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Abstract

Meta-Reinforcement Learning (meta-RL) yields the potential to improve the sample
efficiency of reinforcement learning algorithms. Through training an agent on mul-
tiple meta-RL tasks, the agent is able to learn a policy based on past experience, and
leverage this to solve new, unseen tasks. Accordingly, meta-RL promises to solve
real-world problems, such as real-time heating, ventilation and air-conditioning
(HVAC) control without accurate simulators of the target building. In this paper, we
propose a meta-RL method which trains an agent on first order models to efficiently
learn and adapt to the internal dynamics of a real-world building. We recognise
that meta-agents trained on first order simulator models do not perform well on
second order models, owing to the meta-RL assumption that the test tasks should be
from within the same distribution as the training tasks. In response, we propose a
novel exploration method called variance seeking meta-exploration which enables a
meta-RL agent to perform well on complex tasks outside of its training distribution.
Our method programs the agent to prefer exploring task dependent state-action
pairs, and in turn, allows it to adapt efficiently to challenging second order models
which bear greater semblance to real-world problems.

1 Introduction

Reinforcement learning (RL) algorithms aim to learn a policy that maximises the reward in one
specific environment. The coalescence of deep learning with RL has significantly improved RL’s
ability to solve diverse and challenging problems [21, 14, 2]. However, in the learning phase, an
RL agent still requires extensive exploratory interactions to learn a good policy. These exploratory
actions can be dangerous and can have high associated costs in the real-world, which means it is
currently impractical to train RL agents directly in a real-world environment.

Meta-RL methods aim to improve the sample efficiency of RL by training with an objective to quickly
perform well on many related environments [24, 6, 19]. During the training phase, the agent is trained
on a number of meta-training tasks sampled from a training task distribution. At meta-test time,
the agent’s learning performance is measured on an unseen task. Critically, meta-learning methods
assume that the training and testing tasks are always sampled from the same distribution. Therefore,
meta-RL may fail to generalise to tasks that lie far outside the training distribution [12, 13]. As the
real-world lies outside the training distribution by construction, this assumption means Meta-RL
agents may fail to adapt to real-world problems.

We show that this problem appears in practice, when we try to apply Meta-RL to price-adaptive
control of heating, ventilation and cooling (HVAC) systems. Agents trained on simple first-order
temperature dynamics fail to generalise to more complex and out-of-distribution (OOD) second-order
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simulation models. We hypothesize that one of the reasons that meta-RL fails in OOD tasks is because
the exploration strategies learnt by the agent overfit on the training task distribution. In response to
this problem, we propose an exploration method called variance-seeking meta-exploration. This
method learns to identify states and actions with high variance in their returns across tasks, and then
focuses on exploring these states to reduce uncertainty when faced with a new task. We demonstrate
empirically that this exploration method improves performance of Meta-RL on OOD tasks.

2 Preliminaries

We define a probability distribution p(M) over a range of possible tasks modeled as Markov Decision
Processes [18, MDPs] Mi = 〈S,A,R, Ti〉. Each MDP within this distribution has the same state
space s ∈ S and action set a ∈ A, as well as the same reward function R(st, at) → R. The state
transition function Ti(st, at, st+1) → Pr(st+1 | st, at) varies across MDPs according to a latent
variable ψ identifying the task, however, ψi the MDP identifier for Mi is kept hidden from the agent
at all times. We use the terms MDP and task interchangeably throughout the paper.

In standard RL, an MDP-specific policy πψi(st)→ at is learned which maximises the discounted
reward objective for a given discount factor γ and episode length H ,

max
πψi

E
[
H∑
t=0

γtR(st, at)

∣∣∣∣∣ st+1 ∼ Ti(st, at), at = πψi(st)

]
for fixed Mi ∼ p(M). (1)

Policy πψi induces Qπψi (st, at), the expected discounted sum of rewards an agent receives in state st
by taking action at and then following policy πψi = argmaxaQπψi (st+1, a). One way to learn an
optimal control policy is Q-learning [26], which incrementally updates the current value estimate Qω
with step size α to minimise the magnitude of the 1-step temporal difference (TD) error δ [23],

δω(st, at) =
(
rt + γmax

a
Qω(st+1, a)

)
−Qω(st, at),

Q′ω(st, at) = Qω(st, at) + αδω(st, at).
(2)

In practice, state space S is often too large to track values of Qω exactly. Deep Q-Networks [14,
DQN] solves this problem by using a deep neural network to approximate values of Qω , minimising
the magnitude of the TD error in eq. (2) using stochastic gradient descent.

