
Under review as a conference paper at ICLR 2022

LEARNING CONTROLLABLE ELEMENTS ORIENTED
REPRESENTATIONS FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Reinforcement Learning (deep RL) has been successfully applied to solve
various decision-making problems in recent years. However, the observations in
many real-world tasks are often high dimensional and include much task-irrelevant
information, limiting the applications of RL algorithms. To tackle this problem,
we propose LCER, a representation learning method that aims to provide RL al-
gorithms with compact and sufficient descriptions of the original observations.
Specifically, LCER trains representations to retain the controllable elements of
the environment, which can reflect the action-related environment dynamics and
thus are likely to be task-relevant. We demonstrate the strength of LCER on the
DMControl Suite, proving that it can achieve state-of-the-art performance. To the
best of our knowledge, LCER is the first representation learning algorithm that
enables the pixel-based SAC to outperform state-based SAC on the DMControl
100K benchmark, showing that the obtained representations can match the oracle
descriptions (i.e. the physical states) of the environment.

1 INTRODUCTION

Deep Reinforcement Learning (deep RL) has proven its ability to solve difficult sequential decision-
making problems such as Dota2 (Berner et al., 2019) and StarCraft (Vinyals et al., 2019). However, it
is still a challenge to apply deep RL to many real-world tasks, because the observations in these tasks
are often high dimensional (e.g. pixels) and include much task-irrelevant noise. To address these
issues, representation learning is introduced in deep RL to provide information-dense descriptions
of the original observations, and thus reduce the difficulty of solving RL problems.

Many representations learning algorithms are proposed with the design goal to make the represen-
tations be predictive of properties of future states. Such a goal is typically achieved by imposing
the representations to reflect the dynamics of the environment (Mazoure et al.; Lee et al., 2020b;
Schwarzer et al., 2020; Gelada et al., 2019). However, the dynamics of the environment are not al-
ways task-relevant(e.g. the noisy and varying background in control tasks). This can be problematic
because those task-irrelevant dynamics will entice the representations into encoding task-irrelevant
information(e.g. the noisy background). Since the capacity of representations is limited, the ob-
tained representations can miss important task-relevant information (Gelada et al., 2019) or encode
too much unimportant task-irrelevant information (Zhang et al., 2020). Therefore, it is essential to
learn representations with more task-relevant environmental dynamics.

We envision that action-related dynamics are likely to be more task-relevant because actions are
the only feedback from the agent to the environment. For example, in control tasks and robotics
particularly, the agent can complete its task only if it can realize which part of the environment can be
influenced by its actions. For simplicity, we use controllable elements to denote those environment
elements that can be influenced by the agent’s actions and thus reflect the action-related dynamics.
We argue that these controllable elements should be explicitly retained for better representations.

Following the intuition above, we develop an efficient and flexible framework named Learning
Controllable Elements oriented Representations (LCER) for reinforcement learning to capture the
controllable elements of the environment. Specifically, we formally define a metric to measure the
amount of controllable elements that representations capture, and then propose a surrogate objective
that is derived from this metric and can make the representations encode controllable elements as

1

Under review as a conference paper at ICLR 2022

well as sufficient information. By emphasizing the importance of the controllable elements, LCER
can capture more task-relevant information automatically.

We evaluate our method LCER on the DMControl Suite (Tassa et al., 2018), which has been widely
used in recent years to benchmark sample efficiency (Kostrikov et al., 2020b; Hafner et al., 2019;
Laskin et al.; Lee et al., 2020b). Our experiments show that LCER combined with SAC (Haarnoja
et al., 2018) can outperform other representation learning methods on a majority of tasks, and even
achieve better performance than the state-based SAC on the DMControl 100K benchmark. We also
evaluate LCER on the Distracting Control Suite (Stone et al., 2021), showing LCER’s ability to filter
out distracting factors. The implementation of our work is available at https://anonymous.
4open.science/r/LCER-FF40

2 RELATED WORK

In this section, we review the common approaches of representation learning in RL briefly.

Predictive representations in RL. Predictive representations are typically trained to predict the
properties of future states. One commonly used approach is to predict the representation of future
states given the current state’s representation and actions. Such an approach is widely used in model-
based RL algorithms. The representations are prone to collapse if without further constraints (Gelada
et al., 2019), thus a reconstruction loss is usually applied to ensure non-trivial representations. How-
ever, this approach tries to encode everything, unable to filter out task-irrelevant information. SPR
(Schwarzer et al., 2020) introduces a target encoder to avoid collapse and reconstruction, but its ef-
fect lacks theoretical guarantee, and it does not emphasize the controllable elements as LCER does.
There are some methods that train predictive representations from information-theoretic perspec-
tives, such as (van den Oord et al., 2018; Hjelm et al., 2019; Anand et al., 2019; Lee et al., 2020b;
Mazoure et al.). These methods do not give a bias explicitly towards what kind of environment’s
dynamics should the representations reflect, while our method LCER focuses more on the action-
related dynamics which is more likely to be task-relevant. Our experiments in Section 5.2 shows
that encoding predictive information does not ensure representations of high quality in complex
environments, and it is crucial to retain controllable elements explicitly.

