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Abstract

Word order, as a crucial part to understand001
natural language, has been carefully consid-002
ered in pre-trained models by incorporating003
different kinds of positional encodings. How-004
ever, existing pre-trained models mostly lack005
the ability to maintain robustness against mi-006
nor permutation of words in learned repre-007
sentations. We therefore propose a novel ar-008
chitecture named Transformer with Attention009
COnvolution (TACO), to explicitly disentan-010
gle positional representations and incorporate011
convolution over multi-source attention maps012
before softmax in self-attention. Additionally,013
we design a novel self-supervised task, masked014
position modeling (MPM), to assist our TACO015
model in capturing complex patterns with re-016
gard to word order. Combining MLM (masked017
language modeling) and MPM objectives, the018
proposed TACO model can efficiently learn019
two disentangled vectors for each token, rep-020
resenting its content and position respectively.021
Experimental results show that TACO signif-022
icantly outperforms BERT in various down-023
stream tasks with fewer model parameters. Re-024
markably, TACO achieves +2.6% improvement025
over BERT on SQuAD 1.1 task, +5.4% on026
SQuAD 2.0 and +3.4% on RACE, with only027
46K pre-training steps.028

1 Introduction029

In recent years, pre-training/fine-tuning has be-030

come a popular paradigm in a wide range of nat-031

ural language processing applications including032

text classification (Dai and Le, 2015; Howard and033

Ruder, 2018), sentiment analysis (Ke et al., 2020b;034

Peters et al., 2018), summarization (Liu and Lap-035

ata, 2019; Zhang et al., 2020) and text generation036

(Radford et al., 2019; Bao et al., 2020b; Keskar037

et al., 2019). Among various applications under038

such a paradigm, BERT (Devlin et al., 2019) is039

the most popular pre-trained model with significant040

better performance than previous benchmarks in 11041

NLP tasks. Since then, many kinds of pre-trained042

models, which use Transformer block (Vaswani 043

et al., 2017) or its variants (Lin et al., 2021) as 044

backbone, have been proposed and researches in 045

this field are still under active exploration for better 046

performance, efficiency and interpretation (Yang 047

et al., 2019; Joshi et al., 2020; Zhang et al., 2019; 048

Bao et al., 2020a; Qiu et al., 2020). 049

Normally, the major challenge of these pre- 050

trained models is how to fully comprehend a sen- 051

tence, including the concept of each word and the 052

grammatical structure of the sentence. Specifically, 053

the concept underlying a word can be represented 054

by its semantic meaning, and the grammatical struc- 055

ture is actually expressed as a “natural” word order. 056

In some recent reports, the importance of “word 057

order” has been emphasized (Pham et al., 2020), 058

since it is crucial to generate and understand a nat- 059

ural sentence. Comparing these three sentences as 060

below, we can explicitly elaborate the importance 061

and flexibility of word order during composing a 062

reasonable sentence. 063

1. Bob once asked Alice to borrow a book. 064

2. Once, Bob asked Alice to borrow a book. 065

3. Bob once borrow Alice to asked a book. 066

Obviously, the first two sentences express the same 067

meaning, which state the event about borrowing. 068

The third sentence is in fact illegal since two crit- 069

ical verbs (“asked” and “borrow”) are exchanged. 070

Although we can sometimes infer actual meaning 071

from a wrong sentence, it may still impede our un- 072

derstanding of natural language if the incorrectness 073

is critical. 074

Generally, there are two kinds of approaches 075

to incorporate word order into current pre-trained 076

models. One is absolute position embeddings as 077

employed by Transformer (Vaswani et al., 2017) 078

and BERT (Devlin et al., 2019). Every word 079

in a given sentence corresponds to a fixed posi- 080

tion encoded by an embedding vector. The posi- 081
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Figure 1: Differences between output representations of same words (tokens) from different sentences. (a).
Differences in vector representation output by BERT-base between sentence 1 and 2 in terms of token. (b).
Representation differences output by DeBERTa-base between sentence 1 and 2. (c). Differences between any
two sentences via [CLS] representations output by BERT-base or DeBERTa-base. Two measures are computed
to evaluate the difference between output hidden vectors of same words from two sentences. The first measure
“Distance” is the Euclidean distance from one vector to another normalized by the minimum of vector lengths, which
can be formulated as d(v1,v2) =

∥v1−v2∥
min(∥v1∥,∥v2∥) . The second measure “Angle” is the angle between two vectors

computed through cosine similarity as the formula θ(v1,v2) = arccos v1·v2

∥v1∥∥v2∥ . For a given word (or token), v1

and v2 in both equations are the representation vectors of last layer produced by BERT or DeBERTa taking sentence
1 or 2 as input respectively.

