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Abstract

This work deals with the challenge of learn-
ing causal reasoning over procedural text to
answer "What if..." questions when external
commonsense knowledge is required. We pro-
pose a novel multi-hop graph reasoning model
to 1) efficiently extract a commonsense sub-
graph with the most relevant information from
a large knowledge graph; 2) predict the causal
answer by reasoning over the representations
obtained from the commonsense subgraph and
the contextual interactions between the ques-
tions and context. We evaluate our model on
WIQA dataset and achieve state-of-the-art per-
formance compared to the recent models.

1 Introduction

In recent years, large-scale pre-trained language
models (LMs) have made a breakthrough progress
and demonstrate a high performance in many NLP
tasks, including procedural text reasoning (Tan-
don et al., 2019; Rajagopal et al., 2020). However,
since the knowledge of language that is present in
the corpora is learnt only implicitly by LMs, they
cannot provide explainable predictions. In some
cases, the knowledge contained in a given text is
sufficient to predict the answer, as it is shown in
the question 1 of Figure 1. This knowledge is di-
rectly encoded and learned by LMs models (Asai
and Hajishirzi, 2020; Tandon et al., 2019). How-
ever, there are many cases in which the required
knowledge is not included in the procedural text
itself. For example, for the question 2 in Figure 1,
the information about the “nutrient” on the seeds
does not exist in the procedural text. Therefore, the
external commonsense knowledge is required.
There are several existing resources that contain
world knowledge and commonsense. Examples are
knowledge graphs (KGs) like ConceptNet (Speer
etal., 2017) and ATOMIC (Sap et al., 2019). Look-
ing back at the question 2, we can see that through
providing the external knowledge triplets (nutrient,

Procedural Text:

1. A plant produces a seed.

. The seed falls to the ground.

. The seed is buried.

. The seed germinates.

. A plant grows.

. The plant produces flowers.

. The flowers produce more seeds

NOWnhAWN

Questions and Answers:

1. suppose plants will produce more seeds
happens, how will it affect less plants.

(A) More (B) Less (C) No effect

2. suppose the soil is rich in nutrients happens,
how will it affect more seeds are produced.
(A) More (B) Less (C) No effect

3. suppose The sun comes out happens, how
will it affect less plants.

(A) More (B) Less (C) No effect

Figure 1: WIQA task contains procedural text, and
different types of questions. The bold choices are the
gold answers.

relatedto, soil) and (soil, relatedto, seed) from Con-
ceptNet, we can build an explicit reasoning chain
and choose an explainable answer.

Two challenges exist in procedural text reason-
ing and using external KBs. The first challenge is
effectively extracting the most relevant external in-
formation and reducing the noise from the KB. The
second challenge is reasoning over the extracted
knowledge. Several works enhance the QA model
with commonsense knowledge (Lin et al., 2019; Lv
et al., 2020). However, the noisy knowledge from
KG will seriously mislead the QA model to predict
the answer. Moreover, using KBs is often inves-
tigated in the tasks that perform QA directly over
KB itself, such as CommonsenseQA (Talmor et al.,
2019), etc. There are less sophisticated techniques
proposed for using KB explicitly (i.e. not through
training LMs) in reading comprehension for aiding
QA over text. REM-Net (Huang et al., 2021) is
the only work that uses commonsense for WIQA
and uses a memory network to extract the external
triplets to solve the first challenge. However, this
work has no reasoning process over the extracted
knowledge and uses a simple multi-head operator
to predict the answer. EIGEN (Madaan et al., 2020)
constructs an influence graph to find the chain of
reasoning given procedural text. However, EIGEN
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Figure 2: MRRG Model is composed of Candidate Triplet Extraction, KG Attention, Commonsense Subgraph
Construction, Text encoder with contextual interaction, Graph Reasoning, and Answer prediction modules.

cannot deal with the challenge that the required
knowledge is not in the given document.

