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ABSTRACT

Log files from computer systems are ubiquitous and record events, messages, or
transactions. Logs are rich containers of data because they can store a sequence
of structured textual and numerical data. Many sequential forms of data including
natural languages and temporal signals can be represented as logs.
We propose to represent logs at a few levels of abstraction including field level,
log level, and log sequence level. The representation for each level can be com-
puted from the previous level. These representations are in vector format and
serve as interfaces to downstream applications. We use a version of Transformer
Networks (TNs) to encode numerical and textual information that is suitable for
log embeddings. We show how a number of log processing applications can be
readily solved with our representation.

1 INTRODUCTION

A wide range of computer systems record their events as logs. Log-generating systems include
telecommunication systems, data centers, software applications, operating systems, sensors, banks,
markets, and block-chains ( Barik et al. (2016); Brandt et al. (2020); Busany & Maoz (2016); Cu-
curull & Puiggalı́ (2016); Sutton & Samavi (2017)). In these systems, transactions, events, actions,
communications, and errors messages are documented as log entries. Log entries are stored as plain
text, so they can store any textual or numerical information. A variety of different data types could
be viewed as logs, including: natural languages, temporal signals, and even DNA sequences.

All transactions in a Turing machine can be stored as logs. Therefore, logs are theoretically strong
enough that they can reproduce the state of any computer system. In some systems log entries
are standard and complete. For example, in financial transactions and some database management
systems, one can recreate the state of the system by applying a set of rules on the transactions
( Mohan et al. (1992)). In other systems like telecommunication networks log entries are ad hoc,
unstructured, and diverse. Therefore, the state of the system cannot be recreated with a set of rules.
We will use layered and learnt vector embeddings to represent the state of the system and use them
for downstream diagnostic applications including: anomaly detection, classification, causal analysis
and search.

Example: A snapshot of logs from a telecommunication product installed in a cell tower is shown
in Figure 1. The first entry of the log is a trigger for subsequent action of the unit to be restarted.
Each log entry will be embedded in a vector space and the sequence of log entrys will have their
own vector representation. Timestamp information provides crucial clues about the nature of the
event(s).

We summarize our contributions as:

1. We propose levels of abstraction for log representation, in order to standardize and simplify
log processing applications.

2. We present a Transformer-based model to embed log sequences in a vector space.

3. We show how log processing applications can be simplified using these log representations.
We validate our approach on a real data set obtained from a leading telecommunications
vendor. The vocabulary of this data set is twenty times bigger than what is currently avail-
able in open source and often used in other research papers1

1After suitable anonymization, we plan to release the data set to the research community.

1



Under review as a conference paper at ICLR 2021

Figure 1: Sample telecommunication log file including three log entries. Telecommunication logs
are complex and diverse because they involve various devices and software.

1.1 RELATED WORK

Much of the machine learning oriented work in log analysis has focused primarily on the outlier or
anomaly detection problem ( Du et al. (2017); Meng et al. (2019); Du et al. (2019a;b); Yuan et al.
(2020); Nedelkoski et al. (2020); Chalapathy & Chawla (2019)).

The prototypical work is DeepLog which, in a fashion analogous to natural language processing,
models logs as sequences from a restricted vocabulary following certain patterns and rules ( Du
et al. (2017)). An LSTM model M of log executions is inferred from a database of log sequences.
To determine if a given element wt+1 in a log sequence is normal or anomalous, DeepLog outputs
the probability distribution PM (·|w1:t) where w1:t = 〈w1, w2, . . . , wt〉. If the actual token wt+1

is ranked high in PM (wt+1|w1:t) then it is deemed as a normal event otherwise it is flagged as
anomalous. Several variations on the above approach have been proposed. For example, (Yuan et al.
(2020)) proposed ADA (Adaptive Deep Log Anomaly Detector) that exploit online deep learning
Sahoo et al. (2018) methodology to build on the fly unsupervised adaptive deep log anomaly detector
with LSTM. The new models are trained on new log samples.

More recently, Nedelkoski et al. (2020) proposed Logsy, a classification-based method to learn ef-
fective vector representations of log entries for downstream tasks like anomaly detection. The core
idea of the proposed approach is to make use of the easily accessible auxiliary data to supplement
the positive (normal) only target training data samples. The auxiliary logs that constitute anomalous
data samples can be obtained from the internet. The intuition behind such an approach to anomaly
detection is that the auxiliary dataset is sufficiently informative to enhance the representation of
the normal and abnormal data, yet diverse enough to regularize against over-fitting and improve
generalization.

