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ABSTRACT

Ensemble learning, which can consistently improve the prediction performance
in supervised learning, has drawn increasing attentions in reinforcement learning
(RL). However, most related works focus on adopting ensemble methods in envi-
ronment dynamics modeling and value function approximation, which are more
essentially supervised learning tasks of the RL regime. Moreover, considering
the inevitable difference between RL and supervised learning, the conclusions or
theories of the existing ensemble supervised learning cannot be directly adopted
to policy learning in RL. Adapting ensemble method to policy learning has not
been well studied and still remains an open problem. In this work, we propose to
learn the ensemble policies under the same RL objective in an end-to-end man-
ner, in which sub-policy training and policy ensemble are combined organically
and optimized simultaneously. We further theoretically prove that ensemble pol-
icy learning can improve exploration efficacy through increasing entropy of action
distribution. In addition, we incorporate a regularization of diversity enhancement
over the policy space which retains the ability of the ensemble policy to general-
ize to unseen states. The experimental results on two complex grid-world envi-
ronments and one real-world application demonstrate that our proposed method
achieves significantly higher sample efficiency and better policy generalization
performance.

1 INTRODUCTION

In supervised learning, ensemble methods (Dietterich, 2000) such as bagging (Breiman, 1996) and
boosting (Freund et al., 1996) have demonstrated great potential in a wide range of tasks like com-
puter vision (Szegedy et al., 2015) and tabular data mining (Liu et al., 2020). For these ensemble
learning methods, multiple base models are trained to perform the same task and their outputs are
aggregated to generate a final decision, which has shown better performance than individual models
(Lee et al., 2015). The reason behind the success of ensemble methods in supervised learning is that
the aggregation in ensemble methods can reduce the variance of final predictions (Dietterich, 2000).

Considering the great success of ensemble methods in supervised learning, applications of ensemble
learning in reinforcement learning have also be studied. They mainly conduct ensemble learning in
environment dynamics modeling (Kurutach et al., 2018) and value function approximation (Anschel
et al., 2017), which mainly inherits the advantages from the ensemble supervised learning to enhance
the supervised function approximation in reinforcement learning. Nevertheless, these tasks are only
part of the reinforcement learning regime. Moreover, the mechanisms behind the policy learning and
supervised learning are of huge gap thus the ensemble learning theory from the supervised learning
cannot directly interpret and guide adopting ensemble method in policy learning.

Incorporating ensemble methods in policy learning has not been well studied in the existing works
and still remains an open problem. Some works follow the ensemble supervised learning and achieve
diversity of sub-policies through a trivial approach of individually training various policies and sim-
ply aggregating them ex post facto (Wiering & Van Hasselt, 2008; Duell & Udluft, 2013), which has
few guarantees to improve the ensemble performance since they have not considered policy ensem-
ble and policy learning as a whole optimization problem. The other works incorporate divide-and-
conquer principle through either initial state clustering (Ghosh et al., 2017) or information theory
based reward decomposition (Goyal et al., 2019) to divide the state space, and derive a set of spe-
cialized policies accordingly. But the sub-policies are not aware of the whole state space, which
may significantly hurt the performance especially in deep reinforcement learning scenario and result
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in poor ensemble effectiveness. Moreover, whether and how ensemble method would benefit policy
optimization still remain unsolved. It also requires additional attention on the training strategy of
sub-policies within the ensemble method.

In this paper, we rigorously treat ensemble policy learning as a first class problem to explicitly
address the following questions including: i) what is the reasonable yet effective policy ensemble
strategy in deep reinforcement learning and ii) how it helps to improve common policy learning.

We resolve the ensemble policy learning from two aspects. On one side, we argue that ensemble
learning and policy learning should be considered as an organic whole system. We combine sub-
policy training and decision aggregation as a whole and optimize them under the unified ensemble
objective. Specifically, multiple sub-policies are optimized with data collected by the ensemble pol-
icy which aggregates all the co-training sub-policies for final decision. And we theoretically prove
that the decision aggregation of co-training sub-policies helps in efficient exploration thus signifi-
cantly improves the sample efficiency. To guarantee the ensemble performance, an ensemble-aware
loss is introduced to encourage the cooperation among sub-policies. Considering that the induced
diversity enhancement can essentially improve the ensemble performance in ensemble supervised
learning (Rame & Cord, 2021; Zhou et al., 2018; Zhang et al., 2020), on the other side, we incor-
porate diversity strengthen regularization within the policy space to further improve the ensemble
performance. We empirically found that it can improve policy generalization in real-world applica-
tion because the diversity strengthen regularization prevents the sub-policies from collapsing into a
singular mode or over-fitting to the training environment, which retains the ability of the ensemble
policy to generalize to unseen states.

In a nutshell, the main contributions of this paper are threefold and listed as below.

• We propose a simple yet effective ensemble strategy in ensemble policy learning and prove that
aggregating the co-training sub-policies can promote policy exploration and improve sample effi-
ciency.

