
Under review as a conference paper at ICLR 2023

MEMORY OF UNIMAGINABLE OUTCOMES IN EXPERI-
ENCE REPLAY

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (MBRL) applies a single-shot dynamics1

model to imagined actions to select those with best expected outcome. The dy-2

namics model is an unfaithful representation of the environment physics, and its3

capacity to predict the outcome of a future action varies as it is trained iteratively.4

An experience replay buffer collects the outcomes of all actions executed in the5

environment and is used to iteratively train the dynamics model. With growing6

experience, it is expected that the model becomes more accurate at predicting the7

outcome and expected reward of imagined actions. However, training times and8

memory requirements drastically increase with the growing collection of experi-9

ences. Indeed, it would be preferable to retain only those experiences that could10

not be anticipated by the model while interacting with the environment. We argue11

that doing so results in a lean replay buffer with diverse experiences that corre-12

spond directly to the model’s predictive weaknesses at a given point in time.13

We propose strategies for: i) determining reliable predictions of the dynamics14

model with respect to the imagined actions, ii) retaining only the unimaginable15

experiences in the replay buffer, and iii) training further only when sufficient novel16

experience has been acquired. We show that these contributions lead to lower17

training times, drastic reduction of the replay buffer size, fewer updates to the18

dynamics model and reduction of catastrophic forgetting. All of which enable the19

effective implementation of continual-learning agents using MBRL.20

1 INTRODUCTION21

Model-Based Reinforcement Learning (MBRL) is attractive because it tends to have a lower sample22

complexity compared to model-free algorithms like Soft Actor Critic (SAC) (Haarnoja et al. (2018)).23

MBRL agents function by building a model of the environment in order to predict trajectories of fu-24

ture states based off of imagined actions. An MBRL agent maintains an extensive history of its25

observations, its actions in response to observations, the resulting reward, and new observation in26

an experience replay buffer. The information stored in the replay buffer is used to train a single-shot27

dynamics model that iteratively predicts the outcomes of imagined actions into a trajectory of future28

states. At each time step, the agent executes only the first action in the trajectory, and then the model29

re-imagines a new trajectory given the result of this action (Nagabandi et al. (2018)). Yet, many30

real-world tasks consist in sequences of subtasks of arbitrary length accruing repetitive experiences,31

for example driving over a long straight and then taking a corner. Capturing the complete dynamics32

here requires longer sessions of continual learning. (Xie & Finn (2021))33

Optimization of the experience replay methodology is an open problem. Choice of size and mainte-34

nance strategy for the replay buffer both have considerable impact on asymptotic performance and35

training stability (Zhang & Sutton (2017)). From a resource perspective, the size and maintenance36

strategy of the replay buffer pose major concerns for longer learning sessions.37

The issue of overfitting is also a concern when accumulating similar or repetitive states. The buffer38

can become inundated with redundant information while consequently under-representing other im-39

portant states. Indefinite training on redundant data can result in an inability to generalize to, or40

remember, less common states. Conversely, too small a buffer will be unlikely to retain sufficient41

relevant experience into the future. Ideally, a buffer’s size would be the exact size needed to cap-42

ture sufficient detail for all relevant states (Zhang & Sutton (2017)). Note that knowing a priori all43

relevant states is unfeasible without extensive exploration.44

1



Under review as a conference paper at ICLR 2023

We argue that these problems can be subverted by employing a strategy that avoids retaining expe-45

riences that the model already has sufficiently mastered. Humans seem to perform known actions46

almost unconsciously (e.g., walking) but they reflect on actions that lead to unanticipated events47

(e.g. walking over seemingly solid ice and falling through). Such is our inspiration to attempt to48

curate the replay buffer based on whether the experiences are predictable for the model.49

Through this work, we propose techniques to capture both common and sporadic experiences with50

sufficient detail for prediction in longer learning sessions. The approach comprises strategies for:51

i) determining reliable predictions of the dynamics model with respect to the imagined actions, ii)52

retaining only the unimaginable experiences in the replay buffer, iii) training further only when53

sufficient novel experience has been acquired, and iv) reducing the effects of catastrophic forget-54

ting. These strategies enable a model to self-manage both its buffer size and its decisions to train,55

drastically reducing the wall-time needed to converge. These are critical improvements toward the56

implementation of effective and stable continual-learning agents.57

Our contributions can be summarized as follows: i) contributions towards the applicability of MBRL58

in continual learning settings, ii) a method to keep the replay buffer size to a minimum without59

sacrificing performance, iii) a method that reduces the training time. These contributions result in60

keeping only useful information in a balanced replay buffer even during longer learning sessions.61

2 RELATED WORK62

Compared to MFRL, MBRL tends to be more sample-efficient (Deisenroth et al. (2013)) at a cost63

of reduced performance. Recent work by Nagabandi et al. (2018) showed that neural networks effi-64

ciently reduce sample complexity for problems with high-dimensional non-linear dynamics. MBRL65

approaches need to induce potential actions which will be evaluated with a dynamics model to66

choose those with best reward. Random shooting methods artificially generate large number of ac-67

tions (Rao (2010)) and model predictive control (MPC) can be used to select actions (Camacho et al.68