There are some prior works that also emphasize controllable elements. Typically, (Zhang et al.,
2018; pok, 2016; Badia et al., 2020) learn an inverse model that predicts the action given successive
states. However, these approaches typically rely on a reconstructive loss, which will significantly
harm their performance in complex environments. There are also some works that emphasize the
importance of actions in representation learning by introducing various action-related objectives
such as policy selectivity(Bengio et al., 2017) and contingency awareness(Bellemare et al., 2012).
However, their methods are often built on heuristics and do not give a clear definition of controllable
elements. Compared with these works, LCER firstly introduces a novel measure of controllable ele-
ments (Eq.(3)) and then develops an efficient method to optimize it without the aid of reconstruction
loss.

Bisimulation-based Representations in RL. Bisimulation-based representations group those
states into a cluster which are indistinguishable w.r.t. future return, given any action sequence tested.
The indistinguishability of two states is typically measured by the bisimulation metrics, which are
firstly introduced in (Ferns & doina Precup, 2014). Recently, (Zhang et al., 2020) proposes DBC,
a representation learning algorithm based on bisimulation that presents impressive results in dis-
tracting environments. However, these methods rely on a well-defined reward function, which is
probably unavailable in real-world tasks. Besides, they often fail to solve simple tasks efficiently
such as ones from DMControl Suite (Zhang et al., 2020).

Prior-knowledge-based Representations in RL There are other methods that use prior knowl-
edge to constraint the representations (Jonschkowski & Brock, 2015; Jonschkowski et al., 2017;
Thomas et al., 2018). For example, (Jonschkowski & Brock, 2015) forces the representations to
satisfy multiple priors such as proportionality and repeatability, which generally describe how the
optimal representations should look like. However, such priors need to be specially designed for
each environment, and much domain knowledge is required to form good representations. These
drawbacks significantly limit the applications of these methods.

2

https://anonymous.4open.science/r/LCER-FF40
https://anonymous.4open.science/r/LCER-FF40

Under review as a conference paper at ICLR 2022

3 PRELIMINARIES

3.1 NOTATION

We assume the underlying environment is a Markov decision process (MDP), described by the tuple
M = (S,A, P,R, γ), where S is the state space, A the action space, P : St × At × St+1 → [0, 1]
the transition probability function which determines the distribution of next state given current state
and action, and γ ∈ [0, 1] a discount factor. Given the current state s ∈ S, an agent choose its action
a ∈ A according to a policy function a ∼ π(·|s). This action will update the system state to a new
state s′ according to the transition function P , and then a reward r = R(s, a, s′) ∈ R is given to the
agent. The goal of the agent is to maximize the expected cumulative rewards by learning a policy π.

We denote the state at time step t by st. We use the upper letter of s (i.e. S) to refer to the random
variable of state if there is no ambiguity. We use st:t+k to present the state sequence from t to t+ k,
i.e. st:t+k := (st, st+1, ..., st+k). These notations can be extended to other variables such as actions
and rewards. We use φ : S → Z to denote the embedding function of LCER, which maps s ∈ S to
a latent space Z.

3.2 MUTUAL INFORMATION

The mutual information(MI) of two random variables X,Y is defined as:

I(X;Y) = DKL(PXY ‖PXPY), (1)

where DKL is the Kullback–Leibler divergence that measures the difference of two distributions.

The conditional mutual information(CMI) I(X;Y |Z) is defined as the expected value of I(X;Y)
given the value of Z:

I(X;Y |Z) = Ez∼ZI(X|z;Y |z). (2)

4 LEARNING CONTROLLABLE ELEMENTS ORIENTED REPRESENTATIONS

Given an embedding function: φ : S → Z, we argue that the number of controllable elements that
φ contains can be measured by the conditional mutual information(CMI):

Ik(φ) := I(φ(St+k);At:t+k−1|φ(St)) (3)

Intuitively, Ik measures the information that φ(St+k) and At:t+k−1 shares given φ(St). Note that
the non-controllable elements captured by φ do not contribute to Ik because they are not related
to the actions. Training representations to maximize Eq.(3) is an efficient way to make the rep-
resentations capture controllable elements. However, representations obtained in this way may be
too compressive1 to provide sufficient information for solving tasks in some cases, because not all
task-relevant elements are controllable. For example, in navigation tasks, the position of the goal
is task-relevant but not controllable by the agent. Therefore, we need to utilize Eq.(3) in a more
delicate manner. Specifically, in Section 4.1 we propose a surrogate objective derived from Eq.(3)
which additionally provides a mechanism to control the degree of compression. In Section 4.2, we
describe how to optimize this objective, leading to our final algorithm LCER.

