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Abstract

This work deals with the challenge of learn-001
ing causal reasoning over procedural text to002
answer "What if..." questions when external003
commonsense knowledge is required. We pro-004
pose a novel multi-hop graph reasoning model005
to 1) efficiently extract a commonsense sub-006
graph with the most relevant information from007
a large knowledge graph; 2) predict the causal008
answer by reasoning over the representations009
obtained from the commonsense subgraph and010
the contextual interactions between the ques-011
tions and context. We evaluate our model on012
WIQA dataset and achieve state-of-the-art per-013
formance compared to the recent models.014

1 Introduction015

In recent years, large-scale pre-trained language016

models (LMs) have made a breakthrough progress017

and demonstrate a high performance in many NLP018

tasks, including procedural text reasoning (Tan-019

don et al., 2019; Rajagopal et al., 2020). However,020

since the knowledge of language that is present in021

the corpora is learnt only implicitly by LMs, they022

cannot provide explainable predictions. In some023

cases, the knowledge contained in a given text is024

sufficient to predict the answer, as it is shown in025

the question 1 of Figure 1. This knowledge is di-026

rectly encoded and learned by LMs models (Asai027

and Hajishirzi, 2020; Tandon et al., 2019). How-028

ever, there are many cases in which the required029

knowledge is not included in the procedural text030

itself. For example, for the question 2 in Figure 1,031

the information about the “nutrient” on the seeds032

does not exist in the procedural text. Therefore, the033

external commonsense knowledge is required.034

There are several existing resources that contain035

world knowledge and commonsense. Examples are036

knowledge graphs (KGs) like ConceptNet (Speer037

et al., 2017) and ATOMIC (Sap et al., 2019). Look-038

ing back at the question 2, we can see that through039

providing the external knowledge triplets (nutrient,040

Procedural Text:
1. A plant produces a seed.
2. The seed falls to the ground.
3. The seed is buried.
4. The seed germinates.
5. A plant grows.
6. The plant produces flowers.
7. The flowers produce more seeds

Questions and Answers:
1. suppose plants will produce more seeds 
happens, how will it affect less plants.
(A) More (B) Less (C) No effect

2. suppose the soil is rich in nutrients happens, 
how will it affect more seeds are produced.
(A) More (B) Less (C) No effect

3. suppose The sun comes out happens, how 
will it affect less plants.
(A) More (B) Less (C) No effect

Figure 1: WIQA task contains procedural text, and
different types of questions. The bold choices are the
gold answers.

relatedto, soil) and (soil, relatedto, seed) from Con- 041

ceptNet, we can build an explicit reasoning chain 042

and choose an explainable answer. 043

Two challenges exist in procedural text reason- 044

ing and using external KBs. The first challenge is 045

effectively extracting the most relevant external in- 046

formation and reducing the noise from the KB. The 047

second challenge is reasoning over the extracted 048

knowledge. Several works enhance the QA model 049

with commonsense knowledge (Lin et al., 2019; Lv 050

et al., 2020). However, the noisy knowledge from 051

KG will seriously mislead the QA model to predict 052

the answer. Moreover, using KBs is often inves- 053

tigated in the tasks that perform QA directly over 054

KB itself, such as CommonsenseQA (Talmor et al., 055

2019), etc. There are less sophisticated techniques 056

proposed for using KB explicitly (i.e. not through 057

training LMs) in reading comprehension for aiding 058

QA over text. REM-Net (Huang et al., 2021) is 059

the only work that uses commonsense for WIQA 060

and uses a memory network to extract the external 061

triplets to solve the first challenge. However, this 062

work has no reasoning process over the extracted 063

knowledge and uses a simple multi-head operator 064

to predict the answer. EIGEN (Madaan et al., 2020) 065

constructs an influence graph to find the chain of 066

reasoning given procedural text. However, EIGEN 067
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Figure 2: MRRG Model is composed of Candidate Triplet Extraction, KG Attention, Commonsense Subgraph
Construction, Text encoder with contextual interaction, Graph Reasoning, and Answer prediction modules.

