
Published as a conference paper at ICLR 2023

MARTINGALE POSTERIOR NEURAL PROCESSES

Hyungi Lee1, Eunggu Yun1, Giung Nam1, Edwin Fong2, Juho Lee1,3
1KAIST, 2Novo Nordisk, 3AITRICS
1{lhk2708,eunggu.yun,giung,juholee}@kaist.ac.kr, 2chef@novonordisk.com

ABSTRACT

A Neural Process (NP) estimates a stochastic process implicitly defined with neu-
ral networks given a stream of data, rather than pre-specifying priors already
known, such as Gaussian processes. An ideal NP would learn everything from
data without any inductive biases, but in practice, we often restrict the class of
stochastic processes for the ease of estimation. One such restriction is the use
of a finite-dimensional latent variable accounting for the uncertainty in the func-
tions drawn from NPs. Some recent works show that this can be improved with
more “data-driven” source of uncertainty such as bootstrapping. In this work, we
take a different approach based on the martingale posterior, a recently developed
alternative to Bayesian inference. For the martingale posterior, instead of speci-
fying prior-likelihood pairs, a predictive distribution for future data is specified.
Under specific conditions on the predictive distribution, it can be shown that the
uncertainty in the generated future data actually corresponds to the uncertainty of
the implicitly defined Bayesian posteriors. Based on this result, instead of assum-
ing any form of the latent variables, we equip a NP with a predictive distribution
implicitly defined with neural networks and use the corresponding martingale pos-
teriors as the source of uncertainty. The resulting model, which we name as Mar-
tingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines
on various tasks.

1 INTRODUCTION

A Neural Process (NP) (Garnelo et al., 2018a;b) meta-learns a stochastic process describing the
relationship between inputs and outputs in a given data stream, where each task in the data stream
consists of a meta-training set of input-output pairs and also a meta-validation set. The NP then
defines an implicit stochastic process whose functional form is determined by a neural network
taking the meta-training set as an input, and the parameters of the neural network are optimized
to maximize the predictive likelihood for the meta-validation set. This approach is philosophically
different from the traditional learning pipeline where one would first elicit a stochastic process from
the known class of models (e.g., Gaussian Processes (GPs)) and hope that it describes the data well.
An ideal NP would assume minimal inductive biases and learn as much as possible from the data. In
this regard, NPs can be framed as a “data-driven” way of choosing proper stochastic processes.

An important design choice for a NP model is how to capture the uncertainty in the random functions
drawn from stochastic processes. When mapping the meta-training set into a function, one might
employ a deterministic mapping as in Garnelo et al. (2018a). However, it is more natural to assume
that there may be multiple plausible functions that might have generated the given data, and thus
encode the functional (epistemic) uncertainty as a part of the NP model. Garnelo et al. (2018b)
later proposed to map the meta-training set into a fixed dimensional global latent variable with
a Gaussian posterior approximation. While this improves upon the vanilla model without such a
latent variable (Le et al., 2018), expressing the functional uncertainty only through the Gaussian
approximated latent variable has been reported to be a bottleneck (Louizos et al., 2019). To this end,
Lee et al. (2020) and Lee et al. (2022) propose to apply bootstrap to the meta-training set to use the
uncertainty arising from the population distribution as a source for the functional uncertainty.

In this paper, we take a rather different approach to define the functional uncertainty for NPs. Specif-
ically, we utilize the martingale posterior distribution (Fong et al., 2021), a recently developed
alternative to conventional Bayesian inference. In the martingale posterior, instead of eliciting a

1

Published as a conference paper at ICLR 2023

likelihood-prior pair and inferring the Bayesian posterior, we elicit a joint predictive distribution on
future data given observed data. Under suitable conditions on such a predictive distribution, it can
be shown that the uncertainty due to the generated future data indeed corresponds to the uncertainty
of the Bayesian posterior. Following this, we endow a NP with a joint predictive distribution defined
through neural networks and derive the functional uncertainty as the uncertainty arising when map-
ping the randomly generated future data to the functions. Compared to the previous approaches of
either explicitly positing a finite-dimensional variable encoding the functional uncertainty or deriv-
ing it from a population distribution, our method makes minimal assumptions about the predictive
distribution and gives more freedom to the model to choose the proper form of uncertainty solely
from the data. Due to the theory of martingale posteriors, our model guarantees the existence of the
martingale posterior corresponding to the valid Bayesian posterior of an implicitly defined param-
eter. Furthermore, working in the space of future observations allows us to incorporate the latent
functional uncertainty path with deterministic path in a more natural manner.

We name our extension of NPs with the joint predictive generative models as the Martingale Posterior
Neural Process (MPNP). Throughout the paper, we propose an efficient neural network architecture
for the generative model that is easy to implement, flexible, and yet guarantees the existence of the
martingale posterior. We also propose a training scheme to stably learn the parameters of MPNPs.
Using various synthetic and real-world regression tasks, we demonstrate that MPNP significantly
outperforms the previous NP variants in terms of predictive performance.

2 BACKGROUND

2.1 SETTINGS AND NOTATIONS

Let X = Rdin be an input space and Y = Rdout be an output space. We are given a set of tasks
drawn from an (unknown) task distribution, τ1, τ2, . . .

i.i.d.∼ ptask(τ). A task τ consists of a dataset Z
and an index set c, where Z = {zi}ni=1 with each zi = (xi, yi) ∈ X × Y is a pair of an input and
an output. We assume Z are i.i.d. conditioned on some function f . The index set c ⊊ [n] where
[n] := {1, . . . , n} defines the context set Zc = {zi}i∈c. The target set Zt is defined similarly with
the index t := [n] \ c.

2.2 NEURAL PROCESS FAMILIES

Our goal is to train a class of random functions f : X → Y that can effectively describe the
relationship between inputs and outputs included in a set of tasks. Viewing this as a meta-learning
problem, for each task τ , we can treat the context Zc as a meta-train set and target Zt as a meta-
validation set. We wish to meta-learn a mapping from the context Zc to a random function f that
recovers the given context Zc (minimizing meta-training error) and predicts Zt well (minimizing
meta-validation error). Instead of directly estimating the infinite-dimensional f , we learn a mapping
from Zc to a predictive distribution for finite-dimensional observations,

p(Y |X,Zc) =

∫ [∏
i∈c

p(yi|f, xi)
∏
i∈t

p(yi|f, xi)

]
p(f |Zc)df, (1)

where we are assuming the outputs Y are independent given f and X . We further restrict ourselves
to simple heteroscedastic Gaussian measurement noises,

p(y|f, x) = N (y|µθ(x), σ
2
θ(x)Idout), (2)

where µθ : X → Y and σ2
θ : X → R+ map an input to a mean function value and corresponding

variance, respectively. θ ∈ Rh is a parameter indexing the function f , and thus the above predictive
distribution can be written as

p(Y |X,Zc) =

∫ [∏
i∈[n]

N (yi|µθ(xi), σ
2
θ(xi)Idout)

]
p(θ|Zc)dθ. (3)

A NP is a parametric model which constructs a mapping from Zc to θ as a neural network. The
simplest version, Conditional Neural Process (CNP) (Garnelo et al., 2018a), assumes a deterministic
mapping from Zc to θ as

p(θ|Zc) = δrc(θ), rc = fenc(Zc;ϕenc), (4)

2

Published as a conference paper at ICLR 2023

where δa(x) is the Dirac delta function (which gives zero if x ̸= a and
∫
δa(x)dx = 1) and fenc is

a permutation-invariant neural network taking sets as inputs (Zaheer et al., 2017), parameterized by
ϕenc. Given a summary θ = rc of a context Zc, the CNP models the mean and variance functions
(µ, σ2) as

(µθ(x), log σθ(x)) = fdec(x, rc;ϕdec), (5)
where fdec is a feed-forward neural network parameterized by ϕdec. Here the parameters (ϕenc, ϕdec)
are optimized to maximize the expected predictive likelihood over tasks, Eτ [log p(Y |X,Zc)].

