
Under review as a conference paper at ICLR 2023

DEEPRESHAPE: REDESIGNING NEURAL NETWORKS
FOR PRIVATE INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The increased demand for privacy and security has given rise to private inference
(PI), where inferences are made on encrypted data using cryptographic techniques.
A challenge with deploying PI is computational and storage overheads, which
makes them impractical. Unlike plaintext inference, PI’s overheads stem from
non-linear operations,i.e., ReLU. Despite the inverted neural operator overheads,
all the previous ReLU-optimizations for PI still leverage classic networks opti-
mized for plaintext. This paper investigates what PI-optimized network architec-
tures should look like, and through thorough experimentation, we find that wider
networks are more ReLU efficient and that how ReLUs are allocated between lay-
ers has a significant impact. The insights are compiled into a set of design princi-
ples (DeepReShape) and used to synthesize specific architectures (HybReNet) for
efficient PI. We further develop a novel channel-wise ReLU dropping mechanism,
ReLU-reuse, and achieve upto 3% accuracy boost. Compared to the state-of-the-
art (SNL on CIFAR-100), we achieve a 2.35% accuracy gain at 180K ReLUs. For
ResNet50 on TinyImageNet our method saves 4.2× ReLUs at iso-accuracy.

1 INTRODUCTION

The trend of processing machine learning inferences in the cloud has given rise to privacy concerns
and inspired so-called private inference (PI). In PI, a client sends their (secured/encrypted) input data
to the cloud service provider. The provider then performs the inference such that they do not learn
anything about the client’s data while the client learns nothing about the provider’s trained network.
PI is achieved via cryptographic primitives, which are effective but incur orders of magnitude higher
processing latency than plaintext. In contrast to plaintext inference, most of the computational
complexity of PI stems from non-linear layers, namely ReLU (Liu et al., 2017; Juvekar et al., 2018;
Mishra et al., 2020; Rathee et al., 2020; Ghodsi et al., 2020; 2021; Cho et al., 2022a; Tan et al.,
2021; Wang et al., 2022). To mitigate this, prior work has proposed ReLU-optimization techniques
to prune the insignificant ReLUs for more efficient PI (Mishra et al., 2020; Lou et al., 2021; Jha
et al., 2021; Cho et al., 2022b). However, as shown below, the merits of these ReLU optimization
techniques are strongly dependent on the input baseline networks.

Performance of ReLU optimization is strongly correlated with the selection of baseline net-
works: Table 1 list the baseline networks used in recently proposed ReLU optimization papers,
and Figure 1 and Figure 2 show the ReLU-accuracy tradeoffs for state-of-the-art coarse-grained
(DeepReDuce (Jha et al., 2021)) and fine-grained (SNL (Cho et al., 2022b)), ReLU optimizations,
with different baseline networks. In DeepReDuce, there exist substantial accuracy differences at
iso-ReLU counts depending on which network is used—12.9% and 11.6% for networks with high
and low ReLU operators. Even with fine-grained ReLU optimization (SNL), for networks pertained
using the same family of networks there is a significant accuracy difference at iso-ReLU counts,
which is more pronounced at lower ReLU counts. For example, while accuracy is similar at high
ReLU counts (220K and 180K), there is a 3.15% and 4.6% accuracy difference at 25K and 15K
ReLUs, respectively, between ResNet18 and WideResNet16x8. In fact, SNL achieves state-of-the-
art results using two different baseline networks—WideResNet22x8 for higher ReLU counts and
ResNet18 for lower ReLU counts.

Challenges for designing PI-friendly baseline networks: In addition, since the costs of PI are
so different, we need new networks. Conventional network design (i.e., networks optimized for

1



Under review as a conference paper at ICLR 2023

ReLU optimization method Baseline
Delphi (Mishra et al., 2020) ResNet32
SAFENets (Lou et al., 2021) ResNet32, VGG16

DeepReDuce (Jha et al., 2021) ResNet18, ResNet9
SNL (Cho et al., 2022b) ResNet18, WRN22x8

Table 1: Previously proposed
ReLU optimization methods
used different (input)baseline
networks for the Pareto frontier
of Accuracy-Latency in private
inference.

 50

 55

 60

 65

 70

 75

 80

 16  32  64  128  256  512

∆Acc.=12.9%

∆Acc.=11.6%

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

ResNet18

ResNet32

WRN22x8

VGG16

MobileNetV1

MobileNetV2

Figure 1: DeepReDuce with
different baseline networks.

 60

 63

 66

 69

 72

 75

 78

 16  32  64  128  256

∆Acc.=3.2%

∆Acc.=4.6%C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

ResNet18

ResNet34

WRN22x4

WRN22x8

WRN16x8

WRN28x8

Figure 2: SNL with different
baseline networks.

plaintext inference) seeks to maximize accuracy per FLOPs while ignoring ReLUs as the operators
are effectively free. On th other hand, most prior work on optimizing PI uses networks optimized
for plaintext inference. To the extent of our knowledge, there are two prior works on optimiz-
ing networks for private inference that rely on neural architecture search for designing PI-friendly
networks. CryptoNAS (Ghodsi et al., 2020) and SPHYNX (Cho et al., 2022a) use the notion of
ReLU-balancing and achieve ReLU-efficiency while disregarding their FLOPs implications, assum-
ing FLOPs are free. However, a recent work (Garimella et al., 2022) shows that while ReLUs
is the primary bottleneck, FLOPs are not free. Thus, a general design principle for FLOPs-ReLU-
Accuracy balance is the need of the hour in PI. Nonetheless, a two-fold challenge exists in designing
PI-friendly networks: (1) the lack of understanding of the correlation of ReLU and FLOPs counts
with the network’s design hyperparameters (e.g., width and depth of the network), and (2) the funda-
mental understanding for the desirable intrinsic properties (e.g., distribution of ReLUs) of baseline
networks suitable for a wide range of ReLU counts; however, agnostic to the ReLU optimization
techniques is largely missing.

To this end, we perform an exhaustive characterization to understand the interplay of ReLUs and
FLOPs with network design hyper-parameters, summarized in four observations in Section 2.2.
Based on these insights, we propose a novel design principle ReLU equalization, and devise a
method DeepReShape to redesign the classical networks for ReLU equalization. Eventually, we
demonstrate their benefits in conjunction with ReLU optimization methods. We achieve a 2.35% ac-
curacy gain at 180K (on CIFAR-100) compared to the state-of-the-art fine-grained ReLU optimiza-
tion SNL(Cho et al., 2022b), and a 4.2× ReLUs saving at iso-accuracy on ResNet50(TinyImageNet)
compared to state-of-art coarse-grained ReLU optimization DeepReDuce (Jha et al., 2021).

Our Contributions:
1. We perform ReLU efficiency characterization — an unexplored facet and a crucial bottleneck for

PI — over classical networks and discover their correlation with the network’s depth and width.
We find that width is much more important than depth as the network’s complexity per unit of
nonlinearity depends on the network’s width; however, independent of the network’s depth.

2. We propose ReLU-equalization — a novel design principle for redistributing the network’s ReLU
in their criticality order — and demonstrate its applicability also for designing the FLOPs-
efficient networks such as RegNet (Radosavovic et al., 2020) and ConvNeXt (Liu et al., 2022b).
Based on this, we devise a method DeepReShape for designing ReLU-efficient baseline networks,
HybReNet (HRN), over a wide-range of ReLU counts with FLOPs-ReLU-Accuracy balance.

3. We reveal a “Capacity-Criticality Tradeoff” — a crucial factor for selecting the baseline networks
for very low ReLU budget — for both coarse-grained and fine-grained ReLU optimizations. Fur-
thermore, we propose ReLU-reuse, a channel-wise ReLU dropping technique to achieve very low
ReLU counts, and gain accuracy boost upto 3% at iso-ReLU when employed with DeepReDuce.

2 INTERPLAY OF FLOPS AND RELUS WITH DESIGN HYPERPARAMETERS

In this section, we start with defining the notations used in this paper. Further, we study the interplay
of ReLUs and FLOPs with network design hyperparameters (primarily, width and depth).

2.1 PRELIMINARY

Architectural building blocks: Figure 3 illustrates a schematic view of a standard four-stage net-
work with building blocks and design hyperparameters. Similar to ResNet (He et al., 2016), network

2



Under review as a conference paper at ICLR 2023

Stage1 Stage2 Stage3 Stage4

feature
maps

#c
ha

nn
el
s

stem

body

head

Figure 3: Depiction of architectural parameters
and feature dimensions in a standard four stage
network (width and depth hyperparameters are
defined in the text below). For ResNet18 (on
CIFAR and TinyImageNet), m = 64, φ1=φ2=φ3
=φ4=2, and α=β=γ=2.

Stage1 Stage2 Stage3 Stage4
#Params φ1(m

2f2) φ2(α
2m2f2) φ3(α

2β2m2f2) φ4(α
2β2γ2m2f2)

#FLOPs φ1(m
2d2kf

2) φ2(
α2

4 m
2d2kf

2) φ3(
α2β2

16 m2d2kf
2) φ4(

α2β2γ2

64 m2d2kf
2)

#ReLU φ1(md
2
k) φ2(

α
4md

2
k) φ3(

αβ
16md

2
k) φ4(

αβγ
64 md

2
k)

#Params
#ReLU m( f

2

d2k
) αm( 4f

2

d2k
) αβm( 16f

2

d2k
) αβγm( 64f

2

d2k
)

#FLOPs
#ReLU mf2 αmf2 αβmf2 αβγmf2

Table 2: Stagewise counts for the given width and
depth hyperparameters (f × f is the spatial size
of kernel, e.g., 3 × 3). We note that complexity
per unit of nonlinearity (#Params#ReLUs and #FLOPs

#ReLUs )
depends on the width; however, independent of
the network’s depth.

has a stem cell (that increases the channel count from 3 to m), followed by the network’s main body
(composed of linear and nonlinear layers, and performs most of the computation), followed by a
head (usually a fully connected layer) that outputs the scores for the output classes. The network’s
main body is composed of a sequence of four stages, and the spatial dimensions of feature maps
(dk×dk) are progressively reduced by 2× (except the Stage1) in each stage, and feature dimensions
remain constant within a stage. We keep the structure of stem cell and head fixed, and change the
structure of the network’s body using the design hyperparameters.

Definitions and design hyperparameters: Each stage is composed of identical blocks1 repeated
φ1, φ2, φ3, and φ4 times in Stage1, Stage2, Stage3, and Stage4 (respectively). These values are
known as stage compute ratios and determine the network’s overall depth. The output channels in
stem cell (m) is known as base channels, and the number of channels progressively increases (ex-
cept in Stage1) by a factor of α, β, and γ in Stage2, Stage3, and Stage4 (respectively). We call
these values as stagewise channel multiplication factors (denoted as ChMulFact). The aforemen-
tioned depth and width hyperparameters primarily determine the distribution of FLOPs, ReLUs, and
parameters in the network. When we widen the network: (1) by augmenting m, that increases the
#channels in each layer by same factor, we denote this network as BaseCh (e.g., from m=64 in
ResNet18 to m=128); and (2) by (homogeneously) augmenting the ChMulFacts, we denote this
network as StageCh (e.g., from (α, β, γ) = (2, 2, 2) in ResNet18 to (α, β, γ) = (3, 3, 3)).

2.2 RELU EFFICIENCY: DEPTH VS WIDTH

We now discuss our observations for ReLU efficiency and motivate the need for redesigning the
classical networks for fast and efficient PI.

