
A Two-Stage Approach towards Generalization in Knowledge Base
Question Answering

Anonymous ACL submission

Abstract

Most existing approaches for Knowledge Base001
Question Answering (KBQA) focus on a spe-002
cific underlying knowledge base either because003
of inherent assumptions in the approach, or be-004
cause evaluating it on a different knowledge005
base requires non-trivial changes. However,006
many popular knowledge bases share similar-007
ities in their underlying schemas that can be008
leveraged to facilitate generalization across009
knowledge bases. To achieve this generaliza-010
tion, we introduce a KBQA framework based011
on a 2-stage architecture that explicitly sep-012
arates semantic parsing from the knowledge013
base interaction, facilitating transfer learning014
across datasets and knowledge graphs. We015
show that pretraining on datasets with a dif-016
ferent underlying knowledge base can never-017
theless provide significant performance gains018
and reduce sample complexity. Our approach019
achieves comparable or state-of-the-art per-020
formance for LC-QuAD (DBpedia), WebQSP021
(Freebase), SimpleQuestions (Wikidata) and022
MetaQA (Wikimovies-KG).023

1 Introduction024

Knowledge Base Question Answering (KBQA) has025

gained significant popularity in recent times due026

to its real-world applications, facilitating access to027

rich Knowledge Graphs (KGs) without the need for028

technical query-syntax. Given a natural language029

question, a KBQA system is required to find an030

answer based on the facts available in the KG. For031

example, given the question “Who is the director of032

the film Titanic", a KBQA system should retrieve033

the entity corresponding to “James Cameron". This034

would be dbr:James_Cameron1 in DBpedia (Auer035

et al., 2007), wd:Q425742 in Wikidata (Vrandečić036

and Krötzsch, 2014), and fb:m.03_gd3 in Free-037

base (Bollacker et al., 2008).038

1dbr: http://dbpedia.org/resource/
2wd: http://www.wikidata.org/entity
3fb: http://rdf.freebase.com/ns/

KBQA has been evaluated on multiple differ- 039

ent KGs such as Freebase (Bollacker et al., 2008), 040

Wikidata (Vrandečić and Krötzsch, 2014), DBpe- 041

dia (Auer et al., 2007), and MetaQA (Zhang et al., 042

2018). Most existing heuristic-based KBQA ap- 043

proaches such as NSQA (Kapanipathi et al., 2020), 044

gAnswer (Zou et al., 2014), and QAmp (Vakulenko 045

et al., 2019) are typically tuned for a specific un- 046

derlying knowledge base making it non-trivial to 047

generalize and adapt it to other knowledge graphs. 048

On the other hand, WDAqua (Diefenbach et al., 049

2017a), a system with a focus on being generaliz- 050

able, ignores question syntax, thereby showing re- 051

duced performance on datasets with complex multi- 052

hop questions. 053

Recently, there has been a surge in end-to-end 054

learning approaches that are not tied to specific 055

KGs or heuristics, and hence can generalize to mul- 056

tiple KGs. GrailQA (Gu et al., 2021) in particular 057

categorized different forms of generalization, such 058

as novel relation compositionality and zero-shot 059

generalization. They also demonstrated transfer 060

across QA datasets, but within the same KG. On 061

the other hand, GraftNet (Sun et al., 2018) and Em- 062

bedKGQA (Saxena et al., 2020) demonstrated their 063

ability to generalize over multiple KGs by demon- 064

strating state-of-the-art performance on MetaQA 065

(Wikimovies) as well as WebQSP (Freebase). The 066

two techniques, however, are highly sensitive to the 067

training data; failing to generalize in terms of rela- 068

tion compositionality within a KG. EmbedKGQA 069

and GraftNet show significant drops (between 23- 070

50%) in performance on relation compositions that 071

are not seen during training. Furthermore, it is 072

unclear how these systems transfer across KGs be- 073

cause of their tight-integration with KG-specific 074

embeddings. 075

In this work, we present a novel generalizable 076

KBQA approach STaG-QA (Semantic parsing 077

for Transfer and Generalization) that works seam- 078

lessly with multiple KGs, and demonstrate transfer 079
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even across QA datasets with different underlying080

