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ABSTRACT

Despite the empirical success of neural architecture search (NAS) in deep learning
applications, the optimality, reproducibility and cost of NAS schemes remain hard
to assess. The variation in search spaces adopted has further affected a fair compar-
ison between search strategies. In this paper, we focus on search strategies in NAS
and propose Generative Adversarial NAS (GA-NAS), promoting stable and repro-
ducible neural architecture search. GA-NAS is theoretically inspired by importance
sampling for rare event simulation, and iteratively refits a generator to previously
discovered top architectures, thus increasingly focusing on important parts of the
search space. We propose an efficient adversarial learning approach in GA-NAS,
where the generator is not trained based on a large number of observations on
architecture performance, but based on the relative prediction made by a discrimi-
nator, thus significantly reducing the number of evaluations required. Extensive
experiments show that GA-NAS beats the best published results under several
cases on the public NAS benchmarks including NAS-Bench-101, NAS-Bench-201,
and NAS-Bench-301. We further show that GA-NAS can handle ad-hoc search
constraints and search spaces. GA-NAS can find new architectures that enhance
EfficientNet and ProxylessNAS in terms of ImageNet Top-1 accuracy and/or the
number of parameters by searching in their original search spaces.

1 INTRODUCTION

Neural architecture search (NAS) improves neural network model design by replacing the manual trial-
and-error process with an automatic search procedure, and has achieved state-of-the-art performance
on many computer vision tasks (Elsken et al., 2018). Since the underlying search space of architectures
grows exponentially as a function of the architecture size, searching for an optimum neural architecture
is like looking for a needle in a haystack. A variety of search strategies have been proposed
for NAS. Typical search strategies include random search (Li & Talwalkar, 2020), differentiable
architecture search and optimization (e.g., DARTS (Liu et al., 2018), SNAS (Xie et al., 2018),
Bayesian optimization (e.g., NASBOT (Kandasamy et al., 2018)), and reinforcement learning (e.g.,
ENAS (Pham et al., 2018), NASNet (Zoph et al., 2018)).

In spite of a proliferation of NAS strategies proposed, issues on the robustness and reproducibility
of existing NAS methods are raised by Li & Talwalkar (2020), Yu et al. (2019), and Yang et al.
(2019). Comparisons between different methods are hard, as there is no shared search space or
experimental protocol followed by all (Yu et al., 2019; Yang et al., 2019). To promote reproducibility
and fair comparisons among methods, multiple NAS benchmarks have recently emerged, including
NAS-Bench-101 (Ying et al., 2019), NAS-Bench-201 (Dong & Yang, 2020), and NAS-Bench-301
(Siems et al., 2020), which are datasets that map architectures to their evaluation metrics. This
provides an opportunity for researchers to fairly benchmark different search algorithms in terms
of searching for the highest-ranked architectures within the least number of queries to architecture
performance, the latter being a good indicator of the search cost. However, Yu et al. (2019) has
evaluated several well-known search algorithms, including DARTS (Liu et al., 2018), ENAS (Pham
et al., 2018) and NAO (Luo et al., 2018) on NAS-Bench-101, and has concluded that these search
algorithms perform similarly to a random policy (Yu et al., 2019).

In this paper, we revisit the NAS problem with importance sampling, a robust method for rare event
discovery with theoretical guarantees (Rubinstein & Kroese, 2016; 2013). Our method stems from the
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Cross Entropy (CE) method (Rubinstein & Kroese, 2013), which iteratively retrains an architecture
generator to mimic the winning architectures generated in previous iterations so that the generator
will increasingly focus on more important regions of the large search space. However, as the generator
obtains performance measurements only after architectures, which are discretized graphs, are sampled
and evaluated, the performance signal cannot be backpropagated to train the generator directly with
SGD. Another challenge is the large search space an algorithm, e.g., reinforcement learning (RL),
must explore before it can learn a policy to generate better performing architectures, which leads to
high search cost.