• To the best of our knowledge, this paper is the first work that introduces the diversity strengthen
regularization on policy space for ensemble policy learning.

• Demonstrated by the experiments on two complex grid-world environments and one real-world
application, our proposed ensemble policy learning method yields significantly better sample effi-
ciency and the diversity strengthen regularization also provides a promising solution for improving
policy generalization.

2 RELATED WORK

Ensemble Supervised Learning In supervised learning, ensemble method has become a sim-
ple yet powerful approach to improve the prediction performance by aggregating the outputs from
multiple base models (Zhou et al., 2002; Moghimi et al., 2016; Zhou et al., 2018; Rame & Cord,
2021). Diversity among different base models is a key reason for the success of ensemble methods
in supervised learning which can reduce the variance of the aggregated predictions thus improve
generalization (Dietterich, 2000). Moreover, another justification on the success of ensemble meth-
ods indicates that the aggregation operation enriches the space of the hypotheses considered by
base models thus results in better performance (Domingos, 1997). However, due to the essential
difference between supervised learning and reinforcement learning, the observation and theory of
ensemble methods in supervised learning may not hold in the latter scenario.

Ensemble Methods in Reinforcement Learning The recent works applying ensemble methods
in reinforcement learning are mainly focusing on environment dynamics modeling and value func-
tion approximation. For environment dynamics modeling, Chua et al. (2018) and Janner et al. (2019)
train a set of models in parallel and reduce the model variance by randomly sampling a dynamics
model at each step during rollout. Kurutach et al. (2018) explicitly derive several environment mod-
els to stabilize the model-based policy learning. As for value function approximation, Q-function
ensemble has been widely used (Haarnoja et al., 2018; Kumar et al., 2019; Anschel et al., 2017) to al-
leviate the over-estimation of the ground truth value. Q-function ensemble is also a useful approach
to measure the uncertainty of the given (state, action) pairs, thus it can help in exploration (Lee et al.,
2021) or realizing conservative policy learning in offline reinforcement learning (Wu et al., 2021).
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Nevertheless, the mechanism behind environment dynamics modeling and value function approxi-
mation is similar to supervised learning and it has a huge gap with policy learning in reinforcement
learning. Among the existing works on ensemble policy learning, some works simply aggregate
individually trained policies ex post facto which has no guarantee to improve the ensemble perfor-
mance. To generate a set of sub-policies, differently initialized parameters (Faußer & Schwenker,
2015; Duell & Udluft, 2013) or different reinforcement learning algorithms (Wiering & Van Hasselt,
2008) are used. However, we find that ensemble individually trained policies contributes little to the
final ensemble performance. The other works incorporate divide-and-conquer principle to divide
the state space and derive a set of specialized polices accordingly, and then they finally aggregate
these specialized policies together to solve the original task. DnC (Ghosh et al., 2017) divides the
whole task into several sub-tasks based on the clustering of the initial states, then it derives several
policies accordingly and periodically distills the knowledge into a center policy. However, in many
environments, initial states cannot provide enough information for reasonable state space segmen-
tation, which makes this method fail in these scenarios. Based on information theory, Goyal et al.
(2019) design a competition mechanism among policies and adopt reward decomposition to train
several diverse policies with decorrelation loss. Due to the division of the state space, the sub-policy
is not aware of the whole state space, which may significantly hurt the performance especially in
deep reinforcement learning scenario and result in poor ensemble effectiveness.

Diversity Enhancement In supervised learning, it is acknowledged that the diversity among base
models can reduce the variance and improve the performance (Domingos, 1997; Zhang et al., 2020).
In reinforcement learning, diversity enhancement is mainly used to derive a set of diverse polices.
In population-based reinforcement learning, diversity enhancement has been achieved through min-
imizing KL divergence, maximum mean discrepancy or maximizing the determinant of the kernel
matrix in determinantal point process for efficient exploration (Hong et al., 2018; Masood & Doshi-
Velez, 2019; Parker-Holder et al., 2020). It has also been considered in unsupervised skill discovery
(Eysenbach et al., 2018; Sharma et al., 2019). But they only pursue high diversity without consid-
ering the actual rewards of the environment, which has been found not useful in our experiments.
And Goyal et al. (2019) propose a diversity enhancement regularization on the representation space
in ensemble policy learning. In contrast, we borrow the idea from population-based reinforcement
learning and impose the diversity strengthen regularization on the policy space to further improve
generalization of the ensemble policy.

3 PRELIMINARIES

Sequential decision making process can be formulated as a Markov decision process (MDP), repre-
sented by a tupleM = 〈S,A, p, p0, r〉. S = {s} is the space of the environment states. A = {a}
is the action space of the agent. p(st+1|st, at) : S × A 7→ Ω(S) is the dynamics model, also
called the state transition probability of the environment given state s and action a. And Ω(S)
is the set of distributions over S. The initial state s0 of the environment follows p0 : S 7→ R
which is the distribution of the initial state s0. r(s, a) : S × A 7→ R is the reward function.
η(π) = Eτ∼π

[∑T
t=0 r(st, at)

]
denotes the expectation of the cumulative reward that a policy π ob-

tained by interacting with the environment within a trajectory τ = {(st, at)}Tt=0. And the objective
of reinforcement learning is to maximize the reward expectation η(πθ) as

arg max
θ

Eπθ

[
T∑
t=0

r(st, at)

]
, (1)

where θ is the parameter of the policy π.

