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ABSTRACT

Recent studies explored the framing of reinforcement learning as a sequence mod-
eling problem, and then using Transformers to generate effective solutions. In this
study, we introduce MCTrasnformer, a framework that combines Monte-Carlo
Tree Search (MCTS) with Transformers. Our approach uses an actor-critic setup,
where the MCTS component is responsible for navigating previously-explored
states, aided by input from the Transformer. The Transformer controls the explo-
ration and evaluation of new states, enabling an effective and efficient evaluation
of various strategies. In addition to the development of highly effective strate-
gies, our setup enables the use of more efficient sampling compared to existing
MCTS-based solutions. MCTrasnformer, therefore, is able to effectively learn
from a small number of simulations for each newly-explored node, without de-
grading performance. Evaluation conducted on the challenging and well-known
problem of SameGame, shows that MCTrasnformer outscores Transformer-only
and MCTS-only solutions by a factor of three and more.

1 INTRODUCTION

Transformers have recently been shown to be very effective in the field of reinforcement learning
(RL) |Chen et al.| (2021); Janner et al. (2021). This was achieved by converting offline RL to a
classification problem, which facilitates advanced sequence modeling abilities using Transformers.
At evaluation time, the Transformer functions as an autoregressive model, generating sequences of
future actions.

The main shortcoming of the aforementioned approach is the absence of exploration during online
evaluation. The Transformer model is, therefore, limited in its ability to adjust to novel circum-
stances. While online fine-tuning of the model was recently proposed |[Zheng et al.| (2022a)), it re-
quires a relatively large number of training samples. Moreover, a one-time fine-tuning approach is
not suitable for problems with high degrees of volatility, that require continuous exploration.

We introduce MCTrasnformer, a RL framework that enables cost-effective exploration of planning
problems. Our approach combines Monte-Carlo Tree Search (MCTS) with the Transformer archi-
tecture in an actor-critic setup. The MCTS component of MCTrasnformer is tasked with balancing
the exploration/exploitation trade-off needed in most RL tasks, while the Transformer component is
tasked with predicting the utility of previously-unexplored nodes. Additionally, we use the Trans-
former to carry out the simulation phase of the MCTS (i.e., the rollout policy), where the former’s
advanced and effective modeling allows us to use a vary small number of simulations, thus keeping
our approach efficient.

We evaluate the proposed approach on SameGame, a challenging and well-known problem. This
game is considered challenging due to the high variance of its initial states. Game boards are ran-
domly initialized, which forces any solver to perform a great deal of exploration from the first step.
Another factor that adds complexity to the planning process is the large bonus score that is awarded
only when the board is fully cleared. The ability to correctly assess whether the board can be cleared
has significant effect on the planner’s behavior. Our evaluation shows that MCTrasnformer signifi-
cantly outperforms top-performing methods in a budget-based setting.



Under review as a conference paper at ICLR 2023

2 PRELIMINARIES

2.1 BACKGROUND — SAMEGAME

Game rules. SameGame is a single-player game, played on a rectangular board of height H and
width W. The board is randomly filled with tiles of C different colorsﬂ Two tiles are considered
adjacent if they are connected either vertically or horizontally. A block of tiles is a group of two or
more adjacent tiles of the same color. A tile with no adjacent tiles of the same colors is a singleton.
At each turn, the player selects a single block (one cannot select singletons), which is then removed
from the board. When a block is removed, the board is reorganized as follows: a) tiles above the
removed tiles “fall down” (a physics-based model); b) when an entire column is removed, all the
columns to its right shift left. The game continues until no more blocks exist on the board, i.e., an
empty board or one or more singletons.