4.1 THE OPTIMIZATION OBJECTIVE FOR LCER

By the chain rule of mutual information, we can break the Ik defined in Eq.(3) into the subtraction
of two terms: Ik(φ) = I([φ(St), At:t+k−1];φ(St+k)) − I(φ(St);φ(St+k)). The first term tries to
capture predictive information, while the second term serves as a compression term that aims to
filter out action-irrelevant information. To make φ capture the controllable elements and maintain
sufficient information at the same time, we introduce a hyper-parameter β to control the degree of
compression:

Ik(φ;β) := I([φ(St), At:t+k−1];φ(St+k))− βI(φ(St);φ(St+k)). (4)

1By saying “compressive”, we mean that these representations only encode controllable elements and filter
out any other information.

3

Under review as a conference paper at ICLR 2022

By choosing different β when training φ to maximize Eq.(4), we can control the degree of compres-
sion, making it possible to adapt to different environments by choosing different β.

However, directly maximizing Ik(φ;β) is intractable, because maximizing the first term and mini-
mizing the second term in Eq.(4) at the same time have an antagonistic effect to each other, thus it
is difficult to tune in practice. In fact, we find this will often lead to unstable training process in our
early experiments.

To tackle this problem, we substitute I(φ(St);φ(St+k)) with Ik(φ;β = 0)− Ik(φ;β = 1):

Ik(φ;β) = I([φ(St), At:t+k−1];φ(St+k))− β(Ik(φ;β = 0)− Ik(φ;β = 1))

= I([φ(St), At:t+k−1];φ(St+k))︸ ︷︷ ︸
J1
k

·(1− β) + I(φ(St+k);At:t+k−1|φ(St))︸ ︷︷ ︸
J2
k

·β. (5)

In Eq.(5), we maximize two terms (J1
k and J2

k) at the same time, and their coefficients are 1 − β
and β respectively. The first term J1

k is closely related to the predictive information encoded by
φ. The second term J2

k is related to the controllable elements, which will play an important role in
distracting environments as shown in Section 5.3.

In practice, we sum over different choices of k, leading to the final objective to maximize:

IK(φ;β) :=

K∑
k=1

Ik(φ;β). (6)

4.2 HOW TO OPTIMIZE THE OBJECTIVE FOR LCER

To maximize IK(φ, β), we propose to maximize its corresponding lower bound, which is common
practice in mutual information estimation. In this section, we first provides the lower bound for J1

k
and J2

k respectively that are used in this paper, and finally put them together to get our final loss for
training φ.

Optimizing J1
k . In order to maximize J1

k (φ), we propose to maximize the InfoNCE (van den Oord
et al., 2018) lower bound of J1

k (φ):

Ĵ1
k (φ) = −

1

B

B∑
i=1

log
exp(f(φ(sit), a

i
t:t+k−1;φ(s

i
t+k)))∑B

j=1 exp(f(φ(s
i
t), a

i
t:t+k−1;φ(s

j
t+k)))

, (7)

where f is any scalar function, B is the batch size, and sit, a
i
t:t+k−1, s

i
t+k is a transition sequence

from sit to sit+k. There are other alternatives to InfoNCE such as NWJ (Poole et al., 2019) and
MINE (Belghazi et al., 2018), however InfoNCE can often lead to better representations as shown
in (Tschannen et al., 2020). In order to efficiently optimize Ĵ1

k for all 1 ≤ k ≤ K, we recursively
define ψit+k to encode the information of (φ(sit), a

i
t:t+k−1):

ψit+k =

{
φ(sit), if k = 0

h(ψit+k−1, a
i
t+k−1), otherwise

(8)

and set f to be the bi-linear inner product of ψit+k and φ(sit+k):

f(φ(sit), a
i
t:t+k−1;φ(s

i
t+k)) := (ψit+k)

TWφ(sit+k). (9)

Note that the φit+k is shared across all Ĵ1
k , thus we do not need to re-compute it. The h in Eq.(8) is

quite similar to a “prediction” network, but is trained together with φ instead of prediction errors.

Optimizing J2
k . In order to maximize J2

k (φ), we turn to maximizing a Jensen-Shannon CMI
estimator Eq.(10), because it is proven to be more stable in our experiments, which is also sug-
gested in prior works (Hjelm et al., 2019; Sanchez et al., 2020). We introduce a statistics network
Tk : S ×At:t+k−1 × S → R and maximize:

Ĵ2
k (φ) := −

1

B

B∑
i=1

[log(1 + e−Tk(φ
i
t,a

i
t:t+k−1,φ

i
t+k)) + log(1 + eTk(φ

i
t,a

j(i)
t:t+k−1,φ

i
t+k)], (10)

4

Under review as a conference paper at ICLR 2022

Table 1: The DMControl 100K benchmarks, which report the performance at 100000 environment
steps in the PlaNet benchmarks. Our method LCER achieves the best performance on 6 of 6 tasks,
and is the only one that outperforms StateSAC w.r.t the average returns.