Observation 1: Wider networks are more ReLU-efficient than the deeper networks. For
understanding the impact of network’s depth and width on their ReLU-efficiency, we perform our
experiments on WideResNet (Zagoruyko & Komodakis, 2016) — extensively used for demonstrat-
ing the benefits of width (Li et al., 2018; Park et al., 2019; Somepalli et al., 2022; Mirzadeh et al.,
2022; Liu et al., 2022a)— and ResNet models. As shown in Figure 4(a), WRN-22xk outperforms
WRN-28xk for all values of k, and the accuracy gap between WRN-Qx2 and WRN-22xk models
increases with Q. Precisely, at an iso-ReLU count of 705K WRN22x4 outperforms WRN40x2 by
1.6%. Similar observations hold true for ResNet models where the BaseCh models of ResNet18
outperform the other deeper ResNets (Figure 4(b)). Thus, in contrast with the orthodox benefits of
depth, it suggests that wider models have better ReLU-efficiency than their deeper counterparts.

To understand the superiority of wider networks for ReLU-efficiency, we investigate how the net-
work’s complexity, measured in terms of FLOPs and parameter counts (Radosavovic et al., 2019),
grows when network’s depth/width increases. In Table 2 we compute the stagewise parameters,
FLOPs, ReLU counts and network’s complexity per units of nonlinearity in terms of #Params

#ReLUs and
#FLOPs
#ReLUs . FLOPs and Parameters counts have a quadratic dependency on the channel width and
vary linearly with the depth; whereas, ReLU count varies linearly with the channel width and depth,
of their respective stages. Interestingly, the parameters and FLOPs per unit of ReLU is independent
of depth hyperparameters φ1, φ2, φ3, and φ4; however, depends on the width of the network (m,

1Except the first block (in all but Stage1) which performs downsampling of feature maps by 2×.

3



Under review as a conference paper at ICLR 2023

 74

 76

 78

 80

 82

 256  512  1024  2048

∆Acc.=1.6%

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

WRN-22xk

WRN-28xk

WRN-Qx2

(a) WideResNet: Depth vs width

 70

 72

 74

 76

 78

 80

 82

 128  256  512  1024  2048  4096  8192

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

ResNet20(BaseCh)

ResNet32(BaseCh)

ResNet56(BaseCh)

ResNet18(BaseCh)

(b) ResNet: Base-channel variation

 70

 72

 74

 76

 78

 80

 128  256  512  1024  2048

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

ResNet20(StageCh)

ResNet32(StageCh)

ResNet56(StageCh)

ResNet18(StageCh)

(c) ResNet: Stage-channel variation

 70

 72

 74

 76

 78

 80

 82

 128  256  512  1024  2048

∆1∆2

∆1=4.2%

∆2=2.6%

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

ResNet18(StageCh)

ResNet18(BaseCh)

WRN-22xk

ResNet20(StageCh)

ResNet20(BaseCh)

(d) All width optimization together

Figure 4: ReLU-efficiency for depth vs width. (a) Width of WideResNet models WRN-22xk and
WRN-28xk is increased by augmenting the k ∈ {2, 4, 6, 8, 10, 12} and depth of WRN-Qx2 is in-
creased by augmenting Q ∈ {16, 22, 28, 34, 40}; (b) width of BaseCh models is increased by
augmenting m ∈ {16, 32, 64, 128, 256}; (c) width of StageCh models is increased by augment-
ing (α, β, γ) ∈ {(2, 2, 2); (3, 3, 3); (4, 4, 4); (5, 5, 5); (6, 6, 6); (7, 7, 7); (8, 8, 8)}; and (d) all width
optimization together. Wider networks exhibit better ReLU-efficiency than deeper networks.

α, β, and γ). In other words, to achieve a similar level of complexity wider network requires fewer
ReLUs. We note that our observation for the connection between stagewise complexity and width
of the network resonates with the observation made in Radosavovic et al. (2019) and Dollár et al.
(2021). The former showed that a model family with wider networks has a heavy-tail distribution of
higher complexity networks, and the latter showed that the scaling width of the network results in
the slowest growth in the number of activations.

Observation 2: Widening networks by homogeneously augmenting the stagewise channel mul-
tiplication factors substantially improves ReLU-efficiency. The benefit of width for higher ReLU
efficiency, as evident from the above experimentation, raise a natural question: to what extent a net-
work can enjoy the benefit of increasing the width for higher ReLU-efficiency? To answer this, we
seek a more aggressive way of increasing the network’s width and find that the growth of channels
in the successive stages of almost all the classical networks (including WideResNets) is restricted by
fixed values of (α, β, γ) = (2, 2, 2). To this end, we set α, β, and γ as design hyperparameters and
increase their values homogeneously from (2, 2, 2) to (8, 8, 8). The experimental results are shown
in Figure 4(c), and the accuracy saturation at higher ReLU is explained in Appendix D.2.

We compare ReLU-accuracy tradeoff for all the width optimization together in Figure 4(d). We make
the following observations: (1) accuracy difference of BaseCh and StageCh networks grows until
the saturation occurs in the latter, and StageCh networks of ResNet18 and ResNet20 outperform
their respectiveBaseCh networks by 2.6% and 4.2% at∼ 280K and∼ 380K ReLU, respectively;
and (2) At iso-ReLU count, StageCh ResNet18 and ResNet20 networks outperform the WRN22x2
by ∼2.3% and ∼3.2% (respectively). Conclusively, ResNet18 StageCh networks outperform all
the networks before the saturation; hence, we select this as a baseline network for the rest of paper.
Note that, compared to BaseCh, StageCh widens the networks more aggressively; thus, further
increasing the complexity per unit of ReLU and requiring even fewer ReLUs for a given complexity.

Observation 3: Neither the classical FLOPs-efficient networks nor the homogeneous stage-
wise channel scaling provides FLOPs-ReLU-Accuracy balance. Table 3 shows the change in
layerwise trends of FLOPs and ReLUs, for a network with φ1=φ2=φ3=φ4 (e.g., ResNet18), when
network’s width is increased by (homogeneously)augmenting ChMulFacts. Notably, the conven-
tional choice of (α, β, γ)=2 in classical networks makes FLOPs constant across the layers; however,
in the network with ChMulFacts> 2 the FLOPs count increases from initial layers to deeper layer
(more rapidly at higher values of ChMulFacts). Nonetheless, in contrast with layerwise FLOPs,
the layerwise ReLU trend is distinct. Precisely, for a network with ChMulFacts< 4 ReLU count
decreases from the initial layer to the deeper layer (more rapidly at lower values of ChMulFacts),
and becomes constant for a network with ChMulFacts=4, and increases throughout the network
at ChMulFacts> 4. Recall that (Figure4(c)), before saturation, ReLU-efficiency of StageCh net-
works increases with higher values of ChMulFacts; however, there is an exponential growth in
FLOPs at higher values of ChMulFact. Since FLOPs are not free in PI (Garimella et al., 2022),
a natural question is: how to establish FLOPs-ReLU-Accuracy balance? That is, can a heteroge-
neous set of (α, β, γ) achieves ReLU-efficiency at par with StageCh networks; however, with fewer
FLOPs? If yes, how to find those heterogeneous sets?

Observation 4: Width scaling by homogeneously augmenting the stagewise channels changes
the distribution of ReLUs and reduces the proportion of non-critical ReLUs. We plot the stage-

4



Under review as a conference paper at ICLR 2023

Table 3: The (normalized) stagewise FLOPs and ReLUs, and layerwise (from initial to deeper layers)
trends of FLOPs and ReLUs when network’s width is increases by (homogeneously)augmenting
α,β, and γ. Distinct homogeneous sets of (α, β, γ) are required for FLOPs and ReLU efficiency.

Stage1 Stage2 Stage3 Stage4 (α, β, γ)=2 2<(α, β, γ)<4 (α, β, γ)=4 (α, β, γ)>4

FLOPs 1 α2

4
α2β2

16
α2β2γ2

64 Layerwise FLOPs constant increasing (↑) increasing (↑↑) increasing (↑↑↑)

ReLUs 1 α
4

αβ
16

αβγ
64 Layerwise ReLUs decreasing (↓↓) decreasing (↓) constant increasing (↑)

wise ReLUs’ distribution for ResNet18 BaseCh and StageCh networks in Figure 5(a) and Figure
5(b), respectively. Evidently, the distribution of ReLUs remains unchanged when network’s width
is scaled by augmenting m, as the #ReLUs in all the layers are scaled by the same degree. In con-
trast, the distribution of ReLUs changes in StageCh networks, since augmenting ChMulFacts
alters the stagewise ReLU count by different degrees (in particular, more aggressively in deeper
layers). Consequently, as shown in Figure 5(b), the fraction of ReLUs in Stage1 decreases while
that in the Stage4 increases with higher values of ChMulFacts. Also, initially at lower values of
ChMulFacts fraction of ReLUs in Stage3 increases, and that in Stage2 remains constant. However,
later at higher values of ChMulFacts, the fraction of ReLUs in Stage3 remains constant while that
in Stage 2 decreases. Similar to Jha et al. (2021), we perform stagewise criticality analysis in Table
6 which shows the criticality order, from most to least critical, Stage3> Stage2> Stage 4> Stage1.
Thus, conclusively, StageCh networks have a reduced proportion of inconsequential ReLUs while
the distribution of ReLUs in other stages does not follow their criticality order.

From above insights, we propose a novel design principle ReLU equalization (see Figure 10), and
devise a method DeepReShape to redesign the classical network and achieves ReLU equalization.
Based on this, we design a novel family of networks HybReNet (see Table 7).

3 DEEPRESHAPE

In this section, we begin by describing the DeepReShape method to achieve ReLU equalization.
Then, we apply the same on a standard four-stage network and design HybReNet (HRN) networks.

ReLU-Equalization Algorithm: The DeepReShape method, described in Algorithm 1, is an itera-
tive process where in each iteration the network design (primarily the width/depth) hyperparameters
corresponding to two critical stages are set to follow their criticality order. Precisely, in the first
iteration, the design hyperparameters of the first and second most critical stages are set to maximize
the proportion of ReLUs in the most critical stage. This iterative process executes for D − 1 itera-
tions (for a network with D stages) and eventually outputs an expression in the form of compound
inequalities. The final solution of the compound inequalities outputs a range of values for design
hyperparameters to achieve ReLU equalization, and the most critical stage has the highest propor-
tion of ReLUs whereas the least critical stage has the lowest proportion of ReLUs. In this process of
redesigning networks, a total number of design hyperparameters is 2D− 1 (D stage compute ratios
and D − 1 ChMulFacts) which can be further reduced by setting either depth or width hyper-
parameters fixed. For example, HRN networks achieve ReLU equalization through width, without
changing the depth, and the number of design hyper-parameters is reduced to D − 1.

ReLU equalization on four stage networks: We employ DeepReShape on a four-stage network
with the given sets of depth and width hyperparameters as shown in Figure 3. We get four pairs
of (β, γ) and a range of aα values, as shown in Appendix B.1.Now, for finding the appropriate
values of (α, β, and γ), from the above-derived range of (α, β, and γ), we plot the stagewise
ReLU distribution for all the four (β, and γ) pairs and vary the α from α=2 to higher values (see
Figure 5(c), and Figure 13(a-c) in Appendix D.3). Similar to StageCh networks, the proportion of
Stage1 ReLUs starts decreasing until the network’s ReLUs get equalized in their order of criticality.
Once the network achieves ReLU equalization at a specific value of α, the relative distribution of
ReLUs remains stable. That is, unlike the StageCh networks, the proportion of significant ReLUs
does not change at higher values of α. This highlight the significance of ReLU equalization from
ReLUs’ distribution viewpoint. Finally, we take minimum values of α, β, and γ achieving the ReLU
equalization, and we get four baseline networks: HRN-7x5x2x, HRN-5x5x3x, HRN-6x6x2x, and
HRN-5x7x2x whose α values correspond to the minimum possible value for ReLU equalization (see
Appendix D.3 for detailed discussion).