Reward function. The reward is calculated each turn as follows: (n; — 2)2, where n; is the size
of block chosen by the user at step ¢. If the board is empty when the game concludes, the player
receives an additional 1000 points bonus. If tiles remain on the board, a penalty of » . (n; — 2)2,
where n; is the number of tiles left of color 7, is exacted. The score is the sum of all the rewards. This
setup creates two (potentially conflicting) goals for the player: the first goal is to create blocks that
are as large as possible; the second goal is to empty the board, which may require a larger number
of steps, as a result of the need to select smaller blocks.

Complexity. A SameGame board is defined as solvable if a sequence of actions exists so that
the board can be emptied. As shown in[Schadd et al.| (2008)Takes & Kosters| (2009), determining
whether a randomly-initialized board is solvable is NP-complete. Therefore, finding a sequence of
actions that maximizes the score, regardless of whether the board is solvable, is also NP-complete.
The main reasons for this difficulty are the game’s high branching factor—around 17, initially—and
the fact that the length of an average game in our setup is approximately 27.
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Figure 1: The proposed MCTrasnformer approach

3 PROPOSED METHOD

3.1 OVERVIEW

Our proposed approach is presented in Figure[I] Our training phase (steps #1-#5) is as follows: we
begin by generating a batch of randomly-initialized SameGame boards (step #1). Next, for each

'Our description refers to the version of SameGame used in this study, which is one of the most common.
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board we run a fixed number of MCTS simulations (step #2). Each simulation is played until the
conclusion of the game, at which point all of its relevant information is saved to the replay buffer
(step #3). Next, we use all the games stored in our buffer to generate representations (embeddings)
of our states and actions (step #4), which are then used in the training of our Transformer (step #5).

During the test phase, MCTrasnformer performs as follows: at each step, our approach uses the
MCTS model to select actions until a leaf is reached (i.e., the selection phase). Then, instead of
using existing expansion methods, we use our transformer to assign initial scores to each potential
action, and then select one based on an upper confidence bound. Next, we use our transformer as
a rollout policy: the transformer plays a small set of games to their conclusion, and the scores are
used to update values through the MCTS’s moves tree.

In addition to its novel architecture, MCTrasnformer has important advantages over existing solu-
tions. First, by using transformers to explore and expand the moves tree, we are able to outperform
other budget-based methods such as MCTS, as well as transformer-based solutions (as shown in
Section[d). Secondly, MCTrasnformer requires a smaller number of simulations compared to other
methods, a fact that makes it more efficient. Thirdly, our incorporation of the transformer within
the MCTS algorithm makes the overall approach more flexible and adaptive: because the trans-
former learns across multiple board positions, the MCTS does not start as a blank slate with each
new board—a highly impactful fact, given that the boards are randomly initialized and have high
variance.

3.2 GENERATING MCTS-BASED TRAJECTORIES

The goal of this step is to generate a large volume of games that will enable us to train our Trans-
former model. We use an MCTS model to generate a large set of games (250,000 in our evalua-
tion), and store the final trajectory of each game in our buffer. Each game begins with a randomly-
initialized board, which ensures a diverse set of games. It is important to note that our MCTS
model selects the node whose children produced the highest score of each set of simulations, since
SameGame is a single-player game that does not involve an adversary. Additionally, we improve
the efficiency of the MCTS by unifying all the tiles of a block into a single action, thus significantly
reducing the search space. We use the UCT algorithm |[Matsuzaki| (2018)) to navigate our tree:

— IHN(St)

UCT(Sta CL) = Qnorm (3’ CL) + Cuct m v

where ¢, is a hyper-parameter, N (s;) denotes the number of time the MCTS simulations visit state
st, N(st,a) denotes the number of time the MCTS simulations visited state s; and chose action a.
Note that ) s,a) is defined in Equation E}

norm(

This process is the most time-consuming part of our methods, because of the need to play a large
number of games to completion. This difficulty is mitigated by two factors: first, this process
takes place during the offline training of our model, meaning that it does not affect evaluation time.
Secondly, this process can be easily parallelized, since each game can be played independently.