Environment LCER(ours) PI-SAC SLAC CURL Dreamer StateSAC
cartpole-swingup 790 ± 40 772 ± 49 327 ± 44 582 ± 146 234 ± 163 860 ± 7

cheetah-run 505 ± 38 271 ± 57 413 ± 67 299 ± 48 158 ± 133 206 ± 28
walker-walk 622 ± 127 431 ± 80 528 ± 41 403 ± 24 216 ± 124 664 ± 111
reacher-easy 704 ± 160 687 ± 133 342 ± 96 538 ± 233 147 ± 117 774 ± 111
finger-spin 961 ± 56 942 ± 84 951 ± 32 767 ± 56 33 ± 42 749 ± 234

ball in cup-catch 933 ± 25 878 ± 117 917 ± 21 769 ± 43 172 ± 215 951 ± 18
Average Returns 752 663 579 559 160 700

where j(1), .., j(B) are obtained by randomly shuffling 1, .., B. The derivation of Eq.(10) is pro-
vided in Appendix B. In practice, we choose Tk(φt, at:t+k−1, φt+k) = T (ψt+k, φt+k), where ψt+k
is a latent variable defined in Eq.(8) and T : Z × Z → R is a network shared across different Tk.

Final loss for training φ. Inspired by (He et al., 2020), we propose to utilize a target encoder
φtarg to stabilize the training process, whose weights are the exponential moving average(EMA2)
of φ. Specifically, the embeddings of sit+k (k ≥ 1) are calculated by φtarg.

All pieces together, we obtain our loss for φ to minimize:

LK(φ;h,W, T) = −
K∑
k=1

Ĵ1
k (φ) · (1− β) + Ĵ2

k (φ) · β

=
1

B

B∑
i=1

K∑
k=1

[(1− β) log
exp((ψit+k)

TWφtarg(s
i
t+k))∑B

j=1 exp((ψ
i
t+k)

TWφtarg(s
j
t+k))

+ β(log(1 + exp (−T (ψit+k, φtarg(sit+k))) + log(1 + exp (T (ψ̂it+k, φtarg(s
i
t+k)))],

(11)
where B is the batch size, h, ψit+k are defined in Eq.(8), W is defined in Eq.(9), ψ̂it+k is a latent

defined in the same way with ψit+k but it encodes φ(sit) and aj(i)t:t+k−1(instead of ait:t+k−1), T is a
scalar function, and φtarg is the target encoder. The parameters of φ, h,W, T are training together
by minimizing LK . In practice, Eq.(11) can be used as an auxiliary loss for any RL algorithms such
as SAC (Haarnoja et al., 2018).

5 EXPERIMENTS

In this section, we first compare LCER with other methods in Section 5.1 on the PlaNet benchmark.
In Section 5.2, we then demonstrate LCER’s strength to filter out distracting factors on the Distract-
ing Control Suite, and show that it is not enough to obtain good representations just by encoding
predictive information. In Section 5.3, we investigate the effect of K and β, which are the most im-
portant parameter in LCER. Finally, we investigate how well the representations obtained by LCER
can be generalized to other tasks from the same domain in Section 5.4.

In our experiments, LCER is equipped with SAC (Haarnoja et al., 2018). Most of the parameters in
LCER are the same with PI-SAC (Lee et al., 2020b), including the batch size, learning rate, action
repeat, and the network architecture of φ, see Appendix A for more details. Following (Laskin et al.;
Lee et al., 2020a;b), we report the performance using the true environment steps, which is invariant
to the choice of action repeat. Unless specially specified, We set K = 5, β = 0.1 and run every
experiment using 10 random seeds.

2EMA is a widely used trick in RL. For example, in SAC, the weights of target Q are the EMA of Q.

5

Under review as a conference paper at ICLR 2022

Figure 1: The PlaNet Benchmarks. The performance of StateSAC can be seen as an upper bound
because it learns directly from internal physical states rather than pixels. Our algorithm LCER
consistently achieves better or comparable performance than other methods(except StateSAC) on
all environments

5.1 EVALUATION ON SAMPLE EFFICIENCY

In this section, We evaluate LCER on the PlaNet benchmark, which consists of six challenging con-
trol tasks from the DMControl Suite (Tassa et al., 2018). The PlaNet benchmark is first introduced
in (Hafner et al., 2019) and later widely used to benchmark sample efficiency in (Kostrikov et al.,
2020b; Laskin et al.; Lee et al., 2020b;a).

We equip LCER with SAC (Haarnoja et al., 2018) and compare LCER to 3 leading representation
learning algorithms3: CURL (Laskin et al.),SLAC (Lee et al., 2020a),and PI-SAC (Lee et al., 2020b).
CURL introduces contrastive learning into RL and actually trains representations to encode infor-
mation that is invariant under data augmentation. SLAC efficiently combines both representation
learning and control into a single objective via Bayesian inference, but it relies on a reconstruction
loss. PI-SAC tries to encode predictive information, while LCER focuses on encoding controllable
elements. All these methods are also built on SAC (Haarnoja et al., 2018). Following (Laskin et al.;
Kostrikov et al., 2020b), we use the version of PI-SAC that performs one gradient update per envi-
ronment step to ensure a fair comparison. We also compare LCER with a model-based algorithm
Dreamer (Hafner et al., 2020). To further evaluate the quality of the representations obtained by
LCER, we also consider the state-based SAC (which called StateSAC) that directly learns from in-
ternal physical states provided by DMControl Suite. The performance of StateSAC can be seen as
an upper bound since it utilizes the oracle representations of the environments. All hyperparameters
of StateSAC are the same with LCER except that it uses states as input instead of pixels.