Note that in the CNP, the mapping from Zc to θ is deterministic, so it does not consider functional
uncertainty or epistemic (model) uncertainty. To resolve this, Garnelo et al. (2018b) proposed NP
which learns a mapping from an arbitrary subset Z ′ ⊆ Z to a variational posterior q(θ|Z ′) approxi-
mating p(θ|Z ′) under an implicitly defined prior p(θ):

(mZ′ , log sZ′) = fenc(Z
′;ϕenc), p(θ|Z ′) ≈ q(θ|Z ′) := N (θ|mZ′ , s2Z′Ih). (6)

With fenc, the Evidence Lower BOund (ELBO) for the predictive likelihood is written as

log p(Y |X,Zc) ≥
∑
i∈[n]

Eq(θ|Z)[logN (yi|µθ(xi), σ
2
θ(xi)Idout)]−DKL[q(θ|Z)∥p(θ|Zc)]

≈
∑
i∈[n]

Eq(θ|Z)[logN (yi|µθ(xi), σ
2
θ(xi)Idout)]−DKL[q(θ|Z)∥q(θ|Zc)]. (7)

An apparent limitation of the NP is that it assumes a uni-modal Gaussian distribution as an approx-
imate posterior for q(θ|Zc). Aside from the limited flexibility, it does not fit the motivation of NPs
trying to learn as much as possible in a data-driven manner, as pre-specified parametric families are
used.

There have been several improvements over the vanilla CNPs and NPs, either by introducing attention
mechanism (Vaswani et al., 2017) for fenc and fdec (Kim et al., 2018), or using advanced functional
uncertainty modeling (Lee et al., 2020; Lee et al., 2022). We provide a detailed review of the
architectures for such variants in Appendix A. Throughout the paper, we will refer to this class of
models as Neural Process Family (NPF).

2.3 MARTINGALE POSTERIOR DISTRIBUTIONS

The martingale posterior distribution (Fong et al., 2021) is a recent generalization of Bayesian in-
ference which reframes posterior uncertainty on parameters as predictive uncertainty on the unseen
population conditional on the observed data. Given observed samples Z = {zi}ni=1 i.i.d. from the
sampling density p0, one can define the parameter of interest as a functional of p0, that is

θ0 = θ(p0) = argmin
θ

∫
ℓ(z, θ) p0(dz),

where ℓ is a loss function. For example, ℓ(z, θ) = (z − θ)2 would return θ0 as the mean, and
ℓ(z, θ) = − log p(z | θ) would return the KL minimizing parameter between p(· | θ) and p0.

The next step of the martingale posterior is to construct a joint predictive density on Z ′ = {zi}Ni=n+1
for some large N , which we write as p(Z ′ | Z). In a similar fashion to a bootstrap, one can imagine
drawing Z ′ ∼ p(Z ′ | Z), then computing θ(gN) where gN (z) = 1

N

∑N
i=1 δzi(z). The predictive

uncertainty in Z ′ induces uncertainty in θ(gN) conditional on Z. The key connection is that if
p(Z ′ | Z) is the Bayesian joint posterior predictive density, and ℓ = − log p(z | θ), then θ(gN) is
distributed according to the Bayesian posterior π(θ | Z) as N → ∞, under weak conditions. In
other words, posterior uncertainty in θ is equivalent to predictive uncertainty in {zi}∞i=n+1.

Fong et al. (2021) specify more general p(Z ′ | Z) directly beyond the Bayesian posterior predictive,
and define the (finite) martingale posterior as πN (θ ∈ A | Z) =

∫
1(θ(gN) ∈ A) p(dZ ′ | Z). In

particular, the joint predictive density can be factorized into a sequence of 1-step-ahead predictives,
p(Z ′ | Z) =

∏N
i=n+1 p(zi | z1:i−1), and the sequence {p(zi | z1:i−1)}Nn+1 is elicited directly,

removing the need for the likelihood and prior. Hyperparameters for the sequence of predictive
distributions can be fitted in a data-driven way by maximizing

log p(Z) =

n∑
i=1

log p(zi | z1:i−1),

3

Published as a conference paper at ICLR 2023

which is analogous to the log marginal likelihood. Fong et al. (2021) requires the sequence of
predictives to be conditionally identically distributed (c.i.d.), which is a martingale condition on
the sequence of predictives that ensures gN exists almost surely. The Bayesian posterior predictive
density is a special case, as exchangeability of p(Z ′ | Z) implies the sequence of predictives is
c.i.d. In fact, De Finetti’s theorem (De Finetti, 1937) guarantees that any exchangeable joint density
implies an underlying likelihood-prior form, but specifying the predictive density directly can be
advantageous. It allows for easier computation, as we no longer require posterior approximations,
and it also widens the class of available nonparametric predictives which we will see shortly.

2.4 EXCHANGEABLE GENERATIVE MODELS

To construct a martingale posterior, we can either specify a sequence of one-step predictive distri-
butions or the joint predictive density distribution directly, as long as the c.i.d. condition is satis-
fied. Here, we opt to specify an exchangeable p(Z ′ | Z) directly, which then implies the required
c.i.d. predictives. We now briefly review exchangeable generative models which can be used to
specify the exchangeable joint predictive. For a set of random variables Z = {zi}ni=1 with each
zi ∈ Z = Rd, we say the joint distribution p(Z) is exchangeable if it is invariant to the arbitrary
permutation of the indices, that is, p(Z) = p(π · Z) for any permutation π of [n]. A simple way
to construct such exchangeable random variables is to use a permutation-equivariant mapping. A
mapping f : Zn → Zn is permutation equivariant if f(π · Z) = π · f(Z) for any π. Given f ,
we can first generate i.i.d. random variables and apply f to construct a potentially correlated but
exchangeable set of random variables Z as follows:

E := {εi}ni=1
i.i.d.∼ p0, Z = f(E). (8)

For f , we employ the modules introduced in Lee et al. (2019). Specifically, we use a permutation
equivariant module called Induced Self-Attention Block (ISAB). An ISAB mixes input sets through a
learnable set of parameters called inducing points via Multihead Attention Blocks (MABs) (Vaswani
et al., 2017; Lee et al., 2019).

ISAB(E) = MAB(E , H) ∈ Rn×d where H = MAB(I, E) ∈ Rm×d. (9)

Here, I ∈ Rm×d is a set of m inducing points and MAB(·, ·) computes attention between two sets.
The time-complexity of an ISAB is O(nm), scales linear with input set sizes.

3 METHODS

In this section, we present a novel extension of NPF called MPNPs. The main idea is to elicit joint
predictive distributions that are constructed with equivariant neural networks instead of assuming
priors for θ, and let the corresponding martingale posterior describe the functional uncertainty in the
NPs. We describe how we construct a MPNP in Section 3.1 and train it in Section 3.2.

3.1 MARTINGALE POSTERIOR NEURAL PROCESSES

Recall that the functional uncertainty in a NP is encoded in a parameter θ. Rather than learning an
approximate posterior q(θ|Zc), we introduce a joint predictive p(Z ′|Zc;ϕpred) generating a pseudo
context set Z ′ = {z′i}

N−|c|
i=1 of size (N − |c|) ≥ 1. Having generated a pseudo context, we combine

with the existing context Zc, and construct the empirical density as

gN (z) =
1

N

(∑
i∈c

δzi(z) +

N−|c|∑
i=1

δz′
i
(z)

)
. (10)

Given gN , the estimate of the function parameter θ is then recovered as

θ(gN) := argmin
θ

∫
ℓ(z, θ)gN (dz), (11)

where in our case we simply choose ℓ(z, θ) := − logN (y|µθ(x), σ
2
θ(x)Idout). The uncertainty in

θ(gN) is thus induced by the uncertainty in the generated pseudo context Z ′.

4

Published as a conference paper at ICLR 2023

MLP ISAB2

concat

MLP

concat

Figure 1: Concept figure of our feature generating model applied to CNP (Garnelo et al., 2018a). We
first convert given context dataset Zc to the representation Rc using Multi-Layer Perceptron (MLP)
layers. Next we sample ϵ from a simple distribution (e.g. Gaussian). Then we generate the pseudo
context representation R′

c using generator as one layer ISAB (Lee et al., 2019) in our experiment.

Amortization The procedure of recovering θ via Eq. 11 would originally require iterative opti-
mization process except for simple cases. Fortunately, in our case, we can amortize this procedure,
thanks to the mechanism of CNPs amortizing the inference procedure of estimating θ from the con-
text. Given Zc, a CNP learns an encoder producing θ that is trained to maximize the expected
likelihood. That is,

θ̃(Zc) = fenc(Zc;ϕenc), θ̃(Zc) ≈ argmin
θ

∫
ℓ(z, θ)gc(dz), (12)

where gc is the empirical density of Zc. Hence, given Z ′ and Zc, we can just input Z ′ ∪ Zc into
fenc and use the output θ̃(Z ′ ∪ Zc) as a proxy for θ(gN). Compared to exactly computing θ(gN),
obtaining θ̃(Z ′ ∪Zc) requires a single forward pass through fenc, which scales much better with N .
Moreover, computation for multiple Z ′ required for bagging can easily be parallelized.

