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Abstract

One of the most challenges for anomaly detection (AD) is
how to learn one unified and generalizable model to adapt
to multi-class especially cross-class settings: the model is
trained with normal samples from seen classes with the ob-
jective to detect anomalies from both seen and unseen classes.
In this work, we propose a novel Proposal Masked Anomaly
Detection (PMAD) approach for such challenging multi- and
cross-class anomaly detection. The proposed PMAD can be
adapted to seen and unseen classes by two key designs: MAE-
based patch-level reconstruction and prototype-guided pro-
posal masking. First, motivated by MAE (Masked AutoEn-
coder), we develop a patch-level reconstruction model rather
than the image-level reconstruction adopted in most AD
methods for this reason: the masked patches in unseen classes
can be reconstructed well by using the visible patches and
the adaptive reconstruction capability of MAE. Moreover, we
improve MAE by ViT encoder-decoder architecture, combi-
national masking, and visual tokens as reconstruction objec-
tives to make it more suitable for anomaly detection. Second,
we develop a two-stage anomaly detection manner during in-
ference. In the proposal masking stage, the prototype-guided
proposal masking module is utilized to generate proposals
for suspicious anomalies as much as possible, then masked
patches can be generated from the proposal regions. By mask-
ing most likely anomalous patches, the “shortcut reconstruc-
tion” issue (i.e., anomalous regions can be well reconstructed)
can be mostly avoided. In the reconstruction stage, these
masked patches are then reconstructed by the trained patch-
level reconstruction model to determine if they are anoma-
lies. Extensive experiments show that the proposed PMAD
can outperform current state-of-the-art models significantly
under the multi- and especially cross-class settings. Code will
be publicly available at https://github.com/xcyao00/PMAD.

Introduction
Anomaly detection has widespread applications in diverse
domains, such as industrial defect inspection (Bergmann
et al. 2019a; Mishra et al. 2021; Defard et al. 2021; Roth
et al. 2022; Yao, Zhang, and Li 2022), video surveillance
(Acsintoae et al. 2022; Sultani, Chen, and Shah 2018), medi-
cal lesion detection (Tian et al. 2021; Zhang et al. 2021), and
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Figure 1: Different anomaly detection settings. (a) Single-
Class Setting (one-for-one): most AD methods train a spe-
cific model for each class. (b) Multi-Class Setting (one-for-
many): one unified model is trained and then used for mul-
tiple known classes. (c) Cross-Class Setting (one-for-all):
one unified model is trained with normal data from seen
classes, and aims to detect anomalies directly without any
fine-tuning from both seen and unseen classes.

road anomaly detection (Vojir, Sipka, and Aljundi 2021; Bi-
ase et al. 2021). Due to the scarcity of anomalies, most previ-
ous anomaly detection studies have mainly devoted to unsu-
pervised learning, i.e., learning normal patterns by only uti-
lizing anomaly-free data and treating anomalies as outliers.
The current unsupervised AD methods are comprised of
two main trends, i.e., reconstruction-based (Bergmann et al.
2019b; Schlegl et al. 2017) and embedding-based methods
(Defard et al. 2021; Roth et al. 2022). The former mainly
utilizes AutoEncoders (Hinton and Salakhutdinov 2006) or
GANs (Goodfellow et al. 2014) to generate reconstructed
image and then employ reconstruction errors between the in-
put and reconstructed image to localize anomalies. The latter
aims to learn an embedding neural network for making nor-
mal data close to each other in the embedding space (Reiss
et al. 2021; Roth et al. 2022; Li et al. 2021).

However, regarding the issue of class adaptability, we
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observe that previous methods often need to train a spe-
cific model for each object class. This one-for-one paradigm
would require more computational and memory overhead,
and more resources are required to store different model
weights in real-world applications. Moreover, new classes
usually appear in real-world scenarios, but these trained
models cannot generalize directly to the new classes, which
may cause the application system to fail in new scenar-
ios. However, maintaining the system by retraining or fine-
tuning is cost-ineffective. Thus, existing AD methods are
still unsatisfactory for real-world scenarios. Therefore, class
adaptability is a critical issue in the AD community, but it’s
still not been well studied in most AD literatures.