(2004)). Neural networks (NNs) are a suitable alternative to families of equations used to model the69

environment dynamics in MBRL (Williams et al. (2017)). But, overconfident incorrect predictions,70

which are common in DNNs, can be harmful. Thus, quantifying predictive uncertainty, a weak-71

ness in standard NN, becomes crucial. Ensembles of probabilistic NNs proved a good alternative72

to Bayesian NNs in determining predictive uncertainty (Lakshminarayanan et al. (2016)). Further-73

more, an extensive analysis about the types of model that better estimate uncertainty in the MBRL74

setting favored ensembles of probabilistic NNs (Chua et al. (2018)). The authors identified two75

types of uncertainty: aleatoric (inherent to the process) and epistemic (resulting from datasets with76

too few data points). Combining uncertainty aware probabilistic ensembles in the trajectory sam-77

pling of the MPC with a cross entropy controller the authors demonstrated asymptotic performance78

comparable to SAC but with sample efficient convergence. The MPC, however, is still computation-79

ally expensive (Chua et al. (2018); Zhu et al. (2020)). Quantification of predictive uncertainty serves80

as a notion of confidence in an imagined trajectory. Remonda et al. (2021), used this concept to pre-81

vent unnecessary recalculation, effectively using sequences of actions the model is confident in and82

reducing computations. Our approach also seeks to determine reliable predictions of the dynamics83

model with respect to the imagined actions, but as a basis to manage growth of the experience replay.84

Use of Experience Replay in MBRL: While an uncertainty aware dynamics model helps to mit-85

igate the risks of prediction overconfidence, other challenges remain. Another considerable issue86

when training an MBRL agent is the shifting of the state distribution as the model trains. Experi-87

ence replay was introduced by Lin (1992), and has been further improved upon. Typically in RL,88

transitions are sampled uniformly from the replay buffer at each step. Prioritized experience replay89

(PER) (Schaul et al. (2016)) attempts to make learning more efficient by sampling more frequently90

transitions that are more relevant for learning. PER improves how the model samples experiences91

from the already-filled replay buffer, but it does not address how the replay buffer is filled in the92

first place. In addition, neither work addresses the importance of the size of the replay buffer as a93

hyperparameter (Zhang & Sutton (2017)). Our method attempts to balance the replay buffer by only94

adding experiences that should improve the future prediction capacity and keeps the training time95

bounded to a minimum.96

Task Agnostic Continual Learning: The context of our work originates in tasks consisting in com-97

binations of possibly repetitive subtasks of arbitrary length. In the terminology of Normandin et al.98

(2021), we aim for continuous task-agnostic continual reinforcement learning. Meaning that the99

2



Under review as a conference paper at ICLR 2023

task boundaries are not observed and transitions may occur gradually (Zeno et al. (2021)). In our100

case, the task latent variable is not observed and the model has no explicit information about task101

transitions. In such context, a continual learner can be seen as an autonomous agent learning over an102

endless stream of tasks, where the agent has to: i) continually adapt in a non-stationary environment,103

ii) retain memories which are useful, iii) manage compute and memory resources over a long period104

of time ( Khetarpal et al. (2020), Thrun (1994)). Our proposed strategies satisfy these requirements.105

Matiisen et al. (2020) address the issue of retaining useful memories in a curriculum learning set-106

ting by training a ”teacher” function that mandates a learning and re-learning schedule for the agent107

assuming that the agent will not frequently revisit old experiences/states and will eventually forget108

them. Ammar et al. (2015) focus on agents that acquire knowledge incrementally by learning mul-109

tiple tasks consecutively over their lifetime. Their approach rapidly learns high performance safe110

control policies based on previously learned knowledge and safety constraints on each task, accu-111

mulating knowledge over multiple consecutive tasks to optimize overall performance. Bou Ammar112

& Taylor (2014) developed a lifelong learner for policy gradient RL. Instead of learning a control113

policy for a task from scratch, they leverage on the agent’s previously learned knowledge. Knowl-114

edge is shared via a latent basis that captures reusable components of the learned policies. The latent115

basis is then updated with newly acquired knowledge. This resulted in an accelerated learning of116

new task and an improvement in the performance of existing models without retraining on their re-117

spective tasks. With our method, we imbue the RL agent with the ability to self-evaluate and decide118

in real-time if it has sufficiently learned the current state. Unlike the method presented by Matiisen119

et al. (2020), our method requires no additional networks to be trained in parallel.120

Xie & Finn (2021) identified two core challenges in the lifelong learning setting: enabling forward121

transfer, i.e. reusing knowledge from previous tasks to improve learning new tasks, and to improve122

backward transfer which can be seen as avoiding catastrophic forgetting (Kirkpatrick et al. (2017)).123

They developed a method that exploits data collected from previous tasks to cumulatively grow the124

agent’s skill-set using importance sampling. Their method requires the agent to know when the125

task changes whereas our method does not have this constrain. Additionally, they focus in forward126

transfer only. Our method addresses both forward and backward transfer.127

3 PRELIMINARIES128

At each time t, the agent is at a state st ∈ S, executes an action at ∈ A and receives from129

the environment a reward rt = r(st, at) and a state st+1 according to some environment transi-130

tion function f : S × A → S. RL consists in training a policy towards maximizing the accu-131

mulated reward obtained from the environment. The goal is to maximize the sum of discounted132

rewards
∑∞

i=t γ
(i−t)r(si, ai), where γ ∈ [0, 1]. Instead, given a current state st, MBRL artifi-133

cially generates a huge amount of potential future actions, for instance using random shooting ( Rao134

(2010)) or cross entropy( Chua et al. (2018)). Clarification of these methods is beyond the scope135

of this paper; we defer the interested reader to the bibliography. MBRL attempts to learn a dis-136

crete time dynamics model f̂ = (st, at) to predict the future state ŝt+∆t
of executing action at137

at state st. To reach a state into the future, the dynamics model iteratively evaluates sequences of138

actions, at:t+H = (at, . . . , at+H−1) over a longer horizon H , to maximize their discounted reward139 ∑t+H−1
i=t γ(i−t)r(si, ai). These sequences of actions with predicted outcomes are called imagined140

trajectories. The dynamics model f̂ is an inaccurate representation of the transition function f and141

the future is only partially observable. So, the controller executes only a single action at in the tra-142

jectory before solving the optimization again with the updated state st+1. The process is formalized143

in Algorithm 1. The dynamics model f̂θ is learned with data Denv , collected on the fly. With f̂θ,144

the simulator starts and the controller is called to plan the best trajectory resulting in a∗t:t+H . Only145

the first action of the trajectory a∗t is executed in the environment and the rest is discarded. This is146

repeated for TaskHorizon number of steps. The data collected from the environment is added to147