Specifying the joint predictives We construct the joint predictives p(Z ′|Zc;ϕpred) with a neural
network. Other than the requirement of Z ′ being exchangeable (and thus c.i.d.), we give no inductive
bias to p(Z ′|Zc;ϕpred) and let the model learn ϕpred from the data. We thus use the exchangeable
generative model described in Section 2.4. Specifically, to generate Z ′, we first generate E =
{εi}ni=1 from some distribution (usually chosen to be a unit Gaussian N (0, Id)), and pass them
through an equivariant ISAB block to form Z ′. To model the conditioning on Zc, we set the inducing
point in the ISAB as a transform of Zc. That is, with an arbitrary feed-forward neural network h,

ISAB(E) = MAB(E , H), H = MAB(h(Zc), E), (13)

where h(Zc) = {h(zi)}i∈c. The resulting model is an implicit generative model (Mohamed and
Lakshminarayanan, 2016) in a sense that we can draw samples from it but cannot evaluate likeli-
hoods.

Generating Representations When z is low-dimensional, it would be moderately easy to learn
the joint predictives, but in practice, we often encounter problems with high-dimensional z, for
instance when the input x is a high-resolution image. For such cases, directly generating z may
be harder than the original problem, severely deteriorating the overall learning procedure of MPNP.
Instead, we propose to generate the encoded representations of z. The encoders of the most of the
NPFs first encode an input zi into a representation ri. For the remaining of the forward pass, we
only need ris instead of the original input z. Hence we can build a joint predictives p(R′|Rc;ϕpred)

generating R′ = {r′i}
N−|c|
i=1 conditioned on Rc = {ri}i∈c as for generating Z ′ from Zc. In the

experiments, we compare these two versions of MPNPs (generating Z ′ and generating R′), and
found that the one generating R′ works much better both in terms of data efficiency in training and
predictive performances, even when the dimension of z is not particularly large. See Fig. 1 for our
method applying to CNP model (Garnelo et al., 2018a).

5

Published as a conference paper at ICLR 2023

3.2 TRAINING

With the generator p(Z ′|Zc;ϕpred), the marginal likelihood for a task τ = (Z, c) is computed as

log p(Y |X,Zc) = log

∫
exp

(
−

∑
i∈[n]

ℓ(zi, θ̃(Zc ∪ Z ′))

)
p(Z ′|Zc;ϕpred)dZ

′. (14)

Note that p(Z ′|Zc;ϕpred) is c.i.d., so there exists a corresponding martingale posterior πN such that

log p(Y |X,Zc) = log

∫
exp

(
−

∑
i∈[n]

ℓ(zi, θ)

)
πN (θ|Zc)dθ. (15)

We approximate the marginal likelihood via a consistent estimator,

log p(Y |X,Zc) ≈ log

[
1

K

K∑
k=1

exp

(
−

∑
i∈[n]

ℓ(zi, θ̃(Zc ∪ Z ′(k)))

)]
:= −Lmarg(τ, ϕ), (16)

where Z ′(1), . . . , Z ′(K) i.i.d.∼ p(Z ′|Zc;ϕpred). This objective would be suffice if we are given suffi-
ciently good θ̃(Zc ∪Z ′(k)), but we have to also train the encoder to properly amortize the parameter
construction process Eq. 11. For this, we use only the given context data to optimize

log pCNP(Y |X,Zc) = −
∑
i∈[n]

ℓ(zi, θ̃(Zc)) := −Lamort(τ, ϕ) (17)

that is, we train the parameters (ϕenc, ϕdec) using CNP objective. Furthermore, we found that if we
just maximize Eq. 16 and Eq. 17, the model can cheat by ignoring the generated pseudo contexts and
use only the original context to build function estimates. To prevent this, we further maximize the
similar CNP objectives for each generated pseudo context to encourage the model to actually make
use of the generated contexts.

1

K

K∑
k=1

log pCNP(Y |X,Z ′(k)) = − 1

K

∑
i∈[n]

ℓ(zi, θ̃(Z
′(k))) := −Lpseudo(τ, ϕ) (18)

Combining these, the loss function for the MPNP is then

Eτ [L(τ, ϕ)] = Eτ [Lmarg(τ, ϕ) + Lamort(τ, ϕ) + Lpseudo(τ, ϕ)]. (19)

4 RELATED WORKS

CNP (Garnelo et al., 2018a) is the first NPF model which consists of simple MLP layers as its en-
coder and decoder. NP (Garnelo et al., 2018b) also uses MLP layers as its encoder and decoder but
introduces a global latent variable to model a functional uncertainty. Conditional Attentive Neural
Process (CANP) (Kim et al., 2018) and Attentive Neural Process (ANP) (Kim et al., 2018) are the
models which apply attention modules as their encoder block in order to well summarize context
information relevant to target points. Louizos et al. (2019) proposed NPs model which employs local
latent variables instead of a global latent variable by applying a graph neural network. By applying
convolution layers as their encoder, Gordon et al. (2020) and Foong et al. (2020) introduced a transla-
tion equivariant CNPs and NPs model, respectively. In addition to these works, Bootstrapping Neural
Process (BNP) (Lee et al., 2020) suggests modeling functional uncertainty with the bootstrap (Efron,
1992) method instead of using a single global latent variable.

5 EXPERIMENTS

We provide extensive experimental results to show how MPNP and Martingale Posterior Attentive
Neural Process (MPANP) effectively increase performance upon the following baselines: CNP, NP,
BNP, CANP, ANP, and Bootstrapping Attentive Neural Process (BANP). All models except determin-
istic models (i.e., CNP and CANP) use the same number of samples; K = 5 for the image completion
task and K = 10 for the others. Refer to Appendices A and C for more detailed experimental setup
including model architectures, dataset and evaluation metrics.

6

Published as a conference paper at ICLR 2023

−2 −1 0 1 2
−1

0

1

ground-truth
context points

−2 −1 0 1 2
−1

0

1

Figure 2: Posterior samples of MPANP for 1D regression task with RBF kernel. The black dashed
line is the true function sampled from GP with RBF kernel, and the black dots are context points.
We visualized decoded mean and standard deviation with colored lines and areas. (Left) MPANP
posterior predictions using the combined features of the original contexts and the generated pseudo
contexts. (Right) Predictions using only the generated pseudo contexts without the original contexts.
The pseudo contexts are decoded into reasonable functions, especially with high uncertainty for the
region without context points.

Table 1: Test results for 1D regression tasks on RBF, Matern, Periodic, and t-noise. ‘Context’ and
‘Target’ respectively denote context and target log-likelihood values. All values are averaged over
four seeds. See Table 4 for the task log-likelihood values.

RBF Matern Periodic t-noise

Model Context Target Context Target Context Target Context Target

CNP 1.096±0.023 0.515±0.018 1.031±0.010 0.347±0.006 -0.120±0.020 -0.729±0.004 0.032±0.014 -0.816±0.032

NP 1.022±0.005 0.498±0.003 0.948±0.006 0.337±0.005 -0.267±0.024 -0.668±0.006 0.201±0.025 -0.333±0.078

BNP 1.112±0.003 0.588±0.004 1.057±0.009 0.418±0.006 -0.106±0.017 -0.705±0.001 -0.009±0.032 -0.619±0.191

MPNP (ours) 1.189±0.005 0.675±0.003 1.123±0.005 0.481±0.007 0.205±0.020 -0.668±0.008 0.145±0.017 -0.329±0.025

CANP 1.304±0.027 0.847±0.005 1.264±0.041 0.662±0.013 0.527±0.106 -0.592±0.002 0.410±0.155 -0.577±0.022

ANP 1.380±0.000 0.850±0.007 1.380±0.000 0.663±0.004 0.583±0.011 -1.019±0.023 0.836±0.071 -0.415±0.131

BANP 1.380±0.000 0.846±0.001 1.380±0.000 0.662±0.005 1.354±0.006 -0.496±0.005 0.646±0.042 -0.425±0.050

MPANP (ours) 1.379±0.000 0.881±0.003 1.380±0.000 0.692±0.003 1.348±0.005 -0.494±0.007 0.842±0.062 -0.332±0.026

5.1 1D REGRESSION

In this section, we conducted 1D regression experiments following Kim et al. (2018) and Lee et al.
(2020). In this experiments, the dataset curves are generated from GP with 4 different settings: i)
RBF kernels, ii) Matérn 5/2 kernels, iii) Periodic kernels, and iv) RBF kernels with Student’s t noise.