This paper aims to address the two issues mentioned
above, we propose and focus on two new but more chal-
lenging AD settings: multi-class and cross-class settings.
As shown in Figure 1(b) and 1(c), under the multi-class
setting, we follow the one-for-many paradigm to train one
unified model with normal data from multiple classes, and
the objective is to detect anomalies from the same known
classes; under the cross-class setting, we follow the one-for-
all paradigm to train one unified model with normal data
from seen classes, and the objective is to detect anomalies
from both seen and unseen classes. In this paper, we con-
sider how to construct a class-adaptive AD model based
on the popular reconstruction idea. However, modeling one
class-adaptive reconstruction-based anomaly detector has
two main challenges: 1. How to obtain successful recon-
struction for unseen classes? As the model is only trained
by normal samples from known classes, it may cause the
model to fail when reconstructing samples of unseen classes
(i.e., both normal and abnormal regions are poorly recon-
structed). 2. How to effectively mitigate the “identical recon-
struction” issue? The reconstruction model can sometimes
be overfitted, this will cause the “identical reconstruction”
issue (Perera, Nallapati, and Xiang 2019), where both nor-
mal and anomalous regions can be well reconstructed. This
will lead to lower anomaly scores in abnormal regions and
thus failure of anomaly detection.

To address the class adaptability issue, we propose a novel
Proposal Masked Anomaly Detection approach (PMAD),
which consists of two key designs: MAE-based patch-level
reconstruction and prototype-guided proposal masking. In
MAE, He, et al. show that masked autoencoders are scal-
able vision learners. In this paper, we find that we can learn a
unified and generalizable AD model based on MAE for this
reason: The objective in MAE allows the model to learn how
to utilize the contextual relationship in the image to infer the
features of the masked patches. The model actually learns a
contextual inference relationship in a single image, rather
than the class-dependent reconstruction mode (i.e, gener-
ally learned in the conventional image-level reconstruction
models). Thus, even in unseen classes, the masked patches
can be reconstructed well by using the visible patches and
the adaptive reconstruction capability of the model, then the
anomalies can be detected by large reconstruction errors.
To address the second challenge, we develop a two-stage
anomaly detection manner during inference. Specifically, we
propose a prototype-guided proposal masking approach to

generate masked patches (suspicious anomalies) and then
reconstruct these masked patches by the trained reconstruc-
tion model to decide if they are anomalies. We can address
the second challenge by masking the main anomaly informa-
tion: As shown in (He et al. 2022), the MAE-based recon-
struction model is robust enough to reconstruct the masked
patches. Thus, if a large amount of anomaly information is
leaked, the model can generate good reconstruction for ab-
normal patches, causing failure of anomaly detection. How-
ever, our proposal masking approach is proposed to mask
suspicious anomalies as much as possible. Thus, with the
masked patch sequence, the trained patch-level reconstruc-
tion model can reconstruct these masked patches by normal
patterns. Thereby, the anomalous patches wouldn’t be well
reconstructed and the “identical reconstruction” issue can
be mostly avoided. At last, we indicate that our model can
detect anomalies from unseen classes directly without any
fine-tuning. The only requirement is to provide normal sam-
ples from unseen classes to generate nominal feature pro-
totypes. We evaluate our model and other state-of-the-art
models under the multi- and cross-class settings, extensive
experiments on two widely-used anomaly detection datasets
show the superior performance of our model.

In summary, the contributions of this work are as follows:
1. We propose a novel PMAD approach for challenging

multi- and cross-class anomaly detection. Our class-adaptive
AD method can achieve to train one unified and generaliz-
able model and doesn’t require retraining, fine-tuning, nor
extra normal feature distribution modeling for new classes.

2. We develop a two-stage anomaly detection manner
based on two key designs: prototype-guided proposal mask-
ing and MAE-based patch-level reconstruction. The former
is conducive to effectively mitigate the “identical reconstruc-
tion” issue, and the latter makes our method adaptive well to
unseen classes.

3. We perform comprehensive experiments on two real-
world AD datasets. The results show that our model sub-
stantially outperforms previous state-of-the-art models un-
der the multi- and especially cross-class settings. The results
also establish new baselines for future work in this important
emerging direction.

