods. For post-hoc pruning, a good pruning solution
may be weight-dependent. For example, when using one good post-hoc pruning method "lottery
ticket algorithm" (Frankle & Carbin, 2018), mask-dependent weight configuration performs better
than random weight configurations.

However, as pointed out by (Frankle et al., 2020b), most existing foresight pruning methods are not
very sensitive to newly sampled initialization. One reason could be that foresight pruning methods do
not have access to enough information to learn the local features/patterns of the images (Pellegrini &
Biroli, 2022) or the basin of the pruning solution (Evci et al., 2022). So in this sense, a good solution
for foresight pruning may be weight-agnostic. Anyhow, this argument is not decisive evidence that
the best foresight pruning method shall be weight-agnostic.

Another question may be since NTK-SAP intends to find subnetworks that perform well in expectation,
what happens if a really bad initialization that has zero overlaps with the binary mask? Will this
network be trained well? We believe that such a network indeed should not be trained well. However,
the probability of such a situation is 0 since known initialization methods, e.g., Xavier or Kaiming
normalization, draw initial weights from continuous random distributions. Furthermore, if a worst-
case initialization is allowed, a dense network can also encounter an all-zero initialization which
leads to poor results.

N WHY NTK-SAP CAN POTENTIALLY AVOID LAYER COLLAPSE

In Section 5.3 we mention that NTK-SAP uses iterative pruning to potentially avoid layer collapse.
We would like to give a possible explanation of why NTK-SAP implicitly avoids layer collapse for
the following reasons:

Firstly, Synflow (Tanaka et al., 2020) proves that synaptic saliency-based foresight pruning methods
broadly follow conservation law and iterative pruning can help them avoid layer collapse. As a result,
NTK-SAP, as an iterative synaptic saliency-based pruning method, could also theoretically avoid
layer collapse.

Secondly, Lee et al. (2019b) is a re-initialization method based on SNIP aiming at improving signal
propagation when layer collapse is about to happen. This work reveals that when layer collapse is
about to occur, the spectrum of the layer-wise input-output Jacobian is extremely poor so it breaks
layer-wise dynamical isometry. Similarly, the spectrum of the NTK can also serve as such an indicator.
Specifically, it can be proved that when layer collapse is about to happen, the spectrum of the NTK
deteriorates as well. Here, we would like to give a simple example for a better understanding.
For example, when layer collapse happens, the weight gradients of DNNs will be zeros and the
fix-weight-NTK will be a zero matrix with all zero eigenvalues. In this sense, NTK-SAP works in a
way very similar to Iterative SNIP (de Jorge et al., 2020b) to avoid layer collapse.
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O JUSTIFICATION OF FINITE DIFFERENCE FORMULATION

In this section we justify the finite difference formulation we used in Section 5.2. To justify this
approximation, we have

E∆θ∼N (0,ϵI)
[
∥f(X ;θ0)− f(X ;θ0 +∆θ)∥22

]
≈E∆θ

[
∥∇θ0

f(X ;θ0)∆θ∥22
]

=
∑
i,j

[∇θ0
f(X ;θ0)]

2
i,j E [∆θj∆θj ]

=ϵ∥∇θ0
f(X ;θ0)∥2F .
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