2 SYSTEM LOGS AND NATURAL LANGUAGE MODELS

Log processing models often adopt natural language processing techniques, because logs have sev-
eral similarities to natural language: (i) Both logs and a natural language consist of a sequence
of tokens and (ii) Context matters in both data streams and both models need temporal memory,
(iii) Both application scenarios have large datasets and (iv) Annotation is a limiting factor in both
settings. This is why log processing literature often reuses natural language approaches.

However there are several differences between system logs and natural languages that need to be
brought to the fore: (i) There is temporal information associated with each log entry which can
be exploited to give insights about the underlying processes that are generating the logs (ii) Each
log entry itself is a composite record of different pieces of information unlike a word in a sentence
which is nearly atomic, (iii) Log files often aggregate event logs from multiple threads, processes
and devices. Therefore the inference model needs to identify the relevant context among all threads.

2.1 SEQ-TO-SEQ MODELS

Transformer Networks (TNs) have become the de-facto choice for sequence-to-sequence model-
ing( Vaswani et al. (2017)). Based on the concept of self-attention, TNs overcome some of the key
limitations of families of Recursive Neural Networks (RNN) including LSTMs and GRUs ( Graves
& Schmidhuber (2005)). Transformers Networks can model long range dependencies with constant
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(O(1)) number of iterations overcoming the RNN limitation where modeling dependencies with dis-
tance n takes O(n) iterations. Furthermore since TNs are intrinsically permutation invariant, they
can process elements of a log sequence in parallel. This last property is particularly useful in log
analysis, perhaps more than NLP, due to the observation made above that log files aggregate event
information from different processes. Before we formally describe our extension of Transformer
Networks, we introduce the different levels of abstractions suitable for modeling log sequences.

3 LEVELS OF ABSTRACTION

In order to standardize and simplify machine learning applications on logs, we propose five levels
of abstraction for log representation. Each level of abstraction can be computed from the previous
levels.

1- Log sequence: A log sequence is a sequence of strings l1, l2, . . . , ln. We refer to each li as a log
entry. Each log entry itself is a sequence of symbols (characters) from an alphabet Γ.

li = (c1, . . . , cmi
) where ∀j, cj ∈ Γ (1)

Log sequences often contain certain parameters including timestamps, IDs and numerical values. In
order to access these parameters, we often need to parse logs.

2- Parsed log: Whether a log entry has a simple or complex grammar, a log parser will convert
it into a set of key-value pairs. Keys represent attributes and values represent the value for each
attribute. A parsed log entry can be written as:

{(k1, v1), . . . , (kmi
, vmi

)|kj ∈ K, vj ∈ V }. (2)

where K is the set of keys (attributes) and V is the set of possible values. Depending on the key, the
value could be textual, numerical or categorical. A wide range of log parsers are available and have
been evaluated (He et al. (2016); Zhu et al. (2019); He et al. (2017)).

3- Field Embedding: A field embedding is a vector representation for a key-value pair. A field
embedding function ρ maps a key-value pair into a Df -dimensional vector:

ρ : K × V −→ RD. (3)

Df denotes the dimensionality of field representation. A field embedding function could either be
learned or static. They choice of function could depend on key and data type. Since the set of
categorical values is often small, categorical values could be stored in a vector quantized format.
Similar to many NLP techniques, a look-up table can store vector representations.

4- Log Embedding: A log embedding is a vector representation for a single log entry. A log
embedding function φ computes a log representation given its field embeddings:

φ : RDf × · · · × RDf −→ RDl . (4)

Dl denotes the dimensionality of the log embedding. Log embedding could be calculated from field
embeddings using DeepSet (Zaheer et al. (2017)) or other means. This log embedding can be used
for classification, regression, nearest neighbour search or other algebraic operations.

5- Sequence Embedding: A Sequence embedding is a vector representation for a log sequence.
This sequence could either be a whole log file, a block of logs, or a sliding window. A sequence
embedding θ function inputs a sequence of log embeddings and outputs a single embedding for the
whole sequence:

θ : RDl × · · · × RDl −→ RDs . (5)

Dl denotes the dimensionality of log embedding. The function θ could be implemented using RNNs
or Transformers or other means. We will show that this sequence representation can be used for
several downstream operations on log sequences. Some sequence embedding models such as Trans-
formers come with a language model. We show that this language model is also useful in log
processing applications.
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Figure 2: Unsupervised anomaly detection Left: t-SNE embedding of our vector representations
for log sequences in HDFS dataset. Yellow points mark normal log sequences and blue points
mark abnormal log sequences (based on human expert annotation). The red plus sign marks the
center of the distribution. Note that abnormal sequences are mostly clustered and are far from the
center. Center: K-means clustering of our vector representations. Clusters are sorted decreasingly
according to their size. Note that abnormal examples are concentrated in the smallest clusters.
Right: After we sort clusters, we consider cluster number as anomaly score. Here is the P-R curve
for predicting anomaies. Note that every step in this pipeline is unsupervised.