Infinite Training Dataset Previous works (Garnelo et al., 2018b; Kim et al., 2018; Le et al.,
2018) assumed that there exists a GP curve generator that can provide virtually infinite amount of
tasks for training. We first follow this setup, training all models for 100,000 steps where a new task
is generated from each training step. We compare the models by picking checkpoints achieving the
lowest validation loss. Table 1 clearly shows that our model outperforms the other models in most
cases. This results show that our model well captures the functional uncertainty compared to the
other methods. In Appendix B, we also report the comparison with the baselines with increased
number of parameters to match the additional number of parameters introduced for the generator in
our model, where ours still significantly outperforms the baselines.

Finite Training Dataset We also compare the models on more realistic setting assuming a fi-
nite amount of training tasks. Specifically, we first configured the finite training dataset consisting
of {51200, 102400, 256000} examples at the start of the training, instead of generating new tasks
for each training step. We then trained all models with the same 100,000 training iterations in or-
der to train the models with the same training budget as in the infinite training dataset situation.
Fig. 3 clearly shows that our model consistently outperforms other models in terms of the target
log-likelihood even when the training dataset is finite. This indicates that MPNPs effectively learn
a predictive distribution of unseen dataset from a given dataset with small number of tasks. Refer
to Appendix B for more detailed results.

7

Published as a conference paper at ICLR 2023

×1 ×2 ×5 inf
train data

0.36

0.47

0.58

0.69

ta
rg

et
 lo

g-
lik

el
ih

oo
d

RBF

×1 ×2 ×5 inf
train data

0.18

0.29

0.40

0.51
Matern

×1 ×2 ×5 inf
train data

-0.78

-0.74

-0.70

-0.66
Periodic

×1 ×2 ×5 inf
train data

-1.25

-0.90

-0.55

-0.20
t-noise

CNP NP BNP MPNP (ours)

×1 ×2 ×5 inf
train data

0.77

0.81

0.85

0.89

ta
rg

et
 lo

g-
lik

el
ih

oo
d

RBF

×1 ×2 ×5 inf
train data

0.58

0.62

0.66

0.70
Matern

×1 ×2 ×5 inf
train data

-1.15

-0.90

-0.65

-0.40
Periodic

×1 ×2 ×5 inf
train data

-1.00

-0.74

-0.48

-0.22
t-noise

CANP ANP BANP MPANP (ours)

Figure 3: Test target log-likelihood values with varying the number of train data for 1D regression
tasks on RBF, Matern, Periodic, and t-noise. Here, x-axis denotes how many examples are used for
training, i.e., ×1, ×2, and ×5 respectively denote 51200, 102400, and 256000 train examples.

Table 2: Test results for image completion tasks on MNIST, SVHN, and CelebA. ‘Context’ and
‘Target’ respectively denote context and target log-likelihood values, and ‘Task’ denotes the task
log-likelihood. All values are averaged over four seeds.

MNIST SVHN CelebA

Model Context Target Task Context Target Task Context Target Task

CNP 0.878±0.016 0.690±0.010 0.706±0.011 3.009±0.069 2.785±0.053 2.796±0.054 2.692±0.018 2.099±0.011 2.134±0.012

NP 0.797±0.004 0.707±0.004 0.714±0.003 3.045±0.021 2.841±0.019 2.851±0.019 2.721±0.017 2.216±0.013 2.246±0.013

BNP 0.859±0.050 0.742±0.026 0.752±0.029 3.169±0.028 2.946±0.023 2.957±0.023 2.897±0.011 2.329±0.010 2.394±0.010

MPNP (ours) 0.861±0.010 0.747±0.005 0.757±0.005 3.220±0.017 2.980±0.016 2.992±0.016 2.997±0.010 2.369±0.006 2.407±0.006

CANP 0.871±0.020 0.688±0.012 0.685±0.013 3.079±0.052 3.386±0.020 3.335±0.023 2.695±0.033 2.674±0.011 2.642±0.011

ANP 1.186±0.050 0.744±0.008 0.793±0.009 3.996±0.064 3.365±0.053 3.405±0.053 4.086±0.024 2.724±0.029 2.833±0.026

BANP 1.329±0.021 0.752±0.018 0.819±0.018 4.019±0.017 3.437±0.026 3.476±0.024 4.126±0.003 2.764±0.020 2.871±0.018

MPANP (ours) 1.361±0.008 0.798±0.003 0.862±0.003 4.117±0.003 3.502±0.026 3.544±0.024 4.136±0.001 2.833±0.010 2.934±0.009

5.2 IMAGE COMPLETION

Next we conducted 2D image completion tasks for three different datasets, i.e., MNIST, SVHN,
and CelebA. For training, we uniformly sample the number of context pixels |c| ∈ {3, ..., 197} and
the number of target pixels |t| ∈ {3, ..., 200 − |c|} from an image. For evaluation, we uniformly
sample the number of context pixels |c| ∈ {3, ..., 197} and set all the remaining pixels as the tar-
gets. Table 2 clearly demonstrates that our model outperforms the baselines over all three datasets,
demonstrating the effectiveness of our method for high-dimensional image data. See Appendix B for
the visualizations of completed images along with the uncertainties in terms of predictive variances,
and Appendix C for the detailed training setup.

5.3 BAYESIAN OPTIMIZATION

Using pre-trained models with RBF kernels in Section 5.1 Infinite Training Dataset experiments, we
conducted Bayesian optimization (Brochu et al., 2010) for two benchmark functions (Gramacy and
Lee, 2012; Forrester et al., 2008). As a performance measurement, we use best simple regret, which
measures the difference between the current best value and the global optimum value. Fig. 4 depicts
the normalized regret and the cumulative normalized regret averaged over 100 trials of the Gramacy
and Lee (2012) function. Here, we also consider a GP variant with RBF kernel, tuned by pre-
training (Wang et al., 2022). It clearly demonstrates that our model shows the best performance
among NPs for both the normalized regret and the cumulative normalized regret. Appendix B.4
provides the results for the Forrester et al. (2008) function and Appendix C.4 provides detailed
experimental setups.

8

Published as a conference paper at ICLR 2023

0 10 20 30 40 50
iteration

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
re

gr
et

0 10 20 30 40 50
iteration

100

101

cu
m

m
ul

at
iv

e
no

rm
al

ize
d

re
gr

et

GP CNP NP BNP MPNP (ours)

0 10 20 30 40 50
iteration

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
re

gr
et

0 10 20 30 40 50
iteration

100

101

cu
m

m
ul

at
iv

e
no

rm
al

ize
d

re
gr

et

GP CANP ANP BANP MPANP (ours)

Figure 4: Results for Bayesian optimization on Gramacy and Lee (2012) function; we measured
normalized simple regret and its cumulative value for a iteration. All models are pre-trained on 1D
regression task generated with RBF kernel (cf. Section 5.1) and evaluated on the benchmark function
for Bayesian optimization.

Table 3: Test results for predator-prey population regression tasks on Lotka-Volterra simulated data
and real data. ‘Context’ and ‘Target’ respectively denote context and target log-likelihood values,
and ‘Task’ denotes the task log-likelihood. All values are averaged over four seeds.

Simulated data Real data

Model Context Target Task Context Target Task

CNP 0.327±0.036 0.035±0.029 0.181±0.032 -2.686±0.024 -3.201±0.042 -3.000±0.034

NP 0.112±0.063 -0.115±0.057 0.000±0.060 -2.770±0.028 -3.144±0.031 -2.993±0.029

BNP 0.550±0.057 0.274±0.042 0.417±0.050 -2.614±0.050 -3.052±0.022 -2.868±0.024

MPNP (ours) 0.626±0.041 0.375±0.036 0.500±0.038 -2.621±0.072 -3.092±0.054 -2.918±0.061

CANP 0.689±0.046 1.615±0.026 1.023±0.018 -4.743±1.119 -6.413±0.339 -5.801±0.733

ANP 2.607±0.015 1.830±0.020 2.234±0.018 1.887±0.078 -4.848±0.385 -1.615±0.188

BANP 2.654±0.000 1.797±0.012 2.240±0.006 2.190±0.062 -3.597±0.279 -0.741±0.160

MPANP (ours) 2.639±0.008 1.835±0.004 2.254±0.006 1.995±0.145 -5.073±0.680 -1.690±0.401

5.4 PREDATOR-PREY MODEL

Following Lee et al. (2020), we conducted the predator-prey population regression experiments. We
first trained the models using the simulation datasets which are generated from a Lotka-Volterra
model (Wilkinson, 2018) with the simulation settings followed by Lee et al. (2020). Then tested
on the generated simulation test dataset and real-world dataset which is called Hudson’s Bay hare-
lynx data. As mentioned in Lee et al. (2020), the real-world dataset shows different tendency from
generated simulation datasets, so we can treat this experiment as model-data mismatch experiments.
In Table 3, we can see the MPNPs outperform the other baselines for the test simulation datasets
but underperforms in the real-world dataset compare to other baselines. This shows that model-data
mismatch is an open problem for the MPNPs.