Related Work
Reconstruction-Based Anomaly Detection. These meth-
ods are the most relevant to our approach and are based on
the assumption that reconstruction models trained by nor-
mal samples only can reconstruct normal regions, but fail in
abnormal regions. Early works mainly aim to train AutoEn-
coders (Bergmann et al. 2019b; Yang, Shi, and Qi 2020; Hou
et al. 2021), Variational AutoEncoders (Liu et al. 2020) and
GANs (Schlegl et al. 2017; Akcay, Atapour-Abarghouei,
and Breckon 2018; Pidhorsky et al. 2018; Sabokrou et al.
2018) by only normal samples. However, these methods may
sometimes confront the overfitting problem and fall into the
“identical reconstruction” issue (Perera, Nallapati, and Xi-
ang 2019), where the anomalies are also well reconstructed.
To address this issue, researchers adopt many techniques,
such as introducing structural information (Bergmann et al.
2019b), reconstructing semantic features (Yang, Shi, and
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Qi 2020), utilizing memory mechanism (Gong et al. 2019;
Hou et al. 2021) and generating pseudo-anomaly (Zavrtanik,
Kristan, and Skocaj 2021), etc. In our approach, we design
a proposal masking and reconstructing two-stage detection
manner to avoid the “identical reconstruction” issue.

Masked Image Modeling. Recently, He, et al. show that
masked autoencoders (MAE) are scalable self-supervised
learners for computer vision. However, directly reconstruct-
ing the missing pixels for vision pre-training would push
the model to focus on short-range dependencies and high-
frequency details (Ramesh et al. 2021). Some other works
based on masked image modeling (MIM) propose to not
use raw pixels as objective, such as MaskFeat (Wei et al.
2022) and BEIT (Bao, Dong, and Wei. 2021). Wei, et al.
present MaskFeat, their approach aims to predict the features
of the masked regions. Bao, et al. present BEIT, the objec-
tive of their approach is to predict the original visual tokens
based on the corrupted image patches. These works all show
that MIM pre-training is quite generalizable to downstream
tasks. In this work, we indicate that MIM-based patch-level
reconstruction models are more adaptive and generalizable
for unseen classes than the conventional image-level recon-
struction models.

Class-Adaptive AD Methods. The goal in some pre-
vious class-adaptive AD methods shares some similarities
with our cross-class setting, where we both focus on the
model’s class adaptability to novel classes. In (Lu et al.
2020; Wu et al. 2021), the authors have proposed class-
adaptive AD methods based on meta-learning algorithms.
However, these methods generally train a meta-model on
a large dataset by meta-learning algorithms, and treat all
classes in the AD dataset as novel classes. For each class in
the AD dataset, these meta-learned models should be further
fine-tuned to adapt to this class with few-shot supporting
samples. In contrast, our approach doesn’t require complex
meta-learning algorithms, nor need to train a meta-model on
a large dataset. In (Huang et al. 2022), the authors proposed a
registration-based anomaly detection (RegAD) framework,
their approach is generalizable and can be applied to novel
classes without re-training and fine-tuning. However, the
RegAD has to construct a normal feature distribution model
for each novel class, and different novel classes require dif-
ferent normal feature distribution models. By contrast, our
approach doesn’t need to construct any normal feature dis-
tribution models for novel classes, and a unified model can
be applied to all novel classes.

Approach
Problem Statement
We first formally define the multi-class and cross-class
anomaly detection tasks. Under the multi-class setting, we
denote its training set as Is

train = {Insi }Ni=1, all the nor-
mal samples Insi belong to the multiple seen classes S ⊂ C,
where C denotes all possible image classes. The test set is de-
noted as Is

test = {Insi }N ′

i=1 ∪ {Iasj }Mj=1, all the normal sam-
ples Insi and abnormal samples Iasj are from the seen classes
S . Under the cross-class setting, the training set is also com-
posed of normal images from multiple seen classes S . The

test set consists of images from unseen class U ⊂ C,U∩S =

∅, which is denoted as Iu
test = {Inui }N ′′

i=1 ∪ {Iauj }M ′

i=1, all
the normal samples Inui and abnormal samples Iauj are from
the unseen classes U . The goal is to learn a unified model
m : I → R that can assign larger anomaly scores for anoma-
lies than normal samples in both seen and unseen classes.