Denv and f̂θ is trained further. The process repeats for NIterations. Note that generating imag-148

ined trajectories requires subsequent calls to the dynamics model to chain predicted future states149

st+n with future actions up to the task horizon, and so it is only partially parallelizable.150

Dynamics model. We use a probabilistic model to model a probability distribution of next state151

given current state and an action. To be specific, we use a regression model realized using a neural152

network similar to Lakshminarayanan et al. (2016) and Chua et al. (2018). The last layer of the153

3



Under review as a conference paper at ICLR 2023

model outputs parameters of a Gaussian distribution that models the aleatoric uncertainty (the un-154

certainty due to the randomness of the environment). Its parameters are learned together with the155

parameters of the neural network. To model the epistemic uncertainty (the uncertainty of the dy-156

namics model due to generalization errors), we use ensembles with bagging where the members of157

the ensemble are identical and only differ in the initial weight values. Each element of the ensemble158

has as input the current state st and action at and is trained to predict the difference between st and159

st+1, instead of directly predicting the next step. Thus the learning objective for the dynamics model160

becomes, ∆s = st+1 − st. f̂θ outputs the probability distribution of the future state ps(t+1) from161

which we can sample the future step and its confidence ŝ, ŝσ = f̂θ(s, [a]). Where the confidence sσ162

captures both, epistemic and aleatoric uncertainty.163

Algorithm 1 MBRL
InitD with one iteration of a random controller
for Iteration i = 1 to NIterations do

Train f̂ given D
for Time t = 0 to TaskHorizon do

Get a∗
t:t+H from

ComputeOptimalTrajectory(st, f̂)
Execute a∗

t from optimal actions a∗
t:t+H

Record outcome: D ← D ∪
{st, a∗

t , st+1}

Trajectory Generation. Each ensemble element164

outputs the parameters of a normal distribution. To165

generate trajectories, P particles are created from the166

current state, spt = st, which are then propagated by:167

spt+1 ∼ f̂b(s
p
t , at), using a particular bootstrap ele-168

ment b ∈ {1, ..., B}. Chua et al experimented with169

diverse methods to propagate particles through the170

ensemble. The TS∞ method delivered the best re-171

sults. It refers to particles never changing the initial172

bootstrap element. Doing so, results in having both173

uncertainties separated at the end of the trajectory.174

Specifically, aleatoric state variance is the average175

variance of particles of same bootstrap, whilst epis-176

temic state variance is the variance of the average of177

particles of same bootstrap indexes. We use also TS∞.178

Control. To select the best course of action leading to sH , MBRL generates a large number of179

trajectories K and evaluates them in terms of reward. To find the actions that maximize reward, we180

used the cross entropy method (CEM) Botev et al. (2013), an algorithm for solving optimization181

problems based on cross-entropy minimization. CEM gradually changes the sampling distribution of182

the random search so that the rare-event is more likely to occur and estimates a sequence of sampling183

distributions that converges to a distribution with probability mass concentrated in a region of near-184

optimal solutions. Appendix A details the use of CEM to get the optimal sequence of actions a∗t:t+H185

4 TOWARDS CONTINUAL LEARNING186

Applying MBRL to a continual learning setting is a promising venue for research. The dynam-187

ics model could be constantly improving and adapting dynamically to changes in the environment.188

Many real-world tasks can be broken in sequences of subtasks of arbitrary length. Capturing the189

complete dynamics then requires exposure to longer sessions of continual learning. Arbitrarily long190

repetitive tasks lead to increasing redundancy in the experience replay constantly increasing of the191

amount of experience collected. These issues hinder the use of MRBL in continual learning settings.192

What to add to the replay buffer: We posit that it would be preferable to retain only those experi-193

ences that could not be adequately anticipated by the model during each episode in the environment.194

Essentially, we would only like to add to the replay buffer observations for which the model issued195

a poor prediction. On the contrary, we would like to avoid filling the replay buffer or updating the196

model on observations that the model is good at predicting. We contend that these two elements will197

lead eventually to a balanced replay buffer, which will contain only relevant observations. This will198

contribute to the objective of continual learning.199

5 UARF: UNCERTAINTY AWARE REPLAY FILTERING200

Continual learning requires the MBRL agent to adapt in a non-stationary environment, retaining201

memories that are useful whilst avoiding catastrophic forgetting, and it can manage compute and202

memory resources over a long period of time ( Khetarpal et al. (2020)). The proposed method,203

UARF, addresses these issues with a variety of strategies. Algorithm 2 is the main algorithm used to204

select which observations to append in the replay buffer. The optimal actions a∗t:t+H are computed205

4



Under review as a conference paper at ICLR 2023

by the ComputeOptimalTrajectory function (See Appendix A) given the current state of the206

environment st and f̂ . The future trajectory and its uncertainty, p∗r(t+1:t+1+H), is then obtained by207

using a∗t:t+H and st with f̂ . The variable unreliableModel is set to true when the algorithm believes208

the imagined trajectory not to be trustworthy. Depending on its value, calculation of new trajectories209

and additions to the replay buffer will be avoided and therefore computation time and size of the210

replay buffer will be reduced. If unreliableModel is False, the next predicted action is executed in211

the environment. Subsequent actions from a∗t:t+H are executed until the unreliableModel flag is212

set to False or the environment reaches TaskHorizon number of steps. The process is repeated for213

the maximum iterations allowed for the task. After the first action, every time an action a∗t+1:t+H214

is executed trajectory computation is avoided and this new observation is not added to the replay215

buffer on the basis that the model can already predict its outcome. If unreliableModel is True, the216

algorithm calculates a new trajectory and adds the current observation to the replay buffer. Hereby,217

the buffer stores only observations for which the model could not predict (imagine) the outcome.218

