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Abstract

Word order, as a crucial part to understand
natural language, has been carefully consid-
ered in pre-trained models by incorporating
different kinds of positional encodings. How-
ever, existing pre-trained models mostly lack
the ability to maintain robustness against mi-
nor permutation of words in learned repre-
sentations. We therefore propose a novel ar-
chitecture named Transformer with Attention
COnvolution (TACO), to explicitly disentan-
gle positional representations and incorporate
convolution over multi-source attention maps
before softmax in self-attention. Additionally,
we design a novel self-supervised task, masked
position modeling (MPM), to assist our TACO
model in capturing complex patterns with re-
gard to word order. Combining MLM (masked
language modeling) and MPM objectives, the
proposed TACO model can efficiently learn
two disentangled vectors for each token, rep-
resenting its content and position respectively.
Experimental results show that TACO signif-
icantly outperforms BERT in various down-
stream tasks with fewer model parameters. Re-
markably, TACO achieves +2.6% improvement
over BERT on SQuAD 1.1 task, +5.4% on
SQuAD 2.0 and +3.4% on RACE, with only
46K pre-training steps.

1 Introduction

In recent years, pre-training/fine-tuning has be-
come a popular paradigm in a wide range of nat-
ural language processing applications including
text classification (Dai and Le, 2015; Howard and
Ruder, 2018), sentiment analysis (Ke et al., 2020b;
Peters et al., 2018), summarization (Liu and Lap-
ata, 2019; Zhang et al., 2020) and text generation
(Radford et al., 2019; Bao et al., 2020b; Keskar
et al., 2019). Among various applications under
such a paradigm, BERT (Devlin et al., 2019) is
the most popular pre-trained model with significant
better performance than previous benchmarks in 11
NLP tasks. Since then, many kinds of pre-trained

models, which use Transformer block (Vaswani
et al., 2017) or its variants (Lin et al., 2021) as
backbone, have been proposed and researches in
this field are still under active exploration for better
performance, efficiency and interpretation (Yang
et al., 2019; Joshi et al., 2020; Zhang et al., 2019;
Bao et al., 2020a; Qiu et al., 2020).

Normally, the major challenge of these pre-
trained models is how to fully comprehend a sen-
tence, including the concept of each word and the
grammatical structure of the sentence. Specifically,
the concept underlying a word can be represented
by its semantic meaning, and the grammatical struc-
ture is actually expressed as a “natural” word order.
In some recent reports, the importance of “word
order” has been emphasized (Pham et al., 2020),
since it is crucial to generate and understand a nat-
ural sentence. Comparing these three sentences as
below, we can explicitly elaborate the importance
and flexibility of word order during composing a
reasonable sentence.

1. Bob once asked Alice to borrow a book.
2. Once, Bob asked Alice to borrow a book.
3. Bob once borrow Alice to asked a book.

Obviously, the first two sentences express the same
meaning, which state the event about borrowing.
The third sentence is in fact illegal since two crit-
ical verbs (“asked” and “borrow”) are exchanged.
Although we can sometimes infer actual meaning
from a wrong sentence, it may still impede our un-
derstanding of natural language if the incorrectness
is critical.

Generally, there are two kinds of approaches
to incorporate word order into current pre-trained
models. One is absolute position embeddings as
employed by Transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019). Every word
in a given sentence corresponds to a fixed posi-
tion encoded by an embedding vector. The posi-
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Figure 1: Differences between output representations of same words (tokens) from different sentences. (a).

Differences in vector representation output by BERT-base between sentence 1 and 2 in terms of token. (b).
Representation differences output by DeBERTa-base between sentence 1 and 2. (c). Differences between any
two sentences via [CLS] representations output by BERT-base or DeBERTa-base. Two measures are computed
to evaluate the difference between output hidden vectors of same words from two sentences. The first measure
“Distance” is the Euclidean distance from one vector to another normalized by the minimum of vector lengths, which

can be formulated as d(vy, va) = m

computed through cosine similarity as the formula §(v1, v2) = arccos W For a given word (or token), v
and v4 in both equations are the representation vectors of last layer produced by BERT or DeBERTa taking sentence

The second measure “Angle” is the angle between two vectors

1 or 2 as input respectively.