5



Under review as a conference paper at ICLR 2023

Algorithm 1 DeepReShape
Input: A network Net with D stages S1, S2, ...., SD, C a sorted list of stages from most to least
critical stage, stage-compute ratio φ1, φ2, ...., φD, and stage-wise channel multiplication factor as
λ1, λ2, ...., λ(D−1)

Output: A range of possible values of φ1, φ2, ...., φD and λ1, λ2, ...., λ(D−1) for ReLU-equalized
versions of Net.

1: for i = 1 to D-1 do
2: Sk = C[i] . C[1] is most critical stage
3: St = C[i+1] . C[2] is second-most critical stage
4: #ReLUs(Sk) > #ReLUs(St) . Evaluate the compound inequality

5: =⇒ φk×
(∏k−1

j=1 λj

)
2k−1 >

φt×
(∏t−1

j=1 λj

)
2t−1

6: end for
7: return Possible values of φ1, φ2, ...., φD and λ1, λ2, ...., λ(D−1)

 0

 20

 40

 60

 80

 100

m=16 m=32 m=64 m=128 m=256

T
o

ta
l 

R
eL

U
 (

%
)

Stem
Stage 1

Stage 2
Stage 3

Stage 4

(a) ResNet18(BaseCh) networks

 0

 20

 40

 60

 80

 100

2,2,2 3,3,3 4,4,4 5,5,5 6,6,6 7,7,7 8,8,8

T
o
ta

l 
R

e
L

U
 (

%
)

(b) ResNet18(StageCh) networks

 0

 20

 40

 60

 80

 100

2,5,2 3,5,2 4,5,2 5,5,2 6,5,2 7,5,2 8,5,2 9,5,2

T
o
ta

l 
R

e
L

U
 (

%
)

(c) HRN-7x5x2x(Proposed)

Figure 5: Stagewise (relative) distribution of ReLUs for: (a) ResNet18 BaseCh networks; (b)
ResNet18 StageCh networks; (c) HRN network with α ≥ 2 and (β, γ) = (5,2). Values of α in HRN
is swept for a holistic characterization. Once HRN network achieves ReLU equalization, increasing
α does not change the relative distribution of ReLUs across stages.

4 EXPERIMENTS

FLOPs-ReLU-Accuracy balance: Since FLOPs are not free (while ReLU is the primary bottle-
neck) in PI (Garimella et al., 2022), unlike the previous PI-friendly network design methodsGhodsi
et al. (2020); Aggarwal et al. (2020); Cho et al. (2022a), we demonstrate both the FLOPs and ReLUs
characteristic of HybReNets and compare their efficiency with BaseCh and StageCh networks in
Figure 6(a) and Figure 6(d). For HRN networks, we sweep the α=2 to higher values to analyze
the complete behavior, especially the model-wise deep double descent (observed in StageCh net-
works, see Appendix D.2 for a detailed discussion). We make the following observation: (1) HRN
networks exceed the ReLU-efficiency of StageCh networks with fewer FLOPs (FLOPs-efficiency
approaching that of the BaseCh networks at higher αs); and (2) similar to StageCh networks,
HRN networks exhibit model-wise deep double descent; however, with a smaller plateau in the case
of HRNs. Thus, it is evident that HRN networks perform better FLOPs-ReLUs-Accuracy tradeoffs
compared to the BaseCh and StageCh networks. To understand the mechanism through which
HRN networks achieve FLOPs-ReLUs-Accuracy balance, a detailed discussion is included in Ap-
pendix D.4. We also compare the ReLU and FLOPs efficiency when ReLU equalization is performed
through depth in BaseCh networks, in Appendix C.1. This demonstrates that even when ReLUs’
are equalized in BasCh networks, their ReLU-efficiency is inferior to StageCh networks.

Generality of ReLU equalization for designing FLOPs efficient networks: A case study with
RegNet and ConvNeXt We now show the generality of ReLU equalization even for design-
ing FLOPs efficient networks, and for this we select state-of-the-art vision models, RegNet (Ra-
dosavovic et al., 2020), and ConvNeXt (Liu et al., 2022b). RegNets are the outcome of a semi-
automated network design method, parametrized by the stage compute ratio (φ1, φ2, φ3, φ4), base
channel count (m), and stagewise channel multiplication factors as 1.5 ≤(α, β, γ)≤ 3. Likewise,
ConvNeXts are the outcome of redesigned ResNet with modified m, and φ1, φ2, φ3, φ4. For in-
stance, for ConvNeXt-T model, the stage compute ratio is changed to [3, 3, 9, 3] from [3, 4, 6, 3],
andm=96 fromm=64 in ResNet50. Thus, the (relatively)unconstrained design choices for RegNets,
and modified depth and width in ConvNeXt models made them appropriate for our case study, and
we investigate their impact on ReLU distribution and FLOPs-ReLU-Accuracy balance.

6



Under review as a conference paper at ICLR 2023

 70

 72

 74

 76

 78

 80

 82

 128  256  512  1024  2048

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-7x5x2x

HRN-6x6x2x

ResNet18-(StageCh)

ResNet18-(BaseCh)

(a) ReLU-efficiency: HRNs

 78

 79

 80

 81

 82

 83

 512  1024  2048  4096  8192  16384

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

RegNet-X

HRN-7x5x2x

HRN-6x6x2x

HRN-5x7x2x

HRN-5x5x3x

(b) ReLU-efficiency: RegNet-X

 65

 66

 67

 68

 69

 1024  2048  4096

1.7x ReLU 
 reduction

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRNs(m=8)

HRNs(m=16)

ResNet34(ConvNeXt-T)

ResNet34(Baseline)

(c) ReLU-efficiency: ResNet34

 67

 68

 69

 70

 4096  8192  16384

2.6x ReLU reduction

2.3% Acc. 
 improvement

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRNs(m=8)

HRNs(m=16)

ResNet50(ConvNeXt-T)

ResNet50(Baseline)

(d) ReLU-efficiency: ResNet50

 70

 72

 74

 76

 78

 80

 82

 32  64  128  256  512  1024  2048  4096  8192

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#FLOPs (M)

HRN-7x5x2x

HRN-6x6x2x

ResNet18-(StageCh)

ResNet18-(BaseCh)

(e) FLOPs-efficiency: HRNs

 70

 72

 74

 76

 78

 80

 82

 32  64  128  256  512  1024  2048  4096  8192  16384

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#FLOPs (M)

RegNet-X

HRN-7x5x2x

HRN-6x6x2x

HRN-5x7x2x

HRN-5x5x3x

ResNet18-(StageCh)

(f) FLOPs-efficiency: RegNet-X

 65

 66

 67

 68

 69

 2048  4096  8192

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#FLOPs (M)

HRNs(m=8)

HRNs(m=16)

ResNet34(ConvNeXt-T)

ResNet34(Baseline)

(g) FLOPs-efficiency: ResNet34

 67

 68

 69

 70

 2048  4096  8192

2.1x FLOPs 
 reduction

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#FLOPs (M)

HRNs(m=8)

HRNs(m=16)

ResNet50(ConvNeXt-T)

ResNet50(Baseline)

(h) FLOPs-efficiency: ResNet50

Figure 6: FLOPs-ReLU-Accuracy tradeoff (upper/lower rows the ReLU/FLOPs efficiency): (a)/(e)
show the ReLU/ FLOPs efficiency for HRN networks, in contrast with BaseCh and StageCh
networks. (b)/(f) compare the ReLU/FLOPs efficiency for RegNet-X, a family of ReLU-equalized
networks. HRNs exceed the ReLU-efficiency of StageCh networks with fewer FLOPs and achieve
FLOPs-ReLU-Accuracy balance. (c,d)/(g,h) compare the ReLU/FLOPs efficiency of HRNs and
ConvNeXt-ify version of (ResNet34, ResNet50) with baseline networks, respectively. HRNs sub-
stantially improve the ReLU-efficiency and outperform their baseline and ConvNeXt-ify net-
work. For ResNet50, HRNs also improve the FLOPs-efficiency significantly.

ReLU distribution for RegNet-X models is shown in Figure 13(f), and interestingly ReLU distri-
bution for all the models follow their criticality order. We note that for networks with very low
ReLU count criticality order of Stage2 and Stage4 gets interchanged (see Table 5), and follow-
ing that ReLUs distribution in RegNet-0.2GF and RegNet-0.4GF are different (Stage3 > Stage4
> Stage2 > Stage1) than rest of the RegNet models. Similarly, we compare the ReLUs’ distri-
bution of ConvNeXt-ify ResNet34 and ResNet50 with the baseline and HRN networks in Figure
13(d) and Figure 13(e), respectively. Evidently, ConvNeXt equalized the ReLUs’ distribution fol-
lowing their criticality order, except the Stage1. Effectively, ConvNeXt increases the proportion
of (most)significant ReLUs — from 20.3% to 30.2% in ResNet34, and from 21.7% to 31% in
ResNet50 — and reducing the proportion of less critical ReLUs. Further, we compare the FLOPs-
ReLU-Accuracy tradeoffs in RegNets with HRN networks in Figure 6(b,f) and, and ConvNeXt-ify
ResNet34 and ResNet50, with the baseline and HRN networks, in Figure 6(c,g) and Figure 6(d,h),
respectively. Clearly, while RegNets are FLOPs-efficient, their ReLU-efficiency is substantially in-
ferior to the HRN networks. Likewise, at iso-accuracy on TinyImageNet, HRN achieves 1.7× ReLU
reduction over ConvNeXt-ify ResNet34, and 2.6× ReLU reduction over ResNet50 baseline. Also,
at iso-ReLU count on TinyImageNet, HRN network achieves 2.3% accuracy improvement over the
baseline ResNet50. In fact, HRN network outperforms ResNet50 baseline for FLOPs-efficiency and
reduces the 2.1× FLOPs at iso-accuracy. This highlights the significance of ReLU equalization for
FLOPs-ReLU-Accuracy balance over a wide range of complexity. We also discuss the potential of
ReLU equalization being a unified design principle for both FLOPs and ReLU efficient networks, in
contrast with the manual and neural architecture search in Appendix D.5.

DeepReShape with ReLU optimization methods: Given the least fraction of non-critical ReLUs
in HRNs, it remains interesting to find additional improvement in their ReLU efficiency when ReLU
optimization techniques are applied on top of HRN networks. We apply DeepReDuce (Jha et al.,
2021), a coarse-grained ReLU optimization based on stagewise ReLUs’ criticality, and compare
their performance with state-of-the-art fine-grained ReLU optimization SNL (Cho et al., 2022b)
in Figure 7. We also demonstrate the effect of increasing α in HRNs, and made the following
observation: (1) HRNs significantly outperform SNL at higher ReLU counts, for example, at an
iso-ReLU count of 180K HRN-5x7x2x (with DeepReDuce) outperforms the SNL by 2.35%; and
(2) increasing α does not improve ReLU efficiency, in fact, performs drops at lower ReLU count.

Here, we would like to emphasize that DeepReDuce with ReLU-equalized HRN networks requires
only one iteration, in contrast with D− 1 iterations for DeepReDuce with classical networks having
ReLUs’ distribution agnostic to their critical order, and single iteration often results in sup-optimal

7



Under review as a conference paper at ICLR 2023

 68

 72

 76

 80

 32  64  128  256

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

7x5x2x

8x5x2x

9x5x2x

DeepReDuce

SNL

(a) HRN-7x5x2x

 68

 72

 76

 80

 32  64  128  256

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

5x5x3x

6x5x3x

7x5x3x

DeepReDuce

SNL

(b) HRN-5x5x3x

 68

 72

 76

 80

 32  64  128  256

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

6x6x2x

7x6x2x

8x6x2x

DeepReDuce

SNL

(c) HRN-6x6x2x

 68

 72

 76

 80

 32  64  128  256

C
IF

A
R

-1
0
0
 A

cc
u
ra

cy
 (

%
)

#ReLUs (K)

5x7x2x

6x7x2x

7x7x2x

DeepReDuce

SNL

(d) HRN-5x7x2x

Figure 7: Performance comparison of DeepReDuce Jha et al. (2021) on (proposed)HybReNet with
SNL Cho et al. (2022b): HRNs with DeepReDuce outperform SNL at higher #ReLUs by∼2.5%.