To solve these challenges, we propose Generative Adversarial NAS (GA-NAS), an efficient and
robust search algorithm for NAS. GA-NAS uses RL to train an architecture generator network based
on RNN and GNN, avoiding the end-to-end differentiability issue. In contrast to other RL-based
NAS schemes, GA-NAS does not obtain rewards from the performance metrics of the generated
architectures, a costly procedure if a large number of architectures are explored. Instead, it iteratively
updates a discriminator that can distinguish the currently top architectures from randomly generated
ones, and uses the relative prediction from the discriminator to train the generator to sample even
better architectures in the next round. This enables the generator to be efficiently trained without
many queries to true architecture performance. We point out the theoretical connection between
GA-NAS and a CE method with a symmetric Jensen—Shannon (JS) divergence loss, for which we
establish the convergence guarantee.

Results from extensive search experiments show that GA-NAS outperforms state-of-the-art results
reported the public benchmark sets on NAS-Bench-101, NAS-Bench-201, and NAS-Bench-301, in
that it consistently finds top ranked architectures in fewer number of queries. We also demonstrate
the ability of GA-NAS to incorporate hard ad-hoc constraints and can be used to improve existing
models. Through experiments on ImageNet, we show that GA-NAS can enhance EfficientNet-BO
(Tan & Le, 2019) and ProxylessNAS (Cai et al., 2018) in their respective original search spaces,
resulting in architectures with higher accuracy and/or smaller models.

2 RELATED WORK

A typical NAS method consists of the search phase and the evaluation phase (Yu et al., 2019). This
paper is concerned with the search phase, of which the most important performance criteria are
robustness, reproducibility (Li & Talwalkar, 2020) and search cost (Yu et al., 2019).

DARTS (Liu et al., 2018) has given rise to numerous optimization schemes for NAS (Xie et al.,
2018; Chen et al., 2019; Xu et al., 2020; Chen & Hsieh, 2020; Li et al., 2020). While the objectives
of these algorithms may vary, they all operate in the same or similar search space. However, Yu
et al. (2019) demonstrates that DARTS performs similarly to a random search and its search results
heavily dependent on the initial random seed. Furthermore, DARTS is criticized for converging to
architectures with smooth loss landscapes which may not generalize well (Shu et al., 2019; Chen &
Hsieh, 2020). In contrast, GA-NAS aims to train an architecture generator using the GAN framework
while using importance sampling to gradually shift toward more important parts of the search space.
GA-NAS has a convergence guarantee under certain assumptions. Its results are reproducible and are
not sensitive to initial seeds.

NAS-Bench-301 (Siems et al., 2020) provides a formal benchmark for all 10'® architectures in the
DARTS search space using surrogate trained on a subset of 50k architectures. Preceding NAS-Bench-
301 are NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong & Yang, 2020). Both of
these benchmarks provide performance metrics in a tabular format and perform a fully exhaustive
evaluation across all architectures in their search spaces, which contain 423k and 15k architectures,
respectively. GA-NAS can find high-performing architectures in all three benchmarks and proves to
be a highly robust algorithm that is not sensitive to search spaces.

Besides the cell-based search spaces (Pham et al., 2018; Liu et al., 2018), GA-NAS, as a search
strategy, also applies to macro-search (Cai et al., 2018; Wu et al., 2019; Tan et al., 2019), which
searches for an ordering of a predefined sct of blocks. We show that GA-NAS can be used to improve
EfficientNet (Tan & Le, 2019) by iteratively generating better ordering of the same set of MBConv
blocks adopted in original EfficientNet.
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On the other hand, a number of RL-based NAS methods have been proposed. ENAS (Pham et al.,
2018) is the first Reinforcement Learning scheme in weight-sharing NAS. TuNAS (Bender et al., 2020)
shows that guided policies decisively exceed the performance of random search on vast search spaces.
AlphaX (Wang et al., 2020) uses Monte Carlo Tree Search to balance exploration with exploitation
during search. Unlike these approaches, GA-NAS proves to be a highly cfficient RL solution to NAS,
since the rewards used to train the generator network comes from the relative performance prediction
of the discriminator instead of from architecture evaluation. Our ablation studies show that the use of
a discriminator can lower the number of architecture evaluations tremendously, which is typically a
bottleneck in any NAS method.