Model Overview
Figure 2 overviews our proposed approach. The model con-
sists of three parts: MAE-based patch-level reconstruction,
prototype-guided proposal masking, and visual tokens based
anomaly scoring. In the training phase, to obtain a more
generalizable reconstruction model, we develop and train
a patch-level reconstruction model rather than the image-
level reconstruction models adopted in most AD methods.
In the testing phase, to avoid that abnormal patches are also
well reconstructed, we propose a prototype-guided proposal
masking approach to mask suspicious anomaly proposals as
much as possible. With the masked patch sequence, we use
the trained reconstruction model to reconstruct these masked
patches to determine if they are anomalies. The anomalies
can be detected by large reconstruction uncertainty.

MAE-Based Patch-Level Reconstruction
To obtain a unified and generalizable reconstruction model
for better adapting multi- and cross-class settings, we first
describe our MAE-based patch-level reconstruction model.

Network Architecture. Different from the asymmetric
encoder-decoder architecture in MAE, we employ standard
ViT structure as both the encoder and decoder. The reason
for network architecture modification is that: The encoder in
MAE has a larger model capacity for a more powerful rep-
resentation ability. However, in the AD task, the decoder is
more critical, because the decoder with a small model capac-
ity may lead to poor reconstruction for normal regions, caus-
ing normal patch misclassification. Note that to represent the
masked patches, we replace the masked patches with a spe-
cial mask token [M ] in the input embedding sequence (see
Figure 2), which is a shared and learnable vector.

Combinational Masking for Training. For training a
robust and generalizable patch-level reconstruction model,
we propose a combinational masking strategy to generate
masked patches during the training phase. The combina-
tional masking is based on random and blockwise masking
strategies. Random masking is the most simple and straight-
forward strategy: we uniformly sample random patches to
mask. However, the random masking can’t simulate the
anomaly occurrence well, because the anomalies are usu-
ally continuous regions in the image. Therefore, we also
need to generate continuous masked regions during train-
ing, so as to ensure that the model will not misclassify
the continuous masked regions during testing. To this end,
we employ a blockwise masking strategy. In this strategy,
a block of image patches is masked each step, we repeat
the masking step until obtaining enough masked patches.
The procedure of blockwise masking is summarized in Al-
gorithm 1 in Appendix. Further considering that generat-
ing more masked patches in harder-to-reconstruct regions is
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Figure 2: Model overview. The model is composed of three parts: MAE-based patch-level reconstruction, prototype-guided
proposal masking, and visual tokens based anomaly scoring. During training, the masked patches are replaced with a special
mask token [M ]. The learning objective is to predict the visual tokens of the masked patches based on the encoded embeddings
of the unmasked patches. During inference, we first generate nominal prototypes by Coreset Subsampling for both seen and
unseen classes. Then, we employ a prototype-guided proposal masking module to mask suspicious anomaly proposals as much
as possible. The uncertainty in the prediction of visual tokens can be utilized as anomaly score.

conducive to train more generalizable models with stronger
reconstruction ability. We thus propose a frequency-based
masking strategy to generate more masked patches for high-
frequency regions, a dynamic masking strategy to generate
masked patches based on the current reconstruction state of
the model, and a region-limited masking strategy to gener-
ate more masked patches for the foreground regions. Finally,
we combine these masking strategies with the basic random
and blockwise masking strategies to formulate the combina-
tional masking strategy (see details in Appendix).

Model Adaptability to Unseen Classes. Our model’s
training procedure is to allow the model to learn how to uti-
lize the contextual relationship in the image to infer the fea-
tures of the masked patches. Thus, even in unseen classes,
the masked patches can be reconstructed well by employing
the non-masked patches and the adaptive reconstruction ca-
pability of the model, so anomalies can still be detected by
large reconstruction errors. Because there are always visi-
ble patches that can be exploited within a single image, our
patch-level reconstruction model is more adaptive to unseen
classes (as validated in the Experiments).