ReLU-efficiency. Thus, complexity is substantially reduced, precisely by (D−1)× for aD network.
Now, we investigate the performance drop in HRNs with DeepReDuce at lower ReLU.

Capacity-Criticality Tradeoff: To investigate the performance drop of the aforementioned HRN
networks at lower ReLUs, we select three networks with distinct ReLU distribution at the iso-ReLU
count (in Table 4) for our case study. In particular, ResNet18(m=32)-2x2x2x has the highest fraction
of ReLUs in the least critical Stage (Stage1), ResNet18(m=16)-4x4x4x, stages have equal propor-
tion of ReLUs, and in HRN-3x7x2x distribution of ReLUs follow their criticality order (except
the Stage1). We apply DeepReDuce and SNL on these three networks and the results are shown
in Figure 8(a) and Figure 8(b), respectively. Evidently, for both DeepReDuce and SNL networks
with fewer non-critical ReLUs (Stage1) performs better at higher ReLUs; however, for lower ReLU
counts networks with a higher number of critical ReLUs perform better. Further, to lend more
strength to the aforementioned observation, we repeat the above experiments with HRN networks.
In particular, reducing α values in HRN networks increases the proportion of (non-critical)ReLUs
in Stage1 (see Table 5); however, the ReLUs in the remaining stages follow their criticality order.
Results are shown in Figure8(c,d) and Figure 12 (in Appendix), and our observations for criticality-
capacity tradeoff is consistent in these experiments.
Table 4: A case study for criticality-capacity tradeoff: Networks with distinct ReLUs’ distribution,
in particular, the proportion of non-critical ReLUs in Stage1, at iso-ReLU.

Model Acc(C100) #FLOPs ReLUs Stage-wise ReLU breakdown Stage-wise FLOPs
ReLU

Stage1-count Stage2-count Stage3-count Stage4-count Stage1 Stage2 Stage3 Stage4
R18(m=32)-2x2x2x 75.60% 140.9M 278.53K 163840(58.82%) 65536(23.53%) 32768(11.76%) 16384(5.88%) 32 64 128 256
R18(m=16)-4x4x4x 78.16% 661.2M 278.53K 81920(29.41%) 65536(23.53%) 65536(23.53%) 65536(23.53%) 16 64 256 1024

HRN-3x7x2x 78.02% 465.7M 260.10K 81920(31.50%) 49152(18.90%) 86016(33.07%) 43008(16.54%) 16 48 336 672

 64

 68

 72

 76

 80

 8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

R18(m=32)-2x2x2x

R18(m=16)-4x4x4x

HRN-3x7x2x

(a) DeepReDuce at iso-ReLU

 64

 68

 72

 76

 16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

R18(m=32)-2x2x2x

R18(m=16)-4x4x4x

HRN-3x7x2x

(b) SNL at iso-ReLU

 60

 65

 70

 75

 80

 8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x5x2x

HRN-4x5x2x

HRN-7x5x2x

(c) DeepReDuce for HRN-5x7x2x

 64

 68

 72

 76

 16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x5x2x

HRN-4x5x2x

HRN-7x5x2x

(d) SNL for HRN-5x7x2x

Figure 8: Capacity-Criticality Tradeoff for both coarse/fine-grained ReLU optimization (DeepRe-
Duce/SNL): (a)/(b) show the tradeoff for DeepReDuce/SNL on iso-ReLU networks with distinct
ReLU distribution; (c)/(d) show the tradeoff for HRN networks with distinct fraction of ReLUs in
Stage1, and ReLUs’ distribution in the remaining stages follows their criticality order. HRN-3x7x2x
exhibits similar ReLU efficiency with 30% fewer FLOPs, compared to ResNet18(m=16)-4x4x4x.
Note that, to achieve a very low ReLU count, a network with higher number of non-critical ReLUs
needs to drop fewer critical ReLUs, in contrast with a network with lesser non-critical ReLUs that
needs to drop more critical ReLUs. Moreover, as explained in Yosinski et al. (2014), neurons in the
middle layers (i.e., Stage2 and Stage3) exhibit fragile co-adaption, which is harder to re-learn; thus,
dropping more ReLUs from these stages, in networks with fewer non-critical ReLUs, would disrupt
the fragile co-adaption and incur a significant performance penalty.

ReLU-reuse: We propose ReLU-reuse, a (structured)channel-wise ReLU dropping, for a better
alternative of conventional scaling used in DeepReDuce to achieve a very low ReLU count. Inspired
by Gao et al. (2019), we first implement a naive way of dropping channel-wise ReLUs by a factor of
N where feature maps are divided into N groups and ReLUs are employed only in the last group,
as shown in Figure 15. However, we note a significant accuracy drop, even when we use 1 × 1
convolution for cross-channel interaction in feature subspace, at higher N caused by the higher

8



Under review as a conference paper at ICLR 2023

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128  256  512  1024

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

CryptoNAS

DeepReDuce

SNL

HybReNet(Proposed)

(a) HRNs on CIFAR-100

 52

 56

 60

 64

 68

 64  128  256  512  1024  2048

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

ResNet34(DReD)

ConvNeXt-T(DReD)

HRN(DReD)

(b) ResNet34 comparison

 56

 58

 60

 62

 64

 66

 68

 70

 64  128  256  512  1024  2048  4096  8192

4.24x ReLU 
 saving

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

ResNet50(DReD)

ConvNeXt-T(DReD)

HRN(DReD)

(c) ResNet50 comparison

 52

 56

 60

 64

 68

 32  64  128  256  512

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

DeepReDuce

SNL

HybReNet(Proposed)

(d) HRNs on TinyImageNet

Figure 9: HRN with DeepReDuce on CIFAR-100 (Figure (a)), and TinyImageNet (Figure (d)). We
compare HRNs with DeepReDuce on ResNet34 and ResNet50 in Figure (c) and (d), respectively.

number of divisions in feature-maps; thus, losing cross-channel information (see ablation study in
Table 9 in Appendix E). To remedy this, we devise a mechanism where the number of divisions in
feature maps is independent of the ReLU reduction factor N . In particular, similar to Gao et al.
(2019), one forth of channels is used for feature reuse, Nth fraction of feature-maps are processed
with convolution followed by ReLUs, and the remaining fraction of feature-maps are processed
only with convolution. Note that using the ReLUs in the last group of feature maps increases the
effective receptive since those neurons can see almost the entire input feature maps. We demonstrate
the scalability of ReLU-reuse, in contrast with reshaping in DeepReDuce, on ResNet BaseCh and
HRN models in Figure 16 and 17. Further, we incorporate the ReLU-reuse in DeepReDuce pipeline
(Algorithm 2), and results are shown in Figure 18. We note an accuracy gain upto 3%, at iso-ReLU.

Putting it all together: We apply DeepReDuce with ReLU-reuse on HRN networks and com-
pare their performance in Figure 9. First, we compare the ReLU-accuracy tradeoff on CIFAR-100
and the results are shown in Figure 9(a). At higher ReLU count, HRN with DeepReDuce signif-
icantly outperforms the SNL; in particular, HRN-5x7x2x at 180K ReLUs achieve a 2.35% accu-
racy gain. We also compare the performance with DeepReDuce on baseline and ConvNeXt-ify
ResNet34/ResNet50 (on TinyImageNet) in Figure 9(b)/(c), and note that HRNs perform better on
higher as well as lower ReLU counts. HRN saves 4.2× ReLU at iso-ReLU for ResNet50 on TinyI-
magNet. Further, we compare the HRNs with SNL on TinyImageNet in Figure 9(d). We note that at
higher ReLUs, and very low ReLU counts, HRNs outperform SNL; however, at intermediate ReLUs
counts SNL is superior. Here, we would like to emphasize that SNL drops the (unstructured)pixel-
wise ReLUs, in contrast with DeepReDuce with ReLU-reuse (structured ReLU dropping). Thus, on
a complex dataset, SNL can find the better spots for dropping ReLUs at intermediate ReLU counts.

5 RELATED WORK

PI-amenable network optimization: Delphi (Mishra et al., 2020) and SAFENet (Lou et al., 2021)
substitute the ReLUs with low-degree polynomials, while DeepReDuce (Jha et al., 2021) is a coarse-
grained ReLU optimization and drops ReLUs layerwise. SNL (Cho et al., 2022b) is a state-of-the-art
fine-grained ReLU optimization, and drops the pixelwise ReLUs. CryptoNAS (Ghodsi et al., 2020)
and Sphynx Cho et al. (2022a) use neural architecture search and employ constant number of ReLUs
per layer for designing ReLU-efficient networks. In contrast, we demonstrated that distributing the
ReLUs in their criticality order is better for ReLU-efficiency and FLOPs-ReLU-accuracy balance.
Benefits of width: Li et al. (2018) studied the effect of width on the smoothness of loss surface
and showed that increasing the width helps prevent chaotic behavior in loss landscape. Golubeva
et al. (2021) decoupled the effect of increasing width and over-parameterization, and showed that the
network’s width is the primary factor for the network’s predictive performance. Liu et al. (2022a)
showed that when fixing the depth, increasing the widening factor improves the adversarial robust-
ness. Mirzadeh et al. (2022) demonstrated the benefit of width for mitigating catastrophic forgetting.

6 CONCLUSION

In this work, we study the benefits of width for ReLU-efficiency and proposed ReLU equalization
as a network design principle to allocate ReLUs appropriately in the network. We use a set of
design principles, DeepReShape, to design a family of ReLU-efficient networks HybReNet. We
demonstrated their benefits in terms of FLOPs-ReLU-Accuracy balance in conjunction with the
ReLU optimization methods.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Anshul Aggarwal, Trevor E Carlson, Reza Shokri, and Shruti Tople. Soteria: In search of efficient
neural networks for private inference. arXiv preprint arXiv:2007.12934, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 2019.

Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: Relu-
efficient network design for private inference. IEEE Security & Privacy, 2022a.

Minsu Cho, Ameya Joshi, Siddharth Garg, Brandon Reagen, and Chinmay Hegde. Selective network
linearization for efficient private inference. In International Conference on Machine Learning,
2022b.

Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and accurate model scaling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip HS
Torr. Res2net: A new multi-scale backbone architecture. IEEE transactions on pattern analysis
and machine intelligence, 2019.

Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, and Brandon Reagen.
Characterizing and optimizing end-to-end systems for private inference. arXiv preprint
arXiv:2207.07177, 2022.

Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. CryptoNAS: Private
inference on a relu budget. In Advances in Neural Information Processing Systems, 2020.

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic relus
for private deep learning. In Advances in Neural Information Processing Systems, 2021.

Anna Golubeva, Guy Gur-Ari, and Behnam Neyshabur. Are wider nets better given the same number
of parameters? In International Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. DeepReDuce: Relu
reduction for fast private inference. In International Conference on Machine Learning, 2021.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low latency frame-
work for secure neural network inference. In 27th USENIX Security Symposium, 2018.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www. cs. toronto. edu/kriz/cifar. html, 2010.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7, 2015.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint, 2018.

Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, and Tuo Zhao. Benefits of
overparameterized convolutional residual networks: Function approximation under smoothness
constraint. In International Conference on Machine Learning, 2022a.

10



Under review as a conference paper at ICLR 2023

Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neural network predictions via minionn
transformations. In Proceedings of the ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. SAFENet: Asecure, accurate and fast neu-ral
network inference. International Conference on Learning Representations, 2021.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and
Mehrdad Farajtabar. Wide neural networks forget less catastrophically. In International Confer-
ence on Machine Learning, 2022.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security Sympo-
sium, 2020.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021.