Trustworthy imagination (Algorithm 2 L:18-21). The algorithm that assigns a value to219

unreliableModel is named BICHO. BICHO will essentially return True as long as the reward220

projected in the future does not differ significantly with respect to the imagined future reward p∗r221

and the confidence of the model remains high. BICHO is built assuming that if parts of the trajec-222

tory do not vary, their projected reward will be as imagined by the model with some confidence.223

After calculating a trajectory, the distribution of rewards p∗r is calculated for H steps in the future.224

Whereas, at each step of the environment, independent if the recalculation was skipped or not, a225

new trajectory p′r of H steps is projected, starting from state st which is given by the environment226

and using actions a∗t+i in the imagined trajectory. We use the Wasserstein distance (Bellemare et al.227

(2017)) to find how much these two distributions change after each time step in the environment.228

If the change is > β (which is a hyper parameter to tune) then unreliableModel is True. We can229

control how many steps ahead we would like to compare the two distributions. The comparison is230

done for just c steps (< H), which is a hyper parameter to tune. If they differ significantly, then the231

trajectory is unreliable. That is, if the projected reward differs from the imagined one the outcome232

of the actions is uncertain and the trajectory should be recalculated.233

Even for a model that has converged, predicting trajectories of great length is impossible. Recalcu-234

lations inevitably occur at the end of trajectories. Such recalculations do not necessarily represent235

the appearance of unseen information, but rather a limitation of the successful model in a complex236

environment. Hence, we would not want to add them to the buffer. The maximum prediction dis-237

tance (MPD) defines a cutoff for a trajectory, and adjusts the strictness of the filtering mechanism.238

Refer to Appendix E for an extensive analysis.239

Updates on novel information (Algorithm 2 L:24-25) over-training the dynamics model leads to240

instabilities due to overfitting. This problem is exacerbated when the replay buffer contains just the241

minimum essential data. If we only filter the replay buffer, continuously updating the parameters of242

the dynamics model will eventually lead to overfitting. Instead, our method updates the parameters243

of the dynamics model only when there is sufficient new information in the replay buffer. We train244

the dynamics model only when new data exceeds the new data threshold hyper parameter. For245

our experiments we set this variable to 0.01 training only when 1% of the experiences in the replay246

buffer are new since the last update of the parameters of the dynamics model.247

6 EXPERIMENTS248

The primary purpose of the proposed algorithm is for the resulting replay buffer to retain only249

relevant, non-redundant, experiences that will be useful for learning the task. We envision applying250

this method to tasks that require longer training sessions and in continual learning settings.251

We designed three experimental procedures. The first experiment seeks to establish that our method252

indeed retains a reduced buffer sufficient for achieving expected rewards when learning a single253

task throughout long training sessions. To this end, we evaluate the proposed method in benchmark254

environments for higher number of episodes than in Chua et al. (2018). The second experiment255

seeks to prove that UARF retains a small number of complementary experiences compared to non-256

filtering baseline algorithms when training on a sequence of different but related tasks in a continual257

learning setting. We evaluate our method in a combined task including unseen subtasks. The third258

experiment seeks to show how UARF addresses the effects of catastrophic forgetting.259

5



Under review as a conference paper at ICLR 2023

Algorithm 2 UARF
1: Initialize dynamics model f̂ parameters; Initialize replay bufferD with an iteration of a random controller
2: unreliableModel = True and trainModel = False
3: for Iteration l = 1 to NIterations do
4: if trainModel then Train f̂ given D
5: for Time t = 0 to TaskHorizon do
6: if unreliableModel then
7: Get a∗

t:t+H from ComputeOptimalTrajectory (st, f̂)

8: Get p∗r(t+1:t+H) given (st, f̂ , a
∗
t:t+H) // Use f̂ to predict H rewards ahead

9: i = 0
10: else i += 1
11: Get first action at from available optimal actions a∗

t:t+H

12: Execute in the environment at to obtain st+1 and rt+1

13: Discard first action and keep the rest a∗
t = a∗

t+1:t+H

14: Get p′r(t+i+1:t+H) given (st, f̂ , a∗
t+i:t+H )

15: // Trustworthy imagination
16: L = min(H, c - i) // Calculate the number steps ahead to consider
17: r error = WassersteinDistance(p′r(t+i+1:t+i+L)||p∗r(t+1:t+L))
18: if r error > β then unreliableModel = TRUE else unreliableModel = False
19: if unreliableModel then
20: Record outcome: D ← D ∪ {st, at, st+1}
21: // Updates on novel information
22: if new data in D > new data threshold ∗ length(D) then
23: trainModel = True

Figure 1: Performance of algorithms (BL: green, BICHO: red, UARF: blue) in (top to bottom)
Cartpole, Pusher, Reacher, and Masspoint sector1. From left to right column: episode reward, time
per episode (s), cumulative number of observations stored in the replay buffer, new experiences
added to the buffer per episode. The rightmost plots illustrate with dashed vertical lines episodes
that resulted in UARF updating its model parameters.

6.1 E1– CONTINUING TO LEARN A TASK AFTER CONVERGENCE260

This experiment is intended to show that our method retains sufficient experience to solve the task261

while curtailing buffer growth and unnecessary model updates. We intend to prove that this results in262

6



Under review as a conference paper at ICLR 2023

a dramatic reduction in the replay buffer size (which is free of any artificially-imposed limits) while263

retaining strong performance (per-episode reward) and reducing per-episode wall clock run-time.264

Figure 2: Per-step reward and cumulative steps
added to the replay buffer for episodes 1 (left), 4
(middle), and 99 (right) in the Masspoint Sector
1 maneuver. These plots show that UARF adds
fewer redundant experiences to the replay buffer
as the model converges.

