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Abstract

Most existing approaches for Knowledge Base
Question Answering (KBQA) focus on a spe-
cific underlying knowledge base either because
of inherent assumptions in the approach, or be-
cause evaluating it on a different knowledge
base requires non-trivial changes. However,
many popular knowledge bases share similar-
ities in their underlying schemas that can be
leveraged to facilitate generalization across
knowledge bases. To achieve this generaliza-
tion, we introduce a KBQA framework based
on a 2-stage architecture that explicitly sep-
arates semantic parsing from the knowledge
base interaction, facilitating transfer learning
across datasets and knowledge graphs. We
show that pretraining on datasets with a dif-
ferent underlying knowledge base can never-
theless provide significant performance gains
and reduce sample complexity. Our approach
achieves comparable or state-of-the-art per-
formance for LC-QuAD (DBpedia), WebQSP
(Freebase), SimpleQuestions (Wikidata) and
MetaQA (Wikimovies-KG).

1 Introduction

Knowledge Base Question Answering (KBQA) has
gained significant popularity in recent times due
to its real-world applications, facilitating access to
rich Knowledge Graphs (KGs) without the need for
technical query-syntax. Given a natural language
question, a KBQA system is required to find an
answer based on the facts available in the KG. For
example, given the question “Who is the director of
the film Titanic", a KBQA system should retrieve
the entity corresponding to “James Cameron". This
would be dbr:James_Cameron' in DBpedia (Auer
et al., 2007), wd:Q42574° in Wikidata (Vrandeci¢
and Krotzsch, 2014), and fb:m.03_gd> in Free-
base (Bollacker et al., 2008).
'dbr: http://dbpedia.org/resource/

Zwd: http://www.wikidata.org/entity
3b: http://rdf.freebase.com/ns/

KBQA has been evaluated on multiple differ-
ent KGs such as Freebase (Bollacker et al., 2008),
Wikidata (Vrandeci¢ and Krétzsch, 2014), DBpe-
dia (Auer et al., 2007), and MetaQA (Zhang et al.,
2018). Most existing heuristic-based KBQA ap-
proaches such as NSQA (Kapanipathi et al., 2020),
gAnswer (Zou et al., 2014), and QAmp (Vakulenko
et al., 2019) are typically tuned for a specific un-
derlying knowledge base making it non-trivial to
generalize and adapt it to other knowledge graphs.
On the other hand, WDAqua (Diefenbach et al.,
2017a), a system with a focus on being generaliz-
able, ignores question syntax, thereby showing re-
duced performance on datasets with complex multi-
hop questions.

Recently, there has been a surge in end-to-end
learning approaches that are not tied to specific
KGs or heuristics, and hence can generalize to mul-
tiple KGs. GrailQA (Gu et al., 2021) in particular
categorized different forms of generalization, such
as novel relation compositionality and zero-shot
generalization. They also demonstrated transfer
across QA datasets, but within the same KG. On
the other hand, GraftNet (Sun et al., 2018) and Em-
bedKGQA (Saxena et al., 2020) demonstrated their
ability to generalize over multiple KGs by demon-
strating state-of-the-art performance on MetaQA
(Wikimovies) as well as WebQSP (Freebase). The
two techniques, however, are highly sensitive to the
training data; failing to generalize in terms of rela-
tion compositionality within a KG. EmbedKGQA
and GraftNet show significant drops (between 23-
50%) in performance on relation compositions that
are not seen during training. Furthermore, it is
unclear how these systems transfer across KGs be-
cause of their tight-integration with KG-specific
embeddings.

In this work, we present a novel generalizable
KBQA approach STaG-QA (Semantic parsing
for Transfer and Generalization) that works seam-
lessly with multiple KGs, and demonstrate transfer
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even across QA datasets with different underlying
KGs. Our approach attempts to separate aspects of
KBQA systems that are softly tied to the KG but
generalizable, from the parts more strongly tied to
a specific KG. Concretely, our approach has two
stages: 1) The first stage is a generative model that
predicts a query skeleton, which includes the query
pattern, the different SPARQL operators in it, as
well as partial relations based on label semantics
that can be generic to most knowledge graphs. 2)
The second stage converts the output of the first
stage to a final query that includes entity and rela-
tions mapped to a specific KG to retrieve the final
answer.