4 DEEP ENSEMBLE POLICY LEARNING

In this section, we present our deep ensemble policy learning algorithm. We first motivate our design
in the framework, and then introduce the details of a practical deep ensemble policy learning algo-
rithm. The overview of the architecture is illustrated in Figure 1 and a detailed training procedure is
shown in Algorithm 1.
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4.1 POLICY ENSEMBLE
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Figure 1: Framework of deep en-
semble policy learning.

In this section, we discuss the motivation for the design of
policy ensemble in our framework on the training of sub-
policies and data collection.

As has been widely used in ensemble supervised learning
(Zhou et al., 2002; Lee et al., 2015), value-based RL meth-
ods (Kumar et al., 2019; Anschel et al., 2017) and environ-
ment modeling (Kurutach et al., 2018), the approximated
function has been aggregated by a set of base components
each of which can be optimized and work individually in
the target task. We first consider to maintain K sub-policies
{πθ1 , . . . , πθk , . . . , πθK} in parallel in our framework where
k ∈ [1,K] represents the index of sub-policy parameters. For
better illustration, we denote πk to represent each sub-policy
parameterized by θk.

As is shown in Figure 1, we derive the ensemble policy π̂
through aggregating the outputs from the sub-policies as

π̂(·|s) =
1

K

K∑
k=1

πk(·|s; θk) . (2)

Receiving the state s from the environment, the sub-policies {πk}Kk=1 will produce their correspond-
ing action distributions. After that, the overall action distribution of the ensemble policy π̂(·|s) is
calculated as the arithmetic mean of the action distribution πk(·|s) derived from the sub-policies
{πk}Kk=1, and the operation is named mean aggregation for short. Note that the ensemble policy π̂
is parameter free and the whole set of parameters are {θk}Kk=1 of the sub-policies.

Finally, the action a will be taken from the overall action distribution as a ∼ π̂(·|s) and sent back to
the environment. Note that, only the ensemble policy π̂ is used to interact with the environment for
collecting trajectories {τi}i≤N and these trajectories are used to update the sub-policies.

Discussion Sample efficiency is a key problem in RL scenario especially in real-world environ-
ment as the sampling cost of exploration is expensive and the advantages of our proposed deep
ensemble policy learning should not come from more trajectories sampled by more sub-policies.
Thus, we should not let the sub-policies interact with the environment directly. Taking all these
factors into account, we use the ensemble policy π̂ for exploration and training data collection in
our framework and the data collected is shared by all the sub-policies. Moreover, in Theorem 1,
we prove that the ensemble policy has significantly improved the exploration efficiency by simply
aggregating the sub-policies, which leads to higher sample efficiency as shown in the experiments.

4.2 POLICY OPTIMIZATION

Though it has shown that simply aggregating the predictions of the base models in ensemble su-
pervised learning leads to performance improvement (Zhou et al., 2018), the aggregation of the
sub-policies does not provide any guarantees of promising ensemble performance. It is heuristically
reasonable since RL is a sequential decision making problem which is more complex than super-
vised learning. Specifically, the aggregation of the outputs from individually trained sub-policies
may derive undesirable action distribution and lead to bad states, especially in the case of the sepa-
rately optimized sub-policies, such as Duell & Udluft (2013). It is necessary to take the optimization
of the sub-policies as a whole system to enforce consistent learning paradigm for ensemble policy
learning. Therefore, we first incorporate an ensemble-aware loss to ensure a good ensemble policy
π̂ and encourage the cooperation among the sub-policies.

We optimize the ensemble policy π̂ to maximize the expected reward η(π̂) as:

arg max
{θk}Kk=1

Eπ̂

[
T∑
t=0

r(st, at)

]
. (3)
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Here we embed the ensemble policy learning into Proximal Policy Optimization (PPO) (Schulman
et al., 2017) and derive the overall policy optimization loss with KL divergence as

Le(π̂) = −Eπ̂′

[
T∑
t=0

π̂(at|st)
π̂′(at|st)

Âπ̂′(t)

]
+ µEπ̂′

[
T∑
t=0

KL [π̂′(·|st), π̂(·|st)]

]
, (4)

where π̂′ is the policy used for collecting the trajectory, µ is an adaptive penalty parameter to con-
strain the size of the policy update and Â is the advantage function that can be implemented as a
generalized advantage estimator (GAE) (Schulman et al., 2015). Note that we can also incorpo-
rate other policy optimization algorithms with policy ensemble since optimizing Eq. (3) is common.
Taking Eq. (2) into Eq. (4), we can find that the policy gradient will be back-propagated through the
policy ensemble procedure and each sub-policy will be updated simultaneously, which enforce the
sub-policy training in a unified behavior under the same ensemble policy loss.