KGs. Our approach attempts to separate aspects of081

KBQA systems that are softly tied to the KG but082

generalizable, from the parts more strongly tied to083

a specific KG. Concretely, our approach has two084

stages: 1) The first stage is a generative model that085

predicts a query skeleton, which includes the query086

pattern, the different SPARQL operators in it, as087

well as partial relations based on label semantics088

that can be generic to most knowledge graphs. 2)089

The second stage converts the output of the first090

stage to a final query that includes entity and rela-091

tions mapped to a specific KG to retrieve the final092

answer.093

Our contributions are as follows:094

• A simple SEQ2SEQ architecture for KBQA095

that separates aspects of the output that are096

generalizable across KGs, from those that are097

strongly tied to a specific KG.098

• To the best of our knowledge, our approach099

is the first to evaluate on and achieve state-of-100

the-art or comparable performance on KBQA101

datasets corresponding to four different knowl-102

edge graphs, i.e, LC-QuAD (DBpedia), We-103

bQSP (Freebase), SimpleQuestions (Wiki-104

data) and MetaQA (Wikimovies).105

• Our extensive experimental results shows that106

the proposed architecture: (a) facilitates trans-107

fer with significant performance gains in low-108

resource setting; (b) generalizes significantly109

better (23-50%) to unseen relation combi-110

nations in comparison to state-of-the-art ap-111

proaches.112

We make our code and pretrained models available4113

2 Proposed Architecture114

The KBQA task involves finding an answer for115

a natural language question from a given KG.116

Following the semantic parsing techniques for117

KBQA (Chen et al., 2021; Kapanipathi et al., 2020;118

Yih et al., 2015), we attempt to solve this task by119

predicting the correct structured SPARQL query that120

can retrieve the required answer(s) from the KG, i.e,121

by estimating a probability distribution over pos-122

sible SPARQL queries given the natural language123

question.124

In this work, we aim to design a model archi-125

tecture that generalises across different KGs such126

4https://github.ibm.com/Srini/text2sparql

KG Query Graph Structure

DBpedia ?var <director> <entity>
?var <language> ?ans

Wikimovies ?var <directed by> <entity>
?var <In language> ?ans

Wikidata
?var <director> <entity>
?var <original language

of film> ?ans

Table 1: Query sketch for the question “The films di-
rected by John Krasinski are in which language?"

as DBpedia, Wikidata, and Freebase. In order 127

to achieve this goal, we have a 2-stage approach 128

as shown in Figure 1, where we separate generic 129

SPARQL query-sketch learning from KG-specific 130

mapping of concepts. Specifically, the following 131

2-stages are: 132

Softly-tied query sketch: This is the first stage of 133

our approach where we learn aspects of the SPARQL 134

query generation that are generic to any KG. Specif- 135

ically, we observe the following: (i) multi-hop pat- 136

terns are mostly generic to question answering over 137

KGs. (ii) across many KGs, analogous relations 138

have semantic or lexical overlap. Therefore, we 139

focus on 2 sub-tasks in this stage, query skeleton 140

generation and partial relation linking. We call the 141

output of this stage a softly-tied semantic parse, 142

because the exact output is partially dependent on 143

the specific KG in use, but our choice of represen- 144

tations and architecture ensures that transfer across 145

KGs is a natural consequence. 146

KG alignment: This is the next step where we 147

introduce all vocabulary specific to the KG in order 148

to generate an executable SPARQL query. To do 149

so, we bind the softy-tied semantic parse strongly 150

to the KG to find the answer by (i) resolving the 151

textual relations to KG relations, (ii) introducing 152

KG specific entities into the SPARQL skeleton, and 153

(iii) rank the obtained SPARQL queries based on its 154

groundings in the KG. 155

2.1 Softly-tied Query Sketch 156

As mentioned above, the goal is to create a repre- 157

sentation and architecture that can generalize eas- 158

ily not only across examples within a dataset, but 159

also across KGs. To accomplish this, we define 2 160

subtasks: (a) Skeleton Generation, and (b) Partial 161

relation linking. 162

Skeleton Generation: A SPARQL’s skeleton cap- 163

tures the operators needed to answer the question; 164

i.e. ASK, SELECT, COUNT or FILTER, as well as 165
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The films directed by John Krasinski are in which language?