6 CONCLUSION

In this paper, we proposed a novel extension of NPs by taking a new approach to model the functional
uncertainty for NPs. The proposed model MPNP utilizes the martingale posterior distribution (Fong
et al., 2021), where the functional uncertainty is driven from the uncertainty of future data generated
from the joint predictive. We present a simple architecture satisfying the theoretical requirements of
the martingale posterior, and propose a training scheme to properly train it. We empirically validate
MPNPs on various tasks, where our method consistently outperforms the baselines.

Limitation As we presented in the Predator-Prey Model experiments in Section 5.4, our method
did not significantly outperform baselines under model-data mismatch. This was also higlighted in
Fong et al. (2021): model-data mismatch under the martingale posterior framework remains an open
problem. Our method with direct input generation also performed poorly, as we found it difficult to
prevent models from generating meaningless inputs that are ignored by the decoders. We present
more details on unsuccessful attempts for direct input generation in Appendix D.

9

Published as a conference paper at ICLR 2023

Societal Impacts Our work is unlikely to bring any negative societal impacts. Modeling functional
uncertainty may be related to the discussion of safe AI within the community.

Reproducibility Statement We argued our experimental details in Appendix C which contains
used libraries and hardwares. We presented all the dataset description in Appendix C. We describes
the model architecture details in Appendix A.

ACKNOWLEDGEMENTS

This work was partly supported by Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2019-0-00075, Arti-
ficial Intelligence Graduate School Program(KAIST)), Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2022-
0-00713), and Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.2021-0-02068, Artificial Intelligence Innovation
Hub).

REFERENCES

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 12

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax. 16

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010. 8

B. De Finetti. La prévision: ses lois logiques, ses sources subjectives. Annales de l’institut Henri
Poincaré, 7(1):1–68, 1937. 4

B. Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages
569–593. Springer, 1992. 6

E. Fong, C. Holmes, and S. G. Walker. Martingale posterior distributions. arXiv preprint
arXiv:2103.15671, 2021. 1, 3, 4, 9

A. Y. K. Foong, W. P. Bruinsma, J. Gordon, Y. Dubois, J. Requeima, and R. E. Turner. Meta-
learning stationary stochastic process prediction with convolutional neural processes. In Advances
in Neural Information Processing Systems 33 (NeurIPS 2020), 2020. 6

A. Forrester, A. Sobester, and A. Keane. Engineering design via surrogate modelling: a practical
guide. Wiley, 2008. 8, 15, 18, 19, 20, 21

M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh,
D. J. Rezende, and S. M. A. Eslami. Conditional neural processes. In Proceedings of The 35th
International Conference on Machine Learning (ICML 2018), 2018a. 1, 2, 5, 6

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W. Teh.
Neural processes. ICML Workshop on Theoretical Foundations and Applications of Deep Gener-
ative Models, 2018b. 1, 3, 6, 7

J. Gordon, W. P. Bruinsma, A. Y. K. Foong, J. Requeima, Y. Dubois, and R. E. Turner. Convolutional
conditional neural processes. In International Conference on Learning Representations (ICLR),
2020. 6

R. B. Gramacy and H. K. Lee. Cases for the nugget in modeling computer experiments. Statistics
and Computing, 22(3):713–722, 2012. 8, 9, 19, 20, 21

10

http://github.com/google/jax

Published as a conference paper at ICLR 2023

J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, and M. van Zee. Flax: A
neural network library and ecosystem for JAX, 2020. URL http://github.com/google/
flax. 16

M. Hessel, D. Budden, F. Viola, M. Rosca, E. Sezener, and T. Hennigan. Optax: composable gradi-
ent transformation and optimisation, in jax!, 2020. URL http://github.com/deepmind/
optax. 16

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, S. M. A. Eslami, D. Rosenbaum, and V. Oriol. Attentive
neural processes. In International Conference on Learning Representations (ICLR), 2018. 3, 6,
7, 12

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015. 16

T. A. Le, H. Kim, M. Garnelo, D. Rosenbaum, J. Schwarz, and Y. W. Teh. Empirical evaluation of
neural process objectives. In NeurIPS workshop on Bayesian Deep Learning, page 71, 2018. 1,
7, 16

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. URL http://yann.lecun.
com/exdb/mnist/. 17

J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework for
attention-based permutation-invariant neural networks. In Proceedings of The 36th International
Conference on Machine Learning (ICML 2019), 2019. 4, 5, 12, 13

J. Lee, Y. Lee, J. Kim, E. Yang, S. J. Hwang, and Y. W. Teh. Bootstrapping neural processes. In
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020. 1, 3, 6, 7, 9, 12

M. Lee, J. Park, S. Jang, C. Lee, H. Cho, M. Shin, and S. Lim. Neural bootstrapping attention
for neural processes. Under Review for International Conference on Learning Representations
(ICLR), 2022. 1, 3

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), 2015. URL http://mmlab.ie.
cuhk.edu.hk/projects/CelebA.html. 21

C. Louizos, X. Shi, K. Schutte, and M. Welling. The functional neural process. In Advances in
Neural Information Processing Systems 32 (NeurIPS 2019), 2019. 1, 6

S. Mohamed and B. Lakshminarayanan. Learning in implicit generative models. arxiv:1610.03483,
2016. 5

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/housenumbers/.
21

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30
(NIPS 2017), 2017. 3, 4, 12

Z. Wang, G. E. Dahl, K. Swersky, C. Lee, Z. Mariet, Z. Nado, J. Gilmer, J. Snoek, and Z. Ghahra-
mani. Pre-trained gaussian processes for bayesian optimization. arXiv preprint arXiv:2109.08215,
2022. 8

D. J. Wilkinson. Stochastic modelling for systems biology. Chapman and Hall/CRC, 2018. 9

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets.
In Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017. 3

11

http://github.com/google/flax
http://github.com/google/flax
http://github.com/deepmind/optax
http://github.com/deepmind/optax
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://ufldl.stanford.edu/housenumbers/

Published as a conference paper at ICLR 2023

MLP

Self
attention

ISAB

concat

concat
concat

concat

sp
lit

Cross
attention

MLP

MLP

Figure 5: Concept figure of our feature generating model applied to CANP (Kim et al., 2018).
Here we sample ϵ from a simple distribution (e.g. Gaussian). We generate key feature R′

k and
value feature R′

v for cross attention layer which are corresponding to pseudo context data. We use
generator as one layer ISAB (Lee et al., 2019) in our experiment.

A MODEL ARCHITECTURES

In this section, we summarize the model architectures which we used in experiments. Here, we only
present simplified structures for each model. To see exact computation procedures for BNPs, please
refer to Lee et al. (2020). Fig. 5 shows our method applying to CANP model (Kim et al., 2018).

A.1 MODULES

Linear Layer Lin(din, dout) denotes the linear transformation of the input with dimension din into
the output with dimension dout.

Multi-Layer Perceptron MLP(nl, din, dhid, dout) denotes a multi-layer perceptron with the struc-
ture:

MLP(nl, din, dhid, dout) = Lin(dhid, dout) ◦ (ReLU ◦ Lin(dhid, dhid))
nl−2 ◦ ReLU ◦ Lin(din, dhid),

where ReLU denotes the element-wise Rectified Linear Unit (ReLU) activation function.

Multi-Head Attention MHA(nhead, dout)(Q,K, V) denotes a multi-head attention (Vaswani et al.,
2017) with nhead heads which takes input as (Q,K, V) and outputs the feature with dimension dout.
The actual computation of MHA(nhead, dout)(Q,K, V) can be written as follows:

(Q′
i)

nhead
i=1 = split(Lin(dq, dout)(Q), nhead)

(K ′
i)

nhead
i=1 = split(Lin(dk, dout)(K), nhead)

(V ′
i)

nhead
i=1 = split(Lin(dv, dout)(V), nhead)

H = concat([softmax(Q′
iK

′⊤
i /

√
dout)V

′
i]

nhead
i=1)

O = LN(Q′ +H)

MHA(nhead, dout)(Q,K, V) = LN(O + ReLU(Lin(dout, dout)(O)))

where (dq, dk, dv) denotes the dimension of Q,K, V respectively, split and concat are the splitting
and concatenating A in the feature dimension respectively, and LN denotes the layer normaliza-
tion (Ba et al., 2016).

Self-Attention SA(nhead, dout) denotes a self-attention module which is simply computed as
SA(nhead, dout)(X) = MHA(nhead, dout)(X,X,X).