Daniel Park, Jascha Sohl-Dickstein, Quoc Le, and Samuel Smith. The effect of network width on
stochastic gradient descent and generalization: an empirical study. In International Conference
on Machine Learning, 2019.

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network de-
sign spaces for visual recognition. In Proceedings of the IEEE/CVF international conference on
computer vision, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, 2020.

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Baraniuk,
Micah Goldblum, and Tom Goldstein. Can neural nets learn the same model twice? investigating
reproducibility and double descent from the decision boundary perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. Cryptgpu: Fast privacy-preserving machine
learning on the gpu. In IEEE Symposium on Security and Privacy, 2021.

Yongqin Wang, G Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott, Murali An-
navaram, and Hsien-Hsin S Lee. Characterization of mpc-based private inference for transformer-
based models. In IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), 2022.

11



Under review as a conference paper at ICLR 2023

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017.

Antoine Yang, Pedro M. Esperana, and Fabio M. Carlucci. Nas evaluation is frustratingly hard. In
International Conference on Learning Representations, 2020.

Leon Yao and John Miller. Tiny imagenet classification with convolutional neural networks. CS
231N, 2015.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint, 2016.

12



Under review as a conference paper at ICLR 2023

A STAGEWISE RELUS CRITICALITY WITH WIDTH ARGUMENTATION

Table 5: Stagewise ReLU criticality of HRN networks (derived from ResNet18) with α values
ranging from 2 to 7, on CIFAR-100 dataset. The HRNs with minimum α, β, and γ requiring for
ReLU-equalization (in all the stages) are in bold. The criticality metric values (Ck) for all the
stages are computed according to the method described in Jha et al. (2021). Higher criticality metric
represent stage with more critical ReLUs. We note that the criticality orders of all the HRN networks,
except the smallest network with α=2, are same as that in original ResNet18 (i.e., S3 > S2 > S4 >
S1).

Networks Stage1 Stage2 Stage3 Stage4

#ReLUs Acc(%) KD(%) Ck #ReLUs Acc(%) KD(%) Ck #ReLUs Acc(%) KD(%) Ck #ReLUs Acc(%) KD(%) Ck

HRN-2x7x2x 81.92K 52.14 53.39 0.00 32.77K 61.63 61.59 6.42 57.34K 68.44 69.82 12.37 28.67K 62.15 63.40 7.91
HRN-3x7x2x 81.92K 51.61 53.29 0.00 49.15K 64.46 65.26 9.11 86.02K 69.88 70.77 12.80 43.01K 63.10 64.17 8.36
HRN-4x7x2x 81.92K 51.28 49.42 0.00 65.54k 65.93 66.47 12.72 114.69K 70.94 72.16 16.32 57.34K 63.70 64.77 11.56
HRN-5x7x2x 81.92K 49.82 48.36 0.00 81.92K 66.17 67.59 14.13 143.36K 71.40 72.18 16.83 71.68K 64.10 65.35 12.60
HRN-6x7x2x 81.92K 51.23 48.48 0.00 98.30K 66.88 68.06 14.20 172.03K 71.86 72.73 16.91 86.02K 64.15 65.75 12.64
HRN-7x7x2x 81.92K 50.11 52.40 0.00 114.69K 66.92 68.29 11.40 200.70K 71.69 73.16 14.32 100.35K 63.82 65.53 9.51

HRN-2x6x2x 81.92K 52.29 53.19 0.00 32.77K 61.62 62.00 6.90 49.15K 67.36 69.51 12.43 24.58K 61.64 63.25 8.04
HRN-3x6x2x 81.92K 52.50 52.80 0.00 49.15K 64.50 65.64 9.78 73.73K 68.61 70.96 13.44 36.86K 62.77 64.09 8.77
HRN-4x6x2x 81.92K 53.23 53.32 0.00 65.54K 65.74 66.03 9.48 98.30K 70.47 71.54 13.22 49.15K 63.59 64.82 8.76
HRN-5x6x2x 81.92K 50.79 51.64 0.00 81.92K 66.89 67.27 11.48 122.88K 70.33 71.50 14.18 61.44K 63.97 64.94 9.97
HRN-6x6x2x 81.92K 50.01 50.59 0.00 98.30K 66.57 67.94 12.58 147.46K 71.18 72.59 15.51 73.73K 64.13 65.39 10.95
HRN-7x6x2x 81.92K 51.01 49.64 0.00 114.69K 66.74 68.57 13.58 172.03K 71.84 72.84 16.18 86.02K 64.54 65.16 11.36

HRN-2x5x2x 81.92K 52.03 53.05 0.00 32.77K 61.60 61.76 6.82 40.96K 66.64 68.29 11.75 20.48K 61.02 62.58 7.71
HRN-3x5x2x 81.92K 53.43 52.61 0.00 49.15K 64.57 65.71 9.97 61.44K 68.40 69.93 12.98 30.72K 62.32 63.42 8.51
HRN-4x5x2x 81.92K 52.65 52.33 0.00 65.54K 65.60 66.89 10.86 81.92K 69.81 70.85 13.61 40.96K 63.14 63.94 8.95
HRN-5x5x2x 81.92K 49.15 51.16 0.00 81.92K 66.26 67.47 11.98 102.40K 70.15 71.69 14.85 51.20K 63.55 64.67 10.26
HRN-6x5x2x 81.92K 49.06 52.10 0.00 98.30K 66.56 68.08 11.59 122.88K 71.33 71.85 14.10 61.44K 63.59 64.89 9.59
HRN-7x5x2x 81.92K 51.58 51.93 0.00 114.69K 66.94 67.89 11.45 143.36K 70.79 72.87 14.79 71.68K 64.02 65.23 9.86
HRN-2x5x3x 81.92K 52.36 53.68 0.00 32.77K 61.39 61.30 5.97 40.96K 66.78 68.17 11.17 30.72K 62.01 63.83 7.99
HRN-3x5x3x 81.92K 51.05 52.89 0.00 49.15K 64.64 65.10 9.30 61.44K 68.87 70.14 12.93 46.08K 63.66 64.32 8.74
HRN-4x5x3x 81.92K 51.57 50.62 0.00 65.54K 65.66 66.06 11.52 81.92K 69.12 70.13 14.33 61.44K 63.64 65.58 11.21
HRN-5x5x3x 81.92K 50.22 52.41 0.00 81.92K 66.42 67.55 11.12 102.40K 70.15 70.97 13.42 76.80K 64.21 65.59 9.73
HRN-6x5x3x 81.92K 50.28 50.45 0.00 98.30K 65.95 67.61 12.45 122.88K 70.68 71.29 14.88 92.16K 64.37 65.87 11.23
HRN-7x5x3x 81.92K 50.12 50.31 0.00 114.69K 66.85 67.95 12.66 143.36K 71.20 71.87 15.23 107.52K 64.72 65.58 11.01

HRN-2x9x2x 81.92K 51.86 53.22 0.00 32.77K 61.13 61.65 6.60 73.73K 69.46 70.28 12.63 36.86K 62.53 64.25 8.57
HRN-2x6x3x 81.92K 52.75 52.85 0.00 32.77K 61.33 61.44 6.73 49.15K 67.36 68.76 12.11 36.86K 62.69 64.59 9.12

We compute the stagewise criticality metric for all the HRN networks derived from ResNet18 in
Table 5. The same is computed for the ResNet18 BaseCh and StageCh networks in Table 6.
Interestingly, the criticality order of vanilla ResNet18 remains preserved in all the HRNs, except
for the HRNs with α=2 (HRN-2x5x3x, HRN-2x5x2x, HRN-2x6x2x, and HRN-2x7x2x). Precisely,
the criticality order of Stage2 and Stage3 get shuffled, and it changed to Stage3 > Stage4 > Stage2
> Stage1 (from Stage3 > Stage2 > Stage4 > Stage1), while the order of most and least critical
stages remains same. For this change order of criticality, we again compute the values of α, β, and
γ using the DeepReShape algorithm 1 while keeping the fraction of ReLUs in Stage1 highest. In
this way, we get two HRN-2x6x3x and HRN-2x9x3x where β and γ correspond to the minimum
value satisfying ReLU equalization in all the stages, except Stage1. We also compute the stagewise
criticality for these HRNs in the bottom rows of Table 5.
Table 6: Stagewise ReLU criticality of BaseCh and StageCh networks derived from ResNet18
(R18), on CIFAR-100 dataset. The criticality metric values (Ck) for all the stages are computed
according to the method described in Jha et al. (2021). We note that the criticality order of all the
BaseCh and StageCh networks are same as that in original ResNet18 (i.e., S3 > S2 > S4 > S1).

Networks Stage1 Stage2 Stage3 Stage4

#ReLUs Acc(%) KD(%) Ck #ReLUs Acc(%) KD(%) Ck #ReLUs Acc(%) KD(%) Ck #ReLUs Acc(%) KD(%) Ck

R18(m=16)-2x2x2x 81.92K 52.08 52.67 0.00 32.77K 61.24 62.10 7.39 16.38K 63.00 64.64 9.84 8.19K 58.09 59.70 6.07
R18(m=32)-2x2x2x 163.84K 59.19 60.19 0.00 65.54K 65.91 66.47 4.69 32.77K 65.7 67.28 5.55 16.38K 60.48 62.22 1.67
R18(m=64)-2x2x2x 327.68K 62.65 63.13 0.00 131.07K 67.18 68.32 3.69 65.54K 68.75 70.29 5.34 32.77K 62.63 63.47 0.27
R18(m=128)-2x2x2x 655.36K 62.34 64.15 0.00 262.14K 69.28 70.56 4.34 131.07K 71.25 72.04 5.61 65.54K 63.59 64.58 0.32
R18(m=256)-2x2x2x 1310.72K 64.81 65.22 0.00 524.29K 71.95 72.43 4.65 262.14K 72.69 73.77 5.79 131.07K 64.79 65.77 0.39

R18(m=16)-2x2x2x 81.92K 52.08 52.67 0.00 32.77K 61.24 62.10 7.39 16.38K 63.00 64.64 9.84 8.19K 58.09 59.70 6.07
R18(m=16)-3x3x3x 81.92K 52.77 53.07 0.00 49.15K 64.93 65.67 9.59 36.86K 66.23 67.96 11.57 27.65K 61.74 63.43 8.21
R18(m=16)-4x4x4x 81.92K 52.19 52.20 0.00 65.54K 65.62 66.22 10.46 65.54K 67.82 69.16 12.66 65.54K 63.52 65.46 9.89
R18(m=16)-5x5x5x 81.92K 50.38 50.65 0.00 81.92K 66.10 66.63 11.74 102.40K 70.17 70.64 14.46 128.00K 64.86 65.43 10.52
R18(m=16)-6x6x6x 81.92K 50.60 51.53 0.00 98.30K 66.74 67.11 11.30 147.46K 70.67 72.09 14.49 221.18K 65.22 66.43 10.21
R18(m=16)-7x7x7x 81.92K 50.93 49.07 0.00 114.69K 66.59 67.89 13.50 200.70K 72.08 73.33 16.74 351.23K 65.95 67.88 12.48

B RELU EQUALIZATION AND BUILDING BLOCKS IN HYBRENET

B.1 RELU EQUALIZATION ON A FOUR STAGE NETWORK

In order to achieve ReLU equalization (shown in Figure10), we employ DeepReShape on a (stan-
dard) four-stage network shown in Figure 3. In particular, given a D stages input network with φ1,
φ2, ..., φD as stage compute ratios, and λ1. λ2, ..., λ(D−1) as the stagewise channel multiplication
factors, first we find the stagewise criticality order similar to Jha et al. (2021). Given the criticality

13



Under review as a conference paper at ICLR 2023

Stage1 Stage2 Stage3 Stage4

ReLU-equalization
R

eL
U

 d
is

tri
bu

tio
n Least-critical

Most-critical

ReLUs' criticality order 

(Stage3 > Stage2 > Stage4 > Stage1)

Stage1 Stage2 Stage3 Stage4R
eL

U
 d

is
tri

bu
tio

n

Least-critical

Most-critical

Classical network (Baseline) ReLU-equalized network (Proposed)

(Proposed)

Layer-index Layer-index

Figure 10: ReLUs’ distribution in classical networks (e.g., ResNet) is agnostic to their criticality
order, and through ReLU equalization network’s ReLUs are redistributed in their order of criticality.

order (from most critical to least critical) S3 > S2 > S4 > S1 (see Table 6). DeepReShape 1
outputs following compound inequalities.