Prototype-Guided Proposal Masking
Random and blockwise masking are not suitable for in-
ference, because these strategies may leak a large amount
of abnormal information, thus causing the “identical re-
construction” issue. To address this issue, we propose a
prototype-guided proposal masking approach to mask sus-
picious anomaly proposals as much as possible. With the

masked patch sequence, the trained patch-level reconstruc-
tion model can reconstruct these masked patches by nor-
mal patterns. Thereby, the anomalous patches will not be
well reconstructed. As shown in Figure 2, we first gener-
ate nominal feature prototypes for each object class. Specif-
ically, we utilize an ImageNet pre-trained network ϕ to ex-
tract normal features FN = ∪

xi∈XN

ϕ(xi) from normal sam-

ples XN , and then employ the coreset subsampling mecha-
nism (Sener and Savarese 2018; Sinha et al. 2020) to gen-
erate nominal feature prototypes P for each object class.
The test image will be divided into patches, and then the
image patches will be sent into the same pre-trained net-
work to extract test features FT . Then, both the test features
FT and nominal prototypes P will be fed into the Proposal
Masking module to generate abnormality ranking for all test
image patches. In the Proposal Masking module, each test
patch feature f i

p ∈ FT , f
i
p ∈ Rd will match a corresponding

nearest nominal feature prototype f i
n = argmin

f∈P
||f − f i

p||2

from the feature prototype pool P . The residual feature
f i
r = f i

p − f i
n, f

i
r ∈ Rd will be sent into a normalizing flow

(NF) model φθ (Dinh, Sohl-Dickstein, and Bengio 2016) to
obtain normalized residual feature φθ(f

i
r). More details of

the Proposal Masking module are provided in Appendix. We
can utilize the following function to evaluate the abnormal-
ity of each patch:

a(f i
r) = max

fj
r∈Fr

(exp(ll(f j
r )))− exp(ll(f i

r)) (1)
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where Fr = {f i
r}Mi=1 denotes all residual features and the

ll(f i
r) means the log-likelihood of f i

r. ll(f i
r) can be evaluated

by the NF model φθ as follows (Gudovskiy et al. 2022):

ll(f i
r) = −d

2
log(2π)− 1

2
φθ(f

i
r)

Tφθ(f
i
r) + log

∣∣detJ∣∣ (2)

where d is the feature dimension and J =
∂φθ(f

i
r)

∂fi
r

is the Ja-
cobian matrix. We then can form an abnormality ranking of
image patches by ranking all the abnormality scores. With
the pre-defined mask ratio m, we select the top m percent
of the image patches in the abnormality ranking as masked
patches. Finally, we indicate that the masking method may
have the “mis-masking” issue (i.e., normal patches are in-
correctly masked in unseen classes), due to the normal pat-
terns of unseen classes being significantly different from the
known normal patterns. However, our approach can avoid
this issue with the guidance of nominal prototypes, because
the distribution of normal residual features would not re-
markably shift from the learned distribution even in unseen
classes (see intuitive explanation in Appendix). Thus, not
too many normal patches will be masked by our proposal
masking approach. Note that for unseen classes, our method
only requires generating nominal feature prototypes offline
by normal samples from unseen classes.

Visual Tokens Based Anomaly Scoring
After obtaining the prediction results, we can then design
anomaly scoring function for anomaly detection.

Reconstruction Objective. The most straightforward ob-
jective is obviously the raw pixels as used in MAE (He et al.
2022). However, this objective is not suitable for anomaly
detection, because raw pixels as targets have a potential risk
of overfitting to local statistics and high-frequency details
(Ramesh et al. 2021). Moreover, when we use the raw pixels
to evaluate the reconstruction error, it would be affected by
the image details (i.e. normal patches with rich details may
also have large reconstruction errors). The above mentioned
issues may cause degraded anomaly detection performance.
Thus, we propose to employ visual tokens as the reconstruc-
tion objective, this is described as follows:

Visual Tokens. We follow DALL-E (Ramesh et al. 2021)
to compress an image with a dVAE codebook. In particular,
each patch is encoded into a discrete visual token, and the
vocabulary size is set to |V| = 8192. As shown in Figure
2, we first tokenize each image to 14 × 14 grid of visual
tokens by a pre-trained publicly available image tokenizer
described in DALL-E. With the encoded visual tokens, the
task is converted to predict the visual token distribution of
the masked patches by optimizing a cross-entropy loss:

L = − 1

|Mp|

|Mp|∑
m=1

|V|∑
i=1

pimlog(pim) (3)

where |Mp| is the number of masked patches in each image,
and pim indicates the probability that the mth masked patch
belongs to the ith visual token.

