
Under review as a conference paper at ICLR 2022

MODEL VALIDATION USING MUTATED TRAINING LA-
BELS: AN EXPLORATORY STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce an exploratory study on Mutation Validation (MV), a model validation
method using mutated training labels for supervised learning. MV mutates training
data labels, retrains the model against the mutated data, then uses the metamorphic
relation that captures the consequent training performance changes to assess model
fit. It does not use a validation set or test set. The intuition underpinning MV
is that overfitting models tend to fit noise in the training data. We explore 8
different learning algorithms, 18 datasets, and 5 types of hyperparameter tuning
tasks. Our results demonstrate that MV is accurate in model selection: the model
recommendation hit rate is 92% for MV and less than 60% for out-of-sample-
validation. MV also provides more stable hyperparameter tuning results than
out-of-sample-validation across different runs.

1 INTRODUCTION

Out-of-sample validation (such as test accuracy) is arguably the most popular approach adopted by
researchers and developers for empirically validating models in applied machine learning. It uses data
different from the training data to approximate future unseen data. However, out-of-sample validation
is widely acknowledged to have limitations: 1) the sample set may be too small to represent the data
distribution; 2) the accuracy can have a large variance across different runs (Pham et al., 2020); 3) the
samples are typically randomly selected from the collected data, and may therefore have similar bias
as in the training data, leading to an inflated validation score (Piironen & Vehtari, 2017; Gronau &
Wagenmakers, 2019); 4) excessive reuse of a fixed set of samples can lead to overfitting even if the
samples are held out and not used in the training process (Feldman et al., 2019).

The Mutation Validation (MV) approach we explore is a new approach to validating machine learning
models relying only upon training data. MV applies Mutation Testing and Metamorphic Testing
—two software engineering techniques that validate code correctness. Mutation testing mutates the
program by making synthetic changes (e.g., to change a + b into a − b or to remove a functional
call), then re-executes the tests to monitor the behaviour changes and check the power of a test
suite (Papadakis et al., 2019; Jia & Harman, 2010). Metamorphic Testing detects program errors
by checking metamorphic relations, which is the relationship between input changes and output
changes (Chen et al., 2020; Segura et al., 2016). Combining these two techniques, MV mutates training
data labels and retrains the model using the mutated data, then measures the training performance
change. As shown by Figure 1, the key intuition is that a learner, if fitting the given training data
property, would be less likely to be ‘fooled’ by a small ratio of mutated labels. Consequently, the
model trained with the mutated training data would “detect” the mutated labels and still exhibit
high predictive performance on the original training data. By contrast, an overfitted learner violates
the Occam’s Razor (Hawkins, 2004), and has extra capacity to fit incorrect noisy labels, and thus
will yield a model that exhibits poor predictive performance on the original training data, but high
performance on the mutated training data. Furthermore, an over-simple learner has poor learnability,
and will have low performance on the original training data and the mutated data.

There are a significant number of theories proposed to explain model validation and complexity, such
as Rademacher complexity and VC dimension. Nevertheless, the prescriptive and descriptive value
of these theories remains debated. Zhang et al. (2017) found that deep hypothesis spaces can be
large enough to memorise random labels. They discussed the limitations of existing measurements
in explaining the generalisation ability of large neural networks, and called for new measurements.

1



Under review as a conference paper at ICLR 2022

original 
data

mutated 
data

good learner over-complex learner over-simple learner

expected PV 
performance 

train
acc.

train
acc.

train
acc.

noise
degree

noise
degree

noise
degree

00 ( 00
^

00
X X

0

\
°° { oo

o µ
+

go
°\ X O O X O o::÷:÷÷÷:¥:÷:::÷÷ :*::÷:*× I

^
00

X X
0

/ I ¥ :O
.

× 0 × 0 0:i÷÷÷:÷:: ::÷÷:÷:x
x ×

i

X X X

÷!..→÷÷;;t*÷÷÷i" :!÷÷÷a.
|

°
°
° "5 } |

° ° ° ° °

0=1-7 0 0

0.1 0.2 0.3 Out 0,2 0.3 0.1 0.2 0.3

Figure 1: The intuition underpinning MV: A better learner is less affected by the mutated labels.

In this present work, we do not compare MV with these theories. Rather, similar to Zhang et al.
(2017), we focus on empirical investigation. In Appendix A.1, we provide the theoretical foundations
underpinning the metamorphic relation that MV uses.

We report on the performance of MV on 12 open datasets and 6 synthetic datasets with different
known data distributions (see Table 1), using 8 widely-adopted classifiers (including both classic
learning classifiers and deep learning classifiers). We investigate the effectiveness and stability of MV
serving as a complementary measure to the existing practical model validation methods for model
selection and parameter tuning. The experimental results provide evidence to support the following
conclusions. First, MV captures well the degree of match between decision boundaries and data
patterns in model selection. The model recommendation hit rate for MV is 92%, but is 53% for cross
validation, and 55% for test accuracy. Second, MV is more responsive to changes in capacity than
conventional validation methods. When cross validation (CV) accuracy and test accuracy could not
distinguish among large-capacity hyperparameters, MV complements them in hyperparameter tuning.
Third, MV is stable in model validation results. Its dropout rate tuning result does not change across
five runs; the variance is zero. For validation set and test set, the average variance is 0.003 and 0.007,
respectively. The paper also discusses the connections between MV and other noise injection work in
the literature, as well as the usage scenarios of MV (Section 5).

In summary, we make the following primary contributions:
1) An exploratory study on the performance of Mutation Validation. We explore the effectiveness
and stability of MV to validate machine learning (ML) models as a complement to the currently used
empirical model validation methods. MV requires neither validation nor test sets, but uses the training
performance sensitivity to the mutated training labels. We study 18 datasets, 8 different learning
algorithms, and 5 hyperparameter tuning tasks.
2) An application of software testing techniques in ML model validation. MV is the first approach
that applies mutation testing and metamorphic testing —two widely studied software testing tech-
niques —on model validation tasks.

2 MUTATION VALIDATION

2.1 GENERAL INTUITION

Figure 1 illustrates the intuition that underpins MV. For a ‘good’ learner that fits the training data
well (first column of Figure 1), the learner is less likely to be ‘fooled’ by a small number of mutated
labels, and would keep predicting the original labels for the mutated samples. As a result, the model
trained on the mutated data will still have high predictive accuracy on the original training data, but
will have decreased predictive accuracy on the mutated data. An overfitted learner tends to fit noise in
the training data (second column of Figure 1). With mutated data, the learner will yield a model that
makes predictions following the incorrect labels, leading to a high training accuracy on the mutated
data, but poor accuracy on the original data. An over-simple learner has poor learnability. The model
it yields has poor performance with or without the mutated training data. As a result, the model
trained on the mutated data has low accuracy with both the original labels and the mutated labels.