Multi-head Attention Block MAB(nhead, dout) denotes a multi-head attention block module (Lee
et al., 2019) which is simply computed as MAB(nhead, dout)(X,Y) = MHA(nhead, dout)(X,Y, Y).

12

Published as a conference paper at ICLR 2023

Induced Set Attention Block ISAB(nhead, dout) denotes a induced set attention block (Lee
et al., 2019) which constructed with two stacked MAB layers. The actual computation of
ISAB(nhead, dout)(X,Y) can be written as follows:

H = MAB(nhead, dout)(Y,X)

ISAB(nhead, dout)(X,Y) = MAB(nhead, dout)(X,H).

A.2 CNP, NP, BNP, NEURAL BOOTSTRAPPING NEURAL PROCESS (NEUBNP) AND MPNP

Encoder The models only with a deterministic encoder (CNP, BNP, MPNP) use the following struc-
ture:

rc =
1

|c|
∑
i∈c

MLP(nl = 5, din = dz, dhid = 128, dout = 128)(zi),

fenc(Zc) = rc.

For the MPNP, fenc(Zc) changes into concat([rc, r′c]) where r′c is the feature of the pseudo context
data generated from generator in paragraph Generator. The model also with a latent encoder (NP)
uses:

rc =
1

|c|
∑
i∈c

MLP(nl = 5, din = dz, dhid = 128, dout = 128)(zi),

(mc, log sc) =
1

|c|
∑
i∈c

MLP(nl = 2, din = dz, dhid = 128, dout = 128× 2)(zi),

sc = 0.1 + 0.9 · softplus(log sc),

hc = N (mc, s
2
cIh),

fenc(Zc) = [rc;hc],

where dz = dx+dy denotes the data dimension. Data dimensions vary through tasks, dx = 1, dy =
1 for 1D regression tasks, dx = 2, dy = 1 for MNIST image completion task, dx = 2, dy = 3 for
SVHN and CelebA image completion tasks, and dx = 1, dy = 2 for Lotka Volterra task.

Adaptation Layer BNP uses additional adaptation layer to combine bootstrapped representation
and the base representation. This can be done with a simple linear layer

r̃c = Lin(dhid = 128, dhid = dx + 128)(r̃(pre)c). (20)

Decoder All models use a single MLP as a decoder. The models except NP uses the following
structure:

(µ, log σ) = MLP(nl = 3, din = dx + 128, dhid = 128, dout = 2)(concat([x, rc]))
σ = 0.1 + 0.9 · softplus(log σ),

fdec(x, rc) = (µ, σ),

and NP uses:

(µ, log σ) = MLP(nl = 3, din = dx + 128× 2, dhid = 128, dout = 2)(concat([x, rc, hc]))

σ = 0.1 + 0.9 · softplus(log σ),
fdec(x, rc, hc) = (µ, σ).

Generator MPNP use a single ISAB module as a generator. The ISAB uses the following structure:

ϵ = concat([ϵi]
ngen
i=1)

r′c = ISAB(nhead = 8, dout = 128)(ϵ, rc)

fgen(rc) = r′c

where ϵis are i.i.d. sampled from Gaussian distribution with dimension 128 and ngen denotes a
number of pseudo context data.

13

Published as a conference paper at ICLR 2023

A.3 CANP, ANP, BANP AND MPANP

Encoder The models only with a deterministic encoder (CANP, BANP, Neural Bootstrapping At-
tentive Neural Process (NeuBANP) and MPANP) use the following structure:

rq = MLP(nl = 5, din = dx, dhid = 128, dout = 128)(X),

rk = MLP ′′ (Xc),

r(pre)
v = MLP(nl = 5, din = dz, dhid = 128, dout = 128)(Xc),

rv = SA(nhead = 8, dout = 128)(r(pre)
v),

rc = MHA(nhead = 8, dout = 128)(rq, rk, rv),

fenc(Zc) = rc.

For the MPANP, fenc(Zc) changes into
rc = MHA(nhead = 8, dout = 128)(rq, concat([rk, r′k]), concat([rv, r′v])),

fenc = rc,

where r′k and r′v are the key and value features of the pseudo context data generated from generator
in paragraph Generator.

ANP constructed as:
rq = MLP(nl = 5, din = dx, dhid = 128, dout = 128)(X),

rk = MLP ′′ (Xc),

r′v = MLP(nl = 5, din = dz, dhid = 128, dout = 128)(Xc),

rv = SA(nhead = 8, dout = 128)(r′v),

rc = MHA(nhead = 8, dout = 128)(rq, rk, rv),

h′
i = MLP(nl = 2, din = dz, dhid = 128, dout = 128× 2)(zi),

hi = SA(nhead = 8, dout = 128)(h′
i),

(mc, log sc) =
1

|c|
∑
i∈c

hi,

sc = 0.1 + 0.9 · softplus(log sc),

hc = N (mc, s
2
cIh),

fenc(Zc) = [rc;hc].

Note that rq and rk are from the same MLP.

Adaptation Layer Like BNP, BANP also uses adaptation layer with same structure to combine
bootstrapped representations.

Decoder All models use the same decoder structure as their non-attentive counterparts.

Generator MPANP use a single ISAB module as a generator. The ISAB uses the following struc-
ture:

ϵ = concat([ϵi]
ngen
i=1)

(r′k, r
′
v) = ISAB(nhead = 8, dout = 256)(ϵ, concat([rk, rv]))

fgen(rk, rv) = (r′k, r
′
v)

where ϵis are i.i.d. sampled from Gaussian distribution with dimension 256 and ngen denotes a
number of pseudo context data.

B ADDITIONAL EXPERIMENTS

B.1 1D REGRESSION

Full results for Table 1 We provide the full test results for 1D regression tasks including context,
target, and task log-likelihood values in Table 4.

14

Published as a conference paper at ICLR 2023

Table 4: Test results for 1D regression tasks on RBF, Matern, Periodic, and t-noise. ‘Context’ and
‘Target’ respectively denote context and target log-likelihood values, and ‘Task’ denotes the task
log-likelihood. All values are averaged over four seeds.

RBF Matern Periodic t-noise

Model Context Target Task Context Target Task Context Target Task Context Target Task

CNP 1.096±0.023 0.515±0.018 0.796±0.020 1.031±0.010 0.347±0.006 0.693±0.008 -0.120±0.020 -0.729±0.004 -0.363±0.012 0.032±0.014 -0.816±0.032 -0.260±0.012

NP 1.022±0.005 0.498±0.003 0.748±0.004 0.948±0.006 0.337±0.005 0.641±0.005 -0.267±0.024 -0.668±0.006 -0.441±0.013 0.201±0.025 -0.333±0.078 -0.038±0.026

BNP 1.112±0.003 0.588±0.004 0.841±0.003 1.057±0.009 0.418±0.006 0.741±0.007 -0.106±0.017 -0.705±0.001 -0.347±0.010 -0.009±0.032 -0.619±0.191 -0.217±0.036

MPNP (ours) 1.189±0.005 0.675±0.003 0.911±0.003 1.123±0.005 0.481±0.007 0.796±0.005 0.205±0.020 -0.668±0.008 -0.171±0.013 0.145±0.017 -0.329±0.025 -0.061±0.012

CANP 1.304±0.027 0.847±0.005 1.036±0.020 1.264±0.041 0.662±0.013 0.937±0.031 0.527±0.106 -0.592±0.002 0.010±0.069 0.410±0.155 -0.577±0.022 -0.008±0.098

ANP 1.380±0.000 0.850±0.007 1.090±0.003 1.380±0.000 0.663±0.004 1.019±0.002 0.583±0.011 -1.019±0.023 0.090±0.004 0.836±0.071 -0.415±0.131 0.374±0.034

BANP 1.380±0.000 0.846±0.001 1.088±0.000 1.380±0.000 0.662±0.005 1.018±0.002 1.354±0.006 -0.496±0.005 0.634±0.005 0.646±0.042 -0.425±0.050 0.270±0.033

MPANP (ours) 1.379±0.000 0.881±0.003 1.102±0.001 1.380±0.000 0.692±0.003 1.029±0.001 1.348±0.005 -0.494±0.007 0.630±0.005 0.842±0.062 -0.332±0.026 0.384±0.041

Table 5: Further comparisons with baselines with increased number of parameters. ‘Context’ and
‘Target’ respectively denote context and target log-liklihood values, and ‘Task’ denotes the task log-
likelihood. All values are averaged over four seeds.