3.3 STATE AND ACTION SPACE REPRESENTATIONS

The Action Space. Our action space is represented by a vector whose size is equal to the number
of tiles on the board. The values, generated by the Transformer’s output layer, are produced using
the logits activation function and a softmax operation. It is important to note that while SameGame
rules require that we select blocks, our action representation assigns a value to each tile. This is the
case for two reasons: first, the number, shapes and sizes of blocks changes throughout the game, and
our architecture requires a fixed-size representation. Secondly, a tile-based representation is more
nuanced, and provides additional information to the transformer in future time steps. We elaborate
on the action selection process, i.e., the transformation of tile-based values to block-based values, in
Section 3.4

The state space. Our SameGame board consists of 100 tiles, ordered in a 10210 matrix. Our goal
for our representation is to capture not only the color of each tile, but also the size of the block to
which it belongs. Therefore, we represent each tile using the following one-hot representation, with
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each entry in the vector representing a single color. Note that empty tiles are assigned their own
color. The vector representation of each individual tile is in the following form: (0, 0, 20, .0),
where s denotes the size of the tile’s block, and n denotes the total number of tiles on the board. This
representation maintains the simplicity of a one-hot representation, while also making it easier for
our model to identifier larger (i.e., impactful) blocks. Using the one-hot transformation described
above, we represent the board as a H x W x (C' + 1) matrix, where C is the size of the vector
representing each tile (i.e., the number of tile colors + background). We then use a convolutional
architecture to transform this representation into a vector of size 128.

3.4 PRELIMINARY TRAINING THE TRANSFORMER ARCHITECTURE

Our Transformer receives three inputs at each time step: a) the state representation; b) the action
representation, and; c) temporal (i.e., positional) encoding that represents the turns of the game. We
first use an embedding layer to convert the all three representations to a size of 128. Then, we add
(using summation) the temporal encoding fo both the state and action representations.

The training of our Transformer is performed similarly to that of Transformer-based text generation
tasks |Chen et al.| (2021); [Vaswani et al.| (2017). Upon receiving a sequence of states and actions
{50, Goy -y St—1,At—1, St }, the goal of our model is to predict a;. It is important to note that we
only predict actions and not states, because SameGame is a full information, deterministic game,
and states can be therefore easily inferred from chosen actions.

One important difference between the MCTS and Transformer components of MCTrasnformer lies
in the fact that while the former selects blocks, the latter selects tiles. To bridge this gap, we consider
the top-left tile of each block to be the block representative. This means that when a given block
is chosen, the Transformer will be considered to be correct only if the top-left tile of that block is
selected. The loss function used by our Transformer is cross entropy.

3.5 DEPLOYING MCTrasnformer AT TEST TIME

One of the main challenges in efficiently exploring SameGame is the random initialization of the
board. This setup makes the use of standard MTCS difficult, since the process needs to start ‘from
scratch’ for every new board, which would make the process computationally expensive. Using
a fully Transformer-based solution would also be effective, but its inability to effectively balance
exploration and exploitation would result in a very long iterative training period (as described in
Anthony et al.| (2017)).

MCTrasnformer combines the strengths of both MCTS and Transformers to create a more efficient
solution. The MCTS component manages the exploration/exploitation trade-offs, while the Trans-
former component is tasked with selecting highly effective actions and optimizing the chosen game
trajectories. We begin by using the a PUCT-based version of the MCTS algorithm to reach a leaf in
our current search tree. Next, we use the Transformer component to perform the rollout phases. We
now describe each phase in detail:

The selection phase The goal of this phase is to use a PUCT-based version of MCTS algorithm to
reach one of the leaves of the current tree. The selection is carried out the using standard Predictor-
UCT Silver et al.|(2017):

a; = arg max(Q,,prm (St,a) + U(st, a)) 2)
where
N(st)

14+ N(st,a)) ®)

U(Sta a) = Cpuctﬂ'e(stv a)

Cpuct 18 @ hyper-parameter, mg(s;, a) denotes the action probabilities of the stochastic policy 7 pa-
rameterized by 6. N (s;) denotes the number of times state s; was visited by the MCTS, with s,
being the parent node of node (s¢,a). Similarly, N(s;,a) is the number of time the MCTS simula-
tions visit state s; and choose action a.