4 TRANSFORMER NETWORK

We generalize TNs to incorporate the notion of time which is typically available in log data. We
use the self-supervised task of masked language model (MLM) to train the network and obtain
embeddings. Recall in the MLM task we are given a set of sequences {si = 〈l1l2 . . . lni〉|i =
1, . . . ,m}. For every sequence sj we randomly select a location rj in the sequence and then predict
P (lrj |s−rj )( Devlin et al. (2018)). While the MLM task by itself may not be particularly useful
applications, the embeddings learnt can be fine-tuned to other applications.

Recall transformer networks use the notion of attention to directly estimate the influence of the input
context for generating the output token. Attention generalize the notion of the SELECT operation
in database query languages. For example give a query q and a table of key-value pairs 〈ki, vi〉,
attention is defined

∑
i sim(q, ki)vi. The sum is over the input sequence length and sim is the

softmaxed similarity between the embedding of the query q and the keys ki.

4.1 TIME ENCODINGS

Given a log sequence 〈(l1, t1), . . . , (ln, tn)〉 where li is the token and ti is the associated timestamp,
we associate a cumulative time CT (k) =

∑
j≤k(tj − tj−1). The Time Encoding (TE) for token

position i and dimension δ = 1, . . . , d is given by

TE(i, δ) =

sin( CT (i)

100002δ′/d
) if δ = 2δ′

cos( CT (i)

100002δ′/d
) if δ = 2δ′ + 1

Several deep learning architectures are developed to predict masked tokens. Since language models
need to have memory and need to handle sequences of unknown length, they have traditionally relied
on recurrent models and their variants. TNs have shown several advantages over RNNs and their
variants and are now the architecture of choice in many NLP tasks.

We performed an ablation study to evaluate the effect of time encoding (figure 3 left). We trained
one log language model that ignores timestamps and one language model that uses timestamps. The
language model that is trained with time, performs significantly better than the language model that
does not use time. We evaluated this using masked language modeling. We mask a log and try to
predict it using nearby words. Our experiments also show that when the timestamp of a masked log
is revealed, we can predict the masked word with a significantly smaller error. This confirm that the
timestamp is helpful in predicting masked logs.
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Figure 3: Left Masked language modeling loss (cross entropy) during test. Left bar shows test loss
using a model that is not trained to use time. Middle bar and right bar show test loss on a model that
is trained using timestamp. In the middle bar, timestamp for the masked word is also masked. In the
right bar, timestamp for the masked bar is revealed. Right: Comparison of different techniques oh
HDFS dataset. Our model significantly outperform previous models.

5 APPLICATIONS AND EMPIRICAL RESULTS

As soon as a log sequence is embedded into a vector space, many log processing tasks can be ex-
pressed as algebraic operations within the vector space. These tasks include: Anomaly detection,
Predictive analysis, Causal analysis, Log search, Diagnosis Recommender system and Log genera-
tion/synthesis. In this section we quantitatively evaluate the application of the obtained embeddings
for these downstream tasks.

5.1 DATASETS

We have used two datasets for our experiments: HDFS and a proprietary data from a leading
telecommunications vendor.

HDFS Log Data: This is an open-source dataset consisting of logs from Hadoop jobs on 200 node
Amazon EC2 cluster. There are over 11 million log entrys and around 2.9% are anomalous as labeled
by domain experts ( Du et al. (2017)). Tokenization resulted in a vocabulary of size 29.

Radio Data: We obtained a real but proprietary data set from a leading telecommunications vendor.
The data consists of logs from a product installed in a cell tower for a 4G network. The data set
consists of 4783 distinct log files consisting of 1464010 log entries and was collected over a period
of two months. This dataset consists of about 860 different log templates and about 180 different
software programs.

5.2 SOFTWARE AND ARCHITECTURE

We extended the HuggingFace transformer library in pytorch to incorporate time embeddings. We
used a simple two layer transformer network, train over ten epochs with batch size of sixteen. In
terms of our proposed levels of abstraction (Section 3), we vector quantize log fields (Layer 3) and
feed them into the transformer network which constitute Layer 4 and 5 of our proposed abstraction.

5.3 ANOMALY DETECTION

Identifying Log Anomalies is crucial for system administration because they could signal errors,
system failures, or fraud. Log embedding simplifies the process of anomaly detection. Log embed-
dings simplify anomaly detection both in unsupervised and supervised settings.