2.1 Memory-based Meta-RL

In meta-RL the objective is to learn a global policy π which is able to maximise the reward for all
MDPs sampled from p(M), under the same objective (1) for each sampled Mi,

max
π

E
[
E
[ H∑
t=0

γtR(st, at)
∣∣∣ st+1 ∼ Ti(st, at), at = π(st)

] ∣∣∣∣∣Mi ∼ p(M)

]
. (3)

Maximising (3) forces the agent to learn a policy π which can adapt within H time steps to maximise
the reward. In doing so, the agent must learn the underlying task structure for MDPs in p(M), to
efficiently handle new tasks sampled from p(M). In other words, the agent learns how to learn.

Memory based meta-RL [24, 3] uses a recurrent neural network (RNN) based policy to maximise
eq. (3) The reward and action at the previous step (rt−1) and (at−1) respectively are appended to the
state space of the agent. The RNN policy selects action at, conditioned on the hidden state ht of
the RNN, in addition to the state st. Therefore, the policy becomes π(at | ht, st). Intuitively, the
recurrent update of the the hidden state can be understood as an approximation of the hidden MDP
identifier ψi. Instead of explicitly inferring ψi, the agent learns to infer an internal representation of
ψi as ht, given agent’s experience up till t− 1 in the current MDP. In addition to identifying the MDP,
the agent also learns a policy π(at | ht, st) that acts optimally according to it’s belief (ht) about the
current MDP at time t. Both the MDP inference procedure and the policy are learnt simultaneously
by optimising the RNN during meta-training. We use the terms RL2 and memory based meta-RL
interchangeably in this paper.
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Figure 1: HVAC Control Problem An agent is tasked with optimally balancing thermal comfort with
energy costs. Comfort is the temperature proximity to the setpoint (top) and costs are electricity price
(bottom). By setting appropriate temperature set-points, the agent learns to avoid both price spikes by
pre-heating while maintaining temperature close to the target comfort level.

2.2 Meta-RL for HVAC control

Price-adaptive control of heating, ventilation and cooling (HVAC) systems aims to reduce the energy
consumption of HVAC systems during periods of peak demand. By doing so, the reliance on non-
renewable sources, which is maximum during peak periods, can be reduced. We cast this HVAC
control problem as an RL problem, where the agent controls a central cooling and heating system of
different sized buildings via thermostat setpoints (Figure 1). As part of this task, the agent must pay
for its energy usage according to real-time energy prices. Because of the high costs of sub-optimal
actions, training an RL agent directly in the real world is infeasible. One solution to this problem
is to train the agent on a carefully designed accurate simulator of the target building so as to avoid
real-world exploration [1, 27, 10]. This, however, is highly time-consuming and expensive, making
it infeasible to deploy on a wider scale. In response, we propose a meta-RL solution which can
efficiently and cost-effectively train an agent to adapt to the dynamics of any real-world building.
More specifically, we use meta-RL to train an agent on a number of easy to develop first order
dynamics models [15]. As a result, the agent learns to adapt to the new and unseen dynamics of a
building. In doing so, our proposed method dispenses with the need to construct accurate simulators
of the target building. We test the agent’s ability to adapt to real world buildings by measuring its
performance on much more realistic and expensive second order dynamics models [7].

In this case, the distribution of all possible first order model corresponds to the meta-training
task distribution p(M). The latent parameter ψ that generates MDPs in p(M) corresponds to the
parameters: time to cool and time to heat of the first order model. At test time, the test MDP
is not sampled from p(M) and is instead sampled from an unseen distribution of more complex
second order models of real world buildings. This allows us to test the agent’s ability to adapt to
out-of-distribution tasks.

The state-space of the agent consists of: the room temperature, the outside temperature, the current
energy price, the energy price forecast for next five time periods, and the action and reward for
previous step (for meta-RL). At each step, the agent decides the target temperature setpoint for the
heating system. So the discrete action-space consists of natural numbers between 0 and 40. For the
price data, we use publicly available 15-minute dispatch prices from the Australian electricity market
operator [16].