In Figure 1, we report the learning curves of LCER, PI-SAC (Lee et al., 2020b), SLAC (Lee et al.,
2020a), and Dreamer (Hafner et al., 2020). LCER consistently achieves better or comparable per-
formance than other methods. In Table 1, We report the performance of each algorithm at 100k
environment steps. LCER is the only algorithm that enables pixel-based SAC to outperform state-
based SAC w.r.t the average returns, showing that the obtained representations can match the oracle
descriptions(i.e. the physical states) of the environment. We also provide additional aggregate met-
rics on DMControl 100k benchmark, see Section C for details.

In practice, pixel-based observations are often equipped with data augmentation to serve as a regu-
larizer (Kostrikov et al., 2020b; Lee et al., 2020b; Laskin et al.; 2020). In LCER, we also randomly
shift the observations by [−4, 4] pixels. However, a proper data augmentation method is not always
available for general forms of observations. Therefore, We further test our method LCER in the

3The performance data of SLAC, Dreamer, CURL is provided by the authors of the corresponding papers.

6

Under review as a conference paper at ICLR 2022

Figure 2: The learning curves when data augmentation is not available. LCER can still continuously
improve the performance to a great extent without the help of data augmentation, showing LCER’s
ability to handle different data formats (beyond pixels) of observations.

Figure 3: The Learning curves on Distracting Control Suite, a challenging benchmark that contains
several kinds of visual distractions. Top row: the observations on each task. Bottom row: the
learning curves on each task. The relatively poor performance of PI-SAC indicates that encoding
predictive information does not ensure representations of high quality. Although these tasks are so
difficult that SAC fails to solve, LCER can still improve the agent’s performance gradually, showing
LCER’s robustness to distractions.

situation where no data augmentation is available. As shown in Figure 2, LCER can still improve
the performance to a great extent without the help of data augmentation. Note that some sample-
efficient RL algorithms such as DrQ (Kostrikov et al., 2020b) and RAD (Laskin et al., 2020) that
rely on data augmentation can not be extended to such a situation naturally.

Our experiments on the PlaNet benchmark show that our proposed method LCER can obtain repre-
sentations that help solve the tasks, and thus improve the sample efficiency.

5.2 ROBUSTNESS TO DISTRACTIONS

In this section, we test LCER on the Distracting Control Suite (Stone et al., 2021), a challenging
benchmark that is implemented by introducing several kinds of visual distractions to the DMControl
Suite, such as random changes to camera pose, object color, and background (see Figure 3). These
distractions widely exist in the real world and can reduce the performance of RL algorithms to a
great extent (Stone et al., 2021). We aim to show LCER’s ability to filter out those distractions and
that it is not enough to just encode predictive information. Note that some representation learning
methods such as SLAC (Lee et al., 2020a) rely on a reconstruction loss, which will lead to significant
performance degradation as shown in (Zhang et al., 2020).

7

Under review as a conference paper at ICLR 2022

(a) The effect of K on performance.

(b) The effect of β on performance.

Figure 4: The effect of K and β. Figure 4(a) shows that larger K generally leads to better perfor-
mance. The effect of β is more complicated as shown in Figure 4(b). Larger β does lead to better
performance within a certain range, however when β goes beyond this range(i.e.β = 1), it may
hinder the performance. In practice, we can gradually increase the value of β to search for optimal
performance.

In Figure 3, we run experiments on three control tasks from the Distracting Control Suite: D.cheetah-
run, D.walker-walk, D.finger-spin4. In all tasks, we set the difficulty to be ‘easy’ and use a dynam-
ically varying background (refer to (Stone et al., 2021) for more details). We choose β = 0.4 for
D.cheetah-run and D.finger-spin, and β = 1 for D.walker-walk5. We additionally compare LCER
with DBC (Zhang et al., 2020) and CVRL (Ma et al., 2020), which are specially designed to deal
with distractions. As shown in Figure 3, proper representation learning methods are crucial in these
tasks, because it is difficult for the agent to filter out task-irrelevant information by itself. LCER
achieves much better performance than PI-SAC, which indicates that it can not lead to high-quality
representations just by encoding predictive information, instead we have to attach more importance
to the controllable elements. We argue that this is because the distractions are often not controllable
by the agent, and thus can be filtered out by LCER. Although these distractions do have a negative
effect on LCER’s performance, LCER suffer less than other methods, showing LCER’s robustness
to these distractions.

5.3 THE EFFECT OF K AND β

In this section, we try to specify the effect of K and β, which are the most important hyper-
parameters in LCER.