In order to use UCT or PUC'T as a selection strategy, the return to go need to be in the range of
[—1,1]. In our case, however, the range of return to go has hugh variance and unkown. Therefore,
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a normalization method is required. We choose to use Shefi’s Seify & Buro| (2020) mazmin value
normalization method which requires no domain knowledge and no assumption or statistics on the
values. This scaling is applied locally at the node level as follows:

— 2(Q(s,a) — minan(s,a/))

Qnorm(s’ Cl) = maz, Q(37 a') — mina/Q(S, a,)

-1 “4)

When no action has been taken it is equal to 1, being optimistic. (s, a) - the mean of all sum of
rewards from state s that took action a. maz / Q(s, al) the action a that return the highest sum of
rewards on the trajectory started at state s. the same applies for min/ Q(s, al)

The expansion phase. In this phase, we need to select the next node to be expanded. The selection
will be governed by the P-UCT algorithm, with the Transformer setting the initial probabilities of
each expansion candidate. For each legal action we can take in the leaf, Ya € actionSpace(s;),
we calculate the prior probabilities my(s¢, a). These probabilities are calculated for each action (i.e.,
block) by summing the probabilities assigned to all of its tiles. my(s¢, a) is then used in Equation
to select the node that will be expanded.

The rollout phase. Once a node has been selected for expansion, we need play the game to its end to
obtain a score. Instead of using multiple MCTS simulations, we use MCTrasnformer’s Transformer
component to play a single game to its end. The final score obtained by this run is used to update all
the nodes in the trajectory from the MCTS tree’s root to the newly expanded leaf.

Following the single rollout run described above, we conduct a small number of additional simu-
lations. These runs start from the root of the tree (not the expanded node), and follow the MCTS
algorithm until they reach a leaf. Then, without any additional expansion of nodes, the Transformer
component plays the games to their end, and updates the relevant nodes according to the obtained
score. We found that this small number of runs (4-16 in our experiments) significantly contribute
to the performance of our proposed approach, at a relatively small computational cost. In all roll-
out runs, the Transformer’s policy is deterministic, with the probability of each block obtained by
summing the individual probabilities allocated to its tiles.

3.6 FINAL ACTION SELECTION

Once all rollouts are completed for the given root, MCTrasnformer is faced with the final step of
selecting the next move. This selection will be made based on the Q-values of all legal actions
(i.e., nodes). It is important to note that this decision only applies to a single step forward, upon
the completion of which the MCTS-based process will resume. The root of the MCTS will also be
reallocated to the current state of the board.

Our logic in selecting the path with the highest possible Q-value is simple: given that we play a
deterministic one-player game, even a single simulation where we are able to obtain a given score
ensures that this trajectory can be repeated, and that the obtained value is a lower bound on possible
performance.

4 EVALUATION

Our evaluation has several goals. Primarily, our aim is to evaluate the efficacy and computational
efficiency of MCTrasnformer compared to standard Transformer and MCTS-based solutions. Addi-
tionally, we will explore the ability of the Transformer-based player to learn the joint distributions
of states and actions from our generated datasets, and use several metrics to analyze the perofmance
of our proposed appraoch.

4.1 EXPERIMENTAL SETUP

Model architecture. We use a Transformer architecture with three layers and a single self-attention
head. The dimension of each token embedding is 128. We apply Dropout at the end of each decoder
block with a probability 0.1. We follow the learning rate scheduling proposed by |[Radford et al.
(2018)), with the learning rate increasing linearly from 0 to 6 x 10~* over the course of 3600 updates,



Under review as a conference paper at ICLR 2023

and then using cosine decay for up to 7200 steps. We use a batch size of 64. The full details of the
architecture are presented in the Appendix.