tion embedding of a word is usually added to its082

word embedding and the summed embeddings of083

all words are then fed into a Transformer-based084

model. If a word moves forward or backward a085

little, the resulting embeddings may be much dif-086

ferent and therefore change the final representa-087

tions of a given sentence (Figure 1a). The other088

kind of approaches is relative positional encodings089

adopted by Transformer-XL (Dai et al., 2019) and090

DeBERTa (He et al., 2020). The relative posi-091

tion (distance) from a query to a key can be en-092

coded by a scalar or vector and integrated into093

attention score between query and key contents094

through some transformations. Different from ab-095

solute encodings, there are no additional position096

embeddings added to word embeddings as initial097

input and relative positional embeddings are always098

shared across all layers. Since a relative position099

represents the distance of sequence order between100

two words, models of this kind are more sensitive101

to the changes of relative word orders rather than 102

translation of all words. As seen in Figure 1b, the 103

vector representations of “Bob” and “once” out- 104

put by DeBERTa from sentence 2 greatly differ 105

from those from sentence 1. All other words con- 106

trarily exhibit some characteristics of translation 107

invariance which agrees with the essence of rela- 108

tive positions. Besides, BERT is able to roughly 109

identify the difference between sentence 1 (or 2) 110

and sentence 3 from the representation of [CLS] 111

token, while DeBERTa apparently fails to distin- 112

guish three sentences, which is probably caused by 113

the lack of an additional task (e.g., next sentence 114

prediction) in pre-training (Figure 1c). Although 115

word order is explicitly encoded by absolute or rel- 116

ative positional embeddings, pre-trained models of 117

both kinds exhibit more or less fragility against mi- 118

nor permutations of an input sentence in sequence 119

order. 120

To alleviate the intrinsic fragility in many pre- 121
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trained models, we propose several simple, yet122

effective modifications to current models, which123

leads to a new architecture called Transformer with124

Attention COnvolution (TACO) for language mod-125

eling. The main improvements of TACO includes:126

1). disentangled positional representation of each127

token throughout all layers of the model; 2). a novel128

Transformer block consisting of pseudo-Siamese129

structure consisting of feed-forward networks and130

layer normalizations, and a joint self-attention sub-131

layer; 3). 2-dimensional convolution over multi-132

source attention maps in self-attention; 4). an ad-133

ditional self-supervised task to predict masked po-134

sitions in pre-training. Our model is illustrated in135

Figure 2.136

To validate the effectiveness of TACO, we there-137

fore conduct a series of experiments and achieve138

comparable results on many downstream tasks. The139

TACO-base with fewer parameters (100M parame-140

ters) and less pre-training (only 46K) achieves 84.5141

in GLUE benchmark, compared to 83.1 of BERT.142

For several question-answering tasks, the proposed143

TACO-base model also significantly outperforms144

BERT-base by +2.6% on SQuAD 1.1, +5.4% on145

SQuAD 2.0, and +3.4% on RACE. We further per-146

form ablation studies to evaluate the effectiveness147

of different modifications.148

2 Related Works149

To this day, many works concerning positional en-150

codings or position-involved attentions in Trans-151

former block have been accomplished which em-152

phasize the contribution of positions in resulting153

attention scores (Lin et al., 2021). Both Trans-154

former (Vaswani et al., 2017) and BERT (Devlin155

et al., 2019) use absolute embeddings to represent156

different positions of input tokens. Different from157

absolute embeddings, Shaw et al. (2018) firstly158

introduce relative position representations to Trans-159

former encoder. T5 (Raffel et al., 2020) then uses160

a scalar instead of a vector as relative position bias161

to encode the order of every word in a sentence.162

Transformer-XL, on the other hand, extends the163

work of Shaw et al. (2018) by integrating a global164

content bias and a global positional bias into at-165

tention score between every query and key vector166

(Dai et al., 2019). Following the idea of decom-167

posed attention scores, DeBERTa (He et al., 2020)168

disentangles content-to-position and position-to-169

content terms from original attention score. Con-170

trary to DeBERTa, TUPE (Ke et al., 2020a) adds171

a position-to-position term and a relative position 172

bias instead of interactive attentions between token 173

content and position. After a thorough analysis of 174

these models, it is found that absolute or relative 175

positional encodings basically act as supplemen- 176

tary parts in attention scores, and hence sequence 177

order of words has not been paid enough attention 178

to in pre-training language models. 179

As a novel trick in NLP, convolution is recently 180

utilized to improve performance or efficiency of 181

Transformer-based models. ConvBERT (Jiang 182

et al., 2020) employs dynamic convolution con- 183

ditioning on queries to capture local dependency 184

among long sequences, and thus significantly de- 185

creases total size of the model and computational 186

cost. Another application of convolution would be 187

EA-Transformer (Wang et al., 2021), which adds 188

a skip connection between adjacent self-attentions 189

and uses convolution over attention maps of all 190

heads to produce final attention weights. Chang 191

et al. (2021) re-interpret relative embeddings as 192

lightweight convolutions and incorporate them as 193

composite attention. In summary, these modified 194

models mostly benefit from the incorporation of 195

convolutions and achieve better performance on 196

downstream tasks. 197

3 Methodology 198

In this section, we introduce main architecture of 199

TACO model and its detailed implementation. 200

3.1 Model Architecture 201

For a single sentence or a pair of sentences, we 202

follow the procedure as BERT (Devlin et al., 2019) 203

to tokenize them into tokens and pack them to- 204

gether. When the input sequence has been con- 205

structed, TACO firstly retrieves word embedding 206

xi and positional embedding pi for each token i 207

and then concatenates them together as its com- 208

plete representation ei = concat(xi,pi). Next, the 209

initial representations of all tokens are fed to TACO 210

model for further process. 211

As seen in Figure 2 left, we employ a multi-layer 212

TACO encoder to encode contextual information of 213

input representation. The main difference of each 214

TACO layer from traditional Transformer lies in 215

the pseudo-Siamese structure consisting of feed- 216

forward networks and layer normalizations, as well 217

as a joint self-attention sub-layer with several sig- 218

nificant modifications. To resolve the ambiguity 219

of Siamese components, we use WE and PE as 220

3



Figure 2: Basic architecture of TACO model. The left presents the main structure of TACO mostly like Transformer
encoder. The primary difference is that TACO uses two feed-forward networks, separated residual connection and
layer normalization in each layer for token content and positional vectors respectively. The self-attention of each
layer is unified, in order to produce attention distributions using complete token and positional information. The
right depicts the workflow of how TACO computes attention states for token content and position through attention
convolution over multi-source attention maps.