Question Encoder

Decoder

“Author” 
“Directed by”
“In Language”
……
“Location”

SELECT ?var0 WHERE { 
?var1 dbo:director dbr:John_Krasinski. 
?var1 dbo:language ?var0 .

}

Softly-tied Query Sketch

KG Integration

SELECT ?var0 WHERE { ?var1 ?prop0 ?ent0 . ?var1 ?prop1 ?var0 }

“Directed by” :  [dbo:director, dbp:director]
“In Language”:  [dbo:language]

Relation Text to KG relations

Candidate 1: SELECT ?var0 where { 
?var1 dbp:director dbr:John_Krasinski.  
?var1 dbo:language ?var0. }

KG subgraph-based ranking

Relation Encoder

Textualized
Relations

Input Question

… …

SPARQL Output

“?ent0”: dbr:John_Krasinski

dbr:John_KrasinskiEntity Linker

Candidate 2: SELECT ?var0 where  { 
?var1 dbo:director dbr:John_Krasinski.  
?var1 dbo:language ?var0. }

Entity placeholder resolution

Skeleton Generation

Partial Relation Linking

Figure 1: Two-stage system architecture that comprises of: (a) On the left: Softly-tied semantic parse generation
that takes an input question return a KG-agnostic parse, and (b) On the right: Knowledge Graph Integration process
to eventually return the SPARQL query.

the query graph structure, with placeholder nodes166

for entities (e.g. :ent0), relations (e.g. :prop0)167

and variables (e.g. ?var0). For many questions,168

the generated SPARQL skeletons across different169

KGs are similar, if not identical. The skeleton170

structures unique to a KG, e.g. reification (present171

in Wikidata but not DBpedia), can be learnt when172

fine-tuning on a dataset with that underlying KG.173

An example of a SPARQL skeleton for our running174

example in Figure 1 “The films directed by John175

Krasinski are in which language?" is:176

177178
SELECT ?var0 WHERE179

{ ?var1 :prop0 :ent0 .180

?var1 :prop1 ?var0 . }181182

As shown in Figure 1, the question is passed183

through a transformer-based SEQ2SEQ model184

which is trained to produce the SPARQL skeleton185

corresponding to the question text. We use a BERT-186

base (Devlin et al., 2018) encoder, while the de-187

coder has a similar architecture to BERT-base but188

with added cross-attention layers.189

Given a question text, we tokenize it using BERT190

tokenizer and add special [CLS] and [SEP] symbols191

in the beginning and the end of the question, re-192

spectively. This tokenized input is passed through193

a transformer encoder, producing encoder hidden194

states for each token at each layer. The encoder195

is initialized with pretrained BERT model (Devlin196

et al., 2018), which helps generalization with re- 197

spect to different question syntax. We then use a 198

transformer decoder with cross attention mecha- 199

nism. At each time step i, the decoder considers 200

the encoder states via cross-attention and previous 201

decoder states via self attention. It produces a dis- 202

tribution over possible skeleton output tokens. The 203

decoder output vocabulary V comprises of entity 204

place holder tokens Ve, relation place holder to- 205

kens Vr and SPARQL operators Vo; each of these 206

is a small closed set of tokens. The output of each 207

decoding step is a softmax over possible tokens 208

si ∈ V . Unlike the encoder, no pre-trained model 209

is used for the decoder, and parameters are initial- 210

ized randomly. 211

Consider a question answering dataset Q with 212

question-SPARQL pairs (q, s); let the tokenized 213

form be (s1, s2...st). Then the skeleton generation 214

loss is given by: 215

L1(Q) = −
∑

(q,s)∈Q

1

t

t∑
i=1

logP (si|q, s1..s(i−1); Θ1)

(1) 216

Partial Relation Linking: For each relation 217

placeholder in the SPARQL skeleton (:prop0, :prop1, 218

etc), we need to identify the appropriate relation 219

that can replace the placeholder to produce the cor- 220

rect semantic representation of the query. We have 221

noted previously that relations across KGs share 222
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lexical and semantic similarities. For example, in223