Initial training set. As described in Section @], we use a MCTS-based model to generate 250,000
games. We use these games to train MCTrasnformer’s Transformer component. To generate this
dataset, we ran 30 distributed MCTS on random boards, configured with simulation decay and an
initial value of 16 simulations per move. Note that a full list of our model’s hyperparameters is
presented in the Appendix.

Evaluation datasets. We evaluate MCTrasnformer and the baselines on three data-sets. All datasets
consist of boards whose dimensions are 10 x 10, and have five colors each. The configurations of
the datasts are as follows:

* 100 fully-random boards — all tile colors are assigned randomly.

25 balanced boards — each board contains exactly 20 tiles of each color. This dataset
represent a more difficult planning problem, since the likelihood of creating large blocks is
smaller than in cases where one of the colors is dominant.

* 25 dominant-color boards — one of the five colors consists of more than 40 tiles. This
setup consists of a less challenging planning problem, because the chances of creating
larger blocks (that will assist in clearing the board) is larger.

Hardware and training time: MCTrasnformer’s training took place on nl-highmem-8 instance on
Google Cloud with 2 NVIDIA Tesla T4 GPUs, for 8 epochs, taking approximately 6 hours.

4.2 PERFORMANCE INDICATORS

We record and analyze multiple indicators of the performance of our analyzed methods. The goal is
not to only evaluate models based on their final score (although it is the a primary metric), but also
based on efficiency and relative efficacy per step. Our metrics are:

1. Score RT'G(sg) = ZtT;Ol (s, ar). The primary indicator, used to evaluate overall per-
formance.

2. Net Score. The sum of all the rewards throughout a game, but without the bonus of clearing
the board, and also without the penalty for remaining tiles. Specifically, a policy that aims
to create large blocks will score higher on this metric.

3. Final Reward. The last reward is either a bonus of 1000 points for clearing the board, or a
penalty for remaining tiles (see Section section 2.T).

4. Total Removed Tiles. The total number of tiles removed in a game. This indicator is
equivalent to the score, but the defined reward function (see Section can change the
policy puts accordingly.

5. Number Cleared Boards. - This metric measures the number of games in which the board
was cleared. This metric is less noisy that evaluating the overall score and the associated
1000 point bonus.

6. Average Reward per Move - %_({%). An strong model would seek to optimize its moves
(i.e., clear blocks that are as large as possible) while also aiming to obtain the bonus. Mod-
els that can effectively pursue these two goals will score higher on this metric.

7. Number of Simulations. Because our framework is based on MCTS, we choose the num-
ber of total simulations per episode as an indicator for the method efficiency. This metric
is not relevant for the transformer-based player (see next section).

We report mean and standard deviation for each indicator when applicable.

4.3 TRANSFORMER-BASED PLAYER

We begin by evaluating the Transformer-based component of our model. Our goal is to determine
whether our Transformer is indeed capable of learning across multiple boards and positions, and
select effective moves. The training process of the model is identical to the one described in Section
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100 random boards 25 balanced boards 25 dominant color boards
random transformer | random transformer | random transformer
Total Score 3229 13517 647 2600 18727 29118
Score 42.2(135) 135(88.8) 25.9(83.6) 104(61.5) 766(356) 1173(437)
Net. Score 78.8(58.3) | 155(78.4) 25.9(83.6) 119(52.0) 766(356) 1173(437)

Final Reward | -36.5(117) | -20.5(24.6) | -50.7(57.7) | -14.7(19.6) | -16.8(21.5) | -8(12.6)

Removed Tiles | 79.900.13) | 84.6(6.74) | 77.7(1.97) | 86.7(6.68) | 85.7(6.19) | 88.8(4.92)
Moves 27.0(3.96) | 26.1(3.01) | 26.0(3.70) | 27.4(3.15) | 18.7(2.99) | 16.6(2.12)
Avg. Reward | 3.08(2.64) | 6.25(3.86) | 3.06(1.96) | 4.47(2.26) | 42.922) 72.7(31.3)

Table 1: The performance of Transformer-based player against a random player on three sets of
boards. All performance indicators except Total Score are provided as mean(std).