Hardware-friendly NAS algorithms may take constraints such as model size, FLOPS, and inference
time into account (Cai et al., 2018; Tan et al., 2019; Wu et al., 2019; Chen et al., 2020; Yu et al.,
2020), usually by introducing regularizers into the loss functions (Wu et al., 2019; Cai et al., 2018)
Contrary to these methods, GA-NAS can support ad-hoc search tasks, by enforcing customized hard
constraints in importance sampling instead of resorting to approximate penalty terms.

3 THE PROPOSED METHOD

We describe importance sampling for rare event simulation, followed by a description of a particular
implementation of it on NAS, which is the proposed GA-NAS method.

3.1 IMPORTANCE SAMPLING

We can view NAS as a combinatorial optimization problem. For example, suppose that x is a Directed
Acyclic Graph (DAG) connecting a certain number of operations, each chosen from a predefined
operation set. Let S(x) be a real-valued function representing the performance, e.g., accuracy, of .
In NAS, we aim to optimize S(z) subject to z € X, where X’ denotes the underlying large search
space of neural architectures.

One approach to solving a combinatorial optimization problem, especially the NP-hard ones, is to
view the problem in the framework of importance sampling and rare event simulation (De Boer et al.,
2005; Rubinstein & Kroese, 2013). In this approach we consider a family of probability densities
{p(.;6)}oco on the set X, with the goal of finding a density p(.; 8*) that assigns higher probabilities
to the optimal solutions to the problem.

Assume X is a random variable, taking values in X and has a prior probability density function
(pdf) p(.; A) for fixed A € ©. Let S(X) be the objective function to be maximized, and « be a level
parameter. Note that the event £ := {S(X) > «} is a rare event for an « that is equal to or close to
the optimal value of S(X). The goal of rare-event probability estimation is to estimate

l=l(a) =P5 (S(X) > a) = Ex [Isx)>a) = /HS(x)Zoz p(z; N)d,

where [,c¢ is an indicator function that is equal to 1 if z € £ and 0 otherwise.

In fact, [ is called the rare-event probability (or expectation) which is very small, e.g., less than 104
(Botev et al., 2013). The general idea of importance sampling is to estimate the above rare-event
probability [ by drawing samples = from important regions of the search space with both a large
density p(x; \) and a large Is@)>as i€ Is(@)>a = 1. In other words, we aim to find x such that
S(x) > a with high probability.

Importance sampling estimates [ by sampling « from a distribution ¢*(z, ; \) that should be
proportional to Ig(z)>ap(z; A) (see (Murphy, 2012) page 820). Specifically, define the proposal

sampling density ¢(z) as a function such that g(z) = 0 implies Ig(;)>p(2; A) = 0 for every = (see
(Botev et al., 2013) page 2). Then we have

B L5 (z)>ap(; A) Vi — Ls(x)>aP(X;A)
1= [P e =y | ST

Rubinstein & Kroese (2016) shows that the optimal importance sampling probability density ¢ which
minimizes the variance of the empirical estimator of [ is the density of X conditional on the event

D
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Algorithm 1 JS-divergence minimization for rare-event estimation

It 1,p0 < p, 6o — A
2: while y(0;_1,p;—1) < ado ~
3: f; € argmingcg JS(q(x, vi—1; N)||p(x; 6)), where v,y = min(c, ¥(6;—1, pt—1)) and

< Ls(2) >0 P(T5 A)
s Vt— a)‘ = — N .
2 %13 %) S Is(z)y>n, o p(25 N)d

4: Set p; such that y(6;, p+) > min(a, ¥(0: 1, pt—1) + d) for some fix § > 0, and increment ¢.

S(X) > a, that is

- NI

q*(x,a;)\ _ p(flfa )S( )z_a .
IHS(I)ZO( p(I,A)dI

However, noting that the denominator of (2) is the quantity / that we aim to estimate in the first
place, we cannot obtain an explicit form of ¢*(.) directly. To overcome this issue, Homem-de
Mello & Rubinstein (2002) proposes the Cross-Entropy (CE) method to estimate ¢*(.) by generating
a sequence of probability densities p(.;61), p(.;62), ..., that approaches ¢*(.) in terms of KL
divergence (Homem-de Mello & Rubinstein, 2002), with details included in the Appendix.