To solve these two challenges, we propose a
Multi-hop Reasoning network over Relevant Com-
monSense SubGraphs (MRRG) for casual reason-
ing over procedural Text. Our motivation is to
effectively and efficiently extract the most relevant
information from a large KG to help procedural
reasoning. First, we extract the entities, retrieve
related external triplets from KG, and learn to ex-
tract the most relevant triplets to a given text input
by a novel KG attention mechanism. Then, we
construct a commonsense subgraph based on the
extracted triplets in a pipeline. We use the extracted
subgraphs as a part of end-to-end QA model to
help in filling the knowledge gaps in the procedure
and performing multi-hop reasoning. The final
model predicts the causal answer by reasoning over
the contextual interaction representations over the
question and the document and learning graph rep-
resentations over the KB subgraphs. We evaluate
our MRRG on the “what if” WIQA benchmark.
MRRG model achieves SOTA and brings signifi-
cant improvements compared to existing baselines.

The contributions of our work are: 1) We train a
separate module that extracts the relevant parts of
the KB to avoid the noisy and inefficient usage of
the information in large KBs. 2) We design an end-
to-end model that uses the extracted QA-dependent
KB as a subgraph to guide the reasoning over the
procedural text to answer the questions. 3) Our
MRRG achieves SOTA on the WIQA benchmark.

2 Model Description

Problem Formulation: Formally, the problem is
to predict an answer a from a set of pre-defined
answers given input question g, a document C
which is composed of several sentences C =
{s1,...,8n}, and a large knowledge graph KG.

Overview of MRRG Model: Figure 2 shows the
proposed architecture. (1) We extract the enti-

ties from question and context in preprocessing
step and use them to retrieve the set of candi-
date triples from the ConceptNet. (2) We train
the KG Attention module to extract the most rel-
evant triplets and reduce the noisy concepts from
candidate triplets. (3) We augment the common-
sense subgraph based on the relevant triplets. (4)
We train a model that uses two components, the
commonsense subgraph as a relational graph net-
work and a text encoder including question and
document to do procedural reasoning. Below, we
describe the details of each module.

(1) Candidate Triplet Extraction from KG:
Given the input ¢ and C, we extract the contextual
entities (concepts) by a open Information Extrac-
tion (OpenlE) model (Stanovsky et al., 2018). For
each extracted entity ¢;,,, we retrieve the relational
triplets ¢t = (tin, 7, tour) from KG, where t,,; is
the concept taken from ConceptNet and 7 is a se-
mantic relation type. We then apply a pre-trained
Language Model, RoBERTa, to obtain the repre-
sentation of each triplet E* = fr 11 ([tin, T, tout]) €
R3%4 where frs denotes the language model op-
eration and the triplets are given as a sequence of
concepts and relation to the LM.

(2) KG Attention: The KG attention module is
shown in Figure 2-A. We concatenate q and C to
form Q = [[CLS]; q; [SEP];C], where [CLS] and
[SEP] are special tokens in the LMs (Liu et al.,
2019). We encode () by RoBERTa and get the con-
textual token representations that include Ejcrg),
Ey, and E¢.

Given triplet E, we generate a context-triplet
pair E! = [Ejcpg); ELy; B EL,). Afterwards,
we compute context-triplet pair attention and a soft-
max layer to output the Context-Triplet pairwise
exp(MLP(E!))
iy exp(MLP(EL))"

Then we choose the top-k relevant triplets with
the top C'T'S scores and then use the relevant
triplets to construct the subgraph. For each se-
lected triplet, we obtain the triplet representa-

importance Score C'T'S; = T



tion B = [F" EL,E", € R**? where

E, = fm([CTSt E! :CTS,-E!])and E" ,, =
Jout([CTSy - Et ,; CTS; - EY]). Notice that f;,
and f,,+ are MLP layers.

(3) Commonsense Subgraph Construction: We
construct the subgraph G based on the relevant
triplets from KG attention for each question and
answer pair. We add more edges to the subgraph
as follows: Two entities in the triplets will have an
edge if a relation 7 in the KG exists between them.
The assumption is that the augmented common-
sense subgraph will contain the reasoning paths.
We use E!! and E!,, for the KG subgraph initial
node representation 2(?).