cannot deal with the challenge that the required068

knowledge is not in the given document.069

To solve these two challenges, we propose a070

Multi-hop Reasoning network over Relevant Com-071

monSense SubGraphs (MRRG) for casual reason-072

ing over procedural Text. Our motivation is to073

effectively and efficiently extract the most relevant074

information from a large KG to help procedural075

reasoning. First, we extract the entities, retrieve076

related external triplets from KG, and learn to ex-077

tract the most relevant triplets to a given text input078

by a novel KG attention mechanism. Then, we079

construct a commonsense subgraph based on the080

extracted triplets in a pipeline. We use the extracted081

subgraphs as a part of end-to-end QA model to082

help in filling the knowledge gaps in the procedure083

and performing multi-hop reasoning. The final084

model predicts the causal answer by reasoning over085

the contextual interaction representations over the086

question and the document and learning graph rep-087

resentations over the KB subgraphs. We evaluate088

our MRRG on the “what if” WIQA benchmark.089

MRRG model achieves SOTA and brings signifi-090

cant improvements compared to existing baselines.091

The contributions of our work are: 1) We train a092

separate module that extracts the relevant parts of093

the KB to avoid the noisy and inefficient usage of094

the information in large KBs. 2) We design an end-095

to-end model that uses the extracted QA-dependent096

KB as a subgraph to guide the reasoning over the097

procedural text to answer the questions. 3) Our098

MRRG achieves SOTA on the WIQA benchmark.099

2 Model Description100

Problem Formulation: Formally, the problem is101

to predict an answer a from a set of pre-defined102

answers given input question q, a document C103

which is composed of several sentences C =104

{s
1

, . . . , s

n

}, and a large knowledge graph KG.105

Overview of MRRG Model: Figure 2 shows the106

proposed architecture. (1) We extract the enti-107

ties from question and context in preprocessing 108

step and use them to retrieve the set of candi- 109

date triples from the ConceptNet. (2) We train 110

the KG Attention module to extract the most rel- 111

evant triplets and reduce the noisy concepts from 112

candidate triplets. (3) We augment the common- 113

sense subgraph based on the relevant triplets. (4) 114

We train a model that uses two components, the 115

commonsense subgraph as a relational graph net- 116

work and a text encoder including question and 117

document to do procedural reasoning. Below, we 118

describe the details of each module. 119

(1) Candidate Triplet Extraction from KG: 120

Given the input q and C, we extract the contextual 121

entities (concepts) by a open Information Extrac- 122

tion (OpenIE) model (Stanovsky et al., 2018). For 123

each extracted entity t

in

, we retrieve the relational 124

triplets t = (t
in

, r, t

out

) from KG, where t

out

is 125

the concept taken from ConceptNet and r is a se- 126

mantic relation type. We then apply a pre-trained 127

Language Model, RoBERTa, to obtain the repre- 128

sentation of each triplet Et = f

LM

([t
in

, r, t

out

]) 2 129

R3⇥d, where f

LM

denotes the language model op- 130

eration and the triplets are given as a sequence of 131

concepts and relation to the LM. 132

(2) KG Attention: The KG attention module is 133

shown in Figure 2-A. We concatenate q and C to 134

form Q = [[CLS]; q; [SEP ]; C], where [CLS] and 135

[SEP] are special tokens in the LMs (Liu et al., 136

2019). We encode Q by RoBERTa and get the con- 137

textual token representations that include E

[CLS]

, 138

E

q

, and EC . 139

Given triplet Et, we generate a context-triplet 140

pair E

t

z

= [E
[CLS]

;Et

in

;Et

r

;Et

out

]. Afterwards, 141

we compute context-triplet pair attention and a soft- 142

max layer to output the Context-Triplet pairwise 143

importance Score CTS

t

=
exp(MLP (E

t
z))Pm

j=1 exp(MLP (E

t
z))

. 144

Then we choose the top-k relevant triplets with 145

the top CTS scores and then use the relevant 146

triplets to construct the subgraph. For each se- 147

lected triplet, we obtain the triplet representa- 148
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tion E

0t = [E0t
in

, E

t

r

, E

0t
out

] 2 R3⇥d, where149

E

0t
in

= f

in

([CTS

t

·Et

in

;CTS

t

·Et

r

]) and E

0t
out

=150

f

out

([CTS

t

· Et

out

;CTS

t

· Et

r

]). Notice that f
in

151

and f

out

are MLP layers.152

(3) Commonsense Subgraph Construction: We153

construct the subgraph G

s

based on the relevant154

triplets from KG attention for each question and155

answer pair. We add more edges to the subgraph156

as follows: Two entities in the triplets will have an157

edge if a relation r in the KG exists between them.158

The assumption is that the augmented common-159

sense subgraph will contain the reasoning paths.160

We use E

0t
in

and E

0t
out

for the KG subgraph initial161

node representation h

(0).162

(4) Procedural Reasoning composes of two parts.
(I) Multi-Hop Graph Reasoning: this is the Graph
Reasoning part of Figure 2-B. Given the subgraph
G

s

, we use RGCN (Schlichtkrull et al., 2018) to
learn the representations of the relational graph.
RGCN learns graph representations by aggregating
messages from its direct neighbors and relational
semantic edges. The (l+1)-th layer node represen-
tation h