€5

Furthermore, motivated by the well-known fact that the symmetric Jensen-Shannon (JS) divergence is
more robust than the asymmetric KL divergence (Nowozin et al., 2016), we replace the KL divergence
with the JS divergence in our application of importance sampling (see the Appendix). Denote the
threshold sequence by ;, ¢ > 0, and sampling distribution parameters by ¢;, ¢ > 0. Initially, choose
pand (A, p) so that y(, p) is the (1 — p)-quantile of S(X) under p(.; \), and generally, let v(0:, p:)
be the (1 — p;)-quantile of S(X') under the the sampling density p(z; 0;) of iteration t.

We have the following JS-divergence minimization rare-event estimation algorithm to generate
a solution x such that S(z) > « with high probability (with theoretical convergence guarantee
presented in the Appendix):

In each iteration, we fit 6; to minimize the JS divergence between the sampling density p(z; 6;)
and ¢(z,7y:—1; A), the density of X conditioned on that S(X) > ~,_;. Since ;_1 is typically the
(1 — pt—1)-quantile of S(X) under the previous sampling density p(x;6:—1), we are essentially
fitting 6, to the top candidates that had highest S(z) in the previous iteration. Once the final sampling

density is obtained, we can use that to generate a solution x such that S(x) > « with high probability.

3.2 GENERATIVE ADVERSARIAL NEURAL ARCHITECTURE SEARCH

We now propose a generative adversarial training method named Generative Adversarial NAS (GA-
NAS), as described in Algorithm 2, to replace the JS-divergence minimization (Step 3) in Algorithm 1,
which is otherwise hard to implement. The GAN framework, as originally proposed by Goodfellow
et al. (2014), alternates between training a discriminator D between true and generated data and
training a generator G to minimize the probability that the discriminator distinguishes generated data
from truth data. In other words, in adversarial learning, D and G play a two-player minimax game,
which leads to the minimization of the JS-divergence between the distribution of truth data and that of
the generator model (see Theorem 1 in (Goodfellow et al., 2014)). GA-NAS in Algorithm 2 alternates

Algorithm 2 GA-NAS Algorithm

1: Input: An initial set of architectures Xy; Discriminator D; Generator G(x; 6y);

2: fort=1,2,...,T do

3: T <+ top K architectures of Uf;é X; according to the performance evaluator S(.).
Let G(z;0;—1) generate k random architectures to form the set F.

Train discriminator D with 7 being positive samples and F being negative samples.
Train generator G(z; 6;) using the output of D(x) as the loss.

Let G(z; 0;) generate a new set of architectures AXj.

Evaluate the performance S(z) of every x € X,.

e A
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between training D (Step 5) and G (Step 6) to approximate the JS-divergence minimization between
the distribution of top K architectures 7 in iteration ¢ and the generator distribution G(x;6,). If
G(x; 0;) corresponds to p(x; ¢ ), and the distribution of architectures in T, i.e., the distribution of
top architectures in prior iteration, corresponds to ¢(z,y;—1) in Algorithm 1, GA-NAS algorithm
is essentially an implementation of the JS-divergence rare-event estimation. It replaces the JS
minimization (Step 3) in Algorithm 1 by alternately learning D and G, and instead of keeping track
of p; and v, using the top K architectures as positive samples in each iteration. Roughly speaking,
pr = \U—t‘kiT-\’ and y; is chosen so that the (1 — p;)-quantile is ;.
=0 7

GA-NAS can operate on any search space. Here, we describe the implementation of the discriminator
and generator in the context of cell search, whereas we evaluate GA-NAS on both cell search and
macro search experiments. A cell architecture C is a Directed Acyclic Graph (DAG) consisting of
multiple nodes and directed edges. Each intermediate node represents an operator, such as convolution
or pooling, from a predefined set of operators. Each directed edge represents the information flow
between nodes. We assume that a cell has at least one input node and only one output node.