2



Under review as a conference paper at ICLR 2022

2.2 MUTATION VALIDATION

MV uses mutation testing and metamorphic testing, two software validation techniques, to validate
ML models. Mutation testing creates mutants by injecting faults in a program, then re-executes
the program to check whether a test suite detects those faults. Metamorphic relation specifies
how a change in the input should result in a change in the output. It is used to detect errors in
software when there are no reliable oracles. For a program f , its input x and x′. Let f(x) and
f(x′) be the execution outputs of x and x′ against f . Let Ri be the relationship between x and
x′, Ro is the relationship between f(x) and f(x′). A metamorphic relation can be represented as:
Ri(x, x

′) ⇒ Ro(f(x), f(x
′)). If the relation is violated, the program under test contains a bug. For

example, when validating the sin mathematical function, one metamorphic relation that a correct
program should hold is sin(x+ π) = − sin(x).

Now consider the scenario of ML model validation. If we treat a learner as the program under test,
the training data as the input, the trained model’s behaviours as the output, our intuition introduced in
Section 2.1 can be well captured by mutation testing and metamorphic relations. In particular, the
input changes are introduced by mutating training data, each mutated data instance is called a mutant;
the output changes are defined in terms of performance changes of the trained models. Based on this,
we propose Mutation Validation, a new machine learning model validation method that validates ML
models based on the relationship between training data changes and training performance changes. A
good learner is expected to “detect” the mutants and have a certain amount of training performance
changes according to the number of input data changes.

There are different metamorphic relations that can be explored to conduct MV, which may
depend on the data mutation method, the training performance measurement (e.g., accuracy,
precision, loss), and the calculation of performance changes. Let η be the mutation degree
(i.e., the ratio of randomly mutated labels in the training data). S is the original training data,
Sη is the mutated training data with mutation degree η (η ≤ 0.5), f(S) is the model out-
put trained on S, f(Sη) is the model output trained on Sη, T̂S(f(S)), T̂S(f(Sη)) are the
accuracy of f(S) and f(Sη) based on the original training labels, respectively. T̂Sη

(fS(η))
is the accuracy of f(Sη) based on the mutated labels. In this present work, as the first ex-
ploratory study on MV, we study the following MV measurement m to conduct model validation:

m = (1− 2η)T̂S(f(Sη)) + T̂S(f(S))− T̂Sη
(f(Sη)) + η. (1)

The above measurement, although derived from theory (Appendix A.1), matches well with our
intuition introduced in Section 2.1. In particular, if the learner is less affected by the mutated labels,
the predictive behaviours of the trained model with mutated labels should be closer to that of the
model trained with the original labels. This leads to a larger T̂S(f(Sη)) and a larger difference
between T̂S(f(S)) and T̂Sη

(f(Sη), as long as the mutation degree η is fixed. The larger m is, the
better the learner fits the training data. In the optimal case, the trained model on mutated data has
a perfect training accuracy on the original training labels (i.e., T̂S(f(Sη)) = 1), and detects all the
mutants (i.e, T̂S(f(S))− T̂Sη (f(Sη)) = η). Thus, m = 1. Mutation degree η ranges between 0 and
0.5, but needs to be a fixed value. The theory inspiration of this metric, its metamorphic relation, as
well as the influence of η on m are provided in our appendix.

3 EXPERIMENTAL SETUP

The main body of this paper answers four research questions:

RQ1: What is the effectiveness of MV in model selection?
RQ2: What is the effectiveness of MV in hyperparameter tuning?
RQ3: What is the stability of MV in validating machine learning models?
RQ4: How does training data size affect MV?

We also explore the efficiency of MV in validating machine learning models, as well as the influence
of mutation degree η on MV. The details are in the appendix.

To evaluate MV, we choose to use datasets that are diverse in category, size, class number, feature
number, and class balance situations. Small datasets are particularly important to demonstrate the

3



Under review as a conference paper at ICLR 2022

Dataset abbr. #training #test #class #feature

synthetic-moon moon 100 − 1e+6 2,000 2 2
synthetic-moon (0.2 noise) moon-0.2 100 − 1e+6 2,000 2 2
synthetic-circle circle 100 − 1e+6 2,000 2 2
synthetic-circle (0.2 noise) circle-0.2 100 − 1e+6 2,000 2 2
synthetic-linear linear 100 − 1e+6 2,000 2 2
synthetic-linear (0.2 noise) linear-0.2 100 − 1e+6 2,000 2 2

Iris iris 150 – 3 4
Wine wine 178 – 3 13
Breast Cancer Wisconsin cancer 569 – 2 9
Car Evaluation car 1,728 – 4 6
Heart Disease heart 303 – 5 14
Bank Marketing bank 45,211 – 2 17
Adult adult 48,842 16,281 2 14
Connect-4 connect 67,557 – 2 42

MNIST mnist 60,000 10,000 10 –
fashion MNIST fashion 60,000 10,000 10 –
CIFAR-10 cifar10 50,000 10,000 10 –
CIFAR-100 cifar100 50,000 10,000 100 –

Table 1: Details of the datasets.

ability of MV in providing warnings for over-complex learners. Table 1 shows the details of each
dataset used to evaluate MV. Column “#training” and Column “#test” show the size of training data
and test data, which is presented by the dataset providers. Column “#class” shows the number of
classes (or labels) for each dataset. Column “#feature” presents the number of features.

To obtain datasets with known ground-truth decision boundaries for validating model fitting, we use
synthetic datasets with three types of data distributions: moon, circle, and linearly-separable. These
three data distributions are provided by scikit-learn (Pedregosa et al., 2011) tutorial to demonstrate
the decision boundaries of different classifiers. To study the influence of original noise in training data
on MV, for each type of distribution, we create datasets with noise. We also generate different-size
training data ranging from 100 to 1 million data points to study the influence of training data size.
These synthetic datasets help check whether MV identifies the right model whose decision boundary
matches the data distribution, with and without noise in the original dataset S. We do not expect such
synthetic datasets to reflect real-world data, but the degree of control and interpretability they offer
allows us to verify the behaviour of MV with a known ground-truth for model selection.

We also report results on 12 real-world widely-adopted datasets with different sizes, numbers of
features and classes. Eight of them are from the UCI repository (Asuncion & Newman, 2007), the
remaining four are the most widely used image datasets: MNIST, fashionMNIST, CIFAR-10, and
CIFAR-100. For each dataset, we calculate MV with η = 0.2 to answer the research questions. That
is, under each class of the dataset, we randomly select 20% of the labels to mutate. This guarantees
that MV is not affected by the problem of class imbalance. We mutate the labels by label swapping:
to replace a label with the next label in the label list, the final label in the label list is replaced with the
first label in the label list. For the synthetic datasets and the 8 UCI datasets, we compare with 3-fold
CV accuracy and test accuracy. We use 3-fold CV because it has almost identical results to more
folds cross validation, but has lower cost, thereby being more conservative to compare with when
studying the efficiency of MV. For the three image datasets on deep learning models, we compare
with validation accuracy with 20% validation data (split out from the training data) and test accuracy.
The next section introduces more configuration details.