#ReLUs(S3) > #ReLUs(S2) > #ReLUs(S4) > #ReLUs(S1)

=⇒ φ3

(αβ
16

)
> φ2

(α
4

)
> φ4

(αβγ
64

)
> φ1

ReLU equalization through depth (α = β = γ = 2) : =⇒ φ3
4
>
φ2
2
>
φ4
8
> φ1

ReLU equalization through width (φ1 = φ2 = φ3 = φ4 = 2, and α ≥ 2, β ≥ 2, γ ≥ 2) :

=⇒ αβ

16
>
α

4
>
αβγ

64
> 1 =⇒ αβ > 16, α > 4, αβγ > 64, β > 4, βγ < 16, and γ < 4

Solving the above compound inequalities provides the following (β, γ) pairs and the range of α :

The (β, γ) pairs are: (5, 2) & α ≥ 7; (5, 3) & α ≥ 5; (6, 2) & α ≥ 6; (7, 2) & α ≥ 5

Finally, we get four pairs of (β, γ) and a range of αwhich satisfies the conditions for ReLU equaliza-
tion. We select the minimum values of α, β, and γ for two reasons: (1) once the network achieves
ReLU equalization, the (relative)distribution of ReLUs becomes stable and does not change with
increasing α; and (2) increasing alpha in HRNs does not improve the ReLU-accuracy tradeoff when
ReLU optimization is applied, rather it causes the poor ReLU-accuracy tradeoff at lower ReLU
counts (see Figure 7).

B.2 ARCHITECTURAL BUILDING BLOCKS IN HYBRENET

Table 7: Comparison of the building blocks of the (proposed) HybReNet with ResNet/WideResNet.
Number of channels in ResNet models is progressively multiplied by 2× in each stage (except
Stage1); whereas, in WideResNet models the number of channels is further multiplied by a factor of
k in all the layers (e.g., k=10 in WRN-22x10). In contrast, channels in HybReNet is heterogeneously
increased by a factor of α, β, and γ in Stage2, Stage3, and Stage4 (respectively).

Stages output size ResNet WideResNet HybReNet(Proposed)
Stem din × din [3×3, m] [3×3, m] [3×3, m]

Stage1 din×din
[

3×3, m
3×3, m

]
×φ1

[
3×3, m×k
3×3, m×k

]
×φ1

[
3×3, m
3×3, m

]
×φ1

Stage2 din
2 ×

din
2

[
3×3, 2m
3×3, 2m

]
×φ2

[
3×3, 2m×k
3×3, 2m×k

]
×φ2

[
3×3, αm
3×3, αm

]
×φ2

Stage3 din
4 ×

din
4

[
3×3, 4m
3×3, 4m

]
×φ3

[
3×3, 4m×k
3×3, 4m×k

]
×φ3

[
3×3, β(αm)
3×3, β(αm)

]
×φ3

Stage4 din
8 ×

din
8

[
3×3, 8m
3×3, 8m

]
×φ4

[
3×3, γ(αβm)
3×3, γ(αβm)

]
×φ4

FC 1× 1 [din8 ×
din
8 , 8m] [din8 ×

din
8 , 4m× k] [din8 ×

din
8 , γ(αβm)]

14



Under review as a conference paper at ICLR 2023

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RELU EQUALIZATION THROUGH DEPTH IN BaseCh NETWORKS

ReLU equalization through the width in HRNs has two (simultaneous)effects: first, it increases the
network’s complexity per unit of nonlinearity (i.e., parameters and FLOPs per ReLU); and second,
the distribution of ReLUs follows their criticality order. Now, to decouple these two effects and
study their significance individually, we perform ReLU equalization through depth and increase the
base channel counts to increase the parameters and FLOPs per ReLU.

 70

 72

 74

 76

 78

 80

 82

 128  256  512  1024  2048

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN[1,7,5,2]

HRN[1,6,6,2]

HRN[1,5,7,2]

HRN[1,5,5,3]

ResNet18-(StageCh)

ResNet18-(BaseCh)

(a) ReLU-efficiency

 70

 72

 74

 76

 78

 80

 82

 32  64  128  256  512  1024  2048  4096  8192  16384

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)
#FLOPs (M)

HRN[1,7,5,2]

HRN[1,6,6,2]

HRN[1,5,7,2]

HRN[1,5,5,3]

ResNet18-(StageCh)

ResNet18-(BaseCh)

(b) FLOPs-efficiency

Figure 11: ReLU and FLOPs efficiency when network’s ReLU (in ResNet18) is equalized by setting
the stage compute ratios and while complexity per units of nonlinearity is increased by augmenting
m ∈ {16, 32, 64, 128, 256}.
Similar to the baseline network in HRNs, we use the classical ResNet18 withm=16 (and α=β=γ=2);
however, now, stage compute ratios (φ1, φ2, φ3, and φ4) are the design hyperparameters. We apply
the Algorithm 1 for ReLU equalization, and after solving solving the compound inequalities, we
get the depth hyperparameters corresponding to the minimum values enabling ReLU equalization
as (φ1, φ2, φ3, φ4) ∈ {(1,5,5,3); (1,5,7,2); (1,6,6,2); and (1,7,5,2)}. Note that the network’s global
depth (sum of all the stage compute ratio) for all the networks are 14. Now, we increase the param-
eters and FLOPs per unit of ReLU by sweeping m={16, 32, 64, 128, and 256}. The experimental
results are shown in Figure 11 where we compare the ReLU and FLOPs efficiency withBaseCh and
StageCh networks. As evident from the plots, both the ReLU-efficiency and FLOPs-efficiency of
the above-derived networks are either similar or even worst. For example, HRN[1,5,5,3] exhibits in-
ferior ReLU/FLOPs-efficiency at higher ReLU/FLOPs count, compared to the BaseCh networks.
Thus, decoupling the effect of ReLU equalization and higher complexity per unit of nonlinearity
helps us understand the significance of ReLU-equalization through width, in particular by changing
the width hyperparameters α, β, and γ.

C.2 ADDITIONAL RESULTS FOR CRITICALITY-CAPACITY TRADEOFF

In addition to the results shown in Figure 8 for the “Criticality Capacity Tradeoff”, we repeat the
same experiments on the other HRNs and the results shown in Figure 12. For each set of experiments
on DeepReDuce and SNL, we select three HRN networks with reduced values of α, which in turn
increases the fraction of ReLUs in Stage1 (see Table 5). For instance, HRN-6x6x2x, HRN-4x6x2x,
and HRN-2x6x2x have the Stage1 fraction of ReLUs as 20.4%, 27.8%, and 43.5% (respectively).
The observations made in Figure 8 for both DeepReDuce and SNL are consistent with that in Figure
12. For example, at higher ReLUs HRN-6x6x2x and HRN-4x6x2x outperform the HRN-2x6x2x,
while at lower ReLU counts, the latter consistency outperforms the former.

D DISCUSSION

D.1 STAGEWISE CHANNEL MULTIPLICATION FACTORS IN CLASSICAL NETWORKS

Conventionally, when the spatial size of feature maps is downsampled by a factor of two, then
to circumvent the representational bottleneck filter count is also doubled (Szegedy et al., 2016).

15



Under review as a conference paper at ICLR 2023

 60

 65

 70

 75

 80

 8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x5x3x

HRN-4x5x3x

HRN-5x5x3x

(a) DeepReDuce w/ HRN-5x5x3x

 60

 65

 70

 75

 80

 8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x6x2x

HRN-4x6x2x

HRN-6x6x2x

(b) DeepReDuce w/ HRN-6x6x2x

 60

 65

 70

 75

 80

 8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x7x2x

HRN-4x7x2x

HRN-5x7x2x

(c) DeepReDuce w/ HRN-5x7x2x

 64

 68

 72

 76

 16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x5x3x

HRN-4x5x3x

HRN-5x5x3x

(d) SNL w/ HRN-5x5x3x

 64

 68

 72

 76

 16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x6x2x

HRN-4x6x2x

HRN-6x6x2x

(e) SNL w/ HRN-6x6x2x

 64

 68

 72

 76

 16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x7x2x

HRN-4x7x2x

HRN-5x7x2x

(f) SNL w/ HRN-5x7x2x

Figure 12: Capacity-Criticality Tradeoff in HRN networks for coarse/fine-grained ReLU optimiza-
tion DeepReDuce/SNL. HRN networks with decreasing value of α has higher proportion of Stage1
(non-critical) ReLUs.

In other words, in almost all the classical networks, the stagewise channel multiplication factors
(shown in Figure 3) are set as α = β = γ = 2. Nonetheless, we note that authors in Radosavovic
et al. (2020) varied the stagewise channel multiplication factors from 1.5 to 3 for designing FLOPs-
efficient networks, and found value ≈ 2.5 works best for FLOPs-efficient networks. The primary
reason for being conservative about the stagewise multiplication factor is the FLOPs-efficiency,
which the conventional network design paradigms strive for. Precisely, as shown in Table 2, FLOPs
has a quadratic dependency on the channel count in conjunction with the multiplicative effect of
stagewise channel multiplication factors. Consequently, a slight increase in stagewise multiplication
factors can cause a significant increase in overall FLOPs count.

D.2 ACCURACY SATURATION IN StageCh NETWORKS

In contrast with Figure 4(b), we observe a distinct trend in ReLU-accuracy trade-off when models’
width increases. Precisely, with increasing α, β, and γ, accuracy first increases, and then it gets
saturated, and again at higher ReLU count it increases. This trend is more evident in models with
smaller depth (e.g., ResNet18); however, it vanishes in deeper models such as ResNet56 where
performance does not improve after saturation. We note that the trend of ReLU-accuracy saturation
in 4(c) can be explained by the “model-wise deep double descent” phenomenon which is more
pronounced with higher label noise (Belkin et al., 2019; Nakkiran et al., 2021; Somepalli et al.,
2022). To be specific, in the presence of label noise, a U-shaped curve appears in the classical
(under-parameterized) regime due to a bias-variance tradeoff, and in the over-parameterized regime
accuracy again improves due to the regularization enabled by the strong inductive bias of network.
In contrast, with zero label noise the test error plateaus around the interpolation threshold — similar
to the trend shown in Figure 4(c) – and hence, instead of a U-shaped curve it remains flat.

D.3 ADDITIONAL RESULTS FOR STAGEWISE RELU DISTRIBUTION IN HRN NETWORKS

Why increasing α beyond ReLU equalization does not change the relative distribution of
ReLU? Recall that scaling the channels with a constant factor does not change the distribution
of ReLUs (Figure 5(a)) since it alters the ReLU count of all the stages by same degree (Table 2).
Likewise, we notice that increasing α augments the ReLU count of all the stages, except Stage1, by
the same degree which makes the (relative) distribution of ReLUs stable at higher αs.