To investigate the effect of K, we set β = 0 and report the performance for K = 0, 1, 2, 5 in Figure
4(a). Note that K = 0 is a special case in LCER that does not take into account any actions, and
exactly recovers the work of CURL (Laskin et al.). We add K = 0 to emphasize the importance
of actions. As shown in Figure 4(a), larger K leads to better performance, especially when K
changes from 0 to 1. We think this is because large K can provide more supervision signals thanks
to our special design of Eq.(11). To investigated the effect of β, we report the performance for
β = 0.1, 0.2, 0.4, 1 in Figure 4(b). As shown in Figure 4(b), larger β does lead to better performance

4We use “D.” to distinguish these tasks from the ones in the DMControl Suite.
5We sweep over {0.1,0.2,0.4,1} to get the optimal β. The learning curves for these β’s are provided in

Figure 4(b).

8

Under review as a conference paper at ICLR 2022

Figure 5: The learning curves of transferring obtained representations to target tasks. From left to
right, the source tasks are cartpole-swingup, hopper-stand, walker-walk respectively. “LCER” and
“SAC transferred” refer to using the representations obtained by LCER and vanilla SAC respec-
tively, and “SAC” refers to training from scratch using vanilla SAC on target tasks. The represen-
tation obtained by LCER can encode more useful information than vanilla SAC, leading to better
performance on target tasks.

within a certain range, however when β goes beyond this range (e.g.β = 1), it may hinder the
performance in some tasks. The result in Figure 4(b) indicates that the optimal β should be chosen
according to the given environment. By introducing a hyper-parameter β, LCER is able to strike a
balance on the proportion of controllable elements that φ captures, allowing for searching for better
performance.

5.4 THE QUALITY OF REPRESENTATIONS

In this section, we try to measure the quality of φ by generalizing φ to unseen tasks. Specifically,
we train φ on a source task, froze φ, and then apply it to a target task within the same domain. If
LCER can capture the controllable elements efficiently, then the representations obtained on source
task should also fit in with the target task, because tasks within the same domain share the same
environment dynamics (but with different reward functions). In Figure 5, we report 3 learning curves
on target tasks6: SAC, LCER(tsf.) and LCER(self tsf.). SAC is trained directly on target tasks.
LCER(tsf.) and LCER(self tsf.) is trained with frozen encoders which are obtained via training on
source tasks and target tasks respectively for 300k environment steps. Note that LCER(self tsf.) can
be seen as a ground truth baseline where an LCER agent learns representations directly on the target
task and is then made to ”transfer” to the same task. On those source tasks where the environment
dynamics are well explored (such as cartpole-swingup and walker-walk), LCER(tsf.) can perform
as well as LCER(self tsf.) on target tasks. However, when solving target tasks needs to exploit more
environment dynamics which are not explored in source tasks (such as hopper-stand7), LCER(tsf.)
shows inferior performance. We can conclude that the transfer ability of LCER is mainly influenced
by the exploration on the environment dynamics instead of task-specific features. If the agent can
explore the full dynamics (such as in walker-walk and cartpole-swingup), LCER(tsf.) can learn as
effective representations as LCER(self tsf) does even on source tasks.

6 CONCLUSION

In this paper, we introduce the LCER, an efficient framework to train representations that can re-
flect the action-related dynamics of the environment. By focusing on the controllable elements of
the environment, LCER can encode task-relevant information into representations, improving the
performance of RL algorithms. Our experiments on DMControl 100K benchmark show that LCER
can enable the pixel-based SAC to outperform state-based SAC, demonstrating improvement over
prior works. We also evaluate LCER on the Distracting Control Suite, showing LCER’s robustness
to distractions.

6including cartpole-swingup → cartpole-balance, walker-walk → walker-run, and hopper-stand → hopper-
hop.

7This because in hopper-hop the agent needs to move forward, however in hopper-stand it does not.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Learning to poke by poking: Experiential learning of intuitive physics. In Advances in Neural Infor-
mation Processing Systems 29: Annual Conference on Neural Information Processing Systems,
NeurIPS, 2016.

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G. Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. CoRR, 2021a.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. ArXiv, 2021b.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R. Devon
Hjelm. Unsupervised state representation learning in atari. Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS, 2019.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Bilal Piot,
Steven Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andrew Bolt, and
Charles Blundell. Never give up: Learning directed exploration strategies. In 8th International
Conference on Learning Representations, ICLR, 2020.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, R. Devon
Hjelm, and Aaron C. Courville. Mutual information neural estimation. Proceedings of the 35th
International Conference on Machine Learning, ICML, 2018.

Marc G. Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness using
atari 2600 games. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
2012.

Emmanuel Bengio, Valentin Thomas, Joelle Pineau, Doina Precup, and Yoshua Bengio. Indepen-
dently controllable features. CoRR, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, 2019.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. CLUB: A
contrastive log-ratio upper bound of mutual information. Proceedings of the 37th International
Conference on Machine Learning, ICML, 2020.

Norman Ferns and doina Precup. Bisimulation metrics are optimal value functions. Proceedings of
the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI, 2014.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. Proceedings of the 36th
International Conference on Machine Learning, ICML, 2019.