4 RESULTS

4.1 RQ1: EFFECTIVENESS OF MV IN MODEL SELECTION

To answer RQ1, we use synthetic datasets to explore whether MV recommends the learners whose
decision boundaries best match the data patterns. We use synthetic datasets because synthetic datasets
have ground-truth data patterns for model selection (more details in Section 3). The data distribution
of real-world UCI datasets, however, is often unknown or difficult to visualise. To generate synthetic
datasets, we use three scikit-learn (Pedregosa et al., 2011) synthetic dataset distributions, which
are designed as a tutorial to illustrate the nature of decision boundaries of different classifiers. This
experiment uses the same settings as in the Scikit-learn tutorial (Classifier Comparison, 2019). Each
dataset has 100 training data points for model selection. We generate another 2,000 points as test sets.

Figure 2 shows the training data points, decision boundaries of each classifier, and measurement
values from MV, CV, and test accuracy (on the 2,000 test data points). We have the following

4



Under review as a conference paper at ICLR 2022

zero noise
MV=0.89
CV=0.86
Test=0.86

Linear SVM
MV=1.00
CV=1.00
Test=1.00

RBF SVM
MV=1.00
CV=0.99
Test=1.00

Gaussian Process
MV=0.74
CV=0.96
Test=0.99

Decision Tree
MV=0.69
CV=0.96
Test=0.98

Random Forest
MV=0.75
CV=0.95
Test=0.98

AdaBoost
MV=0.89
CV=0.88
Test=0.89

Naive Bayes

MV=0.53
CV=0.54
Test=0.50

MV=1.00
CV=1.00
Test=1.00

MV=0.88
CV=1.00
Test=1.00

MV=0.69
CV=1.00
Test=1.00

MV=0.71
CV=0.99
Test=1.00

MV=0.72
CV=1.00
Test=0.99

MV=1.00
CV=1.00
Test=1.00

MV=0.93
CV=0.92
Test=0.90

MV=0.88
CV=0.94
Test=0.90

MV=0.91
CV=0.93
Test=0.90

MV=0.67
CV=0.90
Test=0.88

MV=0.66
CV=0.91
Test=0.89

MV=0.77
CV=0.92
Test=0.89

MV=0.94
CV=0.93
Test=0.90

0.2 noise
MV=0.86
CV=0.85
Test=0.86

Linear SVM
MV=0.94
CV=0.97
Test=0.96

RBF SVM
MV=0.95
CV=0.95
Test=0.96

Gaussian Process
MV=0.67
CV=0.91
Test=0.94

Decision Tree
MV=0.70
CV=0.88
Test=0.94

Random Forest
MV=0.78
CV=0.90
Test=0.96

AdaBoost
MV=0.90
CV=0.89
Test=0.87

Naive Bayes

MV=0.53
CV=0.54
Test=0.50

MV=0.88
CV=0.90
Test=0.86

MV=0.82
CV=0.91
Test=0.87

MV=0.74
CV=0.88
Test=0.82

MV=0.69
CV=0.90
Test=0.85

MV=0.71
CV=0.87
Test=0.83

MV=0.91
CV=0.91
Test=0.85

MV=0.82
CV=0.81
Test=0.82

MV=0.77
CV=0.80
Test=0.79

MV=0.86
CV=0.85
Test=0.81

MV=0.69
CV=0.74
Test=0.76

MV=0.66
CV=0.79
Test=0.77

MV=0.74
CV=0.77
Test=0.78

MV=0.83
CV=0.81
Test=0.81

Figure 2: Performance of MV in model selection. MV, CV, Test denote MV score, CV accuracy, and
Test Accuracy. Red and blue points are the original training data without noise (top-three rows) and
with 0.2 noise (bottom-three rows). Areas with different colours show the decision boundaries. We
observe that MV captures well the match between decision boundaries and data patterns.

observations. First, MV tends to have large values for cases where the decision boundaries match
well the data patterns; it provides more discriminating scores for model selection under different
datasets, it is easy to pick out the top-2 models that match the data distributions the best based on
MV. Second, the recommended models from MV are less affected by the noise in the training data.

Dataset Method Noise Recommended models based on top-2 scores

moon

MV 0.0 RBF SVM, Gaussian Process
0.2 RBF SVM, Gaussian Process

CV 0.0 RBF SVM, Gaussian Process
0.2 RBF SVM, Gaussian Process

Test 0.0 RBF SVM, Gaussian Process
0.2 RBF SVM, Gaussian Process, AdaBoost

circle

MV 0.0 RBF SVM, Naive Bayes
0.2 RBF SVM, Naive Bayes

CV 0.0 RBF SVM, Gaussian Process, DT, RF, AdaBoost, Naive Bayes
0.2 Gaussian Process, Naive Bayes

Test 0.0 RBF SVM, Gaussian Process, DT, RF, Naive Bayes
0.2 RBF SVM, Gaussian Process

linear

MV 0.0 Linear SVM, Naive Bayes
0.2 Gaussian Process, Naive Bayes

CV 0.0 RBF SVM, Gaussian Process, Naive Bayes
0.2 Gaussian Process, Naive Bayes

Test 0.0 Linear SVM, RBF SVM, Gaussian Process, RF, Naive Bayes
0.2 Linear SVM, Gaussian Process, Naive Bayes

Table 2: Recommended models by MV, CV, and
test accuracy. The models in bold are the ground-
truth ones whose decision boundaries match the
data patterns. The recommendation hit rate is 92%
for MV, 53% for CV, 55% for test accuracy.

The figure also shows cases where CV and
test accuracy have limitations in evaluating ML
models. For example, in Figure 2, for the circle
distribution, Decision Trees and Random Forests
(with maximum depth of 10) give obviously ill-
fitted rectangle-shaped decision boundaries, yet
the cross validation accuracy and test accuracy
remain high. In addition, from Table 2, it is more
difficult to select proper models based on CV
and test accuracy, because CV and test accuracy
are often very similar across different models.

For ease of observation, we present Table 2 to
show the models recommended by MV, CV, and
test accuracy, based on their top-2 scores shown
by Figure 2. The ground-truth models in bold
are based on manual observation and widely-
adopted ML knowledge. For example, Scikit-
learn documentation (Classifier Comparison,

5



Under review as a conference paper at ICLR 2022

2019) mentions that Naive Bayes and Linear SVM are more suitable for linearly-separable data.
Overall, we have the following conclusion: among all the model selection tasks we explored, the hit
rate (i.e., the ratio of recommended models that match the ground truth model) is 92% for MV, 53%
for CV accuracy, and 55% for test accuracy.

4.2 RQ2: EFFECTIVENESS OF MV IN HYPERPARAMETER CONFIGURATION

For models whose capacity increases along with their hyperparameters, we expect their goodness
of model fit to first increase, then peak, before decreasing. The peak indicates the best model fit
assessed according to MV. In RQ2, we assess whether MV matches this pattern. We study five
capacity-related hyperparameters for several widely-adopted algorithms: the maximum depth for a
Decision Tree, C and gamma for a Support Vector Machine (SVM), and the dropout rate and learning
rate for Convolutional Neural Networks (CNNs).