Motivated by the empirical results from ensemble supervised learning that the better base functions1

lead to better ensemble performance, we think it is necessary to optimize the performance (i.e.
η(πθk), 1 ≤ k ≤ K) w.r.t. these sub-policies. In order to directly improve the sub-policies through
policy optimization, we can also adopt an individual training loss onto each sub-policy with the
same trajectory collected by the ensemble policy π̂ as:

Lk(πθk) = −Eπ̂′

[
T∑
t=0

πθk(at|st)
π̂′(at|st)

Âπ̂′(t)

]
+ µEπ̂′

[
T∑
t=0

KL [π̂′(·|st), πθk(·|st)]

]
. (5)

Here the loss for each sub-policy πθk directly optimizes θk through policy gradient by the data
collected by ensemble policy π̂, which does not impose additional interaction behaviors between the
sub-policy and the environment thus keep the sample cost the same as that of a single policy.

There would be one potential risk of mode collapse in policy ensemble that all the sub-policies
converge to one specific sub-policy and all the decisions would be taken from this specific policy.
It is trivial since all the sub-policies share the similar training paradigm which makes these sub-
policies may tend to behave similar. Therefore, a diversity strengthen regularization is necessary to
prevent all the sub-policies from collapsing into a singular mode and to ensure the diversity among
the sub-policies.

Recall that, in ensemble supervised learning, diversity has been shown to reduce the prediction
variance (Zhou et al., 2002; 2018) and improve generalization. In population-based RL methods,
diversity enhancement has been introduced for efficient exploration (Hong et al., 2018; Masood &
Doshi-Velez, 2019; Parker-Holder et al., 2020). Therefore, we introduce a regularization to reinforce
the diversity among different sub-policies for further improving ensemble performance. Intuitively,
the diversity strengthen regularization encourages the action distributions proposed by different sub-
policies to be orthogonal with each other. Specifically, we focus on the environments with discrete
action space, the diversity strengthen regularization is defined as

Ld =
2

K(K − 1)

∑
1≤i≤j≤K

〈πi(·|s), πj(·|s)〉,

where 〈πi(·|s), πj(·|s)〉 =
∑
a

πi(a|s)πj(a|s).
(6)

As for continuous control environment, a mean squared error among the sub-policies can serve as a
diversity strengthen regularization.

Discussion In some related works of RL, diversity can be measured in state level (Hong et al.,
2018) or trajectory level (Masood & Doshi-Velez, 2019). And we measure the diversity in state
level because the sub-policy cannot directly collect trajectories. We adopt inner product as diversity
measure because it is more computationally efficient (Li et al., 2012). And the diversity regular-
ization in our method aims at getting a set of sub-policies which are well-behaved and mutually

1In supervised machine learning, the function is often named as “model” which can be approximated by a
series of different methods such as deep neural network. To avoid misunderstanding to the environment model
in RL, we use “function” here for better reference.
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different, while Eysenbach et al. (2018) only pursue diverse sub-policies without maximizing the
real reward of the environment, which has little guarantees to perform well considering the real
reward as illustrated in the experiment.

In conclusion, the overall loss of our framework is defined as

L = Le(π̂) + α

K∑
k=1

Lk(πθk) + βLd, (7)

where α and β are the hyper-parameters controlling the impact of the respective terms. We summa-
rize the overall ensemble policy learning algorithm in Algorithm 1.

Algorithm 1: Deep Ensemble Policy Learning
Input: Training epoch number I , number of trajectories N collected per epoch, repeat times S

after data collection
1 Initialize all the sub-policies {πθk}Kk=1 with their corresponding parameters {θk}Kk=1.
2 for i = 1 to I do
3 Collect N trajectories Γ = {τi}i≤N from the real environment using π̂ defined as Eq. (2).
4 for s = 1 to S do
5 Update the sub-policies through π̂ using Eq. (4) over Γ.
6 Update the sub-policies directly using Eq. (5) over Γ.
7 Enhance the diversity among the sub-policies by Eq. (6) over Γ.

4.3 THEORETICAL ANALYSIS

Theorem 1 (Mean aggregation encourages exploration). The entropy of the ensemble policy π̂ is no
less than the average entropy of the sub-policies, i.e.,H(π̂) ≥ 1

K

∑K
k=1H(πθk).

The proof of Theorem 1 can be found in Appendix A.1. Theorem 1 shows that the mean aggregation
operation can lead to a behavior policy, i.e., the ensemble policy, with equal or larger entropy value
than the average entropy of the sub-policies at any state, which illustrates more effective exploration
in the policy learning procedure. Thus, through aggregating the sub-policies during training, π̂ has
guaranteed performance in exploration in the whole state space and improves the sample efficiency
of policy learning. We have also observed the corresponding phenomenon in the experiments. It
also reflects the necessity of incorporating the unified optimization for the policy ensemble, which
has been discussed above.