(l+1)

i

is updated based on the neighborhood
node representations hl

j

from the l-layer multiplied

by the relational matrices W

r

(l)

1

, . . . ,W

r

(l)

|R|. The

representation h

(l+1)

i

is computed as follows:

h

(l+1)

i

= �(
X

r2R

X

j2Nr
i

1

|N r

i

|W
(l)

r

h

(l)

j

+W

(l)

0

h

(l)

i

),

where � denotes a non-linear activation function,163

N

r

i

represents a set that is includes neighbor indices164

of node i under semantic relation r. Finally, we165

obtain the E

Gs after several hops message passing.166

(II) Text Contextual Interaction Encoder: We
have obtained the contextual token representa-
tions E

[CLS]

, E

q

, and EC in the KG attention
module. Followed by Seo et al., we utilize
Bi-DAF style contextual interaction module to
feed E

q

and EC to Context-to-Question Atten-
tion EC!q

= softmax(sim(ET

q

, EC))Eq

and
Question-to-Context Attention E

q!C to obtain the
contextual interaction between question and con-
text. More details about obtaining E

q!C and EC!q

are described in Appendx A.3. Then we use LSTM
to obtain the hidden state representation:

F

q!C = LSTM(E
q!C), FC!q

= LSTM(EC!q

).

(III) Answer Prediction: We concatenate E

[CLS]

,167

F

q!C , FC!q

, and the compact subgraph rep-168

resentation E

0
Gs

obtained from attentive pool-169

ing, and use it as the final representation F =170

[E
[CLS]

;F
q!C ;FC!q

;E
0
Gs

]. We utilize a classifier 171

MLP (F ) to predict the answer. Our MRRG has 172

two separate training modules used in a pipeline 173

for triplet selection and procedural reasoning. 174

(I) Training KG Attention Triplet Selection: Fig- 175

ure 4 and the left block of Figure 2 shows 176

the triplet selection model. The architecture 177

is the same as KG attention except adding 178

extra 3 MLP layers for the concatenation of 179

[E
[CLS]

;E
q

;EC ;E0t
1

; . . . ;E0t
k

] to predict the an- 180

swer. We use the cross-entropy as the loss function 181

to train the model. 182

(II) Training End-to-End MRRG: After we pre- 183

train the KG attention, we keep the learned parame- 184

ters and extract the most relevant concepts and con- 185

struct the multi-relational commonsense subgraph 186

G

s

. We combine subgraph representation and text 187

interaction representation as input to train the an- 188

swer prediction module by cross-entropy loss. 189

Models in-para out-of-para no-effect Test V1 Acc
Majority 45.46 49.47 55.0 30.66
Polarity 76.31 53.59 27.0 39.43
Adaboost (Freund and Schapire, 1995) 49.41 36.61 48.42 43.93
emphDecomp-Attn (Parikh et al., 2016) 56.31 48.56 73.42 59.48
BERT (no para) (Devlin et al., 2019) 60.32 43.74 84.18 62.41
BERT (Tandon et al., 2019) 79.68 56.13 89.38 73.80
RoBERTa (Tandon et al., 2019) 74.55 61.29 89.47 74.77
EIGEN (Madaan et al., 2020) 73.58 64.04 90.84 76.92
REM-Net (Huang et al., 2021) 75.67 67.98 87.65 77.56
Logic-Guided (Asai and Hajishirzi, 2020) - - - 78.50
RoBERTa+KG Attention Triplet Selection 72.21 64.60 89.13 75.22
MRRG 79.85 69.93 91.02 80.06
Human - - - 96.33

Table 1: Model Comparisons on WIQA test V1 dataset.

3 Experiments and Results 190

We implemented our MRRG framework using Py- 191

Torch 1. We use a pre-trained RoBERTa (Liu et al., 192

2019) to encode the input. The maximum number 193

of selected triplets from ConceptNet is 50. More 194

details are shown in the Appendix A.1. 195

Datasets: WIQA is a large dataset for “what if” 196

causal reasoning. WIQA contains three types of 197

questions: 1) the questions can be directly an- 198

swered based on the text, called in-paragraph ques- 199

tions. 2) the questions require external knowledge 200

to be answered, called out-of-paragraph questions, 201

and 3) irrelevant causes and effects, called no-effect 202

questions. WIQA contains 29808 training samples, 203

6894 development samples, 3993 test samples (test 204

V1), and 3003 test samples (test V2). 205

Results: Table 1 and Table 2 show the performance 206

of MRRG on the WIQA task compared to other 207

baselines. We show the baseline descriptions in 208

1Our code will be available after the paper is accepted.
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Case Study