3 Exploration using task-dependent state-action pairs

To address the transfer problem identified in the previous section, we propose a novel exploration
objective term to bias exploration. The key idea behind our exploration objective is that to identify the
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Figure 2: Grid navigation problem The agent is tasked with finding the goal location in the top right
corner within 15 steps. The agent gets a reward of +1 in the goal location and a reward of −0.2 on
all other cells. The agent can stay stationary, or move in one of the 4 cardinal directions. The variance
of TD-error across tasks is shown next to the move action in each state, with high variance actions
coloured red. Only state-action pairs close to the possible goal locations have high TD-error variance.

MDP; the agent should focus on exploring those state-action pairs whose expected reward depends
upon MDP identifier ψi First, we motivate our objective using a simple grid navigation task. Then,
we show how to use our exploration objective to improve meta-RL exploration.

3.1 Motivation behind exploration objective

In theory, Q-learning learns a policy for a single MDP. However, in this case, we train the agent
using data from many randomly sampled MDPs from p(M). Because for the same state and action,
Q(st, at) can have different value across MDPs in p(M), the agent cannot learn a fixed Q(st, at)
that holds true for all MDPs. However, we show via an example that after sufficient training, the
variance of TD error differs across the state-action pairs.

We use a simple grid navigation task to demonstrate how the variance of TD error across MDPs
differs in state-action pairs. In this task, the agent’s goal is to navigate to a goal in a 5× 5 grid within
15-time steps. However, the goal is randomly assigned to one of the four possible goal locations in
the top right corner. This task is a modification of the navigation task proposed by [28]. p(M) in this
example includes only four MDPs where each possible goal location gives a new MDP. The MDP
identifier ψi here represents the goal location.

We train tabular Q-learning on MDPs sampled according to p(M). ψi remains hidden for the agent
at all times. Upon convergence, we measure the variance of TD error across all tasks. The results
are shown in figure 2, TD-error variance of the state-action pairs near the possible goal locations is
highest. This experiment demonstrates that the variance of TD error differs across state-action pairs.

As demonstrated above in our grid navigation example, the TD error varies only for certain state-
action pairs. Because the Q(st, at) is learnt using the TD error in Eq (3), the Q(st, at) of only a
few state-action pairs will be updated when in a new MDP. This means that the Q(st, at) of most
state-action pairs will stay constant across MDPs. We call the state-action pairs whose Q(st, at) are
independent of MDP identifier ψi, task invariant state-action pairs. The state-action pairs whose
Q(st, at) do depend on ψi and therefore have a high variance of TD errors across tasks are called
task dependent state-action pairs.

During the exploration steps, when a meta-RL agent infers the underlying MDP, the task dependent
state-action pairs can provide useful data. On the other hand, task invariant state-action pairs tell the
agent little about the underlying MDP. For example, in the grid navigation task, the high TD error
variance state-actions are close to the possible goal location. The agent must visit these high variance
state-action pairs near the possible goal locations to infer the underlying MDP. On the other hand,
any state-actions far off from the goal locations cannot be used to infer the MDP. This shows that the
high TD error variance of a state-action pair is a good signal for MDP inference.
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Duan et al. [3] show that memory based meta-RL correctly learns which states to explore for MDP
inference in a maze navigation problem similar to our grid example. However, in real-world tasks
such as the HVAC problem, the state-space can be large and continuous, meaning it is impossible
to say which state-action pairs the meta-RL agent will learn to use for MDP inference. Because
meta-RL agents learn to maximise the discounted reward over MDPs in p(M), they learn to use the
state-action pairs that allow MDP inference only for the tasks within p(M). The state-actions that
the agent learns to use for MDP inference may not necessarily be task dependent. Moreover, as we
show in our experiments, the learnt state-actions struggle to help in MDP inference in OOD tasks.

To avoid learning state-actions that only allow MDP inference for tasks within p(M), we propose
biasing the agent’s inference steps towards the task-dependent state-action pairs. In doing so, we
hope that the agent will use task-dependent state-action pairs for MDP inference instead of learning
the state-actions that only allow MDP inference for within distribution tasks.