[3.4] The input of the Transformer is the sequence of all states and actions from the start of the game
(i.e., non-Markovian). We evaluate our Transformer in a straightforward manner: at each state,
our model receives its input, and then selects an action (the model is deterministic). There are no
multiple simulations at any stage, and this step is repeated until the game ends.

Given that our Transformer does not have an exploration/exploitation mechanism, it would require
significant amounts of time and computing resources to achieve top performance. This type of
evaluation is beyond the scope of this study, which focuses on efficiency. We therefore compare our
performance to that of a random agent, with the simple goal of demonstrating that our Transformer
is capable of meaningful and effective learning. The results of our evaluation are presented in Table
[ and they show that our Transformer significantly outperforms the random baselines in all metrics.
The average reward per move metric, for example, shows that the Transformer is much more capable
in selecting larger blocks, which also help to drive up its total score.

Finally, we evaluate the Transformer’s performance when it only receives the current state as input
(i.e., a Markovian model). Our goal is to determine whether not providing the Transformer with the
full trajectory (up to the current state) would reduce its performance. Our results, presented in Table
[6)in the Appendix, clearly show that the lack of trajectory history significantly reduces performance.
For example, the total score for the 100 random boards setup, decreases by 62%, from 13,517 to
5,085. We therefore conclude that providing full trajectory history to our model is required for its
performance.

4.4 MCTrasnformer

We now compare M CTrasnformer to various versions of the MCTS algorithm. Because of its ability
to balance exploration and exploitation, MCTS is a high-preforming baseline. The quality of its
performance, however, is highly-dependent on the number of simulations per move.

Our evaluation is conducted as follows: for the 100 random boards dataset, we evaluate the MC-
Trasnformer with 4, 8, 16 and 20 simulation per move, while the MCTS is evaluated with 8, 16,
32, 64 and 128. Our results, presented in Table [] (where we only show the x16 configutaion due to
space constraits) and Figure 2| shows that MCTrasnformer outperforms even the MCTS configura-
tion with the 128 simulations per move. The figure also clearly shows that MCTrasnformer forms a
Pareto front compared to MCTS (i.e., a better score/number of simulations trade-off at all points).
Even more importantly, MCTrasnformer leads in three key metrics: total score, net score and aver-
age reward/move. These results show that not only does our approach consists of very few dominant
boards. Our model therefore has greater difficulty in planning for such scenarios.

5 RELATED WORK

5.1 THE MONTE-CARLO TREE SEARCH ALGORITHM

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm, that has proven itself highly ef-
fective in multiple domains Browne et al.| (2012); [Swiechowski et al.| (2022)). The method navigates
through a search tree in a manner that balances exploration (evaluating new options) and exploita-
tion (taking advantage of existing knowledge). MCTS is often used as a general-purpose planning
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Figure 2: The performance of MCTrasnformer against MCTS on 100 random boards as a function
of the number of simulations per move.

model MCTrasnformer x16 | MCTS 8 MCTS 16 MCTS 32 MCTS 64 MCTS 128
Total Score 47704 15088 26340 28951 37506 45567

Score 477.04+383.06 150.88+£250.14 | 263.4+236.19 | 289.51+261.1 | 375.06+£388.56 | 455.67+388.56
Net Score 300.39+£127.82 94+442.87 218.6+114.8 229.5+107.84 | 260.29+121.88 | 268.68+109.14
Final Reward 176.65+387.75 56.88+239.62 44.81+£220.64 | 55.89+239.8 114.77+£328.6 186.99+£395.77
Removed Tiles | 92.27+5.5 93.52+5.25 90.51+5.24 90.74+4.78 90.29+5.53 92.42+5.26
Simulations 433.28+55.36 261.28+25.3 446.7+£52.5 873.6x£103.7 1711238 3480+410
Moves 27.08+3.46 31.66+3.16 26.9+3.29 26.3+3.24 25.74+£3.73 26.19+3.2
Cleared Boards | 18 6 5 6 12 19