identifiers to distinguish distinct vector represen-221

tations, sub-layer components, model parameters222

and hyper-parameters with respect to token con-223

tent and position. Generally, the pseudo-Siamese224

structure indicates that WE and PE input vectors225

are separately transformed through distinct FFN226

sub-layers and layer normalizations in each layer227

and they do not share internal parameters.228

Here, we briefly describe the workflow of our229

model. After taking in the initial token vectors,230

TACO firstly computes multiple attention maps231

using WE or PE representations for queries and232

keys respectively. Then a unified convolution is233

performed over all attention maps stacked together234

in order to generate different attention weights for235

WE and PE heads (Figure 2 right). Subsequently,236

TACO aggregates and projects hidden states using237

vector representations and attention weights of all238

heads for WE and PE separately. Passing through239

corresponding residual connections and layer nor-240

malizations, WE and PE hidden vectors are then241

fed to different feed-forward sub-layers, followed242

by similar post-processing operations to those af-243

ter self-attention. At last, TACO concatenates WE 244

and PE output vector of each token as its complete 245

representation, and feeds them to next layer. The 246

complete representations of last layer are exploited 247

to fine-tune downstream tasks through task-specific 248

output layer. 249

3.2 Disentangled Positional Representation 250

We use a multi-layer TACO encoder to transform 251

token and positional representations of an input 252

sentence. Given the input sentence, the token vec- 253

tors are denoted as X = {x1, . . . ,xN} and the 254

position vectors P = {p1, . . . ,pN}. The hidden 255

size of WE is denoted as dWE and PE hidden size 256

dPE. Then an L-layer TACO model encodes the 257

input as: 258

(Hl
WE,H

l
PE) = TACOl(Hl−1) 259

Hl = concat(Hl
WE,H

l
PE) (1) 260

where l ∈ [1, L], H0 = concat(X,P) and HL = 261

[hL
1 , . . . ,h

L
N ]. Obviously, the contextualized repre- 262

sentation hL
i ∈ RdWE+dPE is achieved by concate- 263
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nating WE and PE hidden vector of token i from264