(4) Procedural Reasoning composes of two parts.
(I) Multi-Hop Graph Reasoning: this is the Graph
Reasoning part of Figure 2-B. Given the subgraph
G5, we use RGCN (Schlichtkrull et al., 2018) to
learn the representations of the relational graph.
RGCN learns graph representations by aggregating
messages from its direct neighbors and relational
semantic edges. The (I + 1)-th layer node represen-
tation hglﬂ) is updated based on the neighborhood
node representations hg from the [-layer multiplied

by the relational matrices Wrgl), o W, ) The

"IR[*
representation h(lH) is computed as follows:

l+1 ) + Wo(l)h(l))

rG’R]ENT ’

where ¢ denotes a non-linear activation function,
N represents a set that is includes neighbor indices
of node 7 under semantic relation r. Finally, we
obtain the E, after several hops message passing.
(I1) Text Contextual Interaction Encoder: We
have obtained the contextual token representa-
tions Ejcrs), Eq, and E¢ in the KG attention
module. Followed by Seo et al., we utilize
Bi-DAF style contextual interaction module to
feed £, and E¢ to Context-to-Question Atten-
tion Ec,y = softmax(sim(E}, Ec))E, and
Question-to-Context Attention F,_.c to obtain the
contextual interaction between question and con-
text. More details about obtaining I, ,¢ and E¢_,,
are described in Appendx A.3. Then we use LSTM
to obtain the hidden state representation:

F,

(1I1) Answer Prediction: We concatenate Ejcpg].
Fy e, Fcﬁq,l and the compact subgraph rep-
resentation E obtained from attentive pool-
ing, and use it as the final representation F' =

q—C — LSTM(Eq—KZ)a Feq = LSTM(EC—W)-

[Eicrs); Fyscs Fosgs Eé;é] We utilize a classifier
MLP (F) to predict the answer. Our MRRG has
two separate training modules used in a pipeline
for triplet selection and procedural reasoning.

(I) Training KG Attention Triplet Selection: Fig-
ure 4 and the left block of Figure 2 shows
the triplet selection model. The architecture
is the same as KG attention except adding
extra 3 MLP layers for the concatenation of
[Eicrs); Ey; Ec; E”i; .. ;E",;] to predict the an-
swer. We use the cross-entropy as the loss function
to train the model.

(Il) Training End-to-End MRRG: After we pre-
train the KG attention, we keep the learned parame-
ters and extract the most relevant concepts and con-
struct the multi-relational commonsense subgraph
Gs. We combine subgraph representation and text
interaction representation as input to train the an-
swer prediction module by cross-entropy loss.

Models in-para  out-of-para  no-effect | Test VI Acc
Majority 45.46 49.47 55.0 30.66
Polarity 76.31 53.59 27.0 39.43
Adaboost (Freund and Schapire, 1995) 4941 36.61 48.42 43.93
emphDecomp-Attn (Parikh et al., 2016) 56.31 48.56 73.42 59.48
BERT (no para) (Devlin et al., 2019) 60.32 43.74 84.18 6241
BERT (Tandon et al., 2019) 79.68 56.13 89.38 73.80
RoBERTa (Tandon et al., 2019) 74.55 61.29 89.47 74.77
EIGEN (Madaan et al., 2020) 73.58 64.04 90.84 76.92
REM-Net (Huang et al., 2021) 75.67 67.98 87.65 71.56
Logic-Guided (Asai and Hajishirzi, 2020) - - - 78.50
RoBERTa+KG Attention Triplet Selection | 72.21 64.60 89.13 7522
MRRG 79.85 69.93 91.02 80.06
Human - - - 96.33

Table 1: Model Comparisons on WIQA test V1 dataset.

3 Experiments and Results

We implemented our MRRG framework using Py-
Torch '. We use a pre-trained RoBERTa (Liu et al.,
2019) to encode the input. The maximum number
of selected triplets from ConceptNet is 50. More
details are shown in the Appendix A.1.

Datasets: WIQA is a large dataset for “what if”
causal reasoning. WIQA contains three types of
questions: 1) the questions can be directly an-
swered based on the text, called in-paragraph ques-
tions. 2) the questions require external knowledge
to be answered, called out-of-paragraph questions,
and 3) irrelevant causes and effects, called no-effect
questions. WIQA contains 29808 training samples,
6894 development samples, 3993 test samples (test
V1), and 3003 test samples (test V2).

Results: Table 1 and Table 2 show the performance
of MRRG on the WIQA task compared to other
baselines. We show the baseline descriptions in

'Our code will be available after the paper is accepted.