5 EXPERIMENTS

We focus our analysis on environments spanning two different domains, a grid-world environment
named Minigrid (Chevalier-Boisvert et al., 2018) and a real-world application named financial al-
gorithmic trading (Fang et al., 2021). The experiments and the analysis in this section are led by
the following two research questions (RQs). RQ1: Does our proposed method achieve higher sam-
ple efficiency through policy ensemble? RQ2: Is the generalization performance of the proposed
ensemble policy better than the other compared methods?

5.1 COMPARED METHODS

We compare our proposed method with its variants and the following baselines.

• PPO (Schulman et al., 2017) is a state-of-the-art policy optimization method and is used as the
base learner in our method. So we use PPO as a standard policy learning baseline without ensem-
ble for comparison.

• PE (Policy Ensemble) is based on a traditional policy ensemble method (Duell & Udluft, 2013)
which trainsK policies individually by PPO algorithm and then aggregates them to solve the task.
In our paper, we consider two aggregation operation, majority voting and mean aggregation which
are defined as π̂(a|s) = 1

K

∑K
k=1 I((arg maxa′ πk(a′|s)) == a) and Eq. (2) respectively. And we

denote these two methods as PEMV and PEMA for short.
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• DnC (Ghosh et al., 2017) is based on divide-and-conquer principle which partitions the initial
state space into K slices, and optimizes an ensemble of policies each on a different slice. During
training, these policies are periodically distilled into a center policy that is utilized for evaluation.

• ComEns (Goyal et al., 2019) uses an information-theoretic mechanism to decompose the policy
into an ensemble of primitives and each primitive can decide for themselves whether they should
act in current state by a well-designed competition mechanism based on information theory.

• DEPL is our proposed method described above, which has two other variants for ablation study:
DEPL-Div is the method without diversity strengthen regularization defined in Eq. (6) and DEPL-
Ens is the method without ensemble-aware loss defined in Eq. (4).

In all methods, we take PPO as the base policy optimization method. To ensure a fair comparison,
all the ensemble methods have roughly the same number of parameters (i.e., K times the parameter
size of PPO) and the number of trajectories collected in one epoch for training is kept the same for
all the methods which provides fairness for comparison of sample efficiency. In the experiments,
we keep the number of base policies K = 4 for all the ensemble methods as default and more
implementation details can be found in Appendix D.

5.2 EVALUATION: MINIGRID

For comparison of sample efficiency of the different methods, we consider two partial-observable
environments in Minigrid (Chevalier-Boisvert et al., 2018): distributional-shift and multi-room, as
shown in Figure 2, where the agent (red triangle mark) aims at reaching the given target position
(green square mark) and a nonzero reward is provided only if the target position is reached. The view
horizon of agent is limited thus partial observable as marked by the half-transparent grey area as in
Figure 2. Moreover, these environments are challenging because of introduction of stochasticity
during reset procedure. Specifically, the place of the second line of the lava in distributional-shift
is reset, and the shape of multi-room is regenerated during the reset procedure. And due to the
longer distance between the start position and the goal, multi-room is more difficult. As a result,
effective exploration is required because of the sparse reward setup of the environments thus these
environments are suitable for testing the sample efficiency of the compared methods.
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Figure 2: The evaluation results on Minigrid environments, all the results are conducted with five
random seeds. The top and bottom rows show the information about distributional-shift and multi-
room, respectively. First column: A snapshot of the environment where the red triangle and green
square represent the position and the goal of the agent respectively. Second column: Learning
curves of all the compared methods. Third column: Learning curves of DEPL and its variants.
Last column: Learning curves of DEPL when K is set to different values.

As shown in Figure 2, DEPL enjoys the best sample efficiency and gets nonzero reward fastest
among all the methods in both environments (RQ1). We notice that PEMA and PEMV fail (i.e.,
return = 0) in both environments within 200 epochs while PPO can get better performance. And
we think that the failure can be attributed to two reasons. First, considering the number of samples
needed for PPO to get a nonzero reward is large, PEMA and PEMV may need K times samples for
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a nonzero reward because they individually train K PPO policies. Second, due to the asynchrony
among the sub-policies of the traditional PE method, the useful knowledge can be overwhelmed thus
neglected due to the aggregation operation by other worthless knowledge. The failure of PEMA and
PEMV implies the necessity of an ensemble-award loss and explains the rationality of sampling with
ensemble policy π̂. Moreover, the failure of DnC and ComEns in multi-room environment, which is
more challenging, can be attributed to the division operation on the state space that may hinder the
ability on exploration to the full environment.