Pairwise Architecture Discriminator. In the context of NAS, we often have a limited number
of architectures with true accuracies. To efficiently use the truth data points, we construct the
discriminator D following a pairwise Siamese (Koch et al., 2015) scheme. For a pair of architectures,
the discriminator D determines the likelihood that the second architecture is from the same distribution
as the first truth architecture. Thus, D is a variant of the relativistic discriminator (Jolicoeur-Martineau,
2018). The discriminator is implemented by encoding both cells in the pair with a shared k-GNN
model (Morris et al., 2019) followed by an MLP classifier with details provided in the Appendix.

Architecture Generator. An architecture is generated in an autoregressive fashion, which is a
frequent technique in neural architecture generation such as in ENAS (Pham et al., 2018), NAO (Luo
etal., 2018) and D-VAE (Zhang et al., 2019). At each time step ¢, given a partial cell architecture C;
generated by the previous time steps, GA-NAS uses an encoder-decoder architecture to decide what
new operation to insert and which previous nodes it should be connected to. Similarly, the encoder is
a multi-layer k-GNN. The decoder consists of a Feedforward-Softmax setup that outputs the operator
probability distribution and a uni-directional Gated Recurrent Unit (GRU) (Chung et al., 2014) that
recursively determines the edge connections to previous nodes.

Training Procedure. We train the GNN-based discriminator using pairs of architectures sampled
from 7 and F based on supervised learning. We use Reinforcement Learning (RL) to train the
architecture generator GG in a similar way to (You et al., 2018) for molecular generation.We associate
the action at each time step (including the operation type and its connections to previous nodes)
with an immediate reward R, based on its validity given the search space constraints. When
the architecture generation terminates, a final reward 2,1 penalizes the generated architecture
according to the total number of violations of validity or rewards it with a score from the discriminator
D(x) that indicates how similar it is to the truth architectures. Both rewards together ensure that
G generates valid cells that are structurally similar to top cells from the previous time step. We
adopt Proximal Policy Optimization (PPO) (Schulman et al., 2017), a policy gradient algorithm with
generalized advantage estimation to train the policy.

The proposed learning procedure has several benefits. First, using the discriminator as a feedback
mechanism can significantly reduce the number of architecture evaluations that are otherwise required
in an RL-only scheme. Ablation studies demonstrate the effectiveness of the proposed discriminator
in reducing the number of evaluations. Second, since the generator must sample a discrete architecture
2 to obtain its loss on the discriminator D(x), the entire generator-discriminator pipeline is not end-to-
end differentiable and cannot be trained by SGD. Training G with PPO solves this non-differentiability
issue. Third, in PPO loss, there is an entropy loss term that encourages variations in the generated
actions. By tuning the multiplier for the entropy loss, we can balance exploration/exploitation, which
is crucial for a large search space. Please refer to the Appendix for a detailed discussion.

4 EXPERIMENTAL RESULTS

We verify the effectiveness of GA-NAS in two scenarios. First, we conduct experiments on several
public NAS benchmarks under both non-weight-sharing and weight-sharing settings in order to
fairly compare the powers of the search algorithms. Second, we demonstrate the use of GA-NAS to



Under review as a conference paper at ICLR 2021

improve a given neural architecture, including EfficientNet and ProxylessNAS, to achieve a higher
accuracy and/or a lower number of parameters. We also refer interested readers to the Appendix for
the ablation studies showing the effects of different components of GA-NAS on its performance.

4.1 PERFORMANCE ON NAS BENCHMARKS WITH OR WITHOUT WEIGHT SHARING

To evaluate search strategy alone and decouple it from vari-

ations of search spaces, we query three NAS benchmarks: [Algorithm Acc (%) | #Q
NAS-Bench-101 (Ying et al., 2019), NAS-Bench-201 (Dong | Random Search | 03.66 | 2000
& Yang, 2020), and NAS-Bench-301 (Siems et al., 2020) and | rgt 93.97 2000
aim to find the best performing cell within the least number | NaQ 93.87 2000
of queries. To further evaluate our algorithm when the true ar- | BANANAS 94.23 800
chitecture accuracies are unknown, we train a weight-sharing | SemiNAS | 94.09 2100
supernet on NAS-Bench-101 and compare GA-NAS with a SemiNAS T 93.98 300
range of NAS schemes based on weight sharing. GA-NAS-setupl 94.22 150
GA-NAS-setup2 94.23 378