The simple grid navigation example above has only a small number of state-action pairs, and the
variance of each state-action pair can be explicitly calculated and stored in a table. However, in
most problems like our HVAC problem, the state space is continuous, and the variance of each
(st, at) just like the Q(st, at) needs to be approximated. To approximate the TD error variance
for continuous states, we use a separate a function approximator fθ, which learns to approximate
fθ(st, at) ≈ δ(st, at), where δ(st, at) is the TD error of a fixed DQN for state-action pair (st, at).
fθ(st, at) minimises the squared error of its predictions. The objective it minimises is

L(θ) = Ep(m)[δ(st, at)− fθ(st, at)]2 (4)

If the the variance of TD error across MDPs is high for (st, at), approximator fθ(st, at) will struggle
to learn a stable mapping and therefore have a high error for (st, at). On the other hand, if TD error
variance is low for (su, au), fθ(su, au) can learn to predict the fixed TD error correctly (given enough
data) and therefore minimise its error. We use the mean squared error of fθ(st, at) to approximate
the TD error variance for continuous states.

3.2 Learning to explore via task-dependent state-action pairs

Following the work of [22], we assume that memory based meta-RL orRL2 performs MDP inference
in its first n steps in a MDP. Therefore, we formulate a training objective that encourages the agent
to collect data from task dependent state-action pairs in it’s initial interactions with the MDP. The
individual components involved are summarised as follows:

• A DQN dω(st, at), parameterised by ω;

• A function approximator fθ(st, at), predicting the TD error of dω(st, at). fθ is implemented
as a deep neural network; and

• A memory-based meta-RL policy πφ(at | ht, st).

To encourage the agent to visit task dependent state-action pairs in its first n steps, we transform the
agent’s reward during first n steps. We reward the agent for visiting those state-actions where the
squared error of fθ(st, at) is maximum, as shown below

rerror(st, at) = (fθ(st, at)− δ(st, at))2

R̃(st, at) = κR(st, at) + νrerror(st, at)
(5)

where R is the environment reward and κ and ν are tunable hyperparameters.

To incentivize exploration in task dependent state-action pairs, the agent is trained to maximise the
augmented reward R̃ in the first n steps. The agent then maximises environment reward R for the
rest of the episode. Next we describe the steps involved in training the agent.

Algorithm 1 shows the complete pseudo-code for training. Firstly, the DQN dω(st, at) is trained
using data from MDPs sampled from p(M). Once the training loss of the DQN stabilises and stops
decreasing, the weights of the DQN are frozen for all the next steps. The purpose of DQN is only to
identify the high TD error variance states.
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Algorithm 1 Variance-seeking Meta-exploration
Input: Training distribution of MDPs p(m)
Initialise: DQN dω(st, at), Two replay buffers βd and βf , TD error approximating network

fθ(st, at), meta-RL policy πφ(at|ht, st)
1: while not done do . Training the DQN
2: Sample a random MDP Mi from p(M)
3: Rollout the DQN policy dω(st, at) in Mi

4: Store the resulting trajectory in replay buffer βd
5: Sample a random trajectory τi from βd
6: Update DQN weights ω using τi
7: end while
8: return ω . The DQN weights after training
9: while not done do . Training the meta-RL policy

10: Sample a random MDP Mi from p(M)
11: for each step t in 0, 1, ...,H − 1 do
12: Select action: at = πφ(at|ht, st)
13: Advance MDP: st+1, rt+1 =Mi(at)
14: Compute TD error of DQN: δω(st, at) using Eq (4)
15: Compute the variance of TD error: rerror using Eq (8)
16: if t <=n then:
17: Augment reward: r̃t+1 = κrt+1 + νrerror using Eq (9)
18: else
19: Set reward to environment reward r̃t+1 = rt+1

20: end if
21: Store (st,at, δω(st, at)) in βf
22: end for
23: Update meta-RL policy weights φ to maximise r̃ using Eq (1)
24: Update fθ(st, at) weights θ using entire βf by minimising L(θ) in Eq (7)
25: end while
26: return φ . The meta-RL policy weights after training