last layer.265

As shown in Figure 2 right, in order to produce266

WE and PE representations separately with the uni-267

fied self-attention, we split multiple heads into two268

sets, hWE WE heads and hPE PE heads, to compute269

token and positional attention weights respectively.270

The computational process of self-attention is es-271

sentially analogous to Transformer except two ma-272

jor differences. One of them is that we use a similar273

process to compute two outputs from multi-head274

self-attention with respect to WE and PE. The other275

is that the attention weights are computed by more276

complex method than Transformer. We formulate277

the process as:278

H′
WE = concat(head1

WE, . . . ,headhWE
WE )WO

WE279

headi
WE = f(H; iWE)HWEW

Vi
WE280

H′
PE = concat(head1

PE, . . . , headhPE
PE )WO

PE281

headj
PE = f(H; jPE)HPEW

Vj

PE (2)282

where HWE is the input matrix composed of WE283

hidden vectors of all tokens from previous layer as284

equation (1). WVi
WE ∈ RdWE×dv is the projection285

matrix for the i-th head to project WE vectors into286

low-dimensional space. WO
WE ∈ RhWEdv×dWE is287

the output projection to fuse hidden states of all288

WE heads. HPE, WVj

PE ∈ RdPE×dv and WO
PE ∈289

RhPEdv×dPE are corresponding matrices related to290

PE. f(·) is a unified function to generate attention291

weights for each WE and PE head. H′
WE and H′

PE292

are output vectors of self-attention, which will be293

fed to FFN sub-layers after residual connections294

and layer normalizations.295

3.3 Multi-source Attention Maps296

As summarized by Lin et al. (2021), the prerequi-297

site of attention weights is to calculate raw score of298

any query token qi attending to any key kj . The raw299

scores of all pairs of queries and keys form an atten-300

tion map A, each element Ai,j of which indicates301

how much attention qi pays to kj . We individu-302

ally use query information from token content and303

position together with different key information to304

generate diverse attention scores. We mainly cate-305

gorize resulting attention maps into three groups in306

terms of information sources of queries and keys.307

Content attention and positional attention employ308

query and key content or their positional informa-309

tion to compute attention scores, respectively. As310

for interactive attention, which includes content-311

to-position and position-to-content terms, we use 312

relative position-based attentions as depicted in De- 313

BERTa (Refer to Appendix A.1 for more details). 314

Despite of three groups of attention maps de- 315

scribed above, we also create skip edges to connect 316

multi-head attention modules in adjacent layers like 317

RealFormer (He et al., 2021) and EA-Transformer 318

(Wang et al., 2021). Instead of directly adding to 319

the attention maps of current layer, we consider 320

the attention logit matrices from previous layer as 321

an additional source for further fusion. So far, we 322

achieve 4hWE + 2hPE attention maps in total for 323

each layer (except the first layer without residual 324

attentions), including hWE content maps, hPE posi- 325

tional maps, 2hWE interactive maps and hWE +hPE 326

residual maps of previous layer. 327

3.4 Fusion of Attention Maps 328

Once the attention maps composed of raw scores 329

have been computed, typical pre-trained models 330

transform them into attention weights by apply- 331

ing softmax over the last dimension. However, 332

our model slightly modifies the conventional pro- 333

cess by fusing multi-source attention maps using 334

convolution before softmax. Analog to images in 335

computer vision, 2-dimensional convolution is a 336

promising choice if we regard stacked attention 337

maps as multi-channel inputs and attention weights 338

of all heads as output feature maps. As a matter of 339

fact, we adopt convolution followed by PReLU ac- 340

tivation (He et al., 2015) to fuse multi-source maps 341

for two reasons. One obvious reason is that the 342

number of attention maps differs from pre-defined 343

number of attention heads. It may cause redundant 344

or insufficient usage of certain maps if we insist 345

on matching them with attention weights of all 346

heads. The other is that TACO essentially requires 347

different attention weights for WE and PE heads 348

in order to model inherent dependencies from the 349

perspectives of semantic relation and word order. 350

For simplicity, we additionally specify kernel 351

size and stride to be 1 in directions of both width 352

and height in our model. At this point, the function 353

f(·) in equation (2) indeed stands for the generation 354

of multi-source attention maps, the 2d convolution 355

with PReLU activation, and softmax. 356

3.5 Position Prediction Task 357

We here introduce two self-supervised tasks for 358

pre-training TACO model. We firstly use masked 359

language modeling (MLM) task to pre-train the 360

model as introduced in BERT (Devlin et al., 2019), 361

5



which has limited effect to drive the model to cap-362

ture underlying patterns concerning word order of a363

sentence. Therefore, we propose an additional task364

similar to MLM for masked position prediction, as365

a complementary to MLM objective.366

Token Masking First of all, we adopt the span-367

based masking scheme in SpanBERT (Joshi et al.,368

2020) to generate an input sequence by masking369

continuous segments of text instead of individual to-370

kens. In practice, we set the probability of geomet-371

ric distribution to 0.2 for span length sampling, and372

also restrict sampled spans to a maximum length373

of 3. The strategy to mask sampled spans is similar374

to BERT (Devlin et al., 2019), which is also clearly375

described in SpanBERT.376

Position Masking Analog to token masking, we377

come up with a similar procedure to corrupt a posi-378

tion sequence for better modeling word order. For379

a given sentence X , the position of every token is380

denoted as P = (p1, p2, . . . , pN ). We create a sim-381

ilar random generator as token masking to sample382

spans of positions using a geometric distribution383

with p = 0.2 and clip the span length at 6. As384

a consequence, we select 15% of the positions in385

total through the sampling generator. The masking386

strategy for position spans is slightly different from387

token masking. Refer to Appendix A.2 for detailed388

procedure.389

As described above, we independently employ390

these two masking schemes to generate training391

data, resulting in a pair of examples for one sen-392

tence. For a given sentence X and its position393

sequence P , we generate {X̃, P} by following the394

procedure of token masking and {X, P̃} by po-395

sition masking, where X̃ and P̃ are denoted as396

corrupted sequences of tokens and positions after397