Zhaohan Daniel Guo, Bernardo Ávila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for mul-
titask reinforcement learning. Proceedings of the 37th International Conference on Machine
Learning, ICML, 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. CoRR, 2018.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. Proceedings of the 36th
International Conference on Machine Learning, ICML, 2019.

10

Under review as a conference paper at ICLR 2022

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In 8th International Conference on Learning Representa-
tions, ICLR, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, 2020.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. 7th International Conference on Learning Representations, ICLR, 2019.

Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors. Auton.
Robots, 2015.

Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin A. Riedmiller. Pves: Position-
velocity encoders for unsupervised learning of structured state representations. CoRR, 2017.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. CoRR, 2020a.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. CoRR, 2020b.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised representa-
tions for reinforcement learning. Proceedings of the 37th International Conference on Machine
Learning, ICML 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS, 2020.

Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS, 2020a.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Sergio
Guadarrama. Predictive information accelerates learning in RL. Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS, 2020b.

Xiao Ma, Siwei Chen, David Hsu, and Wee Sun Lee. Contrastive variational reinforcement learning
for complex observations. In 4th Conference on Robot Learning, CoRL 2020, 2020.

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and R. Devon Hjelm.
Deep reinforcement and infomax learning. Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural sam-
plers using variational divergence minimization. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, NeurIPS, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS, 2019.

Ben Poole, Sherjil Ozair, Aäron van den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. Proceedings of the 36th International Conference on Machine
Learning, ICML, 2019.

11

Under review as a conference paper at ICLR 2022

Eduardo Hugo Sanchez, Mathieu Serrurier, and Mathias Ortner. Learning disentangled representa-
tions via mutual information estimation. 2020.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Data-efficient reinforcement learning with momentum predictive representations.
CoRR, 2020.

Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad Ghavamzadeh, Stefano
Ermon, and Hung H. Bui. Predictive coding for locally-linear control. Proceedings of the 37th
International Conference on Machine Learning, ICML, 2020.

Alessandro Sordoni, Nouha Dziri, Hannes Schulz, Geoffrey J. Gordon, Philip Bachman, and
Remi Tachet des Combes. Decomposed mutual information estimation for contrastive repre-
sentation learning. In Proceedings of the 38th International Conference on Machine Learning,
ICML, 2021.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite
- A challenging benchmark for reinforcement learning from pixels. CoRR, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. CoRR, 2018.

Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pondard, Philippe Beaudoin, Hugo
Larochelle, Joelle Pineau, doina Precup, and Yoshua Bengio. Disentangling the independently
controllable factors of variation by interacting with the world. CoRR, 2018.

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On
mutual information maximization for representation learning. 8th International Conference on
Learning Representations, ICLR, 2020.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Çaglar Gülçehre, Ziyu Wang, To-
bias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and
David Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nat.,
2019.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. 2019.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
In 6th International Conference on Learning Representations, ICLR, 2018.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invari-
ant representations for reinforcement learning without reconstruction. CoRR, 2020.

12

Under review as a conference paper at ICLR 2022

A IMPLEMENTATION

In this section, we explain the implementation in details.

Action Repeat Following (Lee et al., 2020b; Laskin et al.; Lee et al., 2020a; Hafner et al., 2019),
we use different action repeat to different environments. The action repeat is a parameter that deter-
mine how frequently the agent is supposed to make a decision. For a fair comparison, we adopt the
action repeat from (Lee et al., 2020b;a). Specifically, for cheetah-run, cartpole-swingup, reacher-
easy, and ball in cup-catch, we use action repeat of 4. For walker-walk and finger-spin, we use 2
and 1 respectively. Note that the action repeat parameters can directly affect the performance.

Initial collecting step Following (Lee et al., 2020b;a), we pre-train our model using a small
amount of random data. Specifically, we first interact with the environment using a random pol-
icy to collect initial experience, and then using the experience to pre-train our encoder φ. Note that
the amount of initial random data has been taken into account in all experiments. For cheetah-run,
walker-walk, reacher-easy, and ball in cup-catch, we collect random data for 10000 true environ-
ment steps and then train φ for 10000 iterations. For finger-spin, 10000 true environment steps and
50000 iterations respectively. For cartpole-swingup, 4000 true environment steps and 1000 itera-
tions.

Network Architectures We use the encoder(i.e. φ) that shares the same architecture with (Laskin
et al.; Lee et al., 2020b), which consists of 4 convolution layers(32 3×3 filters with stride 2 for the
first layer, and 32 3×3 with stride 1 for the rest 3 layers) and a fully-connected layer that flattens the
output of convolution layers and then maps it into a latent space with 50 dimensions. For the h in
Eq.(8), we use MLPs with 2 128-d hidden layers, whose input and output are both of 50 dimensions.
For the actor and critic, we both use MLPs with two 512-d hidden layers. We use tanh to squash the
output of the actor to make sure it fits the action bound of the environment.

Other Hyperparameters We list the other hyperparamters in Table 2. Most of these paramters
are the same with (Lee et al., 2020b).