In the next phase, we train the function approximator fθ(st, at) simultaneously with the meta-RL
policy πφ(at | ht, st). During early training steps, the error of fθ(st, at) is high because of small
training data. Because the policy πφ(at | ht, st) gets rewarded for visiting the states where the error
of fθ(st, at) is maximum, it will maximise the data collected from these state-actions. As more
data becomes available for training fθ(st, at), it’s error begins to reduce. The error continues to
decrease until only the high TD-error variance state-actions are left to be learnt. Because the learning
target for fθ(st, at) has a high variance, the error continues to stay high even when πφ(at | ht, st)
focuses on collecting data only from these state-action pairs. Towards the end of training we expect
an equilibrium, where fθ(st, at) cannot reduce it’s error further because of high variance in it’s target
values (figure 3b). The meta-RL policy on the other hand cannot get a higher reward because the
error of fθ(st, at) is lower for all state-action pairs except those with a high TD error variance. This
concurrent training regime pits fθ(st, at) and πφ(at | ht, st) against each other. This is similar to a
minimax two player game.

4 Experiments

To evaluate our method, we compare our exploration strategy against state of the art Meta-RL
algorithms on its ability to generalize to out-of-distribution tasks in the HVAC domain.

Algorithms We compare our method against the two memory based meta-RL methods in literature.
The first method is the original memory-based meta-RL method proposed by [24, 3]. By maximising
the RL reward in Eq (1), this method learns a Bayes optimal trade off for exploration and exploitation
[17]. If we do not augment the environment reward in the first n steps, our method reduces to this
original method. The second method we compare against is E-RL2[22]. This method has shown
strong improvements over RL2 for tasks requiring complex exploration. By setting the environment
reward in the first n steps to 0 during the gradient update, the gradient computation of the RL objective
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(a) Learning curves of three agents (b) Training loss variance learning network

Figure 3: (a) The learning curves for all agents. The reward for each episode was averaged across the
30 random seeds. (b) The training loss of variance learning network. To show the loss trajectory more
clearly, the first two epochs, where the loss was very high were omitted. To show the convergence
towards the end, we ran the training for 100 extra epochs towards the end.

in Eq (1) explicitly assigns credit for the first n exploratory steps. Our method becomes equivalent to
E-RL2 if we augment the reward to 0 for the first n steps. Similar to E-RL2, our method continues to
receive the original environment reward at each step including the the first n steps of the policy roll
out. We also compare the three agents against an Oracle, which is a RL agent trained specifically on
the test MDP until convergence. The oracle was trained using the IMPALA algorithm [4] because of
its strong demonstrated performance in challenging tasks using a single machine.

We closely followed the training method and hyperparameters of [25] and trained all our agents using
IMPALA. Similar to [24], all our agents used LSTM [8] instead of a RNN.Importantly, in our method,
because we want to emphasise on the error signal from fθ(st, at) we set κ in in Eq (7) to 0.05 (close
to 0). While ν in set to 0.55, which we found to be the good in terms of final reward.

Tasks To test the ability to generalise to out of distribution tasks, we compare the performance of
the three methods on the HVAC problem. The three methods were trained on the MDPs sampled from
a distribution of 1st order models. The first order models in the training distribution were generated
by randomly varying the time to heat (αheat) and time to cool (αcool) parameter of the model. At the
start of each episode, a new MDP was randomly sampled from this 1st order training distribution.
All three methods converged around the same number of steps. To allow a fair comparison between
methods, we trained all agents for exactly 410 episodes. We chose 410 episodes, because beyond
this, the three agents showed no improvement in average reward. The number of exploration steps
in each episode was set to n = 40, which is around 3.5 hours of exploration in the real-world. All
hyper-parameters were fixed across the three agents.

Evaluation Currently the meta-RL literature lacks a consistent evaluation procedure [5]. A number
of studies report the meta-training performance [19, 5, 22]. However, to report the performance on
out-of distribution tasks we followed the evaluation procedure of [25]. At test time, the weights of
all agents were fixed and the reward after n steps in each MDP was recorded. This was necessary
because both E-RL2 and our method are trained to maximise the reward after n steps. We report the
mean and median rewards of all agents across 30 random seeds in Table 1, where each random seed
was evaluated for 100 episodes in a fixed MDP. Both the 1st order and the 2nd order evaluation tasks
were held fixed for all random seeds.