NAS-Bench-101 is the first publicly available benchmark
for evaluating NAS algorithms. It consists of 423,624 DAG-
style cell-based architectures, each trained and evaluated
on CIFAR-10 (Krizhevsky, 2009) for 3 times. Metrics for
each run include training time and accuracy. Querying NAS-
Bench-101 corresponds to evaluating a cell in reality. We ... vies of the 2nd and 3rd best
provide the results on two setups. In the first setup, we set  .qj1q- #: taken from (Luo et al., 2020)
|Xo| = 50, |X| = |X;—1] + 50, t > 1, and K = 25, In the ’
second setup, we set | Xp| = 100, |X;| = |X;_1| 4+ 100, ¢t > 1, and K = 50. For both setups, the
initial set X is picked to be a random set, and the number of iterations 7" is 10. We run each setup
with 10 random seeds and average the results. The search cost is 8 GPU hours.

Table 1: The best accuracies found by
different search algorithms on NAS-
Bench-101 without weight sharing.
Note that 94.23% and 94.22% are the

Algorithm Mean Acc (%) | Mean Rank Average #Q
Random Search 93.84 £ 0.13 498.80 648
Random Search 93.92 £0.11 211.50 1562
GA-NAS-Setupl | 94.22 4 4.45¢e-5 2.90 647.50 4+ 433.43
GA-NAS-Setup2 | 94.23 £ 7.43e-5 2.50 1561.80 £+ 802.13

Table 2: The average statistics of the best cells found on NAS-Bench-101 without weight sharing,
averaged over 10 runs (with std shown). Note that we set the number of queries (Q) for Random
Search to be the same as the average number of queries incurred by GA-NAS.

Table 1 compares GA-NAS to other methods for the best cell that can be found by querying NAS-
Bench-101, in terms of the accuracy and the rank of this cell in NAS-Bench-101, along with the
number of queries required to find that cell. Table 2 shows the average performance of GA-NAS
in the same experiment over multiple random seeds. Note that Table 1 does not list the average
performance of other methods except Random Search, since all the other methods in Table 1 only
reported their single-run performance on NAS-Bench-101 in their respective experiments.

In both tables, we find that GA-NAS can

reach a higher accuracy in fewer number Algorithm | Mean Acc | Best Acc | Best Rank
of queries, and beats the best published re- [ pDARTS T 0221 + 0.61 03.02 57079
sults, i.e., BANANAS (White et al., 2019) NAO T 92.59 + 0.59 93.33 19552
and SemiNAS (Luo et al., 2020) by an obvi- | gNAS 91.83 + 0.42 9254 96939
ous margin. Note that 94.22 is the 3rd best GA-NAS 92.80 + 0.54 93.46 5386

cell while 94.23 is the 2nd best cell in NAS-
Bench-101. From Table 2, we observe that
GA-NAS achieves superior stability and re-
producibility: GA-NAS-setup1 consistently
finds the 3rd best in 9 runs and the 2nd best in
1 run out of 10 runs; GA-NAS-setup2 finds
the 2nd best in 5 runs and the 3rd best in the other 5 runs.

Table 3: Searching on NAS-Bench-101 with weight-
sharing, with the mean true test accuracy of the best
cells from 10 runs, and the best accuracy/rank found
by a single run. {: taken from (Yu et al., 2019)

To evaluate GA-NAS when true accuracy is not available, we train a weight-sharing supernet on
the search space of NAS-Bench-101 (with details provided in Appendix) and report the true test
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CIFAR-10 CIFAR-100 ImageNet-16-120
Algorithm Mean Acc Rank | #Q Mean Acc Rank | #Q Mean Acc Rank | #Q
REA T 93.92 £0.30 - - 71.84 £+ 0.99 - - 45.54 +1.03 - -
RS T 93.70 + 0.36 - - 71.04 £ 1.07 - - 4457 £1.25 - -
REINFORCE || 93.85 & 0.37 - - 71.71 £ 1.09 - - 4524 +£1.18 - -
BOHB f 93.61 £+ 0.52 - - 70.85 4+ 1.28 - - 4442 +1.49 - -
RS-500 94.11 £ 0.16 | 30.81 | 500 || 72.54 £0.54 | 30.89 | 500 || 46.34 £0.41 | 34.18 | 500
GA-NAS 94.34 +0.05 | 4.05 | 444 |[ 73.28 £ 0.17 | 3.25 | 444 || 46.80 =0.29 | 7.40 | 445

t The results are taken directly from NAS-Bench-201 (Dong & Yang, 2020).