We use the MuJoCo (Todorov et al. (2012))265

physics engine and environments Cartpole266

(CP), Pusher (PU) and Reacher (RE) with task267

length (TaskH) and trajectory horizon (H)268

chosen for a valid comparison with Chua et al.269

(2018). With similar training scenarios, Re-270

monda et al. (2021) trained CP for 30 episodes,271

PU and RE for 150. Instead, we trained each272

for 100 episodes. We also included a modified273

version of the Masspoint environment (Thanan-274

jeyan et al. (2020)) (also used in E2). Mass-275

point is a navigation task in which a point mass276

navigates to a given goal. It is a 5-dimensional277

(x, y, vx, vy, ρ) state domain. Where (x, y) is278

the position of the agent, (vx, vy) its speed, and279

ρ is the distance between the agent and the clos-280

est point to a given path. The agent can exert force in cardinal directions and experiences drag coef-281

ficient ψ. We use ψ = 0.6 and included noise in the starting position. We modified the goal of the282

agent so that it must move as fast as possible without deviating from a given path. Each task and its283

complexity is then determined by the geometry of the path to be followed. The reward is calculated284

as r = V (1 − |ρ|). Where V is the speed of the agent and ρ the distance to the task’s path. This285

experiment used sector1 (Figure in Appendix B) and Hyperparameters shown in Appendix F.286

We assess performance in terms of per-episode reward, per-episode wall time, and replay buffer size.287

We evaluate three algorithms: baseline (BL) is a conventional MBRL (PETS Chua et al. (2018)),288

BICHO uses functionality to avoid unnecessary computation, and UARF. BICHO and UARF used289

the same values of β and look-ahead, estimated empirically to produce a reasonable balance in290

terms of per-episode reward and percentage of recalculation. All experiments use random seeds and291

randomized initial conditions for each run, and ran in workstations with Nvidia 3080TI GPUs.292

Results: Fig 1 top shows the results obtained in CP. Fig 1-mid-right shows the size of the replay293

buffer during training. We observe that while the replay buffer keeps grows in the case of BL and294

BICHO, the size of the buffer derived from UARF is comparably flat: the buffer resulting from295

UARF is 10x smaller. The training time per episode (Fig 1 mid-left) remains nearly constant and296

lower for UARF. BL takes substantially longer than both BICHO and UARF to complete an episode.297

The wall time of both the BL and BICHO exhibit linear growth. It takes longer to update the model298

as the replay buffer grows linearly. Fig 1-left shows comparable reward per episode for all methods.299

Results in Fig 1 for PU (row 2), RE (row 3) and Masspoint (bottom) are consistent with those of CP.300

Fig 2 illustrates the management of buffer growth in Masspoint by showing exactly at which steps301

experiences are added to the replay buffer during untrained (E1) and trained (E99) episodes. These302

plots reveal that when the model is untrained, many experiences are added to the buffer throughout303

the episode. After the model is trained (E99), UARF stops adding experiences to the buffer as the304

model is able to predict them. Hence, new experiences are deemed redundant and not useful to305

the model. Results support our claim that UARF obtains a drastically smaller replay buffer that is306

intelligently populated with only relevant information. This is achieved while maintaining strong307

performance in the environment compared to BL. Note that while the curves are plotted per episode,308

it is misleading to assume that all methods converge roughly at the same time. The time per episode309

in the case of UARF is at least half that of BL for approximately in every environment and it remains310

stable, while it increases linearly for BL and BICHO with increasing buffer size. The total wall time311

in average for CP was BL=1.83h, BICHO=0.59h and UARF=0.57h. For PU, it was BL=0.97h,312

BICHO=0.73h and UARF=0.66h. For RE, it was BL=1.99h BICHO=1.55h and UARF=1.45h, and313

for MP it was BL=2.15h, BICHO=1.94h and UARF=1.68h.314

6.2 EX 2. CONTINUAL LEARNING EXPERIMENT315

This experiment is set in Task Agnostic Continual Reinforcement Learning (the model is not aware316

of tasks or task transitions). In this setting, we sought to prove that UARF maintains a leaner and317

7



Under review as a conference paper at ICLR 2023

Figure 3: Training performance of Baseline, BICHO and UARF in a Task Agnostic Continual Learn-
ing. Models trained on seven maneuvers: corner1, corner1 inverse, chicane, chicane inverse, cor-
ner14, corner14 inverse, and straight. Vertical lines indicate a task switch. In the middle-right plot,
cyan vertical lines also indicate when UARF triggers a model update. Full-track evaluation in the
far-right plot; cumulative reward achieved at each step on the full-track without further training.

more relevant collection of experiences in the replay buffer than do baseline algorithms. These char-318

acteristics of the proposed algorithm, we posit, result in strong test performance with less data and319

greater stability. The existence of these characteristics can be verified by observing (after training)320

the size of the buffer, the number of experiences from each maneuver present in the buffer, and the321

performance of the models on the test task. We used the Masspoint racing environment, defining322

different simple tasks that can be composed to solve a complex, unseen one.323

Figure 4: Distribution of experiences from
each sub-task in the replay buffers of each al-
gorithm immediately following training. De-
tail shows a zoomed-in version for UARF.