Anomaly Scoring. For visual tokens, the dimension of
output vectors is 8192, where each dimension pi indicates

the probability that the patch belongs to a special visual to-
ken. Thus, we can calculate cross-entropy to measure the
uncertainty of each patch. The larger the uncertainty, the
more likely the patch is to be abnormal. The anomaly scor-
ing function is as follows:

s = −
|V|∑
i=1

pilog(pi) (4)

We then multiply s with the abnormality scores produced
at the masking stage to get final anomaly scores, which we
find are more robust to detect and evaluate anomalies.

Experiments
Datasets and Metrics
We evaluate the proposed approach on two widely used
industrial anomaly detection datasets: the MVTecAD
(Bergmann et al. 2019a) and BTAD (Mishra et al. 2021).

MVTecAD. This dataset contains 5354 high-resolution
images (3629 images for training and 1725 images for test-
ing) of 15 different categories. 5 classes consist of textures
and the other 10 classes contain objects. A total of 73 dif-
ferent defect types are presented and almost 1900 defective
regions are manually annotated in this dataset.

BTAD. This dataset contains 2830 real-world images of 3
industrial products. Product 1, 2 and 3 of this dataset contain
400, 1000 and 399 training images respectively.

Evaluation Metrics. The performance of our PMAD and
all comparison methods are evaluated by the area under the
curve (AUC) of the receiver operating characteristic (ROC)
at the image or pixel level (AUROC).

Implementation Details
We mainly follow the hyperparameters in (Bao, Dong, and
Wei. 2021) to train the reconstruction model. All training
hyperparameters are listed in Appendix. Because the sizes
of anomalies in different classes are generally different, the
same mask ratio for all classes cannot achieve the optimal
results. We select a suitable mask ratio for each class through
extensive experiments (see Appendix for details).

Results under the Single-Class Setting
Setup. Existing anomaly detection algorithms are almost
evaluated under this paradigm, where a specific model is
trained for each object class.

Baselines. We compare our approach with the state-
of-the-art AD methods, including DFR (Yang, Shi, and
Qi 2020), PaDiM (Defard et al. 2021), PatchSVDD (Yi
and Yoon 2021), DRAEM (Zavrtanik, Kristan, and Skocaj
2021), MSFD (Salehi et al. 2021), and CFLOW (Gudovskiy
et al. 2022). All these methods are representative methods in
the AD community. The DFR and DRAEM are conventional
image-level reconstruction models. Results of these methods
are reproduced using the public implementations.

Quantitative Results. The left part of Table 1 shows
the comparison results under the single-class setting. Our
PMAD can achieve comparable results with the state-
of-the-art methods under the single-class setting on both
MVTecAD and BTAD datasets.
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Method Single-Class Setting Multi-Class Setting
MVTecAD BTAD MVTecAD BTAD

DFR 0.942/0.953 0.950/0.971 0.867/0.916 0.948/0.969
PaDiM 0.966/0.971 0.943/0.962 0.894/0.954 0.938/0.966

PatchSVDD 0.892/0.899 0.852/0.765 0.691/0.798 0.801/0.746
DRAEM 0.971/0.967 0.944/0.922 0.918/0.891 0.912/0.919
MSFD 0.907/0.949 0.916/0.962 0.888/0.944 0.897/0.962

CFLOW 0.901/0.935 0.931/0.971 0.890/0.940 0.930/0.966
PMAD (ours) 0.961/0.968 0.936/0.974 0.945/0.956 0.938/0.973

Table 1: AUROC results on two real-world AD datasets under the single- and multi-class settings. ·/· means image-level
AUROC and pixel-level AUROC, respectively.

Results under the Multi-Class Setting
Setup. Normal samples from multiple classes are simulta-
neously used to train a unified model, and the trained model
is utilized to detect anomalies from the same trained classes.

Baselines. Under the multi-class setting, we use the same
baseline methods mentioned in the last section but train
these methods with multiple classes simultaneously.