Maximum Depth for Decision Tree. Figure 3 shows how MV responds to increases in maximum
depth of Decision Tree for the eight real-world UCI datasets. For small datasets (smaller than 2,000),
we do not split out test data, but take the whole data as training data. For the bank and connect
datasets, we use 80% of the data as test sets. For adult, we use its original test set. We repeat the
experiments 10 times. The yellow shadow in the figure indicates the variance across the 10 runs.

1 3 5 7 9
0.0

0.5

1.0

MV
CV

iris

1 3 5 7 9
0.0

0.5

1.0
wine

1 3 5 7 9
0.0

0.5

1.0
cancer

1 5 9 13 17
0.0

0.5

1.0
car

1 3 5 7 9
0.0

0.5

1.0
heart

1 3 5 7 9
0.0

0.5

1.0

MV
CV
Test

adult

1 3 5 7 9
0.0

0.5

1.0
bank

5 10 15 20 25 30
0.0

0.5

1.0
connect

Figure 3: Changes in MV, CV accuracy, and test accuracy when increasing the maximum depth for
Decision Trees. The x-axis ticks for car and connect differ to capture MV’s inflection point. We can
observe that, while CV and test accuracy agree with MV on the key influence point in most cases,
they are less responsive to large depths (which lead to overfitting).

From Figure 3, we make the following observations. First, for 6 out of the 8 datasets, MV increases
then decreases as maximum depth increases, and exhibits a maximum in each curve. This is consistent
with the pattern we expect a good measure to exhibit. For small datasets, large depths yield low
MV scores, whereas large datasets do not. For adult and bank, MV values remain large when the
maximum depth increases. We suspect that this is because, for these two datasets, the training data
size is large enough for the model to obtain resilience against mutated labels. We explore the influence
of training data size in the appendix.

We also observe that MV, CV and test accuracy have similar inflection points, yet MV is more
responsive to depth changes, especially when the model overfits due to large depths. This observation
indicates that MV provides further information to help tune maximum depth when CV and test
accuracy are less able to distinguish multiple parameters. In particular, if a developer uses grid search
to select the best maximum-depth ranged between 5 and 10, we find that grid search suggests depths
of 8, 6, 9 in three runs for the cancer dataset, which are over-complex and unstable. Similar results
are observed for other small datasets. With MV, its decrease trend in this range indicates that there is
a simpler model with comparable predictive accuracy but better resilience to label mutation.

C and gamma for SVM. In SVM, the gamma parameter defines how far the influence of a single
training example reaches; the C parameter decides the size of the decision boundary margin, behaving
as a regularisation parameter. In a heat map of MV scores as a function of C and gamma, the
expectation is that good models should be found close to the diagonal of C and gamma (Scikit-
learn:SVM, 2020). Figure 4 presents the heat map for cross validation and MV for two datasets.
We do not use a hold out test set to ensure sufficient training data. The upper left triangle in each
sub-figure denotes small complexity; the bottom right triangle in each sub-figure denotes large
complexity. In both cases, MV gives low scores.

When comparing CV and MV, MV is more responsive to hyperparameter value changes. With MV
scores, it is more obvious that good models can be found along the diagonal of C and gamma. When
C and gamma are both large, the CV score is high but MV score is low, this is an indication that there
exists a simpler model with similar test accuracy. In practice, as stated by Scikit-learn documentation,

6



Under review as a conference paper at ICLR 2022

FD
QF
HU

Z
LQ
H

&9 09

&9 09

FD
QF
HU

Z
LQ
H

&9 09

&9 09

Figure 4: Influence of SVM parameters on CV and MV. The horizontal/vertical axis is gamma/C.
Good models are expected to be found close to the diagonal. As can be seen, CV has a broad high-
valued (bright) region, while MV’s high-valued region (bright) is narrower, showing that MV is more
responsive to parameter changes.

it is interesting to simplify the decision function with a lower value of C so as to favour models that
use less memory and that are faster to predict (Scikit-learn:SVM, 2020).

Dropout Rate and Learning Rate for CNN. We use CNN models coming from Keras documentation.
Validation accuracy is calculated with 80% training data and 20% validation data. Figure 5 shows
the results. We observe that when tuning dropout rate for mnist and fashion-mnist, validation and
test accuracy are less discriminating and provide different tuning results across different runs (more
details in Table 4), yet MV is more discriminating. For dropout rate, MV and test accuracy have
different key influence points on cifar10 (0.4 v.s. 0.2). This is because there is a big capacity jump
between 0.2 and 0.4. The result suggests that the optimal dropout rate with comparable validation/test
accuracy is between 0.2 and 0.4.

0.0 0.2 0.4 0.6 0.8
dropout rate

0.85

0.90

0.95

1.00 fashion-mnist

0.0 0.2 0.4 0.6 0.8
dropout rate

0.4

0.6

0.8

cifar10

0.0 0.2 0.4 0.6 0.8
dropout rate

0.0

0.2

0.4

0.6

0.8

1.0 cifar100

0.01 0.001 1e-04 1e-05
learning rate

0.0

0.2

0.4

0.6

0.8

1.0 mnist

0.01 0.001 1e-04 1e-05
learning rate

0.0

0.2

0.4

0.6

0.8

1.0 fashion-mnist

0.01 0.001 1e-04 1e-05
learning rate

0.0

0.2

0.4

0.6

0.8

1.0 cifar10

0.01 0.001 1e-04 1e-05
learning rate

0.0

0.2

0.4

0.6

0.8

1.0 cifar100

Figure 5: Influence of CNN’s dropout rate and learning rate on MV and validation/test accuracy.

Overall, we observe that MV is responsive to hyperparameter changes on all the hyperparameter
tuning tasks we explored. CV and test accuracy are less responsive especially for large-capacity
hyperparameters (i.e., large maximum depth for Decision Tree and small dropout rate for CNNs).
This leads to the following issues. First, due to the large variance of their results across different
runs, such low response often leads to unstable hyperparameter recommendation results. We further
explore this in Section 4.3. Second, developers may easily choose an over-complex learner, making
the learner: 1) easily biased by incorrect training labels; 2) vulnerable to training data attack; 3)
computationally and memory intensive; 4) more difficult to interpret.

4.3 RQ3: STABILITY OF MV IN MODEL VALIDATION

For the machine learning experimental design in the literature, data is usually random split. The values
of MV, CV, and test accuracy may be easily affected by the randomness in model building (Pham
et al., 2020), especially when the overall data set is small, or building deep learning models. As
a result, with different runs, developers may get completely different recommendations for the
best hyperparameter configuration. A good model validation method is expected to be stable in
hyperparameter recommendation results, giving developers clear instructions on the best choice.