masking respectively.398

Using masked tokens and original positions399

{X̃, P}, our model can try to reconstruct the origi-400

nal tokens through bi-directional contexts. This is401

the typical pre-training task known as MLM orig-402

inally introduced in BERT (Devlin et al., 2019).403

Denote K as the set of indices of masked tokens.404

Then MLM pre-trains the model θ by maximizing405

the following objective406

LMLM = −
∑
i∈K

logPr(xi|{X̃, P}; θ) (3)407

On the hand, TACO is also trained to recover the408

right order from masked positions together with409

original tokens. We refer this task to as masked 410

position modeling (MPM) for convenience. MPM 411

is essentially complementary to MLM task and is 412

of vital importance in word order modeling (See 413

Appendix A.3). Analog to MLM, the objective of 414

MPM is formulated as below 415

LMPM = −
∑
j∈Z

logPr(pj |{X, P̃}; θ) (4) 416

where Z is the set of indices of masked positions. 417

TACO sums the losses from both MLM and MPM 418

objectives to jointly learn WE and PE representa- 419

tions in a self-supervised way. Namely, a pair of 420

examples derived from the same sentence are fed 421

into the model to produce one summed loss for 422

pre-training. 423

4 Experiments 424

In this section, we present fine-tuning results on 12 425

NLP tasks. 426

As introduced in previous section, our model 427

requires more hyper-parameters to determine the 428

structure due to more complex design than conven- 429

tional BERT and DeBERTa. We conduct several 430

experiments to search for an optimal set of hyper- 431

parameters (See Appendix A.5). As a consequence, 432

we follow the optimal settings listed in Table 7 433

to pre-train a base-size TACO model. For train- 434

ing data, we use 160GB text corpora from English 435

Wikipedia1, BookCorpus (Zhu et al., 2015), Open- 436

WebText2 and CommonCrawl News (Liu et al., 437

2019). We use 6 machines (48 A30 GPUs) to train 438

the models. It takes 5 weeks to train a TACO-base 439

model with 1200 batch size and 500K steps. 440

4.1 Fine-tuning Results of Downstream Tasks 441

GLUE We compare TACO-base to several strong 442

baselines, i.e., BERT (Devlin et al., 2019), XLNet 443

(Yang et al., 2019), RoBERTa (Liu et al., 2019) 444

and DeBERTa (He et al., 2020), on 8 GLUE tasks, 445

and report the results on the development set of 446

each task in Table 1. All the models are in base- 447

size for fair comparison. Although TACO has not 448

completely converged (with only 46K pre-training 449

steps so far), we still achieve comparable perfor- 450

mance to classic BERT baseline (84.5 vs 83.1). 451

Specifically, TACO slightly exceeds BERT on STS 452

(+0.4%), MRPC (+3.1%), and RTE (+10.8%) tasks. 453

However, our model performs slightly worse in the 454

1https://dumps.wikimedia.org/enwiki/
2http://Skylion007.github.io/OpenWebTextCorpus
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Model MNLI-m/mm QQP QNLI SST-2 CoLA STS MRPC RTE Avg
Acc Acc Acc Acc MCC PCC Acc Acc

BERT 84.3/84.7 91.3 91.7 93.2 58.9 89.5 87.3 68.6 83.1
XLNet 86.8/- 91.4 91.7 94.7 60.2 89.5 88.2 74.0 84.6
RoBERTa 87.6/- 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4
DeBERTa∗ 88.7/88.5 91.8 93.7 95.5 64.3 92.1 91.2 86.3 87.9

TACO (46K) 84.2/84.8 91.3 91.0 92.3 57.3 89.9 90.4 79.4 84.5

Table 1: Results of base-size models on the development set of the GLUE benchmark. ∗ The DeBERTa-base models
are fine-tuned using the code and model weights released in HuggingFace (Wolf et al., 2019).

Model SQuAD 1.1 SQuAD 2.0 RACE SWAG
EM/F1 EM/F1 Acc Acc

BERT 80.8/88.5 73.7/76.3 65.0 81.6
RoBERTa 84.6/91.5 80.5/83.7 - 84.0∗

DeBERTa 87.2/93.1 83.1/86.2 72.2∗ 86.3∗

TACO (46K) 84.5/91.1 78.7/81.7 68.4 75.1

Table 2: Results of base-size models on the development set of SQuAD v1.1/v2.0, RACE and SWAG. ∗ These results
are collected by fine-tuning corresponding models using the code and model weights released in HuggingFace (Wolf
et al., 2019).

natural language inference tasks including MNLI455

and QNLI, indicating that knowledge inference456

probably needs more training to learn high-level457

semantic patterns.458

Question Answering We further validate TACO-459

base model on different types of question-460

answering tasks (Refer to Appendix A.4 for de-461

tailed description). The performance of TACO-462

base and other baselines are collected in Table 2.463

We observe significant improvements of TACO on464

four question-answering tasks compared to BERT,465

+2.6% (F1) on SQuAD 1.1 and +5.4% (F1) on466

SQuAD 2.0, +3.4% on RACE. These improve-467

ments over BERT partially demonstrate the effec-468

tiveness of several significant modifications intro-469

duced in the proposed TACO model.470

According to Table 1 and 2, we inescapably dis-471

cover a performance gap between our proposed472

TACO model and other two baselines, RoBERTa473

and DeBERTa. The primary reason responsible for474

these unexpected results is probably insufficient475

pre-training, since our fine-tuning models are de-476

rived from an intermediate checkpoint with only477

46K pre-training steps. Based on the superior per-478

formance to BERT, we believe our model would479

achieve much better results when the pre-training480

is complete.481

Even though the proposed TACO has not show 482

superior performance than RoBERTa and De- 483

BERTa yet, it is still a promising model with com- 484

parable ability to BERT and with great potential to 485

outperform RoBERTa and DeBERTa. 486

4.2 Ablation Study 487

We present an ablation study to evaluate the effec- 488

tiveness of different modifications introduced in 489

TACO. We thus develop two variations by eliminat- 490

ing two particular components: 491

- The first shares the same architecture as 492

TACO-base, except the exclusion of MPM 493

loss in pre-training. 494

- Another variant is the TACO-base model with- 495

out convolution in the computation of atten- 496

tion weights. Interactive attention maps are 497

added to corresponding content maps as De- 498

BERTa (He et al., 2020), while position maps 499

are used to independently generate attention 500

weights for PE heads. Attention maps from 501

previous layer are still incorporated before 502

softmax. 503

We follow the same settings as BERT-base to pre- 504

train ablation models. Table 3 summarizes the re- 505

sults on four benchmark datasets. We use a check- 506
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Model #Param MNLI-m/mm SQuAD 1.1 SQuAD 2.0 RACE
Acc EM/F1 EM/F1 Acc

BERT 108.9M 84.3/84.7 81.0/88.5 73.7/76.3 65.0
RoBERTa 124.1M 84.7/- -/90.6 -/79.7 65.6
DeBERTa 138.6M 86.3/86.2 86.1/92.1 79.3/82.5 71.7

TACO (42K) 100.1M 84.0/84.3 83.9/90.5 77.2/80.3 65.9
– MPM loss 100.1M 83.8/84.2 83.5/90.4 76.7/79.8 65.4
– Attention Convolution 100.1M 83.7/84.0 83.4/90.2 76.0/79.5 64.7