Hyperparameter Value
Batch size 256
Learning rate 3e-4
Replay buffer size 100000
Dimension of latent space 50
Stacked frames 3
Optimizer Adam
(β1, β2) in Adam (0.5, 0.999) for α,

(0.9, 0.999) for others
target update interval 1
actor log std [-10, 2]
Q EMA τi 0.005
Encoder EMA τφ 0.05
Initial temperature 0.1
Discount 0.99
Non-linearity ReLU
Entropy Target -dim(A)

Table 2: The hyperparameters of LCER.

13

Under review as a conference paper at ICLR 2022

B ESTIMATION OF CONDITIONAL MUTUAL INFORMATION

In this section, we describe how we optimize IJSD defined in Section 4.2. In the followings, the
φ(St+k), At:t+k−1, φ(St) are denoted by X,Y, Z respectively.

We first borrow some theoretical results from (Nowozin et al., 2016):

IJSD(X;Y |Z) = Ez∼ZDJS(PXY |z‖PX|zPY |z)
= DJSD(PXY Z‖PXY PY |Z)
≥ sup

V
Ex,y,z∼XY ZV (x, y, z)− Ex,z∼XZ,y∼Y |zf∗JSD(V (x, y, z)).

(12)

Here, fJSD is the generator function of Jensen-Shannon divergence: fJSD(u) = −(u+1) log 1+u
2 +

u log u, and f∗JSD is its corresponding convex conjugate function: f∗JSD(t) = supu{ut −
fJSD(u)} = − log(2 − exp(t)). We choose V (x, y, z) = log(2) − log(1 + exp(−Tk(x, y, z))),
then:

IJSD(X;Y |Z) ≥ sup
V
Ex,y,z∼XY ZV (x, y, z)− Ex,z∼XZ,y∼Y |zf∗JSD(V (x, y, z))

= sup
Tk

−Ex,y,z∼XY Z log(1 + e−Tk(x,y,z))− Ex,z∼XZ,y∼Y |z log(1 + eTk(x,y,z)) + 2 log 2

≈ sup
Tk

−Ex,y,z∼XY Z log(1 + e−Tk(x,y,z))− Ex,z∼XZ,y∼Y log(1 + eTk(x,y,z)) + 2 log 2.

(13)
In Eq.(13), we suppose p(y|z) ≈ p(y)(i.e. At:t+k−1 is independent from φ(St)) for simplicity.
Such an assumption is appropriate in our case, because (St, At:t+k−1, St+k) is sampled from a
large replay buffer(= 105) whose action policy is quite non-stationary due to policy updates.

To estimate the RHS of Eq.(13), we first randomly sample B transitions {sit, ait:t+k−1, sit+k}Bi=1

from the replay buffer. Assume (j(1), .., j(B)) is a permutation of (1, 2, .., B) obtained by random
shuffling, thenEx,y,z∼XY Z(·) can be approximated by 1

B

∑
sit,a

i
t:t+k−1,s

i
t+k

(·) andEx,z∼XZ,y∼Y (·)
by 1

B

∑
sit,a

j(i)
t:t+k−1,s

i
t+k

(·). Therefore, the RHS of Eq.(13) can be estimated by:

Ĵ2
k (φ) := −

1

B

B∑
i=1

[log(1 + e−Tk(φ
i
t,a

i
t:t+k−1,φ

i
t+k)) + log(1 + eTk(φ

i
t,a

j(i)
t:t+k−1,φ

i
t+k)], (14)

Here, we omit the “2 log 2” in Eq.(13) for simplicity.

14

Under review as a conference paper at ICLR 2022

(a) Score Distributions (b) Rank comparisons

Figure 6: Additional aggregate metrics on DMControl 100K benchmark.

C ADDITIONAL AGGREGATE METRICS ON DMCONTROL 100K
BENCHMARK

In this section, we provides additional comparison on DMControl 100k benchmark using aggregate
metrics from rliable (Agarwal et al., 2021b).

We normalize all scores to [0, 1] by dividing by the maximum score (=1000). The metrics are shown
in Figure 6, which include:

• Ranks distribution, where the ith column in the plot shows the probability that a given
method is assigned rank i, averaged across all tasks. We can see that LCER and StateSAC
shares (almost) same probability (about 40%) of ranking 1st, while LCER has a higher
probability (35% v.s. 18%) of ranking 2rd

• Score distribution, where a point (τ, fτ) in the plot means the fraction of runs with score
> τ is fτ . The curve of LCER is above StateSAC’s when τ < 0.5, showing than LCER
are more stable than StateSAC (regarding the worst performance).

15

	Introduction
	Related Work
	Preliminaries
	Notation
	Mutual Information

	Learning Controllable Elements Oriented Representations
	The Optimization Objective for LCER
	How to Optimize the Objective for LCER

	Experiments
	Evaluation on Sample Efficiency
	Robustness to Distractions
	The Effect of K and
	The Quality of Representations

	Conclusion
	Implementation
	Estimation of Conditional Mutual Information
	Additional Aggregate Metrics on DMControl 100K Benchmark