Table 1 the three KGs (DBpedia, Wikimovies, and224

Wikidata) represent the relationship “Directed by"225

with very similar lexical terms “Director" and “Di-226

rected by". We can thus leverage large pre-trained227

language models to allow generalization and trans-228

fer of such relations across KGs. In each KG, we229

first map the relations to their respective surface230

forms, using either label relations from the KG, or231

by extracting some semantically meaningful sur-232

face form from the relation URI. These are the233

“textualized relations" shown in Figure 1. Table 2234

shows some more examples of relation labels for 3235

KGs. Note that this mapping can be many-to-one.236

For example, both dbo:language and dbp:language237

map to the same relation label “language".238

Our goal is to identify which relation surface239

form best matches each relation placeholder in the240

skeleton. We thus train the SEQ2SEQ decoder and241

relation encoder to project into the same space.242

Concretely, the decoder hidden state correspond-243

ing to each relation placeholder is optimised to be244

closest to the encoded representation of the correct245

relation, using a cross-entropy loss.246

Let the output layer embeddings corresponding247

to the decoder tokens (s1, s2..st) be (h1, h2..ht).248

Let Z be the indices corresponding to the place-249

holder tokens in s, and Yi be the correct relation250

corresponding to a placeholder token si. Then the251

partial relation linking loss is defined as:252

L2(Q) = −
∑

(q,h)∈Q

∑
i∈Z

logP (Yi|hi; Θ2) (2)253

P (Yi|hi; Θ2) =
erYi .hi∑
k∈R erk.hi

(3)254

where rYi denotes the relation embedding obtained255

from the relation encoder, corresponding to Yi in256

the relation dictionary R. For example, in Figure 1,257

the decoder state for :prop0 should have maximum258

inner product with the encoded representation for259

the relation surface form “Directed by", compared260

to the encoded representations of all other relations.261

Our relation encoder is a transformer model whose262

parameters are initialized with pretrained BERT263

model. Given that BERT-based representations of264

lexically or semantically similar relations across265

KGs will be close, it is easy to see why transfer266

across KG is possible. The final outcome of partial267

relation linking is a ranked list of relation surface268

forms for each placeholder in the skeleton.269

A linear combination of the skeleton generation 270

loss and partial relation linking loss is optimized. 271

L(Q) = λL1(Q) + (1− λ)L2(Q) (4) 272

The SPARQL skeleton together with the partial 273

relation linking produces a ranked list of softly-tied 274

query sketches. In the case of multiple placehold- 275

ers, the score of each pair of relation surface forms 276

is the product of their individual scores. Some- 277

times this phase produces multiple semantic inter- 278

pretations, either due to noisy surface forms (for 279

instance, DBpedia KG includes Wikipedia infobox 280

keys “as is” when they can not be mapped to the 281

ontology relations) or due to the presence of seman- 282

tically identical or similar relations with distinct 283

identifiers (eg. dbo:language and dbp:language). For 284

the example, “The films directed by John Krasinski 285

are in which language?", this stage will produce 286

the following sketches: 287

288
P=0.87 SELECT ?var0 where { 289

?var1 director :ent0. 290
?var1 language ?var0.} 291

P=0.76 SELECT ?var0 where { 292
?var1 director :ent0. 293
?var1 languages ?var0.} 294

... 295296

2.2 KG Interaction 297

In order to generate an executable SPARQL query, 298

we need to introduce vocabulary specific to the KG. 299

The KG interaction stage performs this task. Con- 300

cretely, given a list of candidate query sketches, this 301

stage performs the following steps to produce the fi- 302

nal question answer: 1) link the different entities to 303

their corresponding placeholders in the skeleton, 2) 304

disambiguate relations’ textual form and link it to 305

the specific KG relations, and 3) select the correct 306

SPARQL based on the actual facts in the KG. 307

In our approach, we leverage a pre-trained off- 308

the-shelf entity linker, BLINK (Wu et al., 2020). 309

BLINK provides tuples of (surface form, linked 310

entity) pairs. The entity placeholder resolution 311

step aligns the entities with the entity place holders 312

in the query sketch. In the example above, :ent0 313

will be linked to dbr:John_Krasinski in DBpedia, or 314

wd:Q313039 in Wikidata. When multiple entities are 315

present in the question, the position of the corre- 316

sponding textual span defines the alignment to the 317

entity placeholder variable. During training, the 318

first entity in the question corresponds to :ent0, the 319

second entity by :ent1, etc. This pattern is repeated 320

by the system when decoding during inference, 321
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KG KG Relation Derived Surface Form