Quantitative Results. As shown in the right part of Table
1, our PMAD can achieve better results compared with the
SOTA methods under the multi-class setting. It can be found
that the performances of all baseline methods drop dramat-
ically under the multi-class setting. The previous SOTA,
DRAEM, suffers from a drop of near 5.3% and 7.6% at
the image-level and the pixel-level respectively. For an-
other SOTA, PaDiM, has a performance drop of 7.2% at the
image-level. The PatchSVDD has the largest performance
degradation, which is as large as 20.1% and 11%. How-
ever, our PMAD has only a small performance drop from the
single-class setting to the multi-class setting (-1.6%/-1.2%).
Moreover, we beat the best competitor (DRAEM) under the
multi-class setting by a large margin (2.7%) at the image-
level, demonstrating the superiority of our approach. For
the BTAD dataset, all the classes belong to texture classes,
which have much simpler normal patterns. Thus, even in the
multi-class setting, most methods have no significant perfor-
mance degradation. Our method has almost no performance
degradation.

Results under the Cross-Class Setting
Setup. Normal samples are limited to be drawn from partial
classes only, and all samples from these classes are removed
from the test set to ensure that the test set contains only sam-
ples from unseen classes. To validate the multi- and cross-
class performance of the models simultaneously, we adopt
the grouping method to divide the dataset. That is to select
some classes as training classes and the remaining classes
for testing. On the MVTecAD dataset, we divide the train-
ing and testing classes separately for texture and object cate-
gories. On the BTAD dataset, since there are only 3 classes,
we adopt another setup: one class for training and the re-
maining classes for testing.

Quantitative Results. The detection results are presented
in Table 2. All these methods are directly without any fine-
tuning utilized to detect anomalies in unseen classes. As

shown in Table 2, our method can outperform these SOTA 1

methods significantly under the cross-class setting. It can be
found that without re-training or fine-tuning, most of these
SOTA methods fail completely in unseen classes, but our
method still has good anomaly detection results. For tex-
ture classes, our approach can outperform the best SOTA
method by (2.5%/0.7% and 0.8%/0.1%). For more com-
plex object classes, our approach can outperform the best
SOTA method by a significantly large margin (17.4%/4.7%
and 14.7%/8.4%). For the BATD dataset, our approach can
also outperform the SOTA methods by a significant mar-
gin (5.7%/6.9%, 16.1%/22.7%, and 6.2%/11.4% for Prod-
uct 1, 2, and 3, respectively). Moreover, we also compare
our approach with a registration-based class-adaptive AD
model (RegAD). In (Huang et al. 2022), the RegAD is evalu-
ated by a similar experimental setting to our cross-class set-
ting. Our PMAD can achieve much better results than Re-
gAD on both MVTecAD and BTAD datasets. In Appendix,
we also show the cross-class detection results from objects
to textures and from textures to objects on the MVTecAD
dataset. Our approach can outperform the SOTA methods by
a significant margin (7.5%/3.0% and 11.3%/2.9%), and also
achieve much better results than RegAD. All these results
reflect the superior class adaptability of our model.

Ablation Study
All the ablation study results are shown in Table 3.

Network Architecture (NA). The ViT architecture can
achieve better detection results than the asymmetric archi-
tecture. This means that the architecture designed in MAE is
not suitable for the AD task, and decoders with larger model
capacity are more conducive for reconstruction in AD tasks.

Masking Strategy in Training (MST). Masking strategy
in training doesn’t have much effect on the detection results,
even the simplest random masking strategy can achieve
good detection results. Compared with random masking and
blockwise masking, our combinational masking strategy can
enable the network to learn better reconstruction capabili-
ties, thus achieving better detection results.

Reconstruction Objective (RO). It can be found that raw
pixels will result in much worse detection performance. Be-
cause when we use the raw pixels to evaluate the reconstruc-

1This only represents the unsupervised SOTA methods, except
RegAD. RegAD belongs to the class-adaptive AD method.
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Cross-Class Setting

Method Seen Classes (On MVtecAD) Seen Classes (On BTAD)
Textures(1) Objects(1) Textures(2) Objects(2) Product 1 Product 2 Product 3

DFR 0.792/0.502 0.595/0.799 0.585/0.499 0.409/0.733 0.872/0.778 0.611/0.550 0.672/0.696
PaDiM 0.870/0.773 0.473/0.827 0.989/0.985 0.536/0.752 0.648/0.778 0.531/0.723 0.556/0.736