Avg. Reward 12.13+6.36 3.085+1.68 8.56+5.48 9.3+5.03 10.73+6.13 10.78+5.68

Table 2: MCTrasnformer with 16 simulations per move compared to MCTS on on 100 random
boards

algorithm, and it was effectively applied to diverse domains such as Bayesian reinforcement learning
Vien et al.| (2013), multi-party negotiations |Golpayegani et al.| (2016), combinatorial optimization
Ontanon| (2013), and sigle-player games |Schadd et al.| (2008)); [Seify & Buro| (2020); Rosin| (201 1));
Mchat & Cazenave|(2010). More recently, MCTS has been an important part of the highly influential
AlphaGo |Silver et al.|(2016) and AlphaZero Silver et al.|(2017) architectures.

MTCS-based solutions have several important strengths. First, the approach does not require
domain-specific knowledge Klein| (2015) Jacobsen et al.| (2014))|[Hu et al.|(2019), and thus it is easily
applied to any domain that can be represented as set of sequential decisions. Secondly, while heuris-
tics and prior knowledge are not required for it to perform well, MCTS can be augmented with such
techniques to improve its ability to assess alternative actions. Thirdly, the training of the model can
be performed on any available budget; once the budget is exhausted, the MCTS can utilize whatever
knowledge it has been able to obtain.

5.2 UTILIZING TRANSFORMERS IN REINFORCEMENT LEARNING

Despite their state-of-the-art performance in many domains, Transformers have only been recently
introduced to the field of RL. The first attempts in this field sought to adapt Transformers so that
they can be used within existing solutions. In |[Parisotto et al.| (2020)), the authors present the Gated
Transformer architecture. By integrating a gating mechanism into the original transformer architec-
ture, the authors were able to improve the model’s stability and successfully utilize it for RL tasks.
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model MCTrasnformer x8 | MCTS 8 MCTS 16 MCTS 32 MCTS 64 MCTS 128

Total Score 12173 3944 5516 6084 6908 11193

Score 486.92+422.53 157.76£76.99 | 220.64+232.18 | 243.36£210.88 | 276.32+215.71 447.72+394.58
Net Score 249.08+86.48 161.56£77.6 184+73.2 207.16+82.7 241.52+78.6 249.8+£76.64
Final Reward 237.84+437.14 -3.8+6.27 36.6+£200.82 36.2+200.92 34.84201.25 197.92+409.33
Removed Tiles | 93.32+5.38 90.68+4.14 91.12+4.15 90.6+2.92 90.64+4.46 93.72+4.77
Simulations 219.52+27.24 226.56+28.72 | 449.92+40.08 871.68+93.42 1725.44+£215.84 | 3481.6£419.68
Moves 26.44+3.4 27.3243.59 27.12£2.5 26.24+2.92 25.96+3.37 26.2+3.28
Cleared Boards | 6 0 1 1 1 5

Avg. Reward 9.83+4.25 6.29+3.66 7.02+£3.3 8.13+3.62 9.67+£3.9 9.88+3.82
Table 3: MCTrasnformer with 8 simulations per move compared to MCTS on 25 balanced boards

model MCTrasnformer x8 | MCTS 8 MCTS 16 MCTS 32 MCTS 64 MCTS 128
Total Score 42062 42880 44209 46435 50156 52584