DBpedia
dbo:language language
dbp:language language
dbp:languages languages

Wikidata
P397 official language
P364 original language of film or TV show

FreeBase
people.ethnicity.languages_spoken languages spoken
location.country.languages_spoken languages spoken

Table 2: Examples of textualized relations for different KGs, obtained either using the relation label from the KG
(DBpedia, Wikidata) or by extracting a part of the relation URI (Freebase)

making entity placeholder resolution trivial.322

The next step is to disambiguate relations’ tex-323

tual form and link them to the specific KG relations.324

Recall from Table 2 that each surface form in a325

query sketch can map to one or more KG relations.326

In our example using DBpedia as a KG, the surface327

form “director" could map to both [dbo:director,328

dbp:director] whereas “language" could map to329

both [dbo:language, dbp:language]. The semantic330

parsing stage cannot hope to distinguish between331

these, and thus we rely on the KG to determine332

the specific relation that should be chosen. Con-333

cretely, we replace every relation surface form with334

each of the possible KG relations it could map to.335

Thus, each softly-tied query sketch produces one336

or more fully executable SPARQLs. For example,337

the 2 softly-tied sketches from the previous stage338

in our example produce 4 possible SPARQLs, see339

Table 3. As the final step, we execute the candi-340

date SPARQL queries against the KB and choose341

the highest-ranked SPARQL that produces an an-342

swer for SELECT queries. Since ASK queries do343

not necessarily have to be valid in the KG, we only344

consider the model score in such cases.345

3 Experiments346

In this section, we validate 2 claims: (1) STaG-347

QA achieves state-of-the-art or comparable perfor-348

mance on a variety of datasets and KGs. (2) STaG-349

QA generalizes across KBs and hence facilitating350

transfer. All experiments were run on a machine351

with an Intel Xeon E5-2690 CPU and 1 x P100352

GPU. SPARQL Virtuoso endpoints were setup on353

the local network for all KBs. Runtime was ap-354

proximately 2.28 seconds per question. The results355

show that pre-training our system even on a differ-356

ent KG achieves improvement in performance with357

Ranked SPARQL query predictions
1. SELECT ?var0 where

{ ?var1 dbo:director dbr:John_Krasinski.
?var1 dbo:language ?var0. }

1. SELECT ?var0 where
{ ?var1 dbp:director dbr:John_Krasinski.
?var1 dbo:language ?var0. }

2. SELECT ?var0 where
{ ?var1 dbo:director dbr:John_Krasinski.
?var1 dbp:languages ?var0. }

2. SELECT ?var0 where
{ ?var1 dbp:director dbr:John_Krasinski.
?var1 dbp:languages ?var0. }

Table 3: Top predicted SPARQL queries for the ques-
tion “The films directed by John Krasinski are in which
language?"

Dataset Train Valid Test

LC-QuAD 1.0 3,650 200 1,000
SimpleQuestion 15,000 2,000 2,280
WQSP-FB 2898 200 1,596
MetaQA 1-hop 86,470 9,992 9,947
MetaQA 2-hop 118,980 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274

Table 4: Dataset Statistics

better gains in low-resource and unseen relation 358

combination settings. 359

3.1 Datasets 360

To evaluate the generality of our approach, we 361

used datasets across a wide variety of KGs includ- 362

ing Wikimovies-KG, Freebase (Bollacker et al., 363

2008), DBpedia (Auer et al., 2007), and Wiki- 364

data (Vrandečić and Krötzsch, 2014). In partic- 365

ular, we used the following datasets (Table 4 shows 366

detailed statistics for each dataset): (a) MetaQA 367
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(Wikimovies-KG) (Zhang et al., 2018) is a large-368