16



Under review as a conference paper at ICLR 2023

 0

 20

 40

 60

 80

 100

2,7,2 3,7,2 4,7,2 5,7,2 6,7,2 7,7,2

T
o
ta

l 
R

e
L

U
 (

%
)

(a) HRN-5x7x2x(Proposed)

 0

 20

 40

 60

 80

 100

2,6,2 3,6,2 4,6,2 5,6,2 6,6,2 7,6,2 8,6,2

T
o
ta

l 
R

e
L

U
 (

%
)

(b) HRN-6x6x2x(Proposed)

 0

 20

 40

 60

 80

 100

2,5,3 3,5,3 4,5,3 5,5,3 6,5,3 7,5,3

T
o
ta

l 
R

e
L

U
 (

%
)

(c) HRN-5x5x3x (Proposed)

 0

 20

 40

 60

 80

 100

ResNet34 ConvNeXt-T HRN-7x5x2x HRN-5x7x2x HRN-6x6x2x HRN-5x5x3x

T
o
ta

l 
R

e
L

U
 (

%
)

(d) ResNet34: ConvNeXt & HRNs

 0

 20

 40

 60

 80

 100

ResNet50 ConvNeXt-T HRN-7x5x2x HRN-5x7x2x HRN-6x6x2x HRN-5x5x3x

T
o
ta

l 
R

e
L

U
 (

%
)

(e) ResNet50: ConvNeXt & HRNs

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8 1.6 3.2 4.0 6.4 8.0 12 16 32

T
o
ta

l 
R

e
L

U
 (

%
)

(f) RegNet-X

Figure 13: ((a)-(c)): Stagewise ReLU distribution in HRN networks where α’s are swept from α=2
to higher values in order to perform a holistic characterization. Stagewise ReLU distribution for:
(d) ConvNeXt-ify Liu et al. (2022b) version and HRNs with ResNet34; (e) ConvNeXt-ify version
and HRNs with ResNet50; and (f) RegNet-X Radosavovic et al. (2020) networks, a semi-automated
network design paradigm that outputs ReLU-equalized network.

D.4 HOW HYBRENETS ACHIEVES FLOP-RELU-ACCURACY BALANCE?

As shown in derivation steps for ReLU equalization on a four-stage network in Appendix B.1, HRN
networks have (β, γ) pairs with fixed values since it bounds these values as βγ < 16 and γ <
4. These bounds, especially γ < 4, prohibit the growth of FLOPs in deeper stages. In contrast,
StageCh networks have homogeneous sets of α, β, and γ; thus FLOPs grow rapidly in the deeper
layer. As shown in Table 3, normalized FLOPs in Stage3 and Stage4 of ResNet18 is α2β2

16 and
α2β2γ2

64 (respectively). Thus, at γ=2, the #FLOPs in Stage3 and Stage4 are equal which is evident
from the (normalized)stagewise FLOPs ratio for HRN-5x7x2x, HRN-7x5x2x, and HRN-6x6x2x
networks, as shown in Table 8. Notice that γ values are restricted as γ < 4 to make the ReLU
count of Stage4 lower than that of Stage3 (the most critical stage) which in turn restricts the FLOPs
count of Stage4. Nonetheless, restricting α and β values can further reduce the network’s FLOPs
but it also reduces the ReLU count in Stage3 (αβ16 ); thus, the proportion of most significant ReLUs in
the network would become lower. In conclusion, the criticality-aware network design prohibits the
superfluous FLOPs (of StageCh networks) and maximizes the utilization of the network’s FLOPs
for a given ReLU count.
Table 8: Normalized (stagewise) FLOPs and ReLU count for ResNet18 StageCh networks (upper-
table) and HRN networks (lower-table). The least and most critical ReLUs are colored in red and
blue, respectively. Evidently, in constrast with StageCh network, ReLU-equalization in HRNs
restrict the growth of FLOPs in deeper layers and networks achieve ReLU efficiency at par with
StageCh network; however, with fewer FLOPs. This way HRN networks achieve FLOPs-ReLU-
accuracy balance.

(α, β, γ)=2 (α, β, γ)=3 (α, β, γ)=4 (α, β, γ)=6

Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4
FLOPs 64 64 64 64 64 144 324 729 64 256 1024 4096 64 576 5184 46656
ReLUs 64 32 16 8 64 48 36 27 64 64 64 64 64 96 144 216

HRN-5x7x2x HRN-7x5x2x HRN-6x6x2x HRN-5x5x3x

Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4
FLOPs 64 400 4900 4900 64 784 4900 4900 64 576 5184 5184 64 400 2500 5625
ReLUs 64 80 140 70 64 112 140 70 64 96 144 72 64 80 100 75

D.5 POTENTIAL OF RELU EQUALIZATION AS A UNIFIED NETWORK DESIGN PRINCIPLE

The manual network design such as ResNet (He et al., 2016), ResNeXt (Xie et al., 2017), ConvNeXt
(Liu et al., 2022b), etc., and neural architecture search (Liu et al., 2018; Tan & Le, 2019; Howard
et al., 2019; Tan et al., 2019) are the conventional way of designing state-of-the-arts neural networks

17



Under review as a conference paper at ICLR 2023

for a wide range of complexity. While the former results in sub-optimal models when design choices
increases, the latter lacks the interpretability and network design principles and fails to generalize
beyond a restricted setting (Yang et al., 2020). In addition, both these network design paradigms
require huge computation in order to find the optimal design hyper-parameters when networks are
designed from scratch. On the other hand, the semi-automated design technique such as RegNets
(Radosavovic et al., 2020) aims for interpretable network design and semi-automate the design pro-
cedure for finding the optimal population of networks generalizable across a wide range of settings.
However, to gradually narrow down the search space, and access the quality of design space, it
uses the error distribution function which requires a training sample size of thousands of models
(Radosavovic et al., 2019) in each iteration. Consequently, it becomes expensive when models are
designed from scratch.

In contrast, ReLU-equalization only needs the prior knowledge of stagewise criticality of baseline
network — which are often same for a particular model family — thus needs to train very few
models. Moreover, unlike the aforementioned design paradigms, it can be used for designing both
the FLOPs and ReLU efficient neural networks. Note that the width and depth of RegNet networks
are explained by a sophisticated quantized linear function, which eventually equalizes the networks’
ReLU in their order of criticality. Thus, going forward, we believe that ReLU equalization will give
a new perspective to simplify the network design for both FLOPs and ReLU efficient networks, and
improve the interpretability.

D.6 HYBRENET WITH DIFFERENT CRITICALITY ORDER

In this paper, we perform an exhaustive characterization of HRN networks designed for the prevalent
criticality order Stage3 > Stage2 > Stage4 > Stage1. However, we notice that criticality order of
Stage2 and Stage4 get inter-changed in the following cases: (1) HRNs with α=2 originally designed
for Stage3 > Stage2 > Stage4 > Stage1 criticality order, and (2) ResNet18/ResNet34 on TinyIma-
geNet (Jha et al., 2021). That is, in the aforementioned two cases criticality order changes to Stage3
> Stage4 > Stage2 > Stage1. This brings a natural question, do we need to run the criticality
test for every baseline network on different datasets? To answer this question, we need to compare
the ReLU-accuracy performance of HRN networks designed with the aforementioned two different
criticality orders. We apply the DeepReShape algorithm 1 for designing HybReNets for the given
criticality order Stage3 > Stage4 > Stage2 > Stage1 as follows.

#ReLUs(S3) > #ReLUs(S4) > #ReLUs(S2) > #ReLUs(S1)

=⇒ φ3

(αβ
16

)
> φ4

(αβγ
64

)
> φ2

(α
4

)
> φ1

ReLU equalization through width (φ1 = φ2 = φ3 = φ4 = 2, and α ≥ 2, β ≥ 2, γ ≥ 2) :

=⇒ αβ

16
>
αβγ

64
>
α

4
> 1 =⇒ αβ > 16, α > 4, αβγ > 64, β > 4, βγ > 16, and γ < 4

Solving the above compound inequalities provides the following range of β and γ at two different γ
At γ = 2, β > 8 & α > 4; and at γ = 3, β > 5 & α > 4

Thus, the HRNs with minimum values of α, β, and γ satisfying the ReLU equalization for the
criticality order Stage3 > Stage4 > Stage2 > Stage1 are HRN-5x6x3x and HRN-5x9x2x. Also, for
achieving lower ReLU counts, HRN networks with α=2 is used, that is, HRN-2x6x3x and HRN-
2x9x2x. We compare the ReLU-accuracy tradeoffs for these HRNs with the HRNs designed for
prevalent criticality order, in Figure 14. With coarse-grained ReLU optimization, DeepReDuce,
(Figure 14(a)) performance of HRNs for both the criticality order looks quite similar. We further
employ the fine-grained ReLU-optimization, SNL, (Figure 14(b)) on the same set of networks, and
observe a notice accuracy gap at lower ReLU counts. In particular, HRN-2x5x3x and HRN-2x7x2x
outperform HRN-2x6x3x and HRN-2x9x2x by a small; however, noticeable margin. Further, we
compare the performance of HRN-5x6x3x and HRN-5x9x2x on TinyImageNet in Figure 14(c).
The performance of all the HRNs is quite similar, except at some intermediate ReLU counts HRN-
5x5x3x outperforms by a noticeable margin.

18



Under review as a conference paper at ICLR 2023

 56

 60

 64

 68

 72

 76

 4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x6x3x

HRN-2x9x2x

HRN-2x5x3x

HRN-2x7x2x

(a) DeepReDuce on CIFAR-100

 66

 68

 70

 72

 74

 76

 16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-2x6x3x

HRN-2x9x2x

HRN-2x5x3x

HRN-2x7x2x

(b) SNL on CIFAR-100

 54

 57

 60

 63

 66

 128  256  512

T
in

y
Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

HRN-5x6x3x

HRN-5x9x2x

HRN-5x5x3x

HRN-5x7x2x

(c) DeepReDuce on TinyImageNet

Figure 14: ReLU optimizations (DeepReDuce and SNL) on HRNs with different criticality orders.

Conclusively, even if we presume the default criticality order as the most prevalent one, Stage3 >
Stage2 > Stage4 > Stage1, the designed HRN would not lose the performance compared to the
HRNs designed for the exact same order of criticality.

E EXPERIMENTAL RESULTS AND DISCUSSION FOR RELU-REUSE

X1 X2 X3 ..... Xn

Y1 Y2 Y3 ..... Yn

X

Y

ReLU Reduction

X1 X3

Y1 Y3

X2

Y2

Proposed

ReLU Reduction

(loss of information
at higher N)

(#group is
independent of N)

3x3
3x3

3x3

3x3

Conv + BN + ReLU

3x3

1x
1

3x3

Naive

Conv + BN 


Figure 15: Proposed ReLU-reuse
Ablation study on ResNet18: We perform an ablation study on ResNet18 (CIFAR-100) and demon-
strate the benefits of (1) having a shortcut connection between the output of one feature-subspace
to the input of the next feature-subspace, and (2) having a fixed number of divisions, independent
of the ReLU reduction factor. We employ the ReLU-reuse on the alternate layers on ResNet18, and
the results are shown in Table 9. Initially, at lower ReLU reduction factors, there is a noticeable
accuracy gain in the presence of shortcut connections. However, at higher ReLU reduction factors
this accuracy gain decreases. In fact, in both the cases (with and without shortcut connections) ac-
curacy drops by ∼1.5% for 4x reduction, compared to 2x reduction. In contrast, when we have
a fixed number of divisions, accuracy drops at a higher ReLU reduction factor and remains (rela-
tively)stable. Note that, at scale=2 the accuracy of our proposed ReLU-reuse is lower than that for
the N division with shortcut connections. This is because, the latter has only two groups of feature
maps while the former has three groups; thus, incurring more information loss.
Table 9: We perform ablation study for ReLU-reuse on ResNet18 by applying them on alternate
layers (CIFAR-100). For N divisions, with reuse denotes the presence of a shortcut connection
between the output of a feature-subspace to the input of next feature-subspace. In our proposed
ReLU-reuse, number of divisions is fixed, irrespective of the ReLU reduction factor.