Our contributions are as follows:

* A simple SEQ2SEQ architecture for KBQA
that separates aspects of the output that are
generalizable across KGs, from those that are
strongly tied to a specific KG.

* To the best of our knowledge, our approach
is the first to evaluate on and achieve state-of-
the-art or comparable performance on KBQA
datasets corresponding to four different knowl-
edge graphs, i.e, LC-QuAD (DBpedia), We-
bQSP (Freebase), SimpleQuestions (Wiki-
data) and MetaQA (Wikimovies).

* Our extensive experimental results shows that
the proposed architecture: (a) facilitates trans-
fer with significant performance gains in low-
resource setting; (b) generalizes significantly
better (23-50%) to unseen relation combi-
nations in comparison to state-of-the-art ap-
proaches.

We make our code and pretrained models available*

2 Proposed Architecture

The KBQA task involves finding an answer for
a natural language question from a given KG.
Following the semantic parsing techniques for
KBQA (Chen et al., 2021; Kapanipathi et al., 2020;
Yih et al., 2015), we attempt to solve this task by
predicting the correct structured SPARQL query that
can retrieve the required answer(s) from the KG, i.e,
by estimating a probability distribution over pos-
sible SPARQL queries given the natural language
question.

In this work, we aim to design a model archi-
tecture that generalises across different KGs such

“https://github.ibm.com/Srini/text2sparql

KG ‘ Query Graph Structure
. ?var <director> <entity>
DBpedla ‘ ?var <language> ?ans
. . ? i i
Wikimovies ?var <directed by> <entity>
?var <In language> ?ans
o ?var <director> <entity>
Wikidata ?var <original language

of film> ?ans

Table 1: Query sketch for the question “The films di-
rected by John Krasinski are in which language?"

as DBpedia, Wikidata, and Freebase. In order
to achieve this goal, we have a 2-stage approach
as shown in Figure 1, where we separate generic
SPARQL query-sketch learning from KG-specific
mapping of concepts. Specifically, the following
2-stages are:

Softly-tied query sketch: This is the first stage of
our approach where we learn aspects of the SPARQL
query generation that are generic to any KG. Specif-
ically, we observe the following: (i) multi-hop pat-
terns are mostly generic to question answering over
KGs. (ii) across many KGs, analogous relations
have semantic or lexical overlap. Therefore, we
focus on 2 sub-tasks in this stage, query skeleton
generation and partial relation linking. We call the
output of this stage a softly-tied semantic parse,
because the exact output is partially dependent on
the specific KG in use, but our choice of represen-
tations and architecture ensures that transfer across
KGs is a natural consequence.

KG alignment: This is the next step where we
introduce all vocabulary specific to the KG in order
to generate an executable SPARQL query. To do
so, we bind the softy-tied semantic parse strongly
to the KG to find the answer by (i) resolving the
textual relations to KG relations, (ii) introducing
KG specific entities into the SPARQL skeleton, and
(iii) rank the obtained SPARQL queries based on its
groundings in the KG.

2.1 Softly-tied Query Sketch

As mentioned above, the goal is to create a repre-
sentation and architecture that can generalize eas-
ily not only across examples within a dataset, but
also across KGs. To accomplish this, we define 2
subtasks: (a) Skeleton Generation, and (b) Partial
relation linking.

Skeleton Generation: A SPARQL’s skeleton cap-
tures the operators needed to answer the question;
1.e. ASK, SELECT, COUNT or FILTER, as well as
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Figure 1: Two-stage system architecture that comprises of: (a) On the left: Softly-tied semantic parse generation
that takes an input question return a KG-agnostic parse, and (b) On the right: Knowledge Graph Integration process

to eventually return the SPARQL query.

the query graph structure, with placeholder nodes
for entities (e.g. :ent0), relations (e.g. :prop0)
and variables (e.g. ?vare). For many questions,
the generated SPARQL skeletons across different
KGs are similar, if not identical. The skeleton
structures unique to a KG, e.g. reification (present
in Wikidata but not DBpedia), can be learnt when
fine-tuning on a dataset with that underlying KG.
An example of a SPARQL skeleton for our running
example in Figure 1 “The films directed by John
Krasinski are in which language?" is:

SELECT ?var0 WHERE
{ ?varl :prop0O :ent0®
?varl :propl ?var@ . }

As shown in Figure 1, the question is passed
through a transformer-based SEQ2SEQ model
which is trained to produce the SPARQL skeleton
corresponding to the question text. We use a BERT-
base (Devlin et al., 2018) encoder, while the de-
coder has a similar architecture to BERT-base but
with added cross-attention layers.