The ablation study in Figure 2 shows that DEPL outperforms its two variants, thus both of the
diversity strengthen regularization and ensemble-aware loss appear to be crucial for the superior
performance of DEPL. In addition, the returns of both DEPL and its variants improve quickly at
first, which confirms the result in Theorem 1 that mean aggregation encourages exploration. In the
last column of Figure 2, we analyze the effect of using various number of sub-policies in DEPL. The
results indicate that an extremely small K cannot lead to a good performance and the performance
cannot be further improved by increasing K by a large margin. In majority voting, when K = 2 and
sub-policies have different decision, ensemble policy cannot extract the valuable information from
sub-policies thus cannot promote the performance or even get worse performance. And we think
the similar reason leads to the poor performance in DEPL when K = 2 because of the similarity
between majority voting and mean aggregation.

5.3 EVALUATION: FINANCIAL ALGORITHMIC TRADING

The requirement of generalization is widespread in the real-world tasks, but the problem is not
well studied and still remains an important and difficult task for RL scenario (Cobbe et al., 2019).
To evaluate generalization ability of different methods, we conduct experiments on financial order
execution (Fang et al., 2021) which is a fundamental yet challenging problem in algorithmic trading
and there are many RL methods working on it (Ning et al., 2018; Lin & Beling, 2020; Fang et al.,
2021). In order execution task, the environments are built upon the historical transaction data, and
the agent aims at fulfilling a trading order which specifies the date, stock id and the amount of stock
needed to be bought or sold, within a time horizon such as one day.

In particular, the environments are usually formulated as training, validation and test phases each
of which is corresponding to a specific time range within the data, that is quite different to the
traditional RL tasks where the environment keeps the same during training and test. Specifically,
training environment is used for data collection and policy optimization, validation environment
is responsible for hyper-parameter selection. Test environment is unavailable for the agent during
training and is used to measure the generalization ability of the learned policy trained with the
selected best hyper-parameters.

Table 1: The dataset statistics of finan-
cial order execution environment.

Phase Dataset 1801-1908
# order Time Period

Training 845,006 01/01/2018 - 31/12/2018
Validation 132,098 01/01/2019 - 28/02/2019

Test 455,332 01/03/2019 - 31/08/2019

Phase Dataset 1807-2002
# order Time Period

Training 854,936 01/07/2018 - 30/06/2019
Validation 163,140 01/07/2019 - 31/08/2019

Test 428,846 01/09/2019 - 29/02/2020

The task of order execution is challenging for policy opti-
mization. Due to the shift of Macroeconomic regulation or
other factors in different time, test environment may differ
a lot to the training and validation environment, thus the
learned agent has to make decisions in unfamiliar states
during testing, which puts forward a strong demand for
the generalization of the learned policy. Therefore, the
performance of the learned agent in test environment is
a good surrogate evaluation of the generalization ability,
which has been used widely in the related works (Lin &
Beling, 2020; Fang et al., 2021). Moreover, the agent has to make decision based on the noisy and
yet imperfect market information, which may induce the agent to make wrong decision and lead
to the poor effectiveness of the agent. And due to the large number of stocks which fluctuate in
different patterns, the agent must be able to handle various events for better trading performance,
which also makes the task challenging.

Following Fang et al. (2021), the reward in order execution environment is composed of price ad-
vantage (PA) and market impact penalty where PA encourages the policy to get better profit than the
average benchmark market price. The averaged PA and reward of the test orders in the test envi-
ronment are taken as evaluation metrics in order execution task. We conduct the experiment on the
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two large datasets 1801-1908 and 1807-2002 published in (Fang et al., 2021) and the statistics of the
datasets can be found in Table 1.

The results of different methods are reported in Table 2. As expected, DEPL achieves the best per-
formance in both PA and reward in two datasets, suggesting that our proposed method has great po-
tential in generalizing to new states (RQ2). And we find that PEMV has a worse reward than PPO
in 1801-1908, which implies individually training sub-policies has no guarantee on the ensemble
performance, thus an ensemble-aware loss, i.e., Le in Eq. (4) which can encourage the coordination
among sub-policies, is necessary. In addition, the performance degradation of DEPL-Ens also illus-
trates the importance of the ensemble-aware loss. Moreover, from the comparison between DEPL
and DEPL-Div, we find that the diversity strengthen regularization further improves the generaliza-
tion performance. This phenomenon coincides with the observations in supervised learning (Zhou
et al., 2002) that the diversity among base models can reduce the variance, alleviate the over-fitting
problem and improve the generalization performance of the ensemble method.

Table 2: Test performance on financial order execution environment; the higher metric value means
the better performance. The results are the average of all test orders over ten random seeds.

Dataset Metric PPO PEMV PEMA DnC ComEns DEPL-Div DEPL-Ens DEPL

1801-1908 PA 7.43 7.47 7.87 7.99 7.70 8.38 6.38 8.82
Reward 4.57 4.41 5.00 5.47 4.79 5.51 3.87 5.99

1807-2002 PA 5.30 6.03 5.98 5.36 4.59 6.21 5.51 6.31
Reward 2.75 3.44 3.42 2.75 1.32 3.30 3.51 3.57

Table 3: Results on different K
K 2 4 8
PA 7.49 8.82 8.64

Reward 4.42 5.99 5.83

To evaluate the effect of the number of sub-policies K, we con-
duct experiments when K ∈ {2, 4, 8} in dataset 1801-1908 and
the results are shown in Table 3. Similar with the experimental
results in Minigrid, K = 2 leads to a poor performance, which
can still be attributed to the difficulty of getting consensus during
aggregation when K is small. In addition, a larger K does not always result in a better performance,
but K = 4 seems to be a good choice based on our experimental results in Minigrid and order
execution.