Each algorithm trains a model on a sequence of324

seven separate sub-tasks: two corners and their in-325

verses, a chicane and its inverse, and a straight (de-326

tails illustrated in Appendix B). The models retain327

their parameters and replay buffers between training328

on each task individually. After training on the last329

task, the methods are each tested on the full track,330

which contains some of the sub-tasks seen during331

training (colored in the full-track image, Appendix332

B) and tasks unseen during training (shown in black333

in the full-track image). The model must remember334

what it learned by training on each sub-task and ap-335

ply this knowledge to navigate a more complex, un-336

seen task. All of the algorithms had a virtually un-337

limited replay buffer size. Each model was trained338

for 30 episodes on each sub-task and then tested on339

the test task.340

Results Figure 3 shows episode reward, wall-time, buffer size during training, and new experiences341

added to the buffer per episode. Vertical lines illustrate task divisions. High episode reward indicates342

that each model adequately learns each subtask. UARF maintains almost a constant wall-time, while343

BL and BICHO increase as experience accumulates. Buffer growth for BL and BICHO is linear, but344

UARF evidences asymptotic growth (13x smaller) adding no new experiences at the end of training.345

Figure 3-4 shows the buffer growth of UARF. A larger amount of additions to the replay buffer346

occur while training the first tasks. Growth slows to a near halt during the last tasks. This is the347

case for example with the fourth task (chicane inverted). The previous task (chicane) is similar, and348

the information to solve the previous task is enough that the algorithm does not require a significant349

amount of new experience to solve chicane inverted. Figure 4 shows the distribution of experiences350

from each sub-task present in each algorithm’s replay buffer immediately following training. BL351

and BICHO employ a naive approach, resulting in replay buffers with distributions of experience352

determined exclusively by the length of the various maneuvers. The filtering mechanism of UARF353

results in a distribution of experience with some maneuvers having limited representation (e.g., the354

inverse maneuvers) This is because the UARF algorithm intelligently decides to omit redundant355

experiences from the buffer and leaves only the relevant ones. Figure 3 right shows that all three356

algorithms result in a model that adequately solves the test task. UARF continues to manage buffer357

growth while achieving high performance. The results support our initial hypothesis by illustrating358

clearly the proposed algorithm’s propensity to maintain a smaller and more relevant replay buffer359

while achieving the performance of the baseline in a continual learning setting.360

8



Under review as a conference paper at ICLR 2023

6.3 EX 3. CATASTROPHIC FORGETTING361

Our approach helps to mitigate catastrophic forgetting. When using a fixed replay buffer size, it is362

important to ensure that the appropriate maximum buffer size is chosen (Zhang & Sutton (2017)).363

If this value is undertuned, important experiences can be jettisoned, and catastrophic forgetting can364

occur. To illustrate how UARF helps to alleviate this risk, we ran the same experiment shown in365

section Ex.2 but with a replay buffer of fixed size (5000 samples; roughly 4x the replay buffer size366

used by UARF in the unlimited size setting). Table 1 compares rewards achieved by each algorithm367

with both unlimited and fixed buffers. The models were validated on the full track and also on a368

maneuver that was trained early on in the training process (c1 inverse). Results reveal that with369

an undertuned fixed buffer size, BL loses about 10% performance both on the full track and on c1370

inverse. This is indicative of the fact that the non-filtering algorithms are hitting the buffer size371

cap, throwing away valuable experiences, and forgetting how to properly solve maneuvers that were372

trained early on. This impacts performance on the full track as well.

Unlimited Buffer Fixed Buffer Fixed Buffer Fixed Buffer
Full Track Full Track c1 inverse First Pass c1 inverse Post-Training

BASELINE 22172 20235 1787 1561
UARF 21975 22102 1781 1795

Table 1: Fixed Buffer Experiment. Results demonstrate susceptibility to catastrophic forgetting
when not using UARF. The BL forgets previous maneuvers after the FIFO mechanism of the fixed-
size replay buffer eliminates experiences from them with an impact of about 10% in reward.

373

7 DISCUSSION AND CONCLUSION374

The results in E1 reveal that continuing to run our algorithm in a repetitive environment with re-375

dundant or monotonous actions leads to, in some tasks, no increase in buffer and reduced dynamics376

model updates. This has the consequence of reduced running and training times, while reducing the377

effects of catastrophic forgetting and keeping the replay buffer size to a bare minimum. In E2, a con-378

tinual learning setting, we demonstrated that using our approach leads outcomes with 1/25th of the379

experiences without performance degradation. UARF effectively deals with an unbounded growth380

of the replay buffer, which again reduces training time and instabilities. This effect is accentuated381

when training on a continual learning setting. UARF uses a buffer 43x smaller than the baseline.382

The replay buffer is an instrument that makes the use of deep neural networks in RL more stable383

and it is an essential part in algorithms such as PETs. Such analyses of replay buffer are scarce. But384

recently, research has turned to analyze the contents and strategies to manage the replay buffer of385

RL agents Fedus et al. (2020), and also in supervised learning Aljundi et al. (2019). We contribute386

to such body of work analyzing and offering strategies to manage growth of replay buffer in model387

based RL. Having managed growth, there are several aspects we would like to turn to in the future:388

i) identifying task boundary from the novelty of experiences, ii) managing what to forget for limited389

size buffers, iii) managing what to remember / refresh when a change in task is evident. All this390

would allow to run agents for arbitrary time without having to deal with size of the buffer and would391

offer promising opportunities for deploying MBRL in a continual learning setting.392

BICHO could be used to prioritize entries in the RB where the model was uncertain. Indeed, prior-393

itized buffer strategies support the usage of experience once it is in the buffer, but as the authors of394

the PER paper state, strategies for what to add and when (our work) are important open avenues for395

research. We did not explore our methods in environments where the tasks have interfering dynam-396

ics. But, if the dynamics change, poor predictions by the model will result in adding experiences to397

the replay buffer. What happens if interfering tasks occur permanently is an interesting follow up.398

In summary, we proposed strategies that comply with requirements for continual learning. Our ap-399

proach retains only memories which are useful: it obtains lean and diverse replay buffers capturing400

both common and sporadic experiences with sufficient detail for prediction in longer learning ses-401

sions. Our approach manages compute and memory resources over longer periods: it deals with the402

unbounded growth of the replay buffer, its training time and instability due to catastrophic forgetting.403

These results offer promising opportunities for deploying MBRL in a continual learning setting.404