Given a question text, we tokenize it using BERT
tokenizer and add special [cLS] and [SEP] symbols
in the beginning and the end of the question, re-
spectively. This tokenized input is passed through
a transformer encoder, producing encoder hidden
states for each token at each layer. The encoder
is initialized with pretrained BERT model (Devlin

et al., 2018), which helps generalization with re-
spect to different question syntax. We then use a
transformer decoder with cross attention mecha-
nism. At each time step ¢, the decoder considers
the encoder states via cross-attention and previous
decoder states via self attention. It produces a dis-
tribution over possible skeleton output tokens. The
decoder output vocabulary ¥ comprises of entity
place holder tokens V., relation place holder to-
kens V, and SPARQL operators V,; each of these
is a small closed set of tokens. The output of each
decoding step is a softmax over possible tokens
s; € V. Unlike the encoder, no pre-trained model
is used for the decoder, and parameters are initial-
ized randomly.

Consider a question answering dataset Q with
question-SPARQL pairs (g, s); let the tokenized
form be (s1, s2...5¢). Then the skeleton generation
loss is given by:

¢
1
L1(Q) = — Z gZlogP(silq,51..s(i,1);®1)
(g9)€Q =1
(D

Partial Relation Linking: For each relation
placeholder in the SPARQL skeleton (:prop0, :propl,
etc), we need to identify the appropriate relation
that can replace the placeholder to produce the cor-
rect semantic representation of the query. We have
noted previously that relations across KGs share



lexical and semantic similarities. For example, in
Table 1 the three KGs (DBpedia, Wikimovies, and
Wikidata) represent the relationship “Directed by"
with very similar lexical terms “Director" and “Di-
rected by". We can thus leverage large pre-trained
language models to allow generalization and trans-
fer of such relations across KGs. In each KG, we
first map the relations to their respective surface
forms, using either label relations from the KG, or
by extracting some semantically meaningful sur-
face form from the relation URI. These are the
“textualized relations" shown in Figure 1. Table 2
shows some more examples of relation labels for 3
KGs. Note that this mapping can be many-to-one.
For example, both dbo:language and dbp:language
map to the same relation label “language".

Our goal is to identify which relation surface
form best matches each relation placeholder in the
skeleton. We thus train the SEQ2SEQ decoder and
relation encoder to project into the same space.
Concretely, the decoder hidden state correspond-
ing to each relation placeholder is optimised to be
closest to the encoded representation of the correct
relation, using a cross-entropy loss.

Let the output layer embeddings corresponding
to the decoder tokens (s1, s2..s;) be (hy, ha..hy).
Let Z be the indices corresponding to the place-
holder tokens in s, and Y; be the correct relation
corresponding to a placeholder token s;. Then the
partial relation linking loss is defined as:

L2(Q) =~ Y > logP(Yilhii02) (2)

(¢,h)EQ €2
eTYi'hi
P(Y;|hi;©2) = m 3)

where ry; denotes the relation embedding obtained
from the relation encoder, corresponding to Y; in
the relation dictionary ‘R. For example, in Figure 1,
the decoder state for :propé should have maximum
inner product with the encoded representation for
the relation surface form “Directed by", compared
to the encoded representations of all other relations.
Our relation encoder is a transformer model whose
parameters are initialized with pretrained BERT
model. Given that BERT-based representations of
lexically or semantically similar relations across
KGs will be close, it is easy to see why transfer
across KG is possible. The final outcome of partial
relation linking is a ranked list of relation surface
forms for each placeholder in the skeleton.

A linear combination of the skeleton generation
loss and partial relation linking loss is optimized.