scale complex-query answering dataset on a KG369

with 135k triples, 43k entities, and nine relations.370

It contains more than 400K questions for both371

single and multi-hop reasoning. (b) WQSP-FB372

(Freebase) (Yih et al., 2016) provides a subset of373

WebQuestions with semantic parses, with 4737374

questions in total. (c) LC-QuAD 1.0 (DBpedia)375

(Trivedi et al., 2017): A dataset with 5,000 ques-376

tions (4,000 train and 1,000 test) based on tem-377

plates. It includes simple, multi-hop, as well as378

aggregation-type questions. LC-QuAD 2.0 is an-379

other version of LC-QuAD based on Wikidata. It380

has 30K question in total and also template-based.381

Due to the larger underlying KB and the extensive382

pattern covered, we used LC-QuAD 2.0 dataset for383

pretraining and showing our transfer results. (d)384

SimpleQuestions-Wiki (Wikidata) (Diefenbach385

et al., 2017b): a mapping of the popular Freebase’s386

SimpleQuestions dataset to Wikidata KB with 21K387

answerable questions.388

3.2 Baselines389

In this work, we evaluate against 10 different390

KBQA systems. (1) NSQA (Kapanipathi et al.,391

2020; Abdelaziz et al., 2021) is state-of-the-art392

system for KBQA on DBpedia datasets. (2)393

QAMP (Vakulenko et al., 2019) is an unsupervised394

message passing approach that provides compet-395

itive performance on LC-QuAD 1.0 dataset. (3)396

WDAqua (Diefenbach et al., 2017a) is another sys-397

tem that generalises well across a variety of knowl-398

edge graphs. (4) Falcon 2.0 (Sakor et al., 2020) is a399

heuristics-based approach for joint detection of en-400

tities and relations in Wikidata. Since this approach401

does not predict the query structure, we tested it on402

SimpleQuestions dataset only. (5) SYGMA (Nee-403

lam et al., 2021) is a modular approach facilitating404

multiple reasoning types, (6) EDGQA (Hu et al.,405

2021) which leverages a novel graph structure406

called Entity Description Graph (EDG) to repre-407

sent the structure of complex questions, (7) Embed-408

KGQA (Saxena et al., 2020) is the state-of-the-art409

KBQA system on MetaQA and WebQSP datasets,410

(8) PullNet (Sun et al., 2019) is recent approach411

evaluated on MetaQA and WebQSP datasets, (9)412

GraftNet (Sun et al., 2018) infuses both text and413

KG into a heterogeneous graph and uses GCN for414

question answering, and (10) EmQL (Sun et al.,415

2020) is a query embedding approach that was416

successfully integrated into a KBQA system and417

Figure 2: System performance on MetaQA 2-hop ques-
tions using different number of training examples, with
and without pretraining on LC-QuAD 2.0.

evaluated on WebQSP and MetaQA datasets. 418

3.3 Results 419

Table 5 shows our system results on all four 420

datasets in comparison to existing approaches. We 421

show two versions of our system, one pre-trained 422

with LC-QuAD 2.0 datatset (Dubey et al., 2019) 423

(STaG-QApre) and another trained from scratch 424

on the target dataset only (STaG-QA). As noted 425

earlier, to the best of our knowledge, we are the 426

first to show generality across knowledge graphs 427

by evaluating on datasets from DBpedia, Wikidata, 428

Freebase, and Wikimovies-KG. 429

On SimpleQuestions-Wiki, our approach 430

achieves significantly better performance com- 431

pared to Falcon 2.0 and SYGMA with 24% and 432

16% better F1 score respectively. On MetaQA 433

dataset, our system achieves near perfect scores on 434

all 3 subsets. On LC-QuAD 1.0, our approach is 435

on par with EDGQA, the state-of-the-art system 436

for DBpedia. As for WebQSP, both versions of our 437

approach are inferior compared to EmQL, which 438

can leverage KBC embeddings unlike STaG-QA. 439

Overall, the results show that STaG-QA shows 440

better or competitive performance on 3 out of four 441

datasets and when pretrained on another dataset, 442

the performance improves across all datasets. 443

3.4 Effect of Pretraining 444

Our architecture is designed to allow transfer learn- 445

ing between entirely different QA dataset/KG pairs. 446

We consider low-resource settings to highlight the 447

benefit of transfer, even across KGs. This is partic- 448

ularly applicable when there is scarcity of training 449

data for a new target KG. We investigate the bene- 450

fit of pretraining the semantic parsing stage using 451

LC-QuaD 2.0 (Wikidata), before training on the 452

2-hop dataset in MetaQA (Wikimovies-KG) and 453
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SimpleQuestions-Wiki LC-QuAD 1.0 WebQSP MetaQA