5.4 DIVERSITY ANALYSIS

After analyzing the performance of diversity strengthen regularization in improving the policy
generalization, we further verify whether the regularization diversifies the sub-policies. Moti-
vated by the metric applied as diversity measure in continuous action space (Hong et al., 2018),
here we consider the action disagreement (AD) to measure the diversity among sub-policies as
AD = 2

K(K−1)
∑

1≤i≤j≤K
1
|M |

∑
s∈M I(arg maxa πi(a|s) 6= arg maxa πj(a|s)), where M is a

set of states. In dataset 1801-1908, the AD values of DEPL and DEPL-Div are 15.9% and 14.3%,
respectively, which proves that the regularization term improves the diversity among sub-policies.

Motivated by the above results, we want to explore whether pure diversity can lead to good gener-
alization performance. So we train Diayn (Eysenbach et al., 2018) policies for unsupervised skill
discovery in dataset 1801-1908 of order execution environment and then aggregate them. However,
we find Diayn even cannot get positive PA or reward (i.e., -0.99 and -8.37, respectively). Thus, we
can derive two conclusions. First, a purely diversity-oriented method e.g., Eysenbach et al. (2018),
is not promising in ensemble policy learning considering real rewards. Second, the diversity should
serve as an inductive bias and be incorporated into the ensemble policy learning as a regularization
as that in Eq. (7) of DEPL. More analysis on diversity can be found in Appendix B.

6 CONCLUSION AND FUTURE WORK

In this paper, we focus on ensemble policy learning and propose an end-to-end ensemble policy
optimization framework combining sub-policy training and policy ensemble as a whole. The base
policies are updated simultaneously under the ensemble loss and a diversity enhancement regulariza-
tion. We provide a theoretical analysis of how ensemble works in policy learning. The experiments
on two complex grid-world environments and a challenging real-world task demonstrate DEPL sub-
stantially outperforms the baselines in sample efficiency and policy generalization performance. In
the future work, we plan to incorporate more flexible sub-policy ensemble with dynamic aggregation
weights for different sub-policies and derive more theoretical analysis of ensemble policy learning.
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A PROOF

A.1 PROOF OF THEOREM 1

Theorem 1 (Mean aggregation encourages exploration). The entropy of the ensemble policy π̂ is no
less than the average entropy of the sub-policies, i.e.,H(π̂) ≥ 1

K

∑K
k=1H(πθk).

Proof.

H(π̂)− 1

K

K∑
k=1

H(πθk) = −
∑
a

∑K
k=1 πθk(a|s)

K
log

(∑K
k′=1 πθk′ (a|s)

K

)

+
1

K

K∑
k=1

∑
a

πθk(a|s)log(πθk(a|s))

= − 1

K

K∑
k=1

∑
a

πθk(a|s)

(
log

(∑K
k′=1 πθk′ (a|s)

K

)
− log(πθk(a|s))

)

= − 1

K

K∑
k=1

∑
a

πθk(a|s)log

(∑K
k′=1 πθk′ (a|s)
Kπθk(a|s)

)

≥ − 1

K

K∑
k=1

log

(∑
a

πθk(a|s)
∑K
k′=1 πθk′ (a|s)
Kπθk(a|s)

)
(Jensen’s inequality)

= − 1

K

K∑
k=1

log

(
1

K

∑
a

K∑
k′=1

πθk′ (a|s)

)

= − 1

K

K∑
k=1

log(1) = 0.

B FURTHER ANALYSIS OF DIVERSITY

In this section, we plot the learning curves about diversity and performance of DEPL and DEPL-
Div, i.e., DEPL without regularization of diversity enhancement, on the 1801-1908 dataset of order
execution, distributional-shift and multi-room in Figure 3.

For order execution, to show the effect of diversity strengthen regularization on policy generaliza-
tion performance, we test the reward of DEPL and DEPL-Div on the test environment in dataset
1801-1908 every 100 epochs and draw the curves on Figure 3(a). Because these tested policies
are not selected by validation environment, the results in Figure 3(a) cannot exactly match Table 2.
From Figure 3(a), we notice that DEPL has larger diversity and better reward compared with DEPL-
Div, suggesting that the diversity strengthen regularization can improve the policy generalization.
Moreover, we find that the diversity continues to decline during training process for both methods.
And we think this phenomenon is reasonable based on the following two reasons. Firstly, all the
sub-policies are trained with the same data, thus they tend to becomes similar during training. Sec-
ondly, from the results of Diayn shown in Section 5.4, we find that pure diversity is unhelpful in
ensemble policy learning, thus the diversity decrease is not absolutely harmful and the phenomenon
is reasonable.