L(Q)=A1(Q)+ (1 -N)L2AQ) D)

The SPARQL skeleton together with the partial
relation linking produces a ranked list of softly-tied
query sketches. In the case of multiple placehold-
ers, the score of each pair of relation surface forms
is the product of their individual scores. Some-
times this phase produces multiple semantic inter-
pretations, either due to noisy surface forms (for
instance, DBpedia KG includes Wikipedia infobox
keys “as is” when they can not be mapped to the
ontology relations) or due to the presence of seman-
tically identical or similar relations with distinct
identifiers (eg. dbo:language and dbp: language). For
the example, “The films directed by John Krasinski
are in which language?", this stage will produce
the following sketches:

P=0.87 SELECT ?var0 where {
?varl director :ento.
?varl language ?var0.}

P=0.76 SELECT ?var0 where {

?varl director :ent0.
?varl languages ?var0.}

2.2 KG Interaction

In order to generate an executable SPARQL query,
we need to introduce vocabulary specific to the KG.
The KG interaction stage performs this task. Con-
cretely, given a list of candidate query sketches, this
stage performs the following steps to produce the fi-
nal question answer: 1) link the different entities to
their corresponding placeholders in the skeleton, 2)
disambiguate relations’ textual form and link it to
the specific KG relations, and 3) select the correct
SPARQL based on the actual facts in the KG.

In our approach, we leverage a pre-trained off-
the-shelf entity linker, BLINK (Wu et al., 2020).
BLINK provides tuples of (surface form, linked
entity) pairs. The entity placeholder resolution
step aligns the entities with the entity place holders
in the query sketch. In the example above, :ento
will be linked to dbr:John_Krasinski in DBpedia, or
wd:0313039 in Wikidata. When multiple entities are
present in the question, the position of the corre-
sponding textual span defines the alignment to the
entity placeholder variable. During training, the
first entity in the question corresponds to :ente, the
second entity by :entl, etc. This pattern is repeated
by the system when decoding during inference,



KG KG Relation

Derived Surface Form

dbo:language language
DBpedia dbp:language language
dbp:languages languages
i P397 official language
Wikidata P364 original language of film or TV show
people.ethnicity.languages_spoken languages spoken
FreeBase | location.country.languages_spoken languages spoken

Table 2: Examples of textualized relations for different KGs, obtained either using the relation label from the KG
(DBpedia, Wikidata) or by extracting a part of the relation URI (Freebase)

making entity placeholder resolution trivial.

The next step is to disambiguate relations’ tex-
tual form and link them to the specific KG relations.
Recall from Table 2 that each surface form in a
query sketch can map to one or more KG relations.
In our example using DBpedia as a KG, the surface
form “director” could map to both [dbo:director,
dbp:director] whereas “language" could map to
both [dbo:1language, dbp:language]. The semantic
parsing stage cannot hope to distinguish between
these, and thus we rely on the KG to determine
the specific relation that should be chosen. Con-
cretely, we replace every relation surface form with
each of the possible KG relations it could map to.
Thus, each softly-tied query sketch produces one
or more fully executable SPARQLs. For example,
the 2 softly-tied sketches from the previous stage
in our example produce 4 possible SPARQLS, see
Table 3. As the final step, we execute the candi-
date SPARQL queries against the KB and choose
the highest-ranked SPARQL that produces an an-
swer for SELECT queries. Since ASK queries do
not necessarily have to be valid in the KG, we only
consider the model score in such cases.

3 Experiments

In this section, we validate 2 claims: (1) STaG-
QA achieves state-of-the-art or comparable perfor-
mance on a variety of datasets and KGs. (2) STaG-
QA generalizes across KBs and hence facilitating
transfer. All experiments were run on a machine
with an Intel Xeon E5-2690 CPU and 1 x P100
GPU. SPARQL Virtuoso endpoints were setup on
the local network for all KBs. Runtime was ap-
proximately 2.28 seconds per question. The results
show that pre-training our system even on a differ-
ent KG achieves improvement in performance with

Ranked SPARQL query predictions

1. SELECT ?var0 where
{ ?varl dbo:director dbr:John_Krasinski.
?varl dbo:language ?var0. }

1. SELECT ?var0 where
{ ?varl dbp:director dbr:John_Krasinski.
?varl dbo:language ?var0. }

2. SELECT ?var0@ where
{ ?varl dbo:director dbr:John_Krasinski.
?varl dbp:languages ?var0. }

2. SELECT ?var@ where
{ ?varl dbp:director dbr:John_Krasinski.
?varl dbp:languages ?var0. }

Table 3: Top predicted SPARQL queries for the ques-
tion “The films directed by John Krasinski are in which
language?"