Score 1682.48+426.74 1715.24502.82 | 1768.36+491.37 | 1857.44£525.2 2006.24+553.15 | 2103.36+483.51
Net Score 1602.28+474.96 1640.96+£522.9 | 1731.64+499.52 | 1823.4+517.87 | 1809.88+499.66 | 1745.2+571.99
Final Reward 76.2+278.09 74.24+279 34+201.49 110.79 196.36£410.18 358.16+491.32
Removed Tiles | 91.24+5.07 91.36+5.75 91.96+5.07 90.68+5.65 92.76+5.84 95.245.05
Simulations 136.64+24.32 226.56£28.72 290.56+40.96 556.8+75.05 1192.96+168.19 | 2447.36+508.41
Depth 16.08+3.04 17.36+2.94 17.16£2.56 16.4+£2.35 17.64+2.63 18.12+3.97
Cleared Boards | 2 2 1 1 5 6

Reward 105.07£39.2 99.98+41.43 107.4+40.74 116.67+45.17 107.4+40.7 104.88+48.04

Table 4: MCTrasnformer with 8 simulations per move compared to MCTS on 25 dominant color

boards

InZambaldi et al.| (2018)), Transformers and other advanced architectures were using to better model
advanced relationships in the problem domain.

Instead of integrating them in existing RL frameworks, other studies seek to develop new ways to
utilize the strengths of Transformers. In|Chen et al.| (2021), the authors present the Decision Trans-
former, whose goal is to model the planning problem as one of autoregressive sequence completion.
The model receives as input the state and action representations, as well as the sum of remaining
future rewards. The Transformer is then tasked with completing the sequence of states and actions in
a way that obtains the specified reward. Another sequence modeling-based approach was proposed
in Janner et al.| (2021)), where instead of future rewards, the model receives the rewards incurred by
its current actions. Another difference between the two approaches is the use of Beam Search [Zhuo
et al.|(2020) to improve the planning process.

One of the main challenges in the modeling of RL problems as those of sequence comple-
tion/generation, is the difficulty of performing efficient exploration. While exploration is an integral
part of many RL algorithms (e.g., MCTS) This is not the case here. As a result, using Transformers
to discover effective solutions may require very long training times and be computationally pro-
hibitive. In|Zheng et al.| (2022b)), the authors seek to mitigate this problem by proposing an online
training phase, where the Transformer can be fine-tunes to respond to changing circumstances. An-
other approach was presented in|Correia & Alexandre|(2022)), where a hierarchical Transformer with
sub-goals was used to improve the exploration process.

6 CONCLUSIONS

One of the main challenges in using Transformers in the field RL is the need to perform effective
exploration and planning. Studies that seek to utilize the strengths of the architecture use model
the RL as one of sequence modeling, i.e., supervised learning. This setup makes exploration, a
key component of RL, more difficult. In this study we proposed a novel approach for integrating
Transformers into the MCTS algorithm. This combination enables us to use the latter for effective
exploration, while utilizing the former’s advanced modeling abilities to identify high-reward paths
of action. Evaluation on the challenging domain of SameGame demonstrates that our approach
outperforms both the MCTS and Transformer algorithms.
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A APPENDIX
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Table 5: Hyperparameters of Transformer

Hyperparameter

Value

Number of layers

Number of attention heads
Embedding dimension
Batch size

Max sequence length
Activation Functions

State embedding channels
State embedding filter sizes
State embedding strides
Epochs

Dropout

Learning Rate

Adam betas

Weight decay

Learning rate decay

3

1

128

64

45

ELU, encoder, state embedding
GeLU, otherwise

tanh, embedding

64

(3,3)

1

8

0.1

6 x 1074

(0.9,0.95)

0.1

Linear warmup(3600) and cosine decay

KPI transformer
Total Score 5085

Score 50.85+63.1
Net. Score 82.73+45.75
Final Reward -31.88+33.99
Removed Tiles | 82.09+7.64
Moves 25.89+3.35
Avg. Reward 3.38+2.36

13

Table 6: Transformer performance on 100 random boards with no attention
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