To explore the stability of MV, CV, and test accuracy, we run the model building process multiple
times, each time with a different split of training data and validation data (the size of training/validation
data is unchanged). We then record the recommended best hyperparameters during each run under
the scenario of hyperparameter configuration. We use the maximum depth for Decision Tree with
the 5 small UCI datasets as well as the dropout rate for CNN with the 3 image datasets. Table 4
shows the results, which lead to the following conclusion: MV has good stability in recommending
hyperparameters. When recommending maximum depth for Decision Tree, the overall variance is

7



Under review as a conference paper at ICLR 2022

Dataset Method Recommended maximum depth Variance

iris MV [3, 3, 3, 2, 2, 2, 2, 3, 3, 2] 0
CV [7, 6, 6, 3, 3, 9, 3, 7, 5, 8] 4

wine MV [3, 3, 2, 3, 2, 3, 4, 3, 2, 2] 0
CV [3, 4, 7, 8, 3, 3, 4, 3, 5, 3] 3

cancer MV [3, 3, 3, 2, 3, 3, 3, 3, 3, 3] 0
CV [5, 7, 3, 4, 4, 4, 7, 4, 3, 6] 2

car MV [7, 7, 7, 7, 7, 7, 7, 7, 7, 7] 0
CV [11,19,19,15,17,13,11,13,13,15] 8

heart MV [5, 6, 3, 3, 6, 5, 6, 4, 3, 5] 1
CV [4, 4, 3, 3, 4, 4, 3, 3, 9, 5] 3

mean MV – 0.200
CV – 4.000

Dataset Method Recommended dropout rate Variance

mnist
MV [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] 0.000
Vali. [0.0, 0.0, 0.2, 0.2, 0.0, 0.0, 0.2, 0.0, 0.0, 0.2] 0.011
Test [0.2, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0] 0.009

f-mnist
MV [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] 0.000
Vali. [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] 0.000
Test [0.2, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.2, 0.2, 0.0] 0.011

cifar10
MV [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4] 0.000
Vali. [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] 0.000
Test [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2] 0.000

mean
MV – 0.000
Vali. – 0.003
Test – 0.007

Table 4: Recommended hyperparameters across different runs. The third column shows the specific
recommended hyperparameters (we run the datasets 10 times); the last column shows the variance
(the average of the squared differences from the Mean) across different runs. MV is more stable than
CV and test accuracy in recommending hyperparameters.

0.200 for MV, but 4.000 for CV accuracy; when recommending dropout rate for CNN, the overall
variance is 0.000 for MV, 0.003 for validation accuracy, and 0.007 for test accuracy.

4.4 RQ4: INFLUENCE OF TRAINING DATA SIZE ON MV

7 11 15 19 230.55
0.60
0.65
0.70
0.75
0.80

M
V 1000

3000
5000
7000
9000

connect

2 6 10 14 18
0.00

0.25

0.50

0.75

1.00

M
V 100

300
500
700
900

moon

Figure 6: Influence of training data size on MV
when increasing maximum depths (horizontal
axis) of Decision Trees. For a given depth, larger
datasets tend to yield larger MV values.

We expect that when a learner is over-complex
for the data, adding extra data will improve the
learner’s resilience to mutated labels, thus the
MV score ought also to increase when training
data size increases. Indeed, previously from Fig-
ure 3, we have observed that models trained on
large datasets (e.g., bank and adult) tend to be
more resilient to mutated labels for large depths.
Figure 6 shows the results for connect and moon
datasets, indicating that data size plays a role in
determining the trained model’s robustness to
incorrect training labels.

These observations indicate another possible
value in the use of MV, as a complement to
CV and test accuracy. Specifically, where MV is low, the ML engineers have two potential actions
to improve the fitting between the learner and the training data: either to optimise the learner (e.g.,
search for smaller-capacity models with comparable test accuracy), or to optimise the data (e.g.,
increase data size to increase the learner’s resilience to incorrect training labels).

5 DISCUSSION

5.1 CONNECTION WITH RELATED WORK

MV is also connected with several key concepts in the literature. This section discusses the connections
as well as the differences between MV and these concepts.

Noise injection in training data has long been recognised as an approach to complex training data
and reduce overfitting (Holmstrom et al., 1992; Greff et al., 2016). There are three main differences
between MV and this random noise injection. 1) Overfitting prevention noise is often Gaussian
noise (Greff et al., 2016), and is added into the training inputs (not labels); on the contrary, MV
does not use random noise, but uses label swapping, the mutation is applied only on labels. 2)
Conventional noise injection changes the training data, then directly uses the model trained on this
noisy training data. MV keeps the original training data, but creates another mutated training data
to for measurement calculation. This mutated training data will not be used to yield any model for
real prediction tasks. 3) Conventional noise injection aims to improve the complexity of the training
data, to reduce overfitting. MV aims to calculate a model validation measurement score, to measure

8



Under review as a conference paper at ICLR 2022

the goodness of model fitting. Zhang et al. (2017) adds noise in training data labels to study the
generalisation of DNN, while MV mutates labels to provide model validation measurement.

Noise injection in test data is adopted to evaluate the robustness of a model. For example, the
generation of adversarial examples (Goodfellow et al., 2014) uses noise injection in the test inputs.
Compared to this technique, MV 1) mutates training data, not test data; 2) mutates labels, not features;
3) aims to validate model fitting, rather than model robustness to feature perturbations.

Overfitting prevention refers to the techniques adopted in the training process to avoid overfitting,
especially when training deep neural networks. The key techniques are regularisation, early stopping,
ensembling, dropout, and so on. However, as shown in this paper, conventional overfitting detection
techniques, such as CV or validation accuracy, are often less responsive to overfitting. In practice,
developers often conduct the prevention without knowing whether the overfitting happens or not. MV
is demonstrated to be discriminating and stable in detecting over-complex learners. It thus provides
signals for the adoption and configuration of these overfitting prevention techniques.

Rademacher complexity. In statistical machine learning, Rademacher complexity has been used to
measure the complexity of a learner’s hypothesis space. It also mutates training data. It measures how
well the learner correlates with randomly generated labels on the training data, but can be difficult to
compute (Rosenberg & Bartlett, 2007). Different from Rademacher complexity, MV is an applied
tool, not a theoretical tool. MV uses label mutations for a part of the data. Furthermore, Rademacher
complexity cares only about the training accuracy on the mutated data, but MV uses the accuracy
changes on the original and the mutated data.

5.2 THE USAGE OF MV IN PRACTICE

With our exploratory study, we find that MV is capable of complementing existing model validation
techniques. There are two main application scenarios of MV: 1) When out-of-sample validation
results are similar or unstable across different models or hyperparameters, MV can help to guide the
selection process (see more in Section 4.2 and Section 4.3). 2) When the training data size is limited,
MV is a better option than validation accuracy because it does not need to split out a validation set,
thus reserving more data for training.

The test accuracy, although having limitations shown in the literature and our experiments, is still a
very important method for developers to learn the generalisation ability of a model, especially when
there is data distribution shift between the training data and unseen data. However, as shown in this
paper, when test accuracy is high but MV is low, this means that there is a learner with comparable
test accuracy, but is simpler.