Dataset Train Valid Test
LC-QuAD 1.0 3,650 200 1,000
SimpleQuestion 15,000 2,000 2,280
WQSP-FB 2898 200 1,596
MetaQA 1-hop 86,470 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274

Table 4: Dataset Statistics

better gains in low-resource and unseen relation
combination settings.

3.1 Datasets

To evaluate the generality of our approach, we
used datasets across a wide variety of KGs includ-
ing Wikimovies-KG, Freebase (Bollacker et al.,
2008), DBpedia (Auer et al., 2007), and Wiki-
data (Vrandeci¢ and Krotzsch, 2014). In partic-
ular, we used the following datasets (Table 4 shows
detailed statistics for each dataset): (a) MetaQA



(Wikimovies-KG) (Zhang et al., 2018) is a large-
scale complex-query answering dataset on a KG
with 135k triples, 43k entities, and nine relations.
It contains more than 400K questions for both
single and multi-hop reasoning. (b) WQSP-FB
(Freebase) (Yih et al., 2016) provides a subset of
WebQuestions with semantic parses, with 4737
questions in total. (¢) LC-QuAD 1.0 (DBpedia)
(Trivedi et al., 2017): A dataset with 5,000 ques-
tions (4,000 train and 1,000 test) based on tem-
plates. It includes simple, multi-hop, as well as
aggregation-type questions. LC-QuAD 2.0 is an-
other version of LC-QuAD based on Wikidata. It
has 30K question in total and also template-based.
Due to the larger underlying KB and the extensive
pattern covered, we used LC-QuAD 2.0 dataset for
pretraining and showing our transfer results. (d)
SimpleQuestions-Wiki (Wikidata) (Diefenbach
et al., 2017b): a mapping of the popular Freebase’s
SimpleQuestions dataset to Wikidata KB with 21K
answerable questions.

3.2 Baselines

In this work, we evaluate against 10 different
KBQA systems. (1) NSQA (Kapanipathi et al.,
2020; Abdelaziz et al., 2021) is state-of-the-art
system for KBQA on DBpedia datasets. (2)
QAMP (Vakulenko et al., 2019) is an unsupervised
message passing approach that provides compet-
itive performance on LC-QuAD 1.0 dataset. (3)
WDAqua (Diefenbach et al., 2017a) is another sys-
tem that generalises well across a variety of knowl-
edge graphs. (4) Falcon 2.0 (Sakor et al., 2020) is a
heuristics-based approach for joint detection of en-
tities and relations in Wikidata. Since this approach
does not predict the query structure, we tested it on
SimpleQuestions dataset only. (5) SYGMA (Nee-
lam et al., 2021) is a modular approach facilitating
multiple reasoning types, (6) EDGQA (Hu et al.,
2021) which leverages a novel graph structure
called Entity Description Graph (EDG) to repre-
sent the structure of complex questions, (7) Embed-
KGQA (Saxena et al., 2020) is the state-of-the-art
KBQA system on MetaQA and WebQSP datasets,
(8) PullNet (Sun et al., 2019) is recent approach
evaluated on MetaQA and WebQSP datasets, (9)
GraftNet (Sun et al., 2018) infuses both text and
KG into a heterogeneous graph and uses GCN for
question answering, and (10) EmQL (Sun et al.,
2020) is a query embedding approach that was
successfully integrated into a KBQA system and
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0 With pretraining

0 200 400 600 B0 1000
Number of examples used for training

Figure 2: System performance on MetaQA 2-hop ques-
tions using different number of training examples, with
and without pretraining on LC-QuAD 2.0.

evaluated on WebQSP and MetaQA datasets.

3.3 Results

Table 5 shows our system results on all four
datasets in comparison to existing approaches. We
show two versions of our system, one pre-trained
with LC-QuAD 2.0 datatset (Dubey et al., 2019)
(STaG-QA,,.) and another trained from scratch
on the target dataset only (STaG-QA). As noted
earlier, to the best of our knowledge, we are the
first to show generality across knowledge graphs
by evaluating on datasets from DBpedia, Wikidata,
Freebase, and Wikimovies-KG.