After observing that diversity strengthen regularization improves policy generalization performance,
we further explore its effect on sample efficiency. From the results of two Minigrid environments
as shown in Figure 3, we observe that DEPL-Div outperforms DEPL at first in both environments,
then the performance of DEPL increases rapidly with diversity declining, and finally DEPL firstly
converges and gets better sample efficiency. We think that the observation can be attributed to the
variety of sub-policies induced by diversity regularization. At first, the larger diversity of DEPL
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encourages it to explore more, which results in the worse performance and a rapid increase in per-
formance afterwards. And then, the diversity converges or fluctuates within a small range when the
policy converges. In conclusion, diversity strengthen regularization can encourage exploration at the
early period on the training process while converging along with the policy optimization.
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Figure 3: Learning curves about diversity and performance of DEPL and DEPL-Div

C ADDITIONAL BASELINE ON MINIGRID

Considering that DEPL is a special case under the paradigm of mixture of experts (Jacobs et al.,
1991), thus we take PMOE (Ren et al., 2021), where a routing function is learned to weight the
output of each expert, as a baseline. We compare PMOE with DEPL in Minigrid and the learning
curves of both the methods are shown in Figure 4.
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Figure 4: Learning curves of DEPL and PMOE
From the results, we observe that DEPL consistently achieves better sample efficiency than PMOE,
which can be attributed to two reasons. Firstly, the mean aggregation can promote the exploration
while the weight generated by the routing function hurt the attribute. Secondly, to achieve diversity
among sub-policies, a sample is only assigned to a single policy for policy optimization in PMOE,
which can lead to a lower sample efficiency compared with DEPL where a diversity strengthen
regularization is used to realize diversity.

D IMPLEMENTATION DETAILS

All the methods in our paper are implemented with PyTorch 1.7. For PPO, we apply the imple-
mentation of tianshou2. For DnC3 and Diayn4, we adopt the open-source implementations from
their paper in our experiments. And we implement ComEns since it has not been open-sourced.
Considering the training is more stable on the environments of Minigrid than that on financial order

2https://github.com/thu-ml/tianshou
3https://github.com/dibyaghosh/dnc
4https://github.com/ben-eysenbach/sac
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execution, thus we respectively conduct the evaluation of every compared method with 5 and 10
random seeds.

For Minigrid, the sub-policy for all ensemble methods except for ComEns is a convolutional net-
work and the architecture of the networks is the same. Due to the special design of ComEns, its
subpolicy needs one more Multi-Layer Perceptron (MLP) with 64 units to get a latent distribution
for information amount computation compared with others. During each training epoch, 100 tra-
jectories are collected (i.e., N = 100). The number of epochs (i.e., I) for distributional-shift and
multi-room are 200 and 500, respectively.

Following Fang et al. (2021), a recurrent neural network is used as the architecture of the sub-
policy for all ensemble methods except for ComEns. And ComEns still needs one more MLP with
64 units due to its special design. In this scenario, 10,000 trajectories are collected per epoch (i.e.,
N = 10, 000) and the number of total training epochs is 600 (i.e., I = 600). During training process,
the learned policy is evaluated in the validation environment every 50 epochs, and the policy with
the best validation performance is selected as the final policy. Then, in test environment, the mean
value of PA and reward metrics are calculated over the whole test dataset as the final performance in
financial order execution environment.

For both Minigrid and order execution scenarios, the collected trajectories are used for 4 times
during an epoch (i.e., S = 4).

As for the hyperparameters, all the trainable parameters are optimized by Adam optimizer with
learning rate selected from {0.0001, 0.0003} for all the compared methods. For our method, the
α and β hyperparameters defined in Eq. (7) are selected from {0.5, 1.0} and {0.01, 0.025, 0.04},
respectively. For ComEns, the coefficients in the loss function is selected from {0.001, 0.005, 0.009}
as recommended in Goyal et al. (2019). For DnC, considering a fixed penalty might yield different
magnitudes of constraint for each environment, the coefficient of KL penalty is searched within
{0.001, 0.01, 0.1, 1} on each task.

All the experiments are run on a single NVIDIA P100 GPU with an Intel(R) Xeon(R) Platinum
8171M CPU. We can complete each experiment within three hours on distributional-shift and multi-
room environments and three days on financial order execution scenario.

15


	Introduction
	Related Work
	Preliminaries
	Deep Ensemble Policy Learning
	Policy Ensemble
	Policy Optimization
	Theoretical analysis

	Experiments
	Compared methods
	Evaluation: Minigrid
	Evaluation: Financial Algorithmic Trading
	Diversity Analysis

	Conclusion and future work
	Proof
	Proof of Theorem 1

	Further Analysis of Diversity
	Additional Baseline on Minigrid
	Implementation Details