MV deserves more attention from developers when simplicity, security (e.g., defending training data
attack), and interpretibility of the built models are required. Theoretically, MV can be applied in
other ML tasks which rely on out-of-sample validation, such as feature selection. We will explore the
effectiveness of MV in these tasks in future work.

6 CONCLUSION

We introduced an exploratory study on MV, a new approach to assessing how good a learner fits the
given training data. MV validates via checking the learner’s sensitivity to training labels changes
(expressed as label mutants). The sensitivity is captured by metamorphic relations. We show that MV
is more effective and stable than the currently adopted CV, validation accuracy, and test accuracy. It
is also responsive to model capacity and training data characteristics. These results provide evidence
that MV complements the existing model validation practises. We hope the present paper will serve
as a starting point to future contributions.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a new approach for
generating next test cases. arXiv preprint arXiv:2002.12543, 2020.

Classifier Comparison. Classifier Comparison, 2019. URL https://scikit-learn.org/stable/auto_
examples/classification/plot_classifier_comparison.html.

Vitaly Feldman, Roy Frostig, and Moritz Hardt. The advantages of multiple classes for reducing
overfitting from test set reuse. In International Conference on Machine Learning, pp. 1892–1900.
PMLR, 2019.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222–2232, 2016.

Quentin F Gronau and Eric-Jan Wagenmakers. Limitations of bayesian leave-one-out cross-validation
for model selection. Computational brain & behavior, 2(1):1–11, 2019.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and computer
sciences, 44(1):1–12, 2004.

Lasse Holmstrom, Petri Koistinen, et al. Using additive noise in back-propagation training. IEEE
transactions on neural networks, 3(1):24–38, 1992.

Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. IEEE
transactions on software engineering, 37(5):649–678, 2010.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT press, 2018. Second edition.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. Mutation
testing advances: an analysis and survey. In Advances in Computers, volume 112, pp. 275–378.
Elsevier, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan,
Yaoliang Yu, and Nachiappan Nagappan. Problems and opportunities in training deep learning
software systems: An analysis of variance. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 771–783. IEEE, 2020.

Juho Piironen and Aki Vehtari. Comparison of bayesian predictive methods for model selection.
Statistics and Computing, 27(3):711–735, 2017.

David S Rosenberg and Peter L Bartlett. The rademacher complexity of co-regularized kernel classes.
In Artificial Intelligence and Statistics, pp. 396–403, 2007.

Scikit-learn:SVM. RBF SVM parameters. https://scikit-learn.org/stable/auto_examples/svm/plot_
rbf_parameters.html, 2020.

Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. A survey on metamorphic
testing. IEEE Transactions on software engineering, 42(9):805–824, 2016.

10

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html


Under review as a conference paper at ICLR 2022

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. International Conference on Learning Representations
(ICLR), 2017.

11



Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 THEORETICAL INSPIRATION

This part introduces the theory that leads to a metamorphic relation and formula that we use for
conducting MV. The denotations and terms we used are guided by the standard statistical machine
learning literature (Mohri et al., 2018; Ghosh et al., 2017).

Theoretical Metamorphic Relation for Model Validation:
Let X be the feature space from which the data are drawn. Let Y = [k] = {1, ..., k} be the class
labels. Given a training set S = {(x1, yx1), ..., (xm, yxm)} ∈ (X × Y)m which is independently
and identically distributed according to some fixed, but unknown, distribution D of X × Y . Let a
classifier be f : X → C, C ⊆ Rk.

A loss function L is a map L : C×Y → R+. We use E to denote expectation. Given any loss function
L and a classifier f , we define the L-risk of f by

RL(f) = ED[L(f(x), yx)] = Ex,yx [L(f(x), yx)]. (2)

Let {(x, ŷx)} be the mutated data, where

ŷx =

{
yx, with probability (1− ηx)
j ∈ [k]\yx, with probability ηxj

.

For all x, conditioned on yx = i, we have
∑

j ̸=i ηxj = ηx. The noise is called symmetric or uniform
if ηx = η. For uniform or symmetric noise, we also have ηxj

= η
k−1 . We consider a symmetric loss

function L that satisfies the following equation, where C is a constant.

k∑
i=1

L(f(x), i) = C,∀x ∈ X ,∀f. (3)

Let Sη = {(xn, ŷxn
), n = 1, ...,m} be the mutated training data. We call η as a mutation degree.

Let f be the model trained on S, fη be the model trained on Sη
1. f and fη are from the same learner

(with identical hypothesis space). Let r(x) = (L(fη(x), ŷx)− L(f(x), yx))/η be the loss change
rate between f and fη , x ∈ X . For uniform noise, we have:

ED[r(x)] = ED

[
L(fη(x), ŷx)− L(f(x), yx)

η

]
(4)

= ED

[
(1− η)L(fη(x), yx) +

η
k−1

∑
i̸=yx

L(fη(x), i)− L(f(x), yx)

η

]
(5)

= ED

1− η

η
L(fη(x), yx)−

1

η
L(f(x), yx) +

1

k − 1

∑
i ̸=yx

L(fη(x), i)

 (6)

=
1− η

η
RL(fη)−

1

η
RL(f) +

C −RL(fη)

k − 1
(7)

= (
1

η
− 1− 1

k − 1
)RL(fη)−

1

η
RL(f) +

C

k − 1
(8)

= (
1

η
− k

k − 1
)RL(fη)−

1

η
RL(f) +

C

k − 1
. (9)

If we consider L to be error rate2, C = 1. Now consider the situation for multi-class classification
problems, we mutate the labels by label swapping: to mutate the labels by replacing them with the

1f is the same as f(S) in Equation 15.
2The loss function L does not have to be error rate (0-1 loss). Any loss function that satisfies Equation 3 can

be applied. In the present work, we use error rate (also accuracy) considering its popularity.

12



Under review as a conference paper at ICLR 2022

next label in the label list, the final label in the label list is replaced with the first label in the label list.
In this way, we have ηxnj = η. Thus, Equation 9 becomes:

ED[r(x)] = (
1

η
− 2)RL(fη)−

1

η
RL(f) + 1. (10)

Thus, we have:

RL(f) = (1− 2η)RL(fη)− ηED[r(x)] + η. (11)

Let T (f) be the accuracy of f over distribution D, T (f) = 1−RL(f), T (fη) = 1−RL(fη). Let
T̂ (f) be the empirical accuracy of f on training data with size n: T̂ (f) = 1

n

∑n
i=1 1f(xi)=yxi

, where
1w is the indicator function of event w. We have:

T (f) = (1− 2η)T (fη) + ηED[r(x)] + η. (12)

Empirical Model Validation Measurement

Equation 12 specifies a theoretical metamorphic relation: Mutation degree η defines the relationship
between inputs S and Sη: under each class of S, η proportion of the labels are mutated with label
swapping (see more in Section A.1), yielding Sη. Such input changes lead to the expected output
changes reflected by T (f), T (fη), and loss change rate r(x) in the equation.