Table 3: Ablation study of the TACO-base model. All models are pre-trained over Wikipedia and BookCorpus for
1M steps with a batch size of 256.

point pre-trained with 42K steps to evaluate the507

fine-tuning performance of ablation models. Obvi-508

ously, we can affirm the importance of MPM task509

through the decreased performance of the first vari-510

ant (-0.2% on MNLI-matched, -0.1% on SQuAD511

1.1, -0.5% on SQuAD 2.0 and -0.5% on RACE).512

Despite that, the convolution also helps to better513

capture complex patterns with regard to both se-514

mantic relation and word order ( 84.0 vs 83.7 on515

MNLI-matched, 90.5 vs 90.2 on SQuAD 1.1, 80.3516

vs 79.5 on SQuAD 2.0, and 65.9 vs 64.7 on RACE).517

We also observe significant improvements of TACO518

model over BERT on question-answering tasks,519

and achieve comparable results with RoBERTa ex-520

cept for MNLI task.521

5 Conclusion522

We present a novel architecture TACO by explicitly523

disentangling positional representations and incor-524

porating convolution over multi-source attention525

maps before softmax in self-attention. We pre-train526

a language model based on this architecture with an527

additional MPM task to jointly learn positional rep-528

resentations concerning word order. MPM is essen-529

tially complementary to the classic MLM objective530

by introducing word order modeling to enhance531

robustness of learned representations against minor532

permutations of a natural sentence. Experiments533

show that our TACO model integrating above nov-534

elties consistently improves the end-task results on535

several language understanding benchmarks.536
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A Appendix720

A.1 Multi-source Attention Maps721

Content Attention The first group is content at-722

tention by employing query and key content to723

measure the attention level between a query and a724

key. The query content is obviously represented by725

its WE hidden vector, so is the key content. This726

type of attention maps, which are included in nearly727

all pre-trained language models such as BERT (De-728

vlin et al., 2019), DeBERTa (He et al., 2020) and729

TUPE (Ke et al., 2020a), is the most fundamental730

and crucial source to model global and local de-731

pendencies within the input sentence. We compute732

content attention map of each WE head following733

the equation below.734

QWE = HWEW
Q
WE, KWE = HWEW

K
WE735

AW =
QWEK

T
WE√

dk
(5)736

where WQ
WE,W

K
WE ∈ RdWE×dk are parameter ma-737

trices to project WE vectors into the same dk-738

dimensional space.739

Position Attention Analog to content attention, 740

the second group is positional attention, which uses 741

query’s and key’s positional information to com- 742

pute attention scores as employed by TUPE (Ke 743

et al., 2020a). Specifically, positional information 744

of a query and a key is explicitly expressed by 745

their corresponding PE vectors. We believe that 746

positional attention is very helpful to model word 747

orders of a given sentence. The positional attention 748

map of each PE head is also computed via scaled 749

dot-product similar to content attention. 750

QPE = HPEW
Q
PE, KPE = HPEW

K
PE 751

AP =
QPEK

T
PE√

dk
(6) 752

where WQ
PE,W

K
PE ∈ RdPE×dk are parameter matri- 753

ces to project PE vectors. The dimension dk of PE 754

queries and keys of each head is set the same as 755

that of WE queries. 756

Interactive Attention The last group is interac- 757

tive attention, which has two different forms. One 758

form is to use query content and key’s position to 759

calculate content-to-position attention score as De- 760

BERTa (He et al., 2020). Accordingly, the other is 761

position-to-content term using query’s positional 762

information and key content. Since both terms 763

integrate token content and position in a same low- 764

dimensional space and then assess the interaction 765

between a query and a key, we unite them as in- 766

teractive attention implying that it bridges the gap 767

between the representation subspaces of token con- 768

tent and position. 769

Intuitively, we use relative positional encodings 770

to compute interactive attention maps as DeBERTa 771

(He et al., 2020), which can be expressed as: 772

KR = RPEW
K
R , Ai,j

QR =
Qi,·

WE

(
K

rij
R

)T
√
dk

773

QR = RPEW
Q
R , Ai,j

RK =
Q

rji
R

(
Kj,·

WE

)T
√
dk

(7) 774

where rij is the relative distance from a position 775

i to j, defined as rij = max(−k,min(k, j − i)) 776

as in Shaw et al. (2018). RPE ∈ R(2k+1)×dPE is 777

relative positional encodings for total 2k+1 relative 778

distances. WK
R ,WQ

R ∈ RdPE×dk are parameter 779

matrices to project relative positional vectors. Krij
R 780

represents the projected vector of distance rij , i.e., 781

the rij-th row vector of KR. The maximum relative 782

distance k is set to 511 due to the absolute positions 783
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ranging from 0 to 512 (exclusive) in our model.784