Question and Document Content

Extracting Triplets

Question: suppose the soil is rich in nutrients happens, how will it affect more sceds are produced.

plant grows™, “The plant produces flowers™, “The flowers produce more seeds.”]

Content: [“A plant produces a seed”, “The seed falls to the ground”, “The seed is buried”, “The seed germinates”, “A

(nutrient, relatedto, soil)

Question: suppose more land available happens, how will it affect less igncous rock forming.

becomes lava”, “Lava cools”, “Cooled magma and lava become igneous rock.”]

Content: [“Different kinds of rocks melt into magma”, “Magma cools in the crust”, “Magma goes to the surface and
Gold Answer: Less

75
soil. relatedto. see 70
Gold Answer: More (soil, relatedto, seed) e
(igneous rock, isa, rock) 60
(land, relatedto, rock) 55 I
(land, relatedto, surface) 50
#hop=2 m #hop=3

(surface, relatedto, igneous rock)

m #hop=1

Figure 3: Left: Case study of our MRRG Framework. Right: Comparing the results over different number of hops.

Models in-para  out-of-para  no-effect | Test v2 Acc
Random 33.33 3333 3333 3333
Majority 00.00 00.00 100.0 41.80
BERT 70.57 58.54 91.08 74.26
RoBERTa 70.69 60.20 91.11 7534
REM-Net 70.94 63.22 91.24 76.29
REM-Net (RoBERTa-large) 76.23 69.13 92.35 80.09
QUARTET (RoBERTu-large) 74.49 65.65 95.30 82.07
(Rajagopal et al., 2020)

RGN (Zheng and Kordjamshidi, 2021) 75.91 66.15 92.12 79.95
RoBERTa+KG Attention Triplet Selection | 70.02 62.30 91.23 75.86
MRRG 76.80 67.83 92.28 80.39
MRRG (RoBERTa-large) 79.12 71.10 93.53 83.46
Human - - - 96.30

Table 2: Model Comparisons on WIQA test V2 dataset.

Appendix A.2. First, our KG Attention triplet se-
lection model outperforms the ROBERTa and has
3.3% improvement on the out-of-para category.
Second, our MRRG achieves SOTA result com-
pared to all baseline models. Our MRRG improves
the SOTA by 3.21% for the in-para questions and
improves it by 3.95% for the out-of-para questions.

4 Analysis

Effects of Using External Knowledge: In the
WIQA, all the baseline models achieve significantly
lower accuracy in the out-of-para than in-para and
no-effect categories. MRRG achieves SOTA in
out-of-para category because of using the highly
relevant commonsense subgraphs and the combi-
nation of reasoning over text interaction and the
graph modules. As is shown in table 2, the advan-
tage of the MRRG model is reflected on out-of-para
questions. MRRG improves 4.61% over REM-Net.
Notice that REM-Net is the only model that utilized
external knowledge on WIQA. Figure 3 shows a
case in which the “soil” and “nutrient” only appear
in the question and do not exist in the text. The
baseline models fail to answer this out-of-para ques-
tion due to missing external knowledge. However,
our model predicts the correct answer by explicitly
incorporating the (nutrient, relatedto, soil), (soil, re-
latedto, seed) that connects the critical information
between the question and document.

Relational Reasoning and Multi-Hops: Both in-
para and out-of-para question types require mul-
tiple hops of reasoning to find the answer in the
WIQA. As shown in the right side of Figure 3, our
MRRG model accuracy improved 3.2% for 1 hop,
7.3% for 2 hops, and 3.9% for 3 hops compared

Ablation Model Dev Acc
Text only RoBERTa-base 75.51%
Text only + contextual interaction 76.85%
Text only KG Attention Triplet Selection 77.39%
- semantic relation 78.31%

GNN dim=50 79.18%

Text+Graph GNN dim=100 80.30%
GNN dim=200 79.88%

Table 3: Ablation and hyper-para. choices on WIQA.
“GNN dim” is the dimension of graph representation.