9



Under review as a conference paper at ICLR 2023

8 REPRODUCIBILITY STATEMENT405

To make our experiments reproducible, we provide the source code in the supplementary material.406

We include instructions describing how to run all the experiments and to create the images. We in-407

clude the source code of the proposed algorithms, the MassPoint environment and clear instructions408

showing how to install extra packages and dependencies needed to reproduce our experiments.409

REFERENCES410

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection411

for online continual learning, 2019.412

Haitham Bou Ammar, Rasul Tutunov, and Eric Eaton. Safe policy search for lifelong reinforcement413

learning with sublinear regret, 2015.414

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement415

learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.416

Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer. Chapter 3 - the417

cross-entropy method for optimization. In C.R. Rao and Venu Govindaraju (eds.), Handbook of418

Statistics, volume 31 of Handbook of Statistics, pp. 35 – 59. Elsevier, 2013. doi: https://doi.419

org/10.1016/B978-0-444-53859-8.00003-5. URL http://www.sciencedirect.com/420

science/article/pii/B9780444538598000035.421

Haitham Bou Ammar and Matthew Taylor. Online multi-task learning for policy gradient methods.422

01 2014.423

E.F. Camacho, C. Bordons, and C.B. Alba. Model Predictive Control. Advanced Textbooks in424

Control and Signal Processing. Springer London, 2004. ISBN 9781852336943. URL https:425

//books.google.at/books?id=Sc1H3f3E8CQC.426

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement427

learning in a handful of trials using probabilistic dynamics models, 2018.428

M. P. Deisenroth, G. Neumann, and J. Peters. 2013. doi: 10.1561/2300000021.429

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark430

Rowland, and Will Dabney. Revisiting fundamentals of experience replay, 2020.431

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy432

maximum entropy deep reinforcement learning with a stochastic actor, 2018.433

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-434

ment learning: A review and perspectives, 2020.435

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A436

Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-437

ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,438

114(13):3521–3526, 2017.439

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive440

uncertainty estimation using deep ensembles, 2016.441

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.442

Machine Learning, pp. 293–321, 1992.443

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum learn-444

ing. IEEE Transactions on Neural Networks and Learning Systems, 31(9):3732–3740, 2020. doi:445

10.1109/TNNLS.2019.2934906.446

Anusha Nagabandi, G. Kahn, Ronald S. Fearing, and S. Levine. Neural network dynamics for447

model-based deep reinforcement learning with model-free fine-tuning. 2018 IEEE International448

Conference on Robotics and Automation (ICRA), pp. 7559–7566, 2018.449

10

http://www.sciencedirect.com/science/article/pii/B9780444538598000035
http://www.sciencedirect.com/science/article/pii/B9780444538598000035
http://www.sciencedirect.com/science/article/pii/B9780444538598000035
https://books.google.at/books?id=Sc1H3f3E8CQC
https://books.google.at/books?id=Sc1H3f3E8CQC
https://books.google.at/books?id=Sc1H3f3E8CQC


Under review as a conference paper at ICLR 2023

Fabrice Normandin, Florian Golemo, Oleksiy Ostapenko, Pau Rodriguez, Matthew D Riemer, Julio450

Hurtado, Khimya Khetarpal, Dominic Zhao, Ryan Lindeborg, Timothée Lesort, et al. Sequoia: A451

software framework to unify continual learning research. arXiv e-prints, pp. arXiv–2108, 2021.452

Anvil V. Rao. A survey of numerical methods for optimal control. Advances in the Astronautical453

Science, 135:497–528, 2010.454

Adrian Remonda, Eduardo E. Veas, and Granit Luzhnica. Acting upon imagination: when to trust455

imagined trajectories in model based reinforcement learning. CoRR, abs/2105.05716, 2021. URL456

https://arxiv.org/abs/2105.05716.457

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In458

ICLR (Poster), 2016.459

Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAllister, Joseph E. Gon-460

zalez, Sergey Levine, Francesco Borrelli, and Ken Goldberg. Safety augmented value estimation461

from demonstrations (saved): Safe deep model-based rl for sparse cost robotic tasks, 2020.462

S. Thrun. A lifelong learning perspective for mobile robot control. In Proceedings of IEEE/RSJ In-463

ternational Conference on Intelligent Robots and Systems (IROS’94), volume 1, pp. 23–30 vol.1,464

1994. doi: 10.1109/IROS.1994.407413.465

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.466

In IROS, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5.467

Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou. In-468

formation theoretic model predictive control: Theory and applications to autonomous driving,469

2017.470

Annie Xie and Chelsea Finn. Lifelong robotic reinforcement learning by retaining experiences.471

arXiv preprint arXiv:2109.09180, 2021.472

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task-Agnostic Continual Learning Using473

Online Variational Bayes With Fixed-Point Updates. Neural Computation, 33(11):3139–3177, 10474

2021. ISSN 0899-7667. doi: 10.1162/neco a 01430. URL https://doi.org/10.1162/475

neco_a_01430.476

Shangtong Zhang and Richard S. Sutton. A Deeper Look at Experience Replay. arXiv e-prints, art.477

arXiv:1712.01275, December 2017.478

Guangxiang Zhu, Minghao Zhang, Honglak Lee, and Chongjie Zhang. Bridging imagination and479

reality for model-based deep reinforcement learning. NeurIPS, 2020.480

A OPTIMAL TRAJECTORY GENERATION481

Algorithm 3 shows the use of CEM to compute the optimal sequence of actions a∗t:t+H .