Table 4: Searching on NAS-Bench-201 without weight sharing, with the mean accuracy and rank of the best
cell found reported. #Q represents the average number of queries per run. We conduct 20 runs for GA-NAS.

accuracies of architectures found by GA-NAS. We use the supernet to evaluate the accuracy of a cell
on a validation set of 10k instances of CIFAR10 (see Appendix). Search time including supernet
training is around 2 GPU days.

We report results of 10 runs in Table 3, in comparison to other weight-sharing NAS schemes reported
in (Yu et al., 2019). We observe that using a supernet degrades the search performance in general
as compared to true evaluation, because weight-sharing often cannot provide a completely reliable
performance for the candidate architectures. Nevertheless, GA-NAS outperforms other approaches.

NAS-Bench-201 contains 15,625 evaluated cells with DARTS-like (Liu et al., 2018) structures.
The search space consists of 6 searchable edges and 5 candidate operations. We test GA-NAS on
NAS-Bench-201 by conducting 20 runs for CIFAR-10, CIFAR-100, and ImageNet-16-120 using the
true test accuracy. We compare against the baselines from the original NAS-Bench-201 paper (Dong
& Yang, 2020) that are also directly querying the benchmark data. Since no information on the
rank achieved and the number of queries is reported for these baselines, we also compare GA-NAS
to Random Search (RS-500), which evaluates 500 unique cells in each run. Table 4 presents the
results. We observe that GA-NAS outperforms all baselines on the task of finding the most accurate
cell. Compared to RS-500, GA-NAS finds cells that are higher ranked while only exploring less
than 3.2% of the entire search space in each run (querying only 445 out of 15,625 cells). It is also
worth mentioning that in the 20 runs on all three datasets, GA-NAS can find the best cell in the entire
search space more than once. Specifically for CIFAR-10, it found the best cell in 9 out of 20 runs .

95.3
NAS-Bench-301 (Siems et al., 2020) is another - )
recently proposed benchmark based on the same s ‘ e e ReuRERETY
search space as DARTS. Relying on surrogate '
performance models, NAS-Bench-301 reports
the accuracy of 10*® unique cells. We are espe-
cially interested in how the number of queries
(#Q) needed to find an architecture with high
accuracy scales in a large search space. We run t :
GA-NAS on NAS-Bench-301 v0.9. We com- * T e
pare with Random (RS) and Evolutionary (EA) 1 e
search baselines. Figure 1 plots the average best saa ! - EA
accuracy along with the accuracy standard de- . SeGANAS
viations versus the number of queries incurred 0 2000 4000 6000 8000 10000
under the three methods. We observe that GA- HaTomL .
NAS outperforms RS at all query budgets and Figure 1: NAS—Benph—301 results.comparlng the
outperforms EA when the number of queries ex- means/star.ldard deviations of the .hlghest accuracy
ceeds 3k. The results on NAS-Bench-301 con- found at different total query limits.
firm that for GA-NAS, the number of queries
(#Q) required to find a good performing cell scales well as the size of the search space increases. For
example, on NAS-Bench-101, GA-NAS usually needs around 500 queries to find the 3rd best cell,
with an accuracy ~ 94% among 423k candidates, while on the huge search space of NAS-Bench-301
with up to 10'® candidates, it only needs around 6k queries to find an architecture with accuracy
approximately equal to 95%.

95

VALIDATION ACC
©o o ©o o
2 & 2 2
& 4 & b

©
#
n

!There are two cells in NAS-Bench-201 with the same, highest CIFAR-10 test accuracy of 94.37. We record
that GA-NAS finds the best cell if either one is found.
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ResNet Inception
Algorithm Best Acc | Train Seconds | #Weights (M) || Best Acc | Train Seconds | #Weights (M)
Hand-crafted 93.18 2251.6 20.35 93.09 1156.0 2.69
Random Search 93.84 1836.0 10.62 93.14 1080.4 2.18
GA-NAS 93.96 1993.6 11.06 93.28 1085.0 2.69

Table 5: Constrained search results on NAS-Bench-101. GA-NAS can find cells that are superior to the
ResNet and Inception cells in terms of test accuracy, training time, and the number of weights.