Unsupervised: Self-supervised techniques are useful when manual supervision is unavailable.
Since our embedding function is learned using a self-supervised model, an application that uses
our embedding, automatically benefits from self-supervision (in a transfer learning scheme).

We evaluate our unsupervised anomaly detection technique on HDFS dataset. Given a set of log
sequences, We first compute vector representations for each sequence. Then we cluster the examples
using k-means. We sort clusters decreasingly according to their size. Since anomalous logs are
clustered and rare, they tend to fall into the smallest clusters. We assign an identical anomaly score
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Figure 4: Predicting whether or not an event type will appear within the next t seconds from now.
Left: Precision-Recall curves for predicting whether an event types will appear within the next
t = 10 seconds. Note that each of the six different event types has a distinct P-R curve. For example,
event types a,b,c are relatively common but harder to predict than d and e. Middle: Comparison
of P-R curves for all event types across different prediction time-frames t. Please note that since
longer time-frames are more likely to have an event. Thus, longer time-frames have higher chance
baselines. We re-weight test examples to normalize positive-negative ratio and chance baseline.
Note that by widening time-scale precision drops. Right: Average precision for predicting events
at different time-frames t. Normalized AP generally decreases by widening time-frame. In Non-
normalized AP higher time-frames have higher chance baselines. The increase at t ≥ 40 seconds is
because many processes go through a repeatable shut-down process.

to all points in the same cluster. Larger clusters receive smaller anomaly score and smaller clusters
receive larger anomaly score. We evaluate this supervised method in figure 2.

Supervised: If anomaly annotations are available, we train a supervised classifier to predict anoma-
lies. Depending on the granularity of annotation (sequence level, time window level, or log entry
level), we can extract log embeddings with the same level of granularity. Embeddings could be
either context-free or context-dependent depending of the extent of log window. If several modes
of anomaly are identified and annotated, classifiers can output scores/probabilities associated with
each mode.

We evaluated our supervised anomaly detection model on the HDFS log dataset. Anomaly annota-
tions are given at log sequence level and techniques are compared based on sequence level predic-
tion. In HDFS dataset, sequences are marked with block_id. Since anomalous logs are highly
clustered, we use SVM with RBF kernel for the classifier. Figure 3 compares our performance with
standard baselines on these datasets including PCA, Invariant Mining by Lou et al. (2010), N-grams,
and Deeplog by Du et al. (2017).

5.4 PREDICTIVE ANALYSIS

Using log embedding we can predict future events including event logs, alarms, transactions, and
also their timing and ordering. In figure 4 we demonstrate an example where we predict whether a
certain log message is going to appear within the next t seconds.

We first extract embeddings from a sliding window of 64 log entries. Then we assign a target labels
to each window. In this example, a target label is a list of log entries that will appear within the
next t seconds after the end of the window. We then train a classifier that given the embedding of
a log window, tries to predict the list of possible log entries that would appear within the next t
seconds. Our classifier predicts a probability score for the appearance of each possible log entry
within the next t seconds. A log entry could mark some error, or the beginning or end of a process.
Our experiments show that we can reliably predict log entries that will appear within the next few
seconds.

This predictive scheme is generic. We can use a similar scheme to predict any event. For example,
we can predict whether a system request will fail, how long a transaction will take to complete, what
we expect an API to return, or whether a user is going to complete a purchase.
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Figure 5: For better readability we have visualized each log template with a letter. Left: Given a
query log (highlighted blue), we use a language model to predict its probability twice: Once includ-
ing and once excluding lj . in both cases, log entries prior to lj are included. Right: Visualization
of a few examples. Query log is highlighted blue. Previous logs are highlighted green according to
their causal score C(lj , li). This visualization helps identify logs that help predict the query log the
most.

5.5 CAUSAL ANALYSIS

Causal analysis helps track the cause of failures and events. True causality requires controlled
experimentation which is often impractical for logs. We use a proxy formulation for causality based
on Granger causality (Granger (1969)). We measures the ability to predict a future log using a
previous log. Given a log entry lj at position j and a log entry li at position i where j < i, we
measure how well the knowledge of lj helps us predict li. We define C(lj , li) as:

C(lj , li) = log

(
P (li|lj , lj−1, lj−2, . . .)
P (li|lj−1, lj−2, . . .)

)
(6)

Given a log entry li, we can measure the effect of each of the previous log entries lj , j < i on
our prediction of P (li). We use a three-layer deep neural network to predict the probability P (li).
We found this model to be more accurate than our standard language model, because transformer
language models are not explicitly trained to predict several locations in the future.