4.1 Results and discussion

On the first order (within distribution) MDPs, E-RL2 achieves the highest reward, slightly higher
than RL2 (Table 1). We hypothesise that the strong performance of E-RL2 on within distribution
tasks can be attributed to a better exploration strategy learnt in comparison to RL2. Our method
performs worse than both E-RL2 and RL2. This is expected because our method unlike RL2 does
not learn a Bayes optimal exploration strategy. Instead our augmented reward biases the agent to visit
high TD error variance states, which may not be the best for MDP inference within this specific task
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Table 1: Performance on 1st order (training distribution) and 2nd order (outside of training distribu-
tion) MDPs. The mean and median are calculated using 30 random seeds for each agent.

First-order model Second-order model

Agent mean median mean median

RL2 266.7 270.75 246.70 252.33
E-RL2 268.2 269.83 239.76 249.94
Ours 263.87 268.36 253.46 255.14
Oracle 271.01 271.64 255.82 256.24

distribution. On the other hand RL2 and E-RL2 optimise only the RL reward. Therefore they are
capable of learning state-actions that allow the best MDP inference for the specific task distribution.

However, despite showing strong results on within distribution tasks, both RL2 and E-RL2 fail
to replicate their successes in OOD second order tasks. We hypothesise that this is because the
state-actions that they rely upon to make MDP inference are learnt specifically for the training task
distribution. Therefore, when faced with an OOD task, these learnt state-actions may fail to aid
the MDP inference process. On the other hand our exploration method does not directly learn the
state-action pairs for MDP inference. Instead, our augmented reward biases the agent to use high TD
error variance state-actions to make MDP inference, allowing for better MDP inference (close to the
Oracle) in the OOD tasks than the state-actions learnt directly by meta-RL.

5 Related work

Hochreiter et al. [9] use RNN’s for meta-learning in supervised learning problems. Building on the
work of [9], [24, 3] use RNNs for meta-learning in reinforcement learning problems. Ortega et al.
[17] cast memory based meta-RL in a Bayesian framework and show that the meta-RL strategies
learnt are approximately Bayes optimal. To maintain an explicit belief over the possible MDPs,
Varibad [28] learns a variational auto-encoder (VAE) to infer the MDP. The policy is conditioned on
the VAEs output and learns an approximate Bayes optimal behaviour. Training the VAE makes this
method significantly slower in training than memory-based methods [19], while the performance at
test time is similar. Therefore we used memory-based meta-RL in our work for faster training time.
Moreover, in comparison to other meta-RL methods such as MAML [6] and PEARL [19], we chose
memory based meta-RL for this work because of the low computational requirements when deployed
in the real-world.

A number of studies have applied RL to control HVAC systems. Ruelens et al. [20] use offline-RL on
the predicted energy prices and demand for residential buildings. However, the policy learnt offline
could be sub-optimal due to any errors in the forecasting model. This is in contrast to a meta-RL
solution where the agent learns to adapt its policy to deal with any errors in the forecast. To minimise
expensive exploration in the real-world, [10] first learn a simple linear dynamics model of a data
centre from the data collected during exploration, and then use this learnt model to train the agent.
This model based RL approach can be quite expensive in particular if the underlying dynamics model
is non-linear. In comparison our model-free meta-RL approach makes no assumptions about the
underlying dynamics model of the target building. Other studies [1, 27, 11] use RL for HVAC control
in accurate simulation models of the target building. However, developing accurate simulators is
expensive and time-consuming. Our method instead uses simple and easy to develop first order models
to learn RL policies that can generalise to more complex environments including the real-world.

6 Conclusions and future work

In this paper, we propose training a meta-RL agent on cheaper first order models to overcome the
significant problems associated with developing expensive simulators of target buildings for HVAC
control. Our experiments show, however, that meta-RL fails to deliver strong performances in more
complex second order models. This is problematic because the real-world is much more complex
than the first order models. To allow meta-RL to accomplish more complex tasks than those within its

8



training distribution, we propose a novel exploration method called variance seeking meta-exploration.
This method biases the agent to explore task dependent state-action pairs. We show in our experiments
that the agent trained using our method can generalise to second order tasks much better as compared
to existing methods. This shows the benefit of adding an inductive bias towards certain state-action
pairs during the exploration phase for OOD tasks. Our method also sheds light on the importance of
TD error variance for meta-RL exploration. Further research into the properties of states with high
TD error variance across environments, and the resulting behaviour of exploring in such states, is
necessary to provide a sound theoretical underpinning to our method. In addition to this, we are also
working to test our meta-RL solution to control large real-world buildings to minimise their carbon
footprint.
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