On SimpleQuestions-Wiki, our approach
achieves significantly better performance com-
pared to Falcon 2.0 and SYGMA with 24% and
16% better F1 score respectively. On MetaQA
dataset, our system achieves near perfect scores on
all 3 subsets. On LC-QuAD 1.0, our approach is
on par with EDGQA, the state-of-the-art system
for DBpedia. As for WebQSP, both versions of our
approach are inferior compared to EmQL, which
can leverage KBC embeddings unlike STaG-QA.
Overall, the results show that STaG-QA shows
better or competitive performance on 3 out of four
datasets and when pretrained on another dataset,
the performance improves across all datasets.

3.4 Effect of Pretraining

Our architecture is designed to allow transfer learn-
ing between entirely different QA dataset/KG pairs.
We consider low-resource settings to highlight the
benefit of transfer, even across KGs. This is partic-
ularly applicable when there is scarcity of training
data for a new target KG. We investigate the bene-
fit of pretraining the semantic parsing stage using
LC-QuaD 2.0 (Wikidata), before training on the
2-hop dataset in MetaQA (Wikimovies-KG) and



| SimpleQuestions-Wiki | LC-QuAD 1.0 | WebQSP | MetaQA

. Hits@1 Hits@1 Hits@1
System P R Fl1 P R Fl1 Hits@1 I-Hop 2-Hop 3-Hop
WDAqua - - - 22.0 38.0 28.0 - - - -
QAMP - - - 25.0 50.0 33.0 - - - -
NSQA - - - 448 458 444 - - - -
EDGQA - - - 50.5 56.0 53.1 - - - -
Falcon 2.0 34 41.1 36.3 - - - - - - -
SYGMA 420 550 44.0 |470 480 470 - - - -
GraftNet - - - - 70.3 97.0 99.9 91.4
PullNet - - - - 69.7 97.0 99.9 91.4
EmbedKGQA | - - - - 66.6 97.5 98.8 94.8
EMQL - - - - 75.5 - 98.6 99.1
STaG-QA 594 627 61.0 |765 528 514]| 659 100.0  100.0 99.9
STaG-QA,e | 602 632 617 | 745 548 53.6| 685 100.0  100.0  100.0

Table 5: Performance against previous state-of-the-art approaches. Following these techniques, we report precision,
recall and F1 scores on SimpleQuestions and LC-QuAD 1.0, and Hits@ 1 performance on WebQSP and MetaQA
datasets. The subscript pre indicates the “pre-trained" version of our system using LC-QuAD 2.0 dataset.
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Figure 3: System performance on LC-QuAD 1.0 using
different number of training examples, with and without
pretraining on LC-QuAD 2.0.

the LC-QuAD 1.0 dataset (DBpedia). Figures 2
and 3 show the performance of STaG-QA on each
dataset with and without pre-training. We make
note of the following observations.

First, without any fine-tuning on either datasets,
the pre-trained version STaG-QA,,. is able to
achieve 18% Hits@1 on MetaQA and 8% F1 on
LC-QuAD 1.0, demonstrating zero-shot transfer
across KGs. Second, the pre-trained version shows
significantly low sample complexity. For example,
in MetaQA (Figure 2), STaG-QA,,. was able to
reach almost 100% Hits@1 with 100 training ex-
amples only. To reach the comparable performance,
STaG-QA without pretraining required ~ 1,000
examples, an order of magnitude more training data.
The same behaviour can be observed on LC-QuAD
1.0.

3.5 Generalization to novel relation
composition

Common KBs have a large number of relations. For
example, DBpedia (v2016-10) has around ~60K
relations, Wikidata (as of March 2020) has ~8K
relations, whereas Freebase contains ~25K rela-
tions. In multi-hop queries, these relations can
be arranged as paths (e.g., director — language)
where possible path combinations grow combina-
torially. Seeing all possible relation combinations
during training is impractical with most KBs as
it would require significantly large training data
to cover all combinations. Instead, an effective
KBQA system should be able to generalise to un-
seen relation paths. However, we find that some
prominent KBQA datasets do not effectively evalu-
ate this property of a QA system.

We show in Table 6 the number of test questions
in LC-QuAD 1.0, MetaQA and WebQSP datasets
that contain relation combinations never seen at
training. MetaQA does not have any unseen re-
lation paths, and WebQSP contains only 2.06%
of such questions. In contrast, in LC-QuAD 1.0
roughly half of the test questions contain novel
relation compositions.