ReLU reduction factor ReLU count N divisions Proposed
w/o Reuse w/ Reuse (3 divisions)

2x reduction (Scale=2) 434.18K 77.61% 78.19% 77.83%
4x reduction (Scale=4) 372.74K 75.84% 76.87% 77.60%
8x reduction (Scale=8) 342.02K 75.43% 75.66% 76.93%

16x reduction (Scale=16) 326.66K 75.33% 75.47% 76.38%

Performance comparison of HRN vs classical networks for ReLU-reuse: We now compare the
performance of ReLU-reuse with the conventional (channel/feature-map) scaling used in DeepRe-

19



Under review as a conference paper at ICLR 2023

Duce (Jha et al., 2021) on both the classical networks and HRNs. First, we employ ReLU-reuse
on all the layers of networks and reduce the ReLUs by a factor of N ∈ {2, 4, 8, 16}2. Results are
shown in Figure 16. Evidently, for ResNet18 BaseCh networks, the performance of ReLU-reuse
is inferior to conventional scaling methods, and the performance gap increases for ResNet18 with
higher base channel counts. In contrast, on the HRN networks, ReLU-reuse outperforms conven-
tional scaling at lower ReLU counts; however, at higher ReLUs (especially for the ReLU reduction
factor of two) the information loss incurring from the feature maps division dwarfs the benefit of
ReLU-reuse. Note that, a similar observation is held for networks with partial ReLU-equalization,
ResNet18(m=16)-4x4x4x.

We further repeat the above experiments on Thinned networks as Reshaping is performed on
Thinned networks in DeepReDuce (Jha et al., 2021). That is, first ReLUs are dropped from alternate
layers and then ReLU-reuse is employed in the remaining layers. Results are shown in Figure 17.
Since the ReLU-reuse is now employed in only one-half of the total number of layers, the cumula-
tive information loss incurring from the loss of cross-channel information in feature-map divisions
is also reduced. Consequently, the performance of ReLU-reuse is further boosted which is evident
from the change in the performance gap between ReLU-reuse and conventional scaling for all the
networks in Figure 17. In particular, compared to the results in Figure 16, the performance gap
is reduced where ReLU-reuse was inferior (in ResNet18 BaseCh network), and increases where
ReLU-reuse was superior (in HRN networks).

 50

 55

 60

 65

 70

 8  16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(a) ResNet18(m=16)

 55

 60

 65

 70

 16  32  64  128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(b) ResNet18(m=32)

 60

 65

 70

 75

 80

 32  64  128  256

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(c) ResNet18(m=64)

 60

 65

 70

 75

 80

 64  128  256  512

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(d) ResNet18(m=128)

 55

 60

 65

 70

 75

 16  32  64  128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(e) 4x4x4x

 50

 55

 60

 65

 70

 75

 8  16  32  64  128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(f) HRN-2x6x2x

 55

 60

 65

 70

 75

 16  32  64  128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(g) HRN-5x5x3x

 55

 60

 65

 70

 75

 80

 16  32  64  128  256

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(h) HRN-6x6x2x

Figure 16: Performance comparison (CIFAR-100) of ReLU-reuse vs conventional scaling (used
as reshaping steps in DeepReDuce Jha et al. (2021)) when ReLU-reuse is employed after every
convolution layer.
Incorporating ReLU-reuse in DeepReDuce pipeline: We incorporate the ReLU-reuse in the
ReLU optimization pipeline of DeepReDuce, as shown in Algorithm 2.The original DeepReDuce
runs for (D− 1)× iterations since the input baseline was a classical network (e.g., ResNet18) where
ReLUs’ distribution was agnostic to their criticality order; thus, running a single iteration often re-
sults into sup-optimal performance. In contrast, DeepReDuce with ReLU-equalized HRN networks
requires only one iteration as the ReLUs’ distribution follows their criticality order. Thus, reduces
the computational complexity of the original DeepReDuce by (D − 1)×. Note that, after Thinning,
we use conventional channel scaling by reducing the ReLU count by 2×, rather than employing
ReLU-reuse, as the latter performs inferior due to the cross-channel information loss (shown in
Figure 16 and Figure 17).

Finally, we compare the results in Figure 18 for the HRN networks. Note that, here all the HRNs
have α=2 as the lowering α values increase the proportion of (non-critical)Stage1 ReLUs, which are
shown to be beneficial for achieving very low ReLU counts (see the results for criticality capacity
tradeoff in Figure 8 and Figure 12)). We note an accuracy gain upto 3%, at the iso-ReLU count, over
the conventional scaling in the DeepReDuce. For instance, HRN-2x9x2x outperforms conventional
scaling by 3.14% at 9K ReLUs (see Figure 12)(e)). The accuracy gain from the ReLU-reuse, helps
achieve the performance at par with the fine-grained SNL at extremely low ReLU counts. Nonethe-

2For N = 2, we employ the naive ReLU reduction since it outperforms the proposed ReLU-reuse (see
Figure 15)

20



Under review as a conference paper at ICLR 2023

 45

 50

 55

 60

 65

 4  8  16  32

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(a) ResNet18(m=16)

 55

 60

 65

 70

 8  16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(b) ResNet18(m=32)

 60

 65

 70

 75

 16  32  64  128

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(c) ResNet18(m=64)

 60

 65

 70

 75

 32  64  128  256

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(d) ResNet18(m=128)

 50

 55

 60

 65

 70

 75

 8  16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(e) 4x4x4x

 50

 55

 60

 65

 70

 8  16  32

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(f) HRN-2x6x2x

 55

 60

 65

 70

 75

 8  16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(g) HRN-5x5x3x

 55

 60

 65

 70

 75

 16  32  64

A
cc

u
ra

cy
 (

%
)

#ReLUs (K)

ReLU-reuse

Scaling

(h) HRN-6x6x2x

Figure 17: Performance comparison (CIFAR-100) of ReLU-reuse vs conventional scaling (used
as reshaping steps in DeepReDuce Jha et al. (2021)) when ReLU-reuse is employed in Thinned
networks. That is, first ReLU is dropped from every-alternate layers, and then ReLU-reuse is applied
in remaining layers.

Algorithm 2 DeepReDuce for HRN networks with our proposed ReLU-reuse
Input: A network Net with D stages S1, S2, ..., SD and C, a sorted list of stages from least to most
critical
Output: ReLU optimized versions of Net

1: if the least critical stage C[1] has the highest fraction of ReLUs then
2: Sk = C[1] . Get the least critical stage
3: Net = Net - Sk . Cull the least critical Stage Sk
4: end if
5: NetTi = Thin(Net) . Thin the remaining stages
6: NetCi = ScaleCh(NetTi , α=0.5) . Channel scaled by 0.5x
7: NetR4

i = ReuseReLU (NetTi , Sc=4) . ReLU-reuse with scaling factor 4
8: NetR8

i = ReuseReLU (NetTi , Sc=8) . ReLU-reuse with scaling factor 8
9: NetR16

i = ReuseReLU (NetTi , Sc=16) . ReLU-reuse with scaling factor 16
10: Nets += Net, NetTi , NetCi , NetR4

i , NetR8
i , NetR16

i . Apply KD to each Net
11: return Nets

21



Under review as a conference paper at ICLR 2023

less, for fair comparison, we also plot the channel-wise SNL in Figure 12. Evidently, all the HRNs
with ReLU-reuse achieves a substantial accuracy gain over channel-wise SNL.

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

2x5x3x

2x5x3x(Re2)

DeepReDuce

SNL

SNL(Channel-wise)

(a) HRN-2x5x3x

 56

 60

 64

 68

 72

 76

 80

 2  4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

2x5x2x

2x5x2x(Re2)

DeepReDuce

SNL

SNL(Channel-wise)

(b) HRN-2x5x2x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

2x6x2x

2x6x2x(Re2)

DeepReDuce

SNL

SNL(Channel-wise)

(c) HRN-2x6x2x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

2x7x2x

2x7x2x(Re2)

DeepReDuce

SNL

SNL(Channel-wise)

(d) HRN-2x7x2x

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

2x9x2x(w/o Re2)

2x7x2x(w/ Re2)

DeepReDuce

SNL

SNL(Channel-wise)

(e) HRN-2x9x2x

 56

 60

 64

 68

 72

 76

 80

 4  8  16  32  64  128

C
IF

A
R

-1
0

0
 A

cc
u

ra
cy

 (
%

)

#ReLUs (K)

2x6x3x (w/o Re2)

2x6x3x(w/ Re2)

DeepReDuce

SNL

SNL(Channel-wise)

(f) HRN-2x6x3x

Figure 18: Experimental results for ReLU-reuse on CIFAR-100. We plot channelwise SNL, an
unstructured ReLU dropping, for fair comparison with our proposed ReLU-reuse (denoted as Re2),
a structured ReLU dropping. We note that with ReLU-reuse a gain of 1% - 3% accuracy at
iso-ReLU has been achieved (on CIFAR-100). Compared to channel-wise SNL, HRNs achieves a
substantial gain in accuracy on all the ReLU counts.

F EXPERIMENTAL DETAILS

Sweeping the depth and width hyperparameters for ReLU-efficiency experiments To show the
effect of depth in WideResNet models, we fixed the width and change the depth by sweeping the
depth parameter Q ∈ {16, 22, 28, 34, 40} in WRN-Qx2.Further, to show the effect of width we
select two WideResNet models and sweep the width parameter k ∈ {2, 4, 6, 8, 10, 12} in WRN-
22xk and WRN-28xk while depth is fixed. Similarly, for the depth vs width experiments on ResNet
models we lowered the base channel count in ResNet18 tom=16 as the vanilla ResNet20, ResNet32,
and ResNet56 have {16, 32, 64} #channels in their successive stages while that in ResNet18 is {64,
128, 256, 512}. This enables a fair comparison among ResNet models. We widen the ResNet
(BaseCh)models by performing a sweep m ∈{16,32,64,128,256}. Doubling base channel count
doubles the number of channels throughout the network in all the layers as the channels in successive
stages of ResNet get multiplied by a factor of two.

Training hyperparameters and procedure: For all the baseline training and DeepReDuce, on both
the CIFAR-100 (Krizhevsky et al., 2010) and TinyImageNet (Le & Yang, 2015; Yao & Miller, 2015)
datasets, we use an initial learning rate of 0.1, mini-batch size of 128, momentum of 0.9, and 0.0004
weight decay factor. We train networks using cosine annealing learning rate scheduler (Loshchilov
& Hutter, 2016) for 200 epochs on both CIFAR-100 and TinyImageNet; however, we perform 10 ad-
ditional epochs of warmup on TinyImageNet. We use Hinton’s knowledge distillation (Hinton et al.,
2015) and set the hyper-parameters, temperature, and relative weight to cross-entropy loss on hard
targets as 4 and 0.9, respectively. For SNL, we train the baseline networks with the aforementioned
methodology; however, for mask generation, fine-tuning, and knowledge distillation, we used their
default implementation.

22


	Introduction
	Interplay of FLOPs and ReLUs with Design Hyperparameters
	Preliminary
	ReLU Efficiency: Depth vs Width

	DeepReShape
	Experiments
	Related Work
	Conclusion
	Stagewise ReLUs Criticality with Width Argumentation
	ReLU Equalization and Building Blocks in HybReNet
	ReLU Equalization On a Four Stage Network
	Architectural Building Blocks in HybReNet

	Additional Experimental Results
	ReLU Equalization Through Depth in BaseCh Networks
	Additional Results for Criticality-Capacity Tradeoff

	Discussion
	Stagewise Channel Multiplication Factors in Classical Networks
	Accuracy Saturation in StageCh Networks
	Additional Results for Stagewise ReLU Distribution in HRN networks
	How HybReNets Achieves FLOP-ReLU-Accuracy Balance?
	Potential of ReLU Equalization as a Unified Network Design Principle
	HybReNet with Different Criticality Order

	Experimental Results and Discussion for ReLU-reuse
	Experimental Details