Besides, relative positional encodings are shared785

across all layers of TACO model.786

Despite of relative encodings, we in fact design787

two more forms of interactive attention using posi-788

tional representations HPE of each layer. We will789

investigate them in future work due to paper limit.790

A.2 Position Masking791

Slightly different from the masking strategy for792

tokens, 15% positions are randomly masked by793

performing the following procedure at the span794

level instead of for each position individually:795

• Suppose that we want to mask a span (2, 3) in796

the original position sequence (1, 2, 3, 4, 5, 6)797

for a sentence with six tokens.798

• 80% of the time: Replace the positions with799

a mask position such as -1 in our model, e.g.,800

(1, 2, 3, 4, 5, 6) → (1, -1, -1, 4, 5, 6).801

• 10% of the time: Shuffle the positions, e.g.,802

(1, 2, 3, 4, 5, 6) → (1, 3, 2, 4, 5, 6). If the803

span just contains one position such as (2), a804

random position in the range from 0 to max-805

imum sequence length is sampled to replace806

the single position, e.g., (1, 2, 3, 4, 5, 6) → (1,807

8, 3, 4, 5, 6).808

• 10% of the time: Keep the positions un-809

changed, e.g., (1, 2, 3, 4, 5, 6) → (1, 2, 3,810

4, 5, 6).811

The shuffle operation in the procedure above coin-812

cidently accords with the word structural objective813

adopted by StructBERT (Wang et al., 2019), which814

is to reconstruct the right order of certain number815

of intentionally shuffled tokens.816

A.3 Relation between MLM and MPM tasks817

Despite of analogy in masking schemes and train-818

ing objectives, the MLM and MPM tasks essen-819

tially supplement each other from the linguistic820

perspective. We take the sentence “Bob once asked821

Alice to borrow a book.” as an example to expound822

the complementary effect of these two tasks. For a823

corrupted sentence such as “Bob once asked Alice824

to [MASK] a book.”, MLM requires a model to825

fill in the masked token. In this task, the model826

knows which position the masked token locates in827

and thus predicts what is correct in this position.828

Contrarily, MPM urges the model to find correct829

position for each given candidate (e.g. “asked” and830

“borrow”) in the corrupted sentence like “Bob once 831

Alice to a book . ”. Owing to loose restric- 832

tion on the range of predicted positions, there is 833

an inevitable shortcoming inherent in this MPM 834

task. That is, the predicted position of each can- 835

didate may be overlapped with existing positions 836

occupied by known tokens or far beyond the sen- 837

tence scope. For example, TACO predicts position 838

2 for “asked” which conflicts with “once” in the 839

same position, or 12 for “borrow” which exceeds 840

the sentence length. Therefore, MPM is also a cru- 841

cial pre-training task in spite of less challenge than 842

MLM because of smaller number of pre-defined 843

possible positions than the size of token vocabu- 844

lary. To sum up, MLM and MPM together encour- 845

age a model to learn contextualized representations 846

of token content and position, and consequently 847

enhance positional robustness against changes of 848

word orders in language modeling. 849

A.4 Datasets 850

Datasets #Train/#Dev/#Test

Single-Sentence Classification
CoLA (Acceptability) 8.5k/1k/1k
SST-2 (Sentiment) 67k/872/1.8k

Pairwise Text Classification
MNLI (NLI) 393k/20k/20k
RTE (NLI) 2.5k/276/3k
QNLI (NLI) 105k/5.5k/5.5k
WNLI (NLI) 634/71/146
QQP (Paraphrase) 364k/40k/391k
MRPC (Paraphrase) 3.7k/408/1.7k

Text Similarity
STS-B (Similarity) 7k/1.5k/1.4k

Table 4: Statistics of GLUE datasets.

GLUE The General Language Understanding 851

Evaluation (GLUE) benchmark is a collection of 9 852

natural language understanding (NLU) tasks. Ta- 853

ble 4 summarizes the dataset details for GLUE. 854

We don’t use WNLI dataset for evaluation to keep 855

consistent with previous work (Devlin et al., 2019). 856

SQuAD The Standford Question Answering 857

Dataset (SQuAD) is a collection of 100k crowd- 858

sourced question/answer pairs (Rajpurkar et al., 859

2016, 2018). For a given question and paragraph, 860

the task is to predict the answer span from the para- 861

graph. We fine-tune on two versions of SQuAD: 862
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Hidden size #Param MNLI-m/mm SQuAD 1.1 SQuAD 2.0 RACE
(WE, PE) Acc EM/F1 EM/F1 Acc

(648, 120) 80.4M 82.0/82.7 82.1/89.0 73.2/76.5 62.0
(576, 192) 71.1M 82.0/82.1 81.3/88.6 73.2/76.5 61.2
(504, 264) 64.3M 81.4/82.0 81.2/88.4 72.8/75.8 59.3

Table 5: Performance of TACO models with different WE & PE hidden sizes.