MetaQA Unseen Challenge Set: In order to
investigate how this issue affects evaluation of
KBQA systems, we modified the train and
dev sets of MetaQA as follows: From the
2-hop training set, we removed training ex-
amples containing two randomly chosen rela-
tion paths ( actor_to_movie_to_director and



Dataset # unseen path questions
LC-QuAD 1.0 490/1,000 (49 %)
WebQSP 45/1,638 (2 %)
MetaQA 2-hop 0/14,872 (0 %)
MetaQA 3-hop 0/14,274 (0 %)

Table 6: Novel combinations in Test of seen relations

System ‘ 2-Hop Seen | 2-hop Unseen
EmbedKGQA 99.00 50.00
GraftNet-KB 97.90 75.2
GraftNet-Text 51.2 43.3
GraftNet-Both 99.13 95.41
STaG-QA | 999 99.7

Table 7: MetaQA Unseen Challenge Set Setting

director_to_movie_to_actor) and split the
dev set into two, one containing 13,510 questions
with all seen relations combinations in training and
another containing 1,361 questions with all unseen
relation paths.

We then trained STaG-QA, EmbedKGQA and
GraftNet on the new reduced training set and tested
the performance on our new development sets (seen
and unseen). Shown in Table 7, the results clearly
demonstrate that there is a significant drop in perfor-
mance in methods that rank directly across entities
in the KG to predict answers. This is most clearly
observed in EmbedKGQA, as well as GraftNet-
KB, though the use of text alleviates this issue. In
contrast, our approach is able to maintain exactly
the same level of performance for novel relation
compositions using KB information alone.

4 Related Work

There have been a wide variety of Knowledge
Base Question Answering (KBQA) systems trained
on datasets that are either question-SPARQL pairs
(strong supervision) or question-answer pairs
(weak supervision). Some of the approaches are
rule based, and depend on generic language based
syntactic (Zou et al., 2014) or semantic parses (Ab-
delaziz et al., 2021; Kapanipathi et al., 2020) of
the question and build rules on it to obtain a query
graph that represents the SPARQL query. NSQA,
the state of the art approach for DBpedia based
datasets such as LC-QuAD-1.0 (Trivedi et al.,
2017) and QALD-9 (Usbeck et al., 2017), falls
in this category. Many of these systems have com-

ponents or aspects that are specific to the KG they
evaluate on, and do not trivially generalize to other
KGs. In particular GAnswer, NSQA, and QAmp
are specific to DBpedia and do not evaluate their
approaches on any other KGs.

Closest to our architecture is MaSP, a multi-
task end-to-end learning approach that focuses of
dialog-based KGQA setup. MaSP uses a predi-
cate classifier which makes transfer across KGs
non-trivial. A prominent work (Maheshwari et al.,
2019) ranks all candidate graph patterns retrieved
from the knowledge graph based on the grounded
entity. In multi-hop settings, as in MetaQA with
3-hop questions, retrieving all possible candidates
upto n-hops (for an arbitrary choice of n) and then
ranking across all of them is expensive. In con-
trast, our work focuses on a generative approach to
model query graph patterns. EmbedKGQA (Sax-
ena et al., 2020) and GraftNet are two such ap-
proaches that directly ranks across entities in the
knowledge base to predict an answer, by leverag-
ing either KG embeddings from Knowledge Base
Completion (KBC); or creating a unified graph
from KB and text. However, these approaches do
not generalize well to novel relation compositions
not seen during training. Finally, it is unclear how
to transfer KBC embedding-based approaches such
as EmbedKGQA across KGs since the learnt KG
embeddings are tightly coupled with the specific
KG in question.

5 Conclusion

In this work, we show that a simple 2-stage archi-
tecture which explicitly separates the KG-agnostic
semantic parsing stage from the KG-specific inter-
action can generalize across a range of datasets and
KGs. We evaluated our approach on four KG/QA
pairs, obtaining state-of-the-art performance on
MetaQA, LC-QuAD 1.0, and SimpleQuestions-
Wiki; as well as competitive performance on We-
bQSP. We also successfully demonstrate transfer
learning across KGs by showing that pre-training
the semantic parsing stage on an existing KG/QA-
dataset pair can help improve performance in low-
resource settings for a new target KG; as well as
greatly reduce the number of examples required
to achieve state-of-the-art performance. Finally,
we show that some popular benchmark datasets do
not evaluate generalization to unseen combinations
of seen relations (compositionality), an important
requirement for a question answering system.
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