Question: suppose the soil is rich in nutrients happens, how will it affect more seeds are produced. 
Content: [“A plant produces a seed”, “The seed falls to the ground”, “The seed is buried”, “The seed germinates”, “A 
plant grows”, “The plant produces flowers”, “The flowers produce more seeds.”] Gold Answer: More

Question: suppose more land available happens, how will it affect less igneous rock forming.
Content: [“Different kinds of rocks melt into magma”, “Magma cools in the crust”, “Magma goes to the surface and 
becomes lava”, “Lava cools”, “Cooled magma and lava become igneous rock.”] Gold Answer: Less

(nutrient, relatedto, soil) 
(soil, relatedto, seed)

(igneous rock, isa, rock)
(land, relatedto, rock) 
(land, relatedto, surface) 
(surface, relatedto, igneous rock)

Question and Document Content Extracting Triplets

#hop=1 #hop=2 #hop=3
BERT 71.6 62.5 59.5
RoBERTa 73.5 63.9 61.1
EIGEN 78.7 63.4 68.2
MRRG 80.1 70.9 70

50

55

60

65

70

75

80

85

BERT RoBERTa EIGEN MRRG

#hop=1 #hop=2 #hop=3

Figure 3: Left: Case study of our MRRG Framework. Right: Comparing the results over different number of hops.

Models in-para out-of-para no-effect Test v2 Acc
Random 33.33 33.33 33.33 33.33
Majority 00.00 00.00 100.0 41.80
BERT 70.57 58.54 91.08 74.26
RoBERTa 70.69 60.20 91.11 75.34
REM-Net 70.94 63.22 91.24 76.29
REM-Net (RoBERTa-large) 76.23 69.13 92.35 80.09
QUARTET (RoBERTa-large) 74.49 65.65 95.30 82.07
(Rajagopal et al., 2020)
RGN (Zheng and Kordjamshidi, 2021) 75.91 66.15 92.12 79.95
RoBERTa+KG Attention Triplet Selection 70.02 62.30 91.23 75.86
MRRG 76.80 67.83 92.28 80.39
MRRG (RoBERTa-large) 79.12 71.10 93.53 83.46
Human - - - 96.30

Table 2: Model Comparisons on WIQA test V2 dataset.

Appendix A.2. First, our KG Attention triplet se-209

lection model outperforms the RoBERTa and has210

3.3% improvement on the out-of-para category.211

Second, our MRRG achieves SOTA result com-212

pared to all baseline models. Our MRRG improves213

the SOTA by 3.21% for the in-para questions and214

improves it by 3.95% for the out-of-para questions.215

4 Analysis216

Effects of Using External Knowledge: In the217

WIQA, all the baseline models achieve significantly218

lower accuracy in the out-of-para than in-para and219

no-effect categories. MRRG achieves SOTA in220

out-of-para category because of using the highly221

relevant commonsense subgraphs and the combi-222

nation of reasoning over text interaction and the223

graph modules. As is shown in table 2, the advan-224

tage of the MRRG model is reflected on out-of-para225

questions. MRRG improves 4.61% over REM-Net.226

Notice that REM-Net is the only model that utilized227

external knowledge on WIQA. Figure 3 shows a228

case in which the “soil” and “nutrient” only appear229

in the question and do not exist in the text. The230

baseline models fail to answer this out-of-para ques-231

tion due to missing external knowledge. However,232

our model predicts the correct answer by explicitly233

incorporating the (nutrient, relatedto, soil), (soil, re-234

latedto, seed) that connects the critical information235

between the question and document.236

Relational Reasoning and Multi-Hops: Both in-237

para and out-of-para question types require mul-238

tiple hops of reasoning to find the answer in the239

WIQA. As shown in the right side of Figure 3, our240

MRRG model accuracy improved 3.2% for 1 hop,241

7.3% for 2 hops, and 3.9% for 3 hops compared242

Ablation Model Dev Acc
Text only RoBERTa-base 75.51%
Text only + contextual interaction 76.85%
Text only KG Attention Triplet Selection 77.39%

- semantic relation 78.31%
GNN dim=50 79.18%

Text+Graph GNN dim=100 80.30%
GNN dim=200 79.88%

Table 3: Ablation and hyper-para. choices on WIQA.
“GNN dim” is the dimension of graph representation.