System P R F1 P R F1 Hits@1
Hits@1
1-Hop

Hits@1
2-Hop

Hits@1
3-Hop

WDAqua - - - 22.0 38.0 28.0 - - - -
QAMP - - - 25.0 50.0 33.0 - - - -
NSQA - - - 44.8 45.8 44.4 - - - -
EDGQA - - - 50.5 56.0 53.1 - - - -
Falcon 2.0 34 41.1 36.3 - - - - - - -
SYGMA 42.0 55.0 44 .0 47.0 48.0 47.0 - - - -

GraftNet - - - - - - 70.3 97.0 99.9 91.4
PullNet - - - - - - 69.7 97.0 99.9 91.4
EmbedKGQA - - - - - - 66.6 97.5 98.8 94.8
EMQL - - - - - - 75.5 - 98.6 99.1

STaG-QA 59.4 62.7 61.0 76.5 52.8 51.4 65.9 100.0 100.0 99.9
STaG-QApre 60.2 63.2 61.7 74.5 54.8 53.6 68.5 100.0 100.0 100.0

Table 5: Performance against previous state-of-the-art approaches. Following these techniques, we report precision,
recall and F1 scores on SimpleQuestions and LC-QuAD 1.0, and Hits@1 performance on WebQSP and MetaQA
datasets. The subscript pre indicates the “pre-trained" version of our system using LC-QuAD 2.0 dataset.

Figure 3: System performance on LC-QuAD 1.0 using
different number of training examples, with and without
pretraining on LC-QuAD 2.0.

the LC-QuAD 1.0 dataset (DBpedia). Figures 2454

and 3 show the performance of STaG-QA on each455

dataset with and without pre-training. We make456

note of the following observations.457

First, without any fine-tuning on either datasets,458

the pre-trained version STaG-QApre is able to459

achieve 18% Hits@1 on MetaQA and 8% F1 on460

LC-QuAD 1.0, demonstrating zero-shot transfer461

across KGs. Second, the pre-trained version shows462

significantly low sample complexity. For example,463

in MetaQA (Figure 2), STaG-QApre was able to464

reach almost 100% Hits@1 with 100 training ex-465

amples only. To reach the comparable performance,466

STaG-QA without pretraining required ∼ 1, 000467

examples, an order of magnitude more training data.468

The same behaviour can be observed on LC-QuAD469

1.0.470

3.5 Generalization to novel relation 471

composition 472

Common KBs have a large number of relations. For 473

example, DBpedia (v2016-10) has around ∼60K 474

relations, Wikidata (as of March 2020) has ∼8K 475

relations, whereas Freebase contains ∼25K rela- 476

tions. In multi-hop queries, these relations can 477

be arranged as paths (e.g., director → language) 478

where possible path combinations grow combina- 479

torially. Seeing all possible relation combinations 480

during training is impractical with most KBs as 481

it would require significantly large training data 482

to cover all combinations. Instead, an effective 483

KBQA system should be able to generalise to un- 484

seen relation paths. However, we find that some 485

prominent KBQA datasets do not effectively evalu- 486

ate this property of a QA system. 487

We show in Table 6 the number of test questions 488

in LC-QuAD 1.0, MetaQA and WebQSP datasets 489

that contain relation combinations never seen at 490

training. MetaQA does not have any unseen re- 491

lation paths, and WebQSP contains only 2.06% 492

of such questions. In contrast, in LC-QuAD 1.0 493

roughly half of the test questions contain novel 494

relation compositions. 495

MetaQA Unseen Challenge Set: In order to 496

investigate how this issue affects evaluation of 497

KBQA systems, we modified the train and 498

dev sets of MetaQA as follows: From the 499

2-hop training set, we removed training ex- 500

amples containing two randomly chosen rela- 501

tion paths ( actor_to_movie_to_director and 502
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Dataset # unseen path questions

LC-QuAD 1.0 490/1,000 (49 %)

WebQSP 45/1,638 (2 %)

MetaQA 2-hop 0/14,872 (0 %)

MetaQA 3-hop 0/14,274 (0 %)