We did not quantitatively evaluate this causal analysis because no ground-truth is available. How-
ever, we illustrate results in figure 5. Depending on use case, variations of this causal analysis can
be used. For example, the causal effect of one log field on another log field can be calculated. Or
when two parallel log files are generated, the effect of one on another can be calculated.

5.6 LOG SEARCH

Some investigative/diagnostic applications involve log search. For example, a debugger could ob-
serve an error pattern and needs to find similar patterns in history; An investigator may need to
find whether a certain user has followed a certain user journey; Or a financial analyst may need to
identify the frequency of a certain pattern.

Nearest neighbor search in the log embedding space can be used for search. Given a log history, we
extract log embedding from a sliding window of logs. Then we store the vector representations of
each window in a data structure. Given a window of log entries as query, we first compute the log
embedding and then search for its nearest neighbors using the data structure.

The choice of data structure affects indexing/retrieval time complexity. One could use a plain array,
KD-Tree, LSH-based kNN search or an inverted index. A plain array can handle thousands of log
entries, KD-Trees can handle millions of log entries, and inverted index can handle billions of log
entries.

Evaluating of log search performance is not trivial because there is no labeled dataset. However, the
closest evaluation criteria is based on edit distance (Levenshtein distance). Edit distance is not ideal
because it cannot handle time and continuous parameters. Furthermore, each practical application
has its unique criteria that is not necessarily identical to edit distance.

Given all these limitations, we chose edit distance because it is concrete and has applications se-
quence search in NLP and Bioinformatics. The best algorithms for Exact search based on edit dis-
tance requires O(L2n) time complexity where L is the length of log sequences and n is the number
of log windows in the database.

Computing euclidean distance to all examples in log embedding space has a complexity of O(dn),
where d is the dimensionality of vector embedding. This complexity is more favorable than that of
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Figure 6: Left: A sample query window, top-5 matches based on our embedding and top-5 matches
based on edit distance. We have replaced each log template with a unique letter and a unique color.
Each line represents a sequence of length 64. Note that our top matches are more sensitive to
displacement than matches from edit distance. Right: The performance of our embedding-based
search, assuming that edit distance is ground truth. Here top-k identifies how many top edit distance
matches are considered positive out of 100,000 sample log windows. We have experimented with
three values of k and three log window sizes. Note that even though our embedding is not trained to
mimic edit distance, it gives a useful approximation to edit distance.

edit distance. Moreover, euclidean distance is embarrassingly parallelizable and can be sped up on
GPUs. However, edit distance algorithms are sequential and do not speed up as well on GPUs. In
our evaluation experiment we use KD-tree to speed up nearest-neighbour search. To trade-off speed
with accuracy, we retrieve five time the number of query points and pick the closest one fifth.

We ran our experiment on a dataset of 100,000 log windows. We tried log windows of length 64, 32,
and 16. Given a query sequence, we take the top 10, 100 and 1000 closest sequences (based on edit
distance) as positive examples and the rest as negative examples (in three different experiments). For
each experiments, we we calculate average precision for 100 queries and report the mean Average
Precision. Figure 6 illustrates our experiments.

5.7 DIAGNOSIS AND RESOLUTION RECOMMENDER SYSTEM

Many IT services providers, serve thousands of customers. These companies have a ticketing system
where customers can raise their issues. These ticketing systems have a history of diagnosis and
solutions to each issue. Given a ticket, A recommender system can search for the most similar
issues in log history and present a statistic of what actions solved similar tickets.

5.8 LOG SYNTHESIS AND TEST GENERATION

Auto-regressive transformer models such as GPT-3 have been very successful in natural language
generation (Brown et al. (2020)). Since TNs can handle complex relationships between tokens, they
are suitable for log synthesis and test generation as well as language generation. Given a sequence of
logs, a log language model can predict a probability distribution over the next log entry and sample
from the distribution. This process can generate long and diverse log sequences. This process can
be used to generate novel test cases for software testing.

6 CONCLUSION

We have presented a unified framework for carrying out several log diagnostic tasks using a pipeline
of layered vector embeddings obtained by training the masked language task using the transformer
architecture. Several unique aspects of log data, specifically time stamps, are incorporated into the
transformer architecture. Armed with vector representations we have applied them to several down-
stream tasks including anomaly detection, log search and root cause analysis. We have applied our
results on a real data set obtained from a leading telecommunications vendor. Our results strongly
indicate that computer system diagnostics can be greatly enhanced using embeddings derived from
from modern sequence to sequence models.
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