4.2 IMPROVING EXISTING NEURAL ARCHITECTURES

We now demonstrate that GA-NAS can improve existing neural architectures, including ResNet (He
et al., 2016) and Inception (Szegedy et al., 2016) cells in NAS-Bench-101, EfficientNet-BO (Tan &
Le, 2019) under hard constraints, and ProxylessNAS-GPU (Cai et al., 2018) in unconstrained search.

For ResNet and Inception cells, we use GA-NAS to find better cells from NAS-Bench-101 under
a lower or equal training time and number of weights. This can be achieved by enforcing a hard
constraint in choosing the truth set 7 in each iteration. Table 5 shows that GA-NAS can find new,
dominating cells for both cells, showing that it can enforce ad-hoc constraints in search, a property
not enforceable by regularizers in prior work. We also test Random Search under a similar number of
queries to the benchmark under the same constraints, which is unable to outperform GA-NAS.

We now use GA-NAS to improve the accuracy of well-known architectures found on ImageNet
(Russakovsky et al., 2015), including EfficientNet-B0O and ProxylessNAS-GPU, which are already
optimized strong baselines. For EfficientNet-B0, we set the constraint that the found networks all have
an equal or lower number of trainable weights than EfficientNet-BO. For the ProxylessNAS-GPU
model, we simply put it in the starting truth set and run an unconstrained search to further improve
its top-1 validation accuracy. More details are provided in the Appendix. Table 6 presents the
improvements made by GA-NAS over both existing models. Compared to EfficientNet-B0, GA-NAS
can find new single-path networks that achieve comparable or better top-1 accuracy on ImageNet with
an equal or lower number of trainable weights. We report the accuracy of EfficientNet-B0 and the
GA-NAS variants without data augmentation. Total search time including supernet training is around
21 GPU days on Tesla V100 GPUs (20 GPU days for supernet training and 1 GPU day for the search).
For ProxylessNAS experiments, we train a

supernet on ImageNet (Russakovsky et al., Network #Params | Top-1 Acc
2015) for around 20 GPU days, and conduct | EfficientNet-BO (no augment) 5.3M 76.7
an unconstrained search using GA-NAS for | GA-NAS-ENet-1 4.6M 76.5
around 38 hours on 8 Tesla V100 GPUs | GA-NAS-ENet-2 5.2M 76.8
in the search space of ProxylessNAS (Cai | GA-NAS-ENet-3 5.3M 76.9
et al., 2018), a major porition of which, i.e., | ProxylessNAS-GPU 4.4M 75.1
29 hours is spent on querying the supernet | GA-NAS-ProxylessNAS 4.9M 755

for architecture performance. Compared to )
ProxylessNAS-GPU, GA-NAS can find an Table 6: Search results on the EfficientNet search space

architecture with a comparable number of ~21d ProxylessNAS search space.

parameters and a better top-1 accuracy on ImageNet.

5 CONCLUSION

In this paper, we propose Generative Adversarial NAS (GA-NAS), as a search strategy for NAS
problems, based on a generative adversarial learning framework and importance sampling. Based
on extensive search experiments performed on NAS-Bench-101, 201, and 301 benchmarks, we
demonstrate the superiority of GA-NAS in finding more accurate architectures with much fewer
queries which convert to evaluations in reality, as compared to a range of well-known NAS methods.
We also show the capability of GA-NAS to improve existing architectures and its ability to search
under ad-hoc hard constraints. GA-NAS improves EfficientNet-BO by generating architectures
in the same search space with higher accuracy and/or lower number of parameters and improves
ProxylessNAS-GPU with enhanced accuracies and a slightly increased model size. These results
indicate that GA-NAS generalizes well to diverse types of search spaces and can improve already
optimized and strongly-performing neural architectures in their respective search spaces for large-
scale image classification tasks.
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