Algorithm 3 Compute Optimal Trajectory

Input: sinit: current state of the environment, dynamics model f̂
1: Initialize P particles, spτ , with the initial state, sinit

2: for Actions sampled at:t+H ∼ CEM(.), 1 to CEMSamples do
3: Propagate state particles spτ using TS and f̂ |{D, at:t+H}

4: Evaluate actions as
t+H∑
τ=t

1
P

P∑
p=1

r(spτ , aτ )

5: Update CEM(.) distribution
6: return a∗

t:t+H

482

11

https://arxiv.org/abs/2105.05716
https://doi.org/10.1162/neco_a_01430
https://doi.org/10.1162/neco_a_01430
https://doi.org/10.1162/neco_a_01430


Under review as a conference paper at ICLR 2023

B MASS POINT TASKS483

Each algorithm trains a model on a sequence of seven separate sub-tasks: two corners and their484

inverses, a chicane and its inverse, and a straight (Figure 5). The full track contains some of the sub-485

tasks seen during training (Shown with different colors in the full-track image (Appendix Figure 5)486

in addition to tasks unseen during training (shown in black in the full-track image).487

Figure 5: Tasks for the Masspoint environment. The x-axis and the y-axis of each figure represents
the x,y coordinates of the path to be followed by the mass point bot. The red dot represents the
starting point. Top left-to-right: c1, c1 inverted, chicane, chicane inverted and c14. Bottom left-to-
right: c14 inverted, straight, full track (comprising sub-tasks. chicane, c14. straight, c1), sector1 and
sector1 inverted

C ENVIRONMENTS488

We evaluate the methods on agents in the MuJoCo Todorov et al. (2012) physics engine. To establish489

a valid comparison with Chua et al. (2018) we use four environments with corresponding task length490

(TaskH) and trajectory horizon (H).491

• Cartpole (CP): S ∈ R4, A ∈ R1, TaskH 200, H 25492

• Reacher (RE): S ∈ R17, A ∈ R7, TaskH 150, H 25493

• Pusher (PU): S ∈ R20, A ∈ R7, TaskH 150, H 25494

• Masspoint: S ∈ R5, A ∈ R2, TaskH 290, H 25495

This means that each iteration will run for TaskH , task horizon, steps, and that imagined trajectories496

include H trajectory horizon steps. S ∈ Ri, A ∈ Rj refers to the dimensions of the environment497

state consisting in a vector of i components and the action consisting in a vector of j components.498

D EX 2. CONTINUAL LEARNING EXPERIMENT. ADDITIONAL RESULTS499

Figure 6 shows additional results with the wall-time during the training process for the continual500

learning experiment.501

E MAXIMUM PREDICTION DISTANCE502

An additional parameter of interest when using UARF is what we call the ”maximum prediction503

distance” or MPD. This parameter operates on the assumption that even for a model that has reached504

convergence, in some environments, predicting trajectories of great length is impossible. As such,505

recalculations must inevitably occur at the end of such long trajectories. These recalculations do506

not necessarily represent the appearance of new, unseen information, but rather a limitation of the507

successful model in a complex environment. Hence, we would not want to add these experiences to508

the buffer.509

Where we define the cutoff for a trajectory of ”great length” can be changed, and it serves to adjust510

the strictness of UARF’s filtering mechanism. For Ex.1 and Ex.2, we chose to set the maximum511

prediction distance to 1 to ensure the strictest filtering of the replay buffer.512

12



Under review as a conference paper at ICLR 2023

Figure 6: Per episode wall time for the three meth-
ods during the training process of Ex.2. Vertical
lines indicate task switch points.

In 7, we evaluate the effect of the MPD on the513

performance of UARF in the cartpole environ-514

ment. We were particularly interested in the515

effect on the rate of recalculation and on the516

size of the replay buffer. In 7 one can see that517

the models converge with no issue, but they do518

differ slightly in the rates of recalculation and519

buffer filtering. The strictest MPD, MPD=1,520

results in the leanest buffer, but its recalcula-521

tion rate is slightly higher than the models with522

MPD=2 and MPD4.523

These results show that the MPD serves as a524

way to tune the strictness of UARF’s buffer fil-525

tering mechanism. It would be an area of future526

research to find the optimal way to tune this pa-527

rameter automatically throughout training such528

as to best balance recalculation rate and replay529

buffer filtering.530

Figure 7: Performance of the examined algorithms in Cartpole using different maximum prediction
distances (MPD). The blue line represents UARF with an MPD=1. The red line is UARF with an
MPD=2. The green line is UARF with an MPD=4. From left to right column: episode reward,
time per episode (s), cumulative number of observations stored in the replay buffer, new experiences
added to the buffer per episode.

F HYPERPARAMETERS531

Table 2 shows the hyper parameters used to train UARF. Look-ahead refers to the number of steps532

ahead BICHO and UARF are using to asses the quality of the imagined trajectories. β controls the533

sensitivity of BICHO and UARF to inform whether a trajectory is still valid or not. ”New Data534

Train Threshold” refers to the amount of fresh data that must be added to the replay buffer before535

the UARF algorithm triggers the training of the dynamics model.536

Cartpole Pusher Reacher Masspoint
Look-Ahead 10 10 10 10
β 0.005 0.005 0.005 0.5
New Data Threshold 1% 1% 1% 1%
Training episodes 100 100 10 30/task
CEM population 400 500 400 400
CEM # elites 40 50 40 40
CEM # iterations 5 5 5 5
CEM α 0.1 0.1 0.1 0.1
MPD 10 10 10 1

Table 2: Hyperparameters used for UARF implementation.

13


	Introduction
	Related Work
	Preliminaries
	Towards continual learning
	UARF: Uncertainty Aware Replay Filtering
	Experiments
	E1– Continuing to learn a task after convergence
	Ex 2. Continual Learning Experiment
	Ex 3. Catastrophic Forgetting

	Discussion and Conclusion
	Reproducibility Statement
	Optimal Trajectory Generation
	Mass point tasks
	Environments
	Ex 2. Continual Learning Experiment. Additional results 
	Maximum Prediction Distance
	Hyperparameters