Table 6: Novel combinations in Test of seen relations

System 2-Hop Seen 2-hop Unseen

EmbedKGQA 99.00 50.00
GraftNet-KB 97.90 75.2
GraftNet-Text 51.2 43.3
GraftNet-Both 99.13 95.41

STaG-QA 99.9 99.7

Table 7: MetaQA Unseen Challenge Set Setting

director_to_movie_to_actor) and split the503

dev set into two, one containing 13,510 questions504

with all seen relations combinations in training and505

another containing 1,361 questions with all unseen506

relation paths.507

We then trained STaG-QA, EmbedKGQA and508

GraftNet on the new reduced training set and tested509

the performance on our new development sets (seen510

and unseen). Shown in Table 7, the results clearly511

demonstrate that there is a significant drop in perfor-512

mance in methods that rank directly across entities513

in the KG to predict answers. This is most clearly514

observed in EmbedKGQA, as well as GraftNet-515

KB, though the use of text alleviates this issue. In516

contrast, our approach is able to maintain exactly517

the same level of performance for novel relation518

compositions using KB information alone.519

4 Related Work520

There have been a wide variety of Knowledge521

Base Question Answering (KBQA) systems trained522

on datasets that are either question-SPARQL pairs523

(strong supervision) or question-answer pairs524

(weak supervision). Some of the approaches are525

rule based, and depend on generic language based526

syntactic (Zou et al., 2014) or semantic parses (Ab-527

delaziz et al., 2021; Kapanipathi et al., 2020) of528

the question and build rules on it to obtain a query529

graph that represents the SPARQL query. NSQA,530

the state of the art approach for DBpedia based531

datasets such as LC-QuAD-1.0 (Trivedi et al.,532

2017) and QALD-9 (Usbeck et al., 2017), falls533

in this category. Many of these systems have com-534

ponents or aspects that are specific to the KG they 535

evaluate on, and do not trivially generalize to other 536

KGs. In particular GAnswer, NSQA, and QAmp 537

are specific to DBpedia and do not evaluate their 538

approaches on any other KGs. 539

Closest to our architecture is MaSP, a multi- 540

task end-to-end learning approach that focuses of 541

dialog-based KGQA setup. MaSP uses a predi- 542

cate classifier which makes transfer across KGs 543

non-trivial. A prominent work (Maheshwari et al., 544

2019) ranks all candidate graph patterns retrieved 545

from the knowledge graph based on the grounded 546

entity. In multi-hop settings, as in MetaQA with 547

3-hop questions, retrieving all possible candidates 548

upto n-hops (for an arbitrary choice of n) and then 549

ranking across all of them is expensive. In con- 550

trast, our work focuses on a generative approach to 551

model query graph patterns. EmbedKGQA (Sax- 552

ena et al., 2020) and GraftNet are two such ap- 553

proaches that directly ranks across entities in the 554

knowledge base to predict an answer, by leverag- 555

ing either KG embeddings from Knowledge Base 556

Completion (KBC); or creating a unified graph 557

from KB and text. However, these approaches do 558

not generalize well to novel relation compositions 559

not seen during training. Finally, it is unclear how 560

to transfer KBC embedding-based approaches such 561

as EmbedKGQA across KGs since the learnt KG 562

embeddings are tightly coupled with the specific 563

KG in question. 564

5 Conclusion 565

In this work, we show that a simple 2-stage archi- 566

tecture which explicitly separates the KG-agnostic 567

semantic parsing stage from the KG-specific inter- 568

action can generalize across a range of datasets and 569

KGs. We evaluated our approach on four KG/QA 570

pairs, obtaining state-of-the-art performance on 571

MetaQA, LC-QuAD 1.0, and SimpleQuestions- 572

Wiki; as well as competitive performance on We- 573

bQSP. We also successfully demonstrate transfer 574

learning across KGs by showing that pre-training 575

the semantic parsing stage on an existing KG/QA- 576

dataset pair can help improve performance in low- 577

resource settings for a new target KG; as well as 578

greatly reduce the number of examples required 579

to achieve state-of-the-art performance. Finally, 580

we show that some popular benchmark datasets do 581

not evaluate generalization to unseen combinations 582

of seen relations (compositionality), an important 583

requirement for a question answering system. 584
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