to EIGEN. MRRG made a sharp improvement in
reasoning with multiple hops due to the relational
graph reasoning and the effectiveness of the ex-
tracted commonsense subgraph. We study some
cases to analyze the multi-hop reasoning and the
reasoning chains. In the second case in Figure 3,
the extracted relevant triplets (land, relatedto, sur-
face), (surface, relatedto, igneous rock) construct a
two-hop reasoning chain “land—surface—igneous
rock” that helps MRRG to find the correct answer.
Ablation Study: Table 3 shows the ablation study
of MRRG using WIQA. Firstly, we remove the
commonsense subgraph and graph network. The
accuracy decreases 3.4% compared to MRRG. Sec-
ond, we remove the contextual interaction module
and the accuracy decreases 1.3%. In an additional
experiment, we use the KG attention triplet selec-
tion module to directly predict the answer without
the pipeline of constructing the subgraph and using
the graph reasoning module. We show the result as
KG Attention Triplet Selection in Table 3. The re-
sult shows that using the selected triplets represen-
tations chosen from KG attention is helpful for the
WIQA task. However, constructing the subgraph
and using graph reasoning module is highly outper-
forming compared to Triplet Selection model.

5 Conclusion

We propose MRRG model for using external knowl-
edge graph in reasoning over procedural text. Our
model extracts a relevant subgraph for each ques-
tion from the KG and uses that knowledge subgraph
for answering the question. The extracted subgraph
includes the reasoning path for answering the ques-
tion and helps the multi-hop reasoning to predict
an explainable answer. We evaluate MRRG on the
WIQA benchmark and achieve SOTA performance.
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A Appendix

A.1 Implementation Details

We implemented our MRRG framework using Py-
Torch. We use a pre-trained RoBERTa (Liu et al.,
2019) to encode the contextual information in the
input. The maximum number of nodes in the graph
is 50. More hyper-parameter description of graph is
shown in Table 3. The maximum number of words
for the paragraph context is 256. For the graph con-
struction module, we utilize a deep BiLSTM open
Information Extraction model (Stanovsky et al.,
2018) from AllenNLP? to extract the entities. The
maximum number of hops for the graph reasoning
module is 3. The learning rate is 1e — 5. The model
is optimized using Adam optimizer (Kingma and
Ba, 2015).

A.2 Baseline Description

EIGEN (Madaan et al., 2020) is a strong baseline
that builds event influences based on the given doc-
ument and leverages LMs to create the chain to
predict the causal answer. However, EIGEN can-
not cope with the situation in which the required
knowledge is not included in the procedural text.
Logic-Guided (Asai and Hajishirzi, 2020) is a
baseline that combines neural networks and logic
rules. Specifically, the Logic-Guided model lever-
ages LMs, symmetric logical rules, and transitive
logical rules to augment the training data and train
the model by symmetric and transitive consistency.
RGN (Zheng and Kordjamshidi, 2021) is the recent
SOTA baseline that utilizes a gating network to ef-
fectively filter out the key entities and relationships
in the given document and learns the contextual
representations to predict the causal answer. How-
ever, RGN cannot deal with the challenge that the
required knowledge is not in the document.
REM-Net (Huang et al., 2021) proposes a recur-
sive erasure memory network to find out the causal
evidence. Specifically, REM-Net refines the evi-
dence by a recursive memory mechanism and then
uses a generative model to predict the causal an-
swer. REM-Net is the only work that uses com-
monsense for WIQA. However, this work has no
reasoning process over the extracted external triplet
and only uses implicate multi-head operator to en-
code the triplet and predict the answer.

https://demo.allennlp.org/
open-information—-extraction.
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Figure 4: The architecture of training the subgraph con-
struction module.

A.3 Bi-DAF Implement Detail

We use the Bi-DAF (Seo et al., 2017) style con-
textual interaction module to feed £, and E¢ to
Context-to-Question Attention E¢_,, and Question-
to-Context Attention E,_.c to obtain the contextual
interaction between question and context. Here we
introduce how to obtain E,_,c and E¢_,,.
Context-to-Question Attention E¢_,, aims to cap-
ture the information on which question tokens are
semantically relevant to each document token. We
first denote question representation to £, and docu-
ment representations to Ei¢. The E¢_, 4 is computed
as follows:

Ec g = softmax(sim(E:{, Ec))Ey,

where T is the transpose operation.

Question-to-Context Attention I, _,c aims to cap-
ture the information on which document tokens are
semantically relevant to each question token. The
process of computing the E,_,¢ is similar to E¢_,.


https://demo.allennlp.org/open-information-extraction.
https://demo.allennlp.org/open-information-extraction.