RBF Matern

Model # Params Context Target Task Context Target Task

CNP 264 K 1.096±0.008 0.517±0.007 0.797±0.007 1.017±0.021 0.340±0.012 0.681±0.017

NP 274 K 1.026±0.004 0.501±0.003 0.752±0.003 0.948±0.005 0.334±0.002 0.640±0.003

BNP 261 K 1.115±0.007 0.591±0.005 0.843±0.006 1.051±0.007 0.416±0.005 0.736±0.005

MPNP (ours) 266 K 1.189±0.005 0.675±0.003 0.911±0.003 1.123±0.005 0.481±0.007 0.796±0.005

CANP 868 K 1.305±0.007 0.844±0.006 1.035±0.005 1.278±0.013 0.663±0.006 0.947±0.008

ANP 877 K 1.380±0.000 0.858±0.002 1.093±0.001 1.380±0.000 0.668±0.006 1.020±0.002

BANP 885 K 1.379±0.001 0.839±0.015 1.085±0.007 1.376±0.005 0.652±0.032 1.012±0.014

MPANP (ours) 877 K 1.379±0.000 0.881±0.003 1.102±0.001 1.380±0.000 0.692±0.003 1.029±0.001

Increasing the encoder size of baselines Since the generator increases the size of the encoder in
MPNPs, one can claim that the performance gain of MPNPs may come from the increased model size.
To verify this, we increased the hidden dimensions of the encoder of baselines and compared them
with ours. The results displayed in Table 5 further clarify that ours still outperforms the baselines
even when the number of parameters gets in line.

B.2 HIGH-D REGRESSION

We conducted additional experiments on the synthetic high-dimensional regression data (i.e., gener-
ating one-dimensional y from four-dimensional x with RBF kernel). Here we used the same model
structures with the 1D regression task except for the input layer, and the same settings for the RBF
kernel with 1D regression except for l ∼ Unif(0.5, 3.0). We fixed the base learning rate to 0.00015
for all models throughout the high-dimensional regression experiments.

Table 6 clearly shows our MPNPs still outperform baselines for log-likelihood values we measured.

B.3 IMAGE COMPLETION

MNIST We provide some completed MNIST images in Fig. 6. It shows that both MPNP and
MPANP successfully fill up the remaining parts of the image for a given context and capture the
uncertainties as predictive variances.

CelebA We also present five examples from the CelebA dataset in Fig. 7. It shows that MPANP
provides perceptually reasonable predictions even for complex three-channel images.

B.4 BAYESIAN OPTIMIZATION

We provide the results for Bayesian optimization on the Forrester et al. (2008) function in Fig. 8.
Our MPNPs consistently outperform baselines as discussed in Section 5.3. We also present the visual
results for Bayesian optimization in Figs. 9 and 10.

15

Published as a conference paper at ICLR 2023

Table 6: Test results for 4D regression tasks on RBF. ‘Context’ and ‘Target’ respectively denote
context and target log-likelihood values, and ‘Task’ denotes the task log-likelihood. All values are
averaged over four seeds.

RBF

Model Context Target Task

CNP 0.572±0.003 0.265±0.002 0.410±0.003

NP 0.568±0.009 0.267±0.004 0.407±0.007

BNP 0.621±0.015 0.323±0.008 0.467±0.013

MPNP (ours) 0.820±0.002 0.441±0.004 0.633±0.004

CANP 0.957±0.005 0.585±0.006 0.743±0.005

ANP 1.357±0.006 0.320±0.014 0.890±0.007

BANP 1.380±0.000 0.549±0.006 1.013±0.002

MPANP (ours) 1.379±0.000 0.645±0.007 1.046±0.002

C EXPERIMENTAL DETAILS

We attached our code in supplementary material. Our codes used python libraries JAX (Bradbury
et al., 2018), Flax (Heek et al., 2020) and Optax (Hessel et al., 2020). These python libraries are
available under the Apache-2.0 license1.

We conducted all experiments on a single NVIDIA GeForce RTX 3090 GPU, except for the image
completion tasks presented in Section 5.2; we used 8 TPUv3 cores supported by TPU Research
Cloud2 for the 2D image completion task. For optimization, we used Adam (Kingma and Ba, 2015)
optimizer with a cosine learning rate schedule. Unless specified, we selected the base learning rate
from a grid of {5×10−4.50, 5×10−4.25, 5×10−4.00, 5×10−3.75, 5×10−3.50} based on validation
task log-likelihood.

C.1 EVALUATION METRIC

Following Le et al. (2018), for CNP and CANP, which are deterministic models, we used the normal-
ized predictive log-likelihood 1

n

∑n
i=1 log p(yi|xi, Zc). For other models, we used a approximation

of the normalized predictive log-likelihood as:

1

n

n∑
i=1

log p(yi|xi, Zc) ≈
1

n

n∑
i=1

log
1

K

K∑
k=1

p(yi|xi, θ
(k)), (21)

where θks are independent samples for k ∈ [K].

C.2 1D REGRESSION

To generate tasks (Z, c), we first sample x
i.i.d.∼ Unif(−2, 2) and generate Y using each ker-

nel. We use RBF kernel k(x, x′) = s2 · exp
(

−||x−x′||2
2ℓ2

)
, Matern 5/2 kernel k(x, x′) =

s2 ·
(
1 +

√
5d
ℓ + 5d2

3ℓ2

)
, and periodic kernel k(x, x′) = s2 · exp

(
−2 sin2(π||x−x′||2/p)

ℓ2

)
where all

kernels use s ∼ Unif(0.1.1.0), ℓ ∼ Unif(0.1.0.6), and p ∼ Unif(0.1.0.5). To generate t-noise
dataset, we use Student-t with degree of freedom 2.1 to sample noise ϵ ∼ γ · T (2.1) where
γ ∼ Unif(0, 0.15). Then we add the noise to the curves generated from RBF kernel. We draw
index set |c| ∼ Unif(3, 50− 3) and n− |c| ∼ Unif(3, 50− |c|) to maintain max |Z| ≤ 50. We use
a batch size of 256 for training.

C.3 IMAGE COMPLETION

We use the following datasets for image completion experiments.
1https://www.apache.org/licenses/LICENSE-2.0
2https://sites.research.google/trc/about/

16

https://www.apache.org/licenses/LICENSE-2.0
https://sites.research.google/trc/about/

Published as a conference paper at ICLR 2023

Image Context MPNP μ MPNP σ MPANP μ MPANP σ

Figure 6: Predicted mean and standard deviation of image pixels by trained MPNPs with MNIST
dataset. The first column shows the real image from test dataset. The second column shows the
context dataset which given to the models. The third and the forth columns show the predicted
mean and standard deviation from the MPNP respectively. The fifth and the sixth columns show the
predicted mean and standard deviation from the MPANP.

MNIST We split MNIST (LeCun et al., 1998) train dataset into train set with 50,000 samples and
validation set with 10,000 samples. We use whole 10,000 samples in test dataset as test set. We

17

Published as a conference paper at ICLR 2023

image context CANP ANP BANP MPANP

Figure 7: Predicted mean of image pixels by trained CANP, ANP, BANP and MPANP model. (Column
1) Here we can see the 5 ground truth real image from the test dataset. (Column 2) The context set
which given to the models. (Column 3-6) The predicted mean of image pixels by each models.

0 10 20 30 40 50
iteration

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
re

gr
et

0 10 20 30 40 50
iteration

100

101

cu
m

m
ul

at
iv

e
no

rm
al

ize
d

re
gr

et

GP CNP NP BNP MPNP (ours)

0 10 20 30 40 50
iteration

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
re

gr
et

0 10 20 30 40 50
iteration

100

101

cu
m

m
ul

at
iv

e
no

rm
al

ize
d

re
gr

et

GP CANP ANP BANP MPANP (ours)

Figure 8: Results for Bayesian optimization on Forrester et al. (2008) function.

18

Published as a conference paper at ICLR 2023

0t
h

ite
ra

tio
n

CNP NP BNP MPNP (ours)

5t
h

ite
ra

tio
n

50
th

 it
er

at
io

n

objective function global optimum best findings

(a) Gramacy and Lee (2012) function

0t
h

ite
ra

tio
n

CNP NP BNP MPNP (ours)

5t
h

ite
ra

tio
n

50
th

 it
er

at
io

n

objective function global optimum best findings

(b) Forrester et al. (2008) function

Figure 9: It depicts 10 solutions predicted by CNP, NP, BNP, and MPNP. (a,b) Predicted results for
Gramacy and Lee (2012) function and Forrester et al. (2008) function, respectively. (Row 1) Black
circles indicate the whole initial points. (Row 2) It shows the 10 best solutions predicted by each
models after the 5 iterations. (Row 3) It shows the 10 best solutions predicted by each models after
the whole iterations.