PatchSVDD 0.920/0.773 0.721/0.847 0.911/0.852 0.697/0.848 0.756/0.835 0.828/0.660 0.823/0.676
DRAEM 0.766/0.676 0.549/0.696 0.804/0.709 0.513/0.617 0.576/0.542 0.709/0.629 0.644/0.553
MSFD 0.720/0.647 0.692/0.864 0.982/0.985 0.607/0.814 0.721/0.907 0.611/0.368 0.686/0.767

CFLOW 0.917/0.889 0.565/0.804 0.985/0.985 0.525/0.795 0.802/0.892 0.605/0.753 0.836/0.846
RegAD 0.874/0.838 0.667/0.911 0.900/0.924 0.668/0.917 0.679/0.779 0.665/0.793 0.666/0.773

PMAD (ours) 0.945/0.896 0.895/0.911 0.997/0.986 0.844/0.932 0.929/0.976 0.989/0.980 0.898/0.960

Table 2: AUROC results on two real-world AD datasets under the cross-class setting. Textures(1) contains carpet and leather
as seen classes, and other texture classes in the MVTecAD dataset as unseen classes. Objects(1) contains bottle, cable, capsule,
screw, and transistor as seen classes, and other object classes in the MVTecAD dataset as unseen classes. The seen classes in
Textures(2) and Objects(2) are the unseen classes in Textures(1) and Objects(1), respectively.

Ablations Multi-Class Setting
MVTecAD

NA Asymmetric Architecture 0.918/0.937
ViT structure 0.945/0.956

MST
Random Masking 0.929/0.945

Blockwise Masking 0.939/0.950
Combinational Masking 0.945/0.956

RO
Raw Pixels 0.773/0.712

Deep Features 0.844/0.867
Visual Tokens 0.945/0.956

IMS
Random Masking 0.730/0.667

Blockwise Masking 0.749/0.700
Proposal Masking 0.945/0.956

Table 3: Ablation study results. Best results are highlighted.
IMS means inference masking strategy.

tion errors, it would be affected by the image details (normal
patches with rich details may also have large reconstruction
errors). Compared with raw pixels, higher-level and more se-
mantic visual representation objectives can achieve a signif-
icant performance improvement, such as visual tokens and
deep features. Moreover, visual tokens can achieve better de-
tection results compared to deep features.

The Effect of Inference Proposal Masking. The results
in Table 3 show that the proposal masking strategy is much
crucial for achieving better detection results. When we use
random or blockwise masking in the inference phase, the
detection results will drop significantly (about -20%/-25%).
This is because random and blockwise masking may gen-
erally leak a large amount of anomaly information, further
causing the abnormal patches to be also well reconstructed.
By contrast, our proposal masking strategy can achieve a
significant performance improvement, because the suspi-
cious abnormal patches will be masked as much as possible.

Qualitative Results
Qualitative Results. We visualize some anomaly localiza-
tion results in Figure 3 with the MVTecAD dataset and under
the cross-class setting. It can be found that most SOTA meth-
ods fail to generate anomaly localization maps for unseen

Input Image GroundTruth DFR PaDiMMSFD PPM-AD (ours)

Figure 3: Qualitative results. The anomaly score maps are
generated under the cross-class setting, where the training
set doesn’t contain the shown classes.

classes, while our PMAD can still generate good anomaly
localization results.

Conclusion

Class adaptability is a critical but still not well-studied issue
in the anomaly detection community. Considering this is-
sue, we propose a novel and class-adaptive PMAD approach
based on two key designs: MAE-based patch-level recon-
struction and prototype-guided proposal masking. Under the
multi- and cross-class settings, our model illustrates better
class adaptability than the SOTA models. We expect our re-
sults can establish new baselines for future work in this im-
portant emerging direction. One main limitation of our ap-
proach is that the ViT model can only reconstruct 16×16 im-
age patches, but cannot reconstruct more fine-grained image
patches. Therefore, the anomaly localization ability of our
model is limited. In the future, we plan to investigate how to
employ hierarchical transformers and design a multi-scale
masking strategy to further improve our method.
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