v1.1 and v2.0. In v1.1, the context always contains863

an answer, whereas in v2.0 some questions are not864

answered in the provided context, making the task865

more challenging.866

RACE The ReAding Comprehension from Ex-867

aminations (RACE) is a large-scale machine learn-868

ing comprehension dataset, and is collected from869

English examinations in China (Lai et al., 2017).870

In RACE, each passage is associated with multi-871

ple questions, and the task is to select one correct872

answer from four options for every question.873

SWAG The Situations With Adversarial Gener-874

ations (SWAG) dataset is a large-scale adversarial875

dataset for the task of grounded commonsense in-876

ference, which unifies natural language inference877

and physically grounded reasoning (Zellers et al.,878

2018). SWAG contains 113k sentence-pair com-879

pletion examples that evaluate grounded common-880

sense inference. For a given sentence, the task is to881

predict the most plausible continuation among four882

choices.883

A.5 Comparison of Different Structures884

To fairly and quickly compare different structures,885

we conduct several light-weight experiments fol-886

lowing the settings of BERT-base model (Devlin887

et al., 2019), except that we use AdamW opti-888

mizer (Loshchilov and Hutter, 2018) to pre-train889

for 120k steps in total and learning rate warmup890

over the first 10000 steps. For training data,891

we only use Wikipedia and BookCorpus (Zhu892

et al., 2015), which leads to a total data size893

of 16GB after preprocessing. As in RoBERTa894

(Liu et al., 2019), the benchmark datasets include895

MNLI (matched/mismatched), SQuAD v1.1/v2.0896

and RACE to validate the performance of pre-897

trained models. We carefully evaluate a number898

of configurations when pre-training TACO model,899

including hidden size and the number of attention900

heads.901

Hidden sizes We first evaluate the effect of differ- 902

ent WE and PE hidden size. In order to match the 903

settings of base-size classic models such as BERT 904

and DeBERTa, we attempt to choose hidden sizes 905

for WE and PE so that the summation equals to 768, 906

which indicates that the complete representation of 907

a token from TACO has the same dimension as 908

BERT-base or DeBERTa-base hidden vectors. For 909

this experiment, we specify the attention heads of 910

WE and PE to 6 and use relative position encodings 911

with dimension dPE to compute interactive maps. 912

The fine-tuning results are presented in Table 5. 913

It is found that that TACO with 120-dimensional 914

position encodings outperforms other models in 915

MNLI (matched & mismatched), SQuAD v1.1 and 916

RACE datasets, and achieves comparable results 917

in SQuAD v2.0 to the model of 192 PE hidden 918

size. According to Table 5, TACO basically per- 919

forms worse on downstream tasks when the repre- 920

sentation space of token content with dimension 921

dWE becomes smaller. It implies that a pre-trained 922

model with more free parameters usually has a 923

greater potential to capture complex semantic pat- 924

terns. Besides, the increase of position-related 925

parameters can not compensate the performance 926

degradation caused by reduced WE hidden size. 927

Although small-sized positional space results in a 928

large model, we can not choose too small values 929

for PE hidden size, which may lead to the inability 930

to model word orders through the MPM task. We 931

use PE hidden size of 120 for the following TACO 932

models of base size. 933

Attention heads Next, we intend to choose 934

proper numbers of WE and PE attention heads. 935

We follow most settings as previous TACO model 936

with dPE = 120, except for different numbers of 937

attention heads. 938

As seen in Table 6, our model exhibits superior 939

performance on all five tasks if we increase the 940

number of WE heads from 6 to 12. Contrarily, 941

more PE heads tends to impede the improvement 942

of learning capability of TACO model. This abnor- 943
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Attention Heads #Param MNLI-m/mm SQuAD 1.1 SQuAD 2.0 RACE
(WE, PE) Acc EM/F1 EM/F1 Acc

(6, 6) 80.4M 82.0/82.7 82.1/89.0 73.2/76.5 62.0
(12, 6) 87.5M 82.5/82.7 82.8/89.4 75.5/78.6 62.6
(12, 12) 88.6M 82.5/82.7 82.2/89.0 74.0/77.6 62.2

Table 6: Performance of TACO models with different numbers of WE & PE attention heads.

mal phenomenon of decreased performance when944

increasing model parameters may be induced by945

insufficient pre-training, namely the model does946

not fully converge after 120k steps. We simply947

leave this uncertainty to future work and use 12948

WE heads and 6 PE heads as default base settings.949

In summary, we finally choose 648 and 120 as950

WE and PE hidden sizes, 12 WE attention heads951

and 6 PE heads to pre-train TACO-base model.952

Additionally, we enlarge the dimension of relative953

position embeddings to 768 since relative distance954

may enhance the capability of our model in both955

MLM and MPM tasks.956

A.6 Pre-training details957

As shown in Table 7, the main hyperparameters958

used for pre-training TACO-base is presented. The959

hidden size and number of attention heads for WE960

and PE are chosen according to comparison results961

in section A.5.962

Number of Layers 12
Hidden size (WE, PE) (648, 120)
FFN inner hidden size (WE, PE) (2592, 480)
Attention heads (WE, PE) (12, 6)
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Steps 10000
Peak Learning Rate 1e-4
Batch Size 1200
Weight Decay 0.01
Max Steps 500K
Learning Rate Decay Linear
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0

Table 7: Hyperparameters for pre-training TACO-base.

A.7 Fine-tuning details 963

Table 8 reports the hyperparameters used for fine- 964

tuning TACO-base on GLUE, SQuAD, RACE, and 965

SWAG benchmarks. We report the median result 966

of five runs starting from different seeds for each 967

set of hyperparameters for every task. 968
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Datasets Batch Size Learning Rate Max Epochs Weight Decay

GLUE {16, 32} {1e-5, 2e-5, 3e-5, 5e-5} {3, 4, 5, 6} 0.01
SQuAD 32 {1e-5, 2e-5, 3e-5, 5e-5} {2, 3, 4, 5} 0.01
RACE 16 1e-5 6 0.1
SWAG {16, 32} {1e-5, 1.5e-5, 2e-5} {4, 5} 0.01

Table 8: Hyperparameters for fine-tuning TACO-base and ablation models on GLUE, SQuAD, RACE, and SWAG.
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