19

Published as a conference paper at ICLR 2023

0t
h

ite
ra

tio
n

CANP ANP BANP MPANP (ours)

5t
h

ite
ra

tio
n

50
th

 it
er

at
io

n

objective function global optimum best findings

(a) Gramacy and Lee (2012) function

0t
h

ite
ra

tio
n

CANP ANP BANP MPANP (ours)

5t
h

ite
ra

tio
n

50
th

 it
er

at
io

n

objective function global optimum best findings

(b) Forrester et al. (2008) function

Figure 10: It depicts 10 solutions predicted by CANP, ANP, BANP, and MPANP. (a,b) Predicted
results for Gramacy and Lee (2012) function and Forrester et al. (2008) function, respectively. (Row
1) Black circles indicate the whole initial points. (Row 2) It shows the 10 best solutions predicted by
each models after the 5 iterations. (Row 3) It shows the 10 best solutions predicted by each models
after the whole iterations.

20

Published as a conference paper at ICLR 2023

make 28 × 28 grids which both axes starting from −0.5 to 0.5 to indicate the coordinate of pixels,
and normalize pixel values into [−0.5, 0.5]. We use a batch size of 128 for training.

SVHN We split SVHN (Netzer et al., 2011) train dataset into train set with 58,600 samples and
validation set with 14,657 samples. We use whole 26,032 samples in test dataset as test set. We
make 32 × 32 grids which both axes starting from −0.5 to 0.5 to indicate the coordinate of pixels,
and normalize pixel values into [−0.5, 0.5]. We use a batch size of 128 for training.

CelebA We use splits of CelebA (Liu et al., 2015) dataset as provided (162,770 train samples,
19,867 validation samples, 19,962 test samples). We crop 32 × 32 pixels of center of images. We
make 32 × 32 grids which both axes starting from −0.5 to 0.5 to indicate the coordinate of pixels,
and normalize pixel values into [−0.5, 0.5]. We use a batch size of 128 for training.

C.4 BAYESIAN OPTIMIZATION

We use the following benchmark functions for Bayesian optimization experiments. Throughout the
experiments, we adjust the function to have the domain of [−2.0, 2.0].

Gramacy and Lee (2012) function

f(x) =
sin(10πx)

2x
+ (x− 1)4, (22)

where x ∈ [0.5, 2.5] and a global optimum is at x∗ ≈ 0.5486.

Forrester et al. (2008) function

f(x) = (6x− 2)2 sin(12x− 4), (23)

where x ∈ [0, 1] and a global optimum is at x∗ ≈ 0.7572.

D DIRECTLY GENERATING INPUT MODEL

In this section, we present our model generating pseudo contexts directly in the input space. We will
present two kinds of model structure, i) directly generating pseudo context pair (x, y) simultaneously
by ISAB, ii) generating pseudo context data x and y, sequentially.

D.1 CONSTRUCTION

Generating pseudo context pair simultaneously. The generator of our first model which simul-
taneously generating pseudo context pair (x′, y′), takes real context dataset Zc as input and outputs
pseudo context dataset Z ′. Here the generator is the one layer ISAB module. Then we concatenate
Zc and Z ′ in order to treat this concatenated set as context dataset. Then the encoder takes this
concatenated context set as input. And the others are the same with CNP or CANP.

Sequentially generating pseudo context data x and y In this model, the generator takes real
context dataset Zc as input and outputs only x′s of Z ′. Here the generator is the one layer ISAB
module with additional one linear layer. Then we consider these x′s as our target dataset and find
the mean and variance of y′ for each x′ by forwarding the model with context dataset Zc and target
x′. We sample y′ from the Gaussian distribution with mean and variance from the prior step. We
again concatenate Zc with Z ′ and use them as context dataset.

Training Having directly generated a pseudo context set, we construct our empirical density as

gN (z) =
1

N

(∑
i∈c

δzi(z) +

N−|c|∑
i=1

δz′
i
(z)

)
. (24)

21

Published as a conference paper at ICLR 2023

Table 7: Test results for 1D regression tasks on RBF. ‘Context’ and ‘Target’ respectively denote
context and target log-likelihood values, and ‘Task’ denotes the task log-likelihood. All values are
averaged over four seeds.

RBF

Model Context Target Task

CNP 1.096±0.023 0.515±0.018 0.796±0.020

NP 1.022±0.005 0.498±0.003 0.748±0.004

BNP 1.112±0.003 0.588±0.004 0.841±0.003

MPNP (ours) 1.189±0.005 0.675±0.003 0.911±0.003

MPNP DSI(ours) 1.120±0.007 0.551±0.006 0.822±0.007

MPNP DSE(ours) 1.121±0.007 0.555±0.006 0.824±0.007

CANP 1.304±0.027 0.847±0.005 1.036±0.020

ANP 1.380±0.000 0.850±0.007 1.090±0.003

BANP 1.380±0.000 0.846±0.001 1.088±0.000

MPANP (ours) 1.379±0.000 0.881±0.003 1.102±0.001

MPANP DSI(ours) 1.380±0.000 0.796±0.013 1.069±0.005

MPANP DSE(ours) 1.380±0.000 0.783±0.014 1.064±0.005

Given gN , we find the function parameter θ as

θ(gN) := argmin
θ

∫
ℓ(z, θ)gN (dz), (25)

where we simply choose l(z, θ) := − logN (y|µθ(x), σ
2
θ(x)Idout). In order to train the directly

generating input model, which well approximate θ(gN), we should construct different objective
function from Eq. 19 because we can compute the exact

∫
ℓ(z, θ)gN (dz), unlike the feature gener-

ating model. First, we approximate the marginal likelihood which is,

log p(Y |X,Zc) ≈ log

[
1

K

K∑
k=1

exp

(
−

∑
i∈[n]

ℓ(zi, θ̃(Zc ∪ Z ′(k)))

)]
:= −Lmarg(τ, ϕ), (26)

where Z ′(1), . . . , Z ′(K) i.i.d.∼ p(Z ′|Zc;ϕpred). Eq. 26 is the same training object with Eq. 16. As
we mentioned in Section 3.2, if we are given sufficiently well approximated θ̃(Zc ∪ Z

′(K)) then
this objective would be suffice. However only with Eq. 26, we cannot train the encoder to properly
amortize the parameter construction process Eq. 11. To overcome this issue, we use

∫
ℓ(z, θ)gN (dz)

as our second training objective which is,

1

K

K∑
k=1

∫
ℓ(z, θ)g

(k)
N (dz) =

1

K

K∑
k=1

∑
z∈Zc∪Z′(k)

(
− ℓ

(
z, θ̃(Zc ∪ Z

′(k)
))

:= Lamort(τ, ϕ). (27)

Combining these two functions, our loss function for the direct MPNP is then

Eτ [L(τ, ϕ)] = Eτ [Lmarg(τ, ϕ) + Lamort(τ, ϕ)]. (28)

D.2 SAMPLE

In this section, we presents how the directly generating input model actually samples the pseudo
context datasets.

In Fig. 11, we report generated pseudo context datasets and posterior samples from two different
cases of directly generating input models for 1D regression task with RBF kernel. Here we can
see that the generator samples pseudo context datasets far from the real context dataset. This phe-
nomenon occurs because the generator learns to generate meaningless inputs ignored by the decoder.
In Fig. 12, we report how two different directly generating MPANPs predict posterior samples for 1D
regression task with RBF kernel. Although directly generated pseudo context dataset are a bit far
from context dataset, our model still well capture the functional uncertainty in this case. We report

22

Published as a conference paper at ICLR 2023

−5.0 −2.5 0.0 2.5 5.0
−1

0

1

−5.0 −2.5 0.0 2.5 5.0
−1

0

1

Figure 11: It shows generated pseudo context dataset of direct MPANP for 1D regression task with
RBF kernel. The red dots are true context points sampled from GP with RBF kernel, and the black
dots are generated pseudo context points. (Left) Results from simultaneously generating pseudo
context pair MPANP model. (Right) Results from sequentially generating pseudo context data MPANP
model.

−2 −1 0 1 2
−1

0

1

−2 −1 0 1 2
−1

0

1

Figure 12: It shows posterior samples of direct MPANP for 1D regression task with RBF kernel. The
black dashed line is a function sampled from GP with RBF kernel, and the black dots are context
points. We visualized decoded mean and standard deviation with colored lines and areas. (Left)
Results from simultaneously generating pseudo context pair MPANP model. (Right) Results from
sequentially generating pseudo context data MPANP model.

the test results for 1D regression tasks on RBF for two directly generating models in Table 7. DSI
and DSE indicate simultaneously generating models and sequentially generating models, respec-
tively. Table 7 shows that our directly generating models still outperform CNP and CANP in the
perspective of log-likelihood.

23