to EIGEN. MRRG made a sharp improvement in 243

reasoning with multiple hops due to the relational 244

graph reasoning and the effectiveness of the ex- 245

tracted commonsense subgraph. We study some 246

cases to analyze the multi-hop reasoning and the 247

reasoning chains. In the second case in Figure 3, 248

the extracted relevant triplets (land, relatedto, sur- 249

face), (surface, relatedto, igneous rock) construct a 250

two-hop reasoning chain “land!surface!igneous 251

rock” that helps MRRG to find the correct answer. 252

Ablation Study: Table 3 shows the ablation study 253

of MRRG using WIQA. Firstly, we remove the 254

commonsense subgraph and graph network. The 255

accuracy decreases 3.4% compared to MRRG. Sec- 256

ond, we remove the contextual interaction module 257

and the accuracy decreases 1.3%. In an additional 258

experiment, we use the KG attention triplet selec- 259

tion module to directly predict the answer without 260

the pipeline of constructing the subgraph and using 261

the graph reasoning module. We show the result as 262

KG Attention Triplet Selection in Table 3. The re- 263

sult shows that using the selected triplets represen- 264

tations chosen from KG attention is helpful for the 265

WIQA task. However, constructing the subgraph 266

and using graph reasoning module is highly outper- 267

forming compared to Triplet Selection model. 268

5 Conclusion 269

We propose MRRG model for using external knowl- 270

edge graph in reasoning over procedural text. Our 271

model extracts a relevant subgraph for each ques- 272

tion from the KG and uses that knowledge subgraph 273

for answering the question. The extracted subgraph 274

includes the reasoning path for answering the ques- 275

tion and helps the multi-hop reasoning to predict 276

an explainable answer. We evaluate MRRG on the 277

WIQA benchmark and achieve SOTA performance. 278
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A Appendix388

A.1 Implementation Details389

We implemented our MRRG framework using Py-390

Torch. We use a pre-trained RoBERTa (Liu et al.,391

2019) to encode the contextual information in the392

input. The maximum number of nodes in the graph393

is 50. More hyper-parameter description of graph is394

shown in Table 3. The maximum number of words395

for the paragraph context is 256. For the graph con-396

struction module, we utilize a deep BiLSTM open397

Information Extraction model (Stanovsky et al.,398

2018) from AllenNLP2 to extract the entities. The399

maximum number of hops for the graph reasoning400

module is 3. The learning rate is 1e�5. The model401

is optimized using Adam optimizer (Kingma and402

Ba, 2015).403

A.2 Baseline Description404

EIGEN (Madaan et al., 2020) is a strong baseline405

that builds event influences based on the given doc-406

ument and leverages LMs to create the chain to407

predict the causal answer. However, EIGEN can-408

not cope with the situation in which the required409

knowledge is not included in the procedural text.410

Logic-Guided (Asai and Hajishirzi, 2020) is a411

baseline that combines neural networks and logic412

rules. Specifically, the Logic-Guided model lever-413

ages LMs, symmetric logical rules, and transitive414

logical rules to augment the training data and train415

the model by symmetric and transitive consistency.416

RGN (Zheng and Kordjamshidi, 2021) is the recent417

SOTA baseline that utilizes a gating network to ef-418

fectively filter out the key entities and relationships419

in the given document and learns the contextual420

representations to predict the causal answer. How-421

ever, RGN cannot deal with the challenge that the422

required knowledge is not in the document.423

REM-Net (Huang et al., 2021) proposes a recur-424

sive erasure memory network to find out the causal425

evidence. Specifically, REM-Net refines the evi-426

dence by a recursive memory mechanism and then427

uses a generative model to predict the causal an-428

swer. REM-Net is the only work that uses com-429

monsense for WIQA. However, this work has no430

reasoning process over the extracted external triplet431

and only uses implicate multi-head operator to en-432

code the triplet and predict the answer.433
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Figure 4: The architecture of training the subgraph con-
struction module.

A.3 Bi-DAF Implement Detail 434

We use the Bi-DAF (Seo et al., 2017) style con- 435

textual interaction module to feed E

q

and EC to 436

Context-to-Question Attention EC!q

and Question- 437

to-Context Attention E

q!C to obtain the contextual 438

interaction between question and context. Here we 439

introduce how to obtain E

q!C and EC!q

. 440

Context-to-Question Attention EC!q

aims to cap-
ture the information on which question tokens are
semantically relevant to each document token. We
first denote question representation to E

q

and docu-
ment representations to EC . The EC!q

is computed
as follows:

EC!q

= softmax(sim(ET

q

, EC))Eq

,

where T is the transpose operation. 441

Question-to-Context Attention E

q!C aims to cap- 442

ture the information on which document tokens are 443

semantically relevant to each question token. The 444

process of computing the E
q!C is similar to EC!q

. 445
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