The calculation of such a theoretical metamorphic relation, however, is impractical, because data
distribution D is unknown, the expectation calculation is also unrealistic. Inspired by Equation 12,
also considering that our motivation is to empirically measure how good a learner fits the available
training data, we change the expectations on data distribution D into empirical observations on the
available training data. This leads to the following measurement, m, to empirically access a learner3.

m = (1− 2η)T̂S(fη) + ηr̂ + η (13)

= (1− 2η)T̂S(fη) + η
T̂S(f)− T̂Sη (fη)

η
+ η (14)

= (1− 2η)T̂S(fη) + T̂S(f)− T̂Sη
(fη) + η. (15)

In Equation 15, S is the original training data, Sη is the mutated training data with mutation degree η
(η ≤ 0.54), f is the model trained on the original training data, fη is the model trained on the mutated
data, T̂S(f), T̂S(fη) are the accuracy of f and fη based on the original training labels, respectively.
T̂Sη (fη) is the accuracy of fη based on the mutated training labels.

Connection between m and Our Intuition:
Interestingly, Equation 15 matches well with our intuition introduced in Section 2.1. In particular, if
the learner is less affected by the mutated labels, the predictive behaviours of the trained model with
mutated labels should be closer to that of the model trained with the original labels. This leads to
a larger T̂S(fη) and r̂, as long as the mutation degree η is fixed. The matching between m and our
intuition provides extra supports for the reliability of MV in validating machine learning models.

The calculation of m can also be regarded as a type of mutation score Jia & Harman (2010); Papadakis
et al. (2019) for model validation. As explained in Section 2.1, we expect that a good learner kills
more mutants. However, the intuitionistic mutation score (i.e., the proportion of killed mutants) has a
limitation in model validation: a poor learner that makes random guesses may also kill many mutants.

3The purpose of m is not to approximate T (f), but to measure how good a learner fits the available training
data. However, if the training data is sufficiently large, m is expected to be close to T (f).

4

13



Under review as a conference paper at ICLR 2022

Equation 15 covers the mutant killing results (i.e., by calculating accuracy decrease rate r), but also
fixes this limitation by also considering the accuracy on the original correct labels (i.e, T̂S(fη)). Thus,
it can be regarded as a mutation score calculation adapted to suit the model validation scenario.

The larger a learner’s m is, the better the learner fits the training data. Thus, we adapt the concept of
metamorphic relation in the scenario of model validation and extend it to a qualitative measurement,
rather than a simple binary judgement. However, the value of m can also reflect the metamorphic
relation we introduced in Section 2.2: let us define that once a learner’s m is below a threshold
(e.g., 0.8), the metamorphic relation is violated. The violation then indicates a fault in model fitting:
the learner is either over-complex (with a large T̂S(f)) or over-simple (with a small T̂S(f)) for the
training data.

A.2 INFLUENCE OF MUTATION DEGREE

From Equation 15, it can be seen that the calculation of MV involves a mutation degree, η, for
generating the mutated training data. The value of η needs to be fixed during the calculation. However,
if Equation 15 is reliable , the influence of η on model validation should be minor. This section
empirically explores whether this is true.

The first sub-figure in Figure 7 shows the results for UCI datasets. The second sub-figure shows the
results for the three large image datasets. It reveals that for most datasets (except for the three smallest
datasets, i.e., iris, wine, and heart), the values of MV remain almost identical with different mutation
degrees. This is because there is the constant term η at the end of Equation 15 when calculating MV,
which cancels out the decrease of the detected mutants. This observation provides further evidence
for the reliability of our calculation formula shown in Equation 15.

For the three very small datasets, i.e., iris, wine, and heart, with fewer than 300 data points, we
observe that a larger noise degree leads to a smaller MV. This may be because label mutations have
more influence on very small datasets. Nevertheless, with different mutation degrees, we observe that
the effectiveness of MV in model selection and hyperparameter configuration do not change, because
the relative rankings of models/hyperparameters remain unchanged. For example, as shown by the
third sub-figure in Figure 7, even for the smallest dataset iris, the recommended maximum depths for
Decision Tree are identical.

The same as the choice of n in n-fold cross-validation, although we demonstrate that the choice of
η doest not affect model validation conclusions, there may be a best practice for selecting η under
different application scenarios. We call for future work and practices to explore this.

0.1 0.2 0.3 0.4 0.5
mutation degree 

0.0

0.5

1.0

iris
wine
cancer
car

heart
adult
bank
connect

0.1 0.2 0.3 0.4 0.5
mutation degree 

0.0

0.5

1.0

mnist
fashion

cifar10

1 3 5 7 9
maximum depth

0.0

0.5

1.0

: 0.1
: 0.2
: 0.3
: 0.4
: 0.5

iris

Figure 7: Influence of mutation degree η on MV. The results show that different η lead to similar MV
values and identical model validation conclusions.

A.3 INFLUENCE OF TRAINING DATA SIZE ON MV

In addition to RQ4, we further investigate what would happen to MV should we deliberately use
training data much more than normally expected. That is, we go beyond the assumption that there is
no need to increase data when the test accuracy becomes stable. As we can see from Figure 8, MV is
more responsive to changes in training data size than test accuracy. For learners that are over-complex
to the data, when adding more training data no longer increases test accuracy, MV continues to
increase, indicating that the model’s resilience to incorrect labels continues to increase. The extra
training data improve the robustness of the learner to training label noise. The pattern that MV no

14



Under review as a conference paper at ICLR 2022

longer changes when model complexity increases is also a signal to developers that the training data
is perhaps larger than necessary.

3 7 11 15 19
0.0

0.5

1.0

PV
 sc

or
e

1000
10000
100000

moon

3 7 11 15 19
0.0

0.5

1.0
circle

3 7 11 15 19
0.0

0.5

1.0
linear

3 7 11 15 19
0.0

0.5

1.0

Te
st

 a
cc

ur
ac

y

1000
10000
100000

moon

3 7 11 15 19
0.0

0.5

1.0
circle

3 7 11 15 19
0.0

0.5

1.0
linear

Figure 8: MV (first row) and test accuracy (second row) on training data of increasing size with
different maximum depths (horizontal axis). MV is responsive to data size changes; 2) MV no longer
decreases for large depths when the training data size is sufficiently large.

A.4 EFFICIENCY OF MV IN MODEL VALIDATION

In this part, we compare the efficiency of MV, CV (3-fold), and validation accuracy (for image
datasets), using the synthetic datasets on 7 classifiers (with the same setup in RQ1), the 8 UCI datasets
on Decision Tree (with a fixed maximum depth of 5), and the 3 image datasets (with a fixed dropout
rate of 0.5, and learning rate of 0.0001). The deep learning experiments with the three image datasets
were run on Tesla V100, with 16GB Memory and 61GB RAM.

Table 5 shows the results. For brevity, we show only the results for the moon synthetic datasets.
Overall, both MV, CV, and validation accuracy have good efficiency on these datasets. Note that in
practice developers often use 5-fold or 10-fold CV, which have larger time cost than the 3-fold CV.

The cost of MV mainly comes from data mutation and model training. As observed from Table 5,
larger datasets take more time to get MV values. Our results demonstrate that the cost of MV is
manageable and comparable to 3-fold CV and validation accuracy in both classic learning and deep
learning. In particular, for the three large image datasets, MV costs only half the time of 3-fold CV.

What is more, as demonstrated by RQ1 and RQ2, the effectiveness and stability of MV help to
conduct model selection and hyperparameter configuration more quickly. Thus, it helps to save cost in
selecting the best learners for a given training set. On the other hand, MV is sensitive to over-complex
models, and can help to select the simplest model with reasonable test accuracy. This will also reduce
the model training and maintainability cost in the long run.

Overall, MV has comparable efficiency to 3-fold CV and validation accuracy. For the three deep
learning tasks, MV’s efficiency doubles that of 3-fold CV.

Dataset Learner MV-time CV-time Dataset Learner MV-time CV-time

moon Linear SVM 0.002s 0.003s iris Decision Tree 0.021s 0.003s
moon RBF SVM 0.003s 0.004s wine Decision Tree 0.004s 0.007s
moon Gaussian Process 0.161s 0.157s cancer Decision Tree 0.023s 0.017s
moon Decision Tree 0.001s 0.002s car Decision Tree 0.011s 0.014s
moon Random Forest 0.046s 0.064s heart Decision Tree 0.004s 0.008s
moon AdaBoost 0.124s 0.185s adult Decision Tree 0.386s 0.385s
moon Naive Bayes 0.002s 0.003s bank Decision Tree 0.118s 0.109s

connect Decision Tree 0.195s 0.196s
mean – 0.048s 0.060s – – 0.095s 0.092s

Dataset Learner epoch MV-time CV-time Validation-time

mnist convolutional neural network 10 2.772min 5.296min 1.761min
fashion-mnist convolutional neural network 10 2.803min 5.352min 1.778min
cifar10 convolutional neural network 50 12.052min 24.315min 8.072min
mean – – 5.876min 11.654min 3.870min

Table 5: Efficiency of MV, CV, and validation accuracy. The top/bottom sub-table shows the results
for classic/deep learning. We observe that the efficiency of MV is comparable to that of 3-fold CV
and validation accuracy.

15



Under review as a conference paper at ICLR 2022

A.5 MODEL SELECTION WITH UCI DATASETS (RQ1)

In this part, as an extension to RQ1, we present the results of model selection using UCI datasets.
Note that we do not use test accuracy as the ground truth for model selection considering the possible
limitations of test accuracy we discussed in the introduction. Instead, we present the results to
demonstrate how MV differs from CV and test accuracy, as well as how it complements CV and
test accuracy in model selection when developers observe similar accuracy results across different
learners.

Figure 9 shows the results. It is interesting that we do have observations on MV that are consistent
with common machine learning knowledge. In particular, for the four smallest dataset (i.e., iris, wine,
cancer, and heart), MV suggest the two simplest learners (i.e., Linear SVM and Naive Bayes).

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1

MV
CV
TA

iris

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 wine

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 cancer

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 car

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 heart

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 adult

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 bank

Lin
ea

r S
VM

RB
F 

SV
M

De
cis

io
n 

Tr
ee

Ra
nd

om
 F

or
es

t
Ad

aB
oo

st
Na

iv
e 

Ba
ye

s0

1 connect

Figure 9: Model selection results with UCI datasets (extended analysis for RQ1).

16



Under review as a conference paper at ICLR 2022

A.6 MODEL SELECTION WITH RANDOM LABEL REPLACEMENT

In the main body of this work, we present empirical results with MV calculated using label swapping.
In this part, we further explore the effectiveness of another label mutation approach: random label
replacement. That is, when conducting label mutation, we replace the original label with a label that
is randomly chosen from the label list. We compare the performance of these two label mutation
approaches in model selection with the ground truth provided by synthetic datasets. Figure 12 shows
the results. We observe that random label replacement is less accurate than label swapping in model
selection, but is still more accurate than CV and test accuracy.

zero noise
MV-SL=0.89
MV-RL=0.80

Linear SVM
MV-SL=1.00
MV-RL=0.94

RBF SVM
MV-SL=1.00
MV-RL=0.95

Gaussian Process
MV-SL=0.74
MV-RL=0.77

Decision Tree
MV-SL=0.75
MV-RL=0.77

Random Forest
MV-SL=0.75
MV-RL=0.73

AdaBoost
MV-SL=0.89
MV-RL=0.77

Naive Bayes

MV-SL=0.53
MV-RL=0.51

MV-SL=1.00
MV-RL=0.87

MV-SL=0.88
MV-RL=0.91

MV-SL=0.67
MV-RL=0.73

MV-SL=0.69
MV-RL=0.78

MV-SL=0.72
MV-RL=0.74

MV-SL=1.00
MV-RL=0.93

MV-SL=0.93
MV-RL=0.79

MV-SL=0.88
MV-RL=0.83

MV-SL=0.91
MV-RL=0.88

MV-SL=0.68
MV-RL=0.73

MV-SL=0.67
MV-RL=0.78

MV-SL=0.77
MV-RL=0.77

MV-SL=0.94
MV-RL=0.88

Figure 10: Performance of MV in model selection with label swapping (MV-SL) and random label
replacement (ML-RL).

A.7

1 50
depth

1

50

nu
m

 o
f t

re
es

test accuracy

1 50
depth

1

50

MV

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 11: Performance of MV in suggesting hyperparameters that follow Occam’s Razor on dataset
Cancer. The training data has only 300 samples. The low values of MV on large depths and number
of trees provide warnings to developers that the hyperparameters are over complex and violate the
rule of Occam’s Razor. The unnecessary complexity in the complex learner affects the interpretability
of the learner, also making it vulnerable to training label attacks.

17



Under review as a conference paper at ICLR 2022

A.8

0.6 0.7 0.8 0.9 1.0
MV

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

 c
ha

ng
es

r=0.91, p=1.5e-46

0.6 0.7 0.8 0.9 1.0
MV

0.6

0.7

0.8

0.9

1.0

Ne
w 

ac
cu

ra
cy

 o
n 

or
ig

in
al

 la
be

ls

r=0.84, p=1.4e-32

Figure 12: Correlation between MV, training accuracy changes, and the new training accuracy based
on the original labels.

18


	Introduction
	Mutation Validation
	General Intuition
	Mutation Validation

	Experimental Setup
	Results
	RQ1: Effectiveness of MV in Model Selection
	RQ2: Effectiveness of MV in Hyperparameter Configuration
	RQ3: Stability of MV in Model Validation
	RQ4: Influence of Training Data Size on MV

	Discussion
	Connection with Related Work
	The Usage of MV in Practice

	Conclusion
	Appendix
	Theoretical Inspiration
	Influence of Mutation Degree
	Influence of Training Data Size on MV
	Efficiency of MV in Model Validation
	Model Selection With UCI Datasets (RQ1)
	Model Selection With Random Label Replacement
	
	