tion embedding of a word is usually added to its
word embedding and the summed embeddings of
all words are then fed into a Transformer-based
model. If a word moves forward or backward a
little, the resulting embeddings may be much dif-
ferent and therefore change the final representa-
tions of a given sentence (Figure 1a). The other
kind of approaches is relative positional encodings
adopted by Transformer-XL (Dai et al., 2019) and
DeBERTa (He et al., 2020). The relative posi-
tion (distance) from a query to a key can be en-
coded by a scalar or vector and integrated into
attention score between query and key contents
through some transformations. Different from ab-
solute encodings, there are no additional position
embeddings added to word embeddings as initial
input and relative positional embeddings are always
shared across all layers. Since a relative position
represents the distance of sequence order between
two words, models of this kind are more sensitive

to the changes of relative word orders rather than
translation of all words. As seen in Figure 1b, the
vector representations of “Bob” and “once” out-
put by DeBERTa from sentence 2 greatly differ
from those from sentence 1. All other words con-
trarily exhibit some characteristics of translation
invariance which agrees with the essence of rela-
tive positions. Besides, BERT is able to roughly
identify the difference between sentence 1 (or 2)
and sentence 3 from the representation of [CLS]
token, while DeBERTa apparently fails to distin-
guish three sentences, which is probably caused by
the lack of an additional task (e.g., next sentence
prediction) in pre-training (Figure 1c¢). Although
word order is explicitly encoded by absolute or rel-
ative positional embeddings, pre-trained models of
both kinds exhibit more or less fragility against mi-
nor permutations of an input sentence in sequence
order.

To alleviate the intrinsic fragility in many pre-



trained models, we propose several simple, yet
effective modifications to current models, which
leads to a new architecture called Transformer with
Attention COnvolution (TACO) for language mod-
eling. The main improvements of TACO includes:
1). disentangled positional representation of each
token throughout all layers of the model; 2). a novel
Transformer block consisting of pseudo-Siamese
structure consisting of feed-forward networks and
layer normalizations, and a joint self-attention sub-
layer; 3). 2-dimensional convolution over multi-
source attention maps in self-attention; 4). an ad-
ditional self-supervised task to predict masked po-
sitions in pre-training. Our model is illustrated in
Figure 2.

To validate the effectiveness of TACO, we there-
fore conduct a series of experiments and achieve
comparable results on many downstream tasks. The
TACO-base with fewer parameters (100M parame-
ters) and less pre-training (only 46K) achieves 84.5
in GLUE benchmark, compared to 83.1 of BERT.
For several question-answering tasks, the proposed
TACO-base model also significantly outperforms
BERT-base by +2.6% on SQuAD 1.1, +5.4% on
SQuAD 2.0, and +3.4% on RACE. We further per-
form ablation studies to evaluate the effectiveness
of different modifications.

2 Related Works

To this day, many works concerning positional en-
codings or position-involved attentions in Trans-
former block have been accomplished which em-
phasize the contribution of positions in resulting
attention scores (Lin et al., 2021). Both Trans-
former (Vaswani et al., 2017) and BERT (Devlin
et al., 2019) use absolute embeddings to represent
different positions of input tokens. Different from
absolute embeddings, Shaw et al. (2018) firstly
introduce relative position representations to Trans-
former encoder. T5 (Raffel et al., 2020) then uses
a scalar instead of a vector as relative position bias
to encode the order of every word in a sentence.
Transformer-XL., on the other hand, extends the
work of Shaw et al. (2018) by integrating a global
content bias and a global positional bias into at-
tention score between every query and key vector
(Dai et al., 2019). Following the idea of decom-
posed attention scores, DeBERTa (He et al., 2020)
disentangles content-to-position and position-to-
content terms from original attention score. Con-
trary to DeBERTa, TUPE (Ke et al., 2020a) adds

a position-to-position term and a relative position
bias instead of interactive attentions between token
content and position. After a thorough analysis of
these models, it is found that absolute or relative
positional encodings basically act as supplemen-
tary parts in attention scores, and hence sequence
order of words has not been paid enough attention
to in pre-training language models.

As a novel trick in NLP, convolution is recently
utilized to improve performance or efficiency of
Transformer-based models. ConvBERT (Jiang
et al., 2020) employs dynamic convolution con-
ditioning on queries to capture local dependency
among long sequences, and thus significantly de-
creases total size of the model and computational
cost. Another application of convolution would be
EA-Transformer (Wang et al., 2021), which adds
a skip connection between adjacent self-attentions
and uses convolution over attention maps of all
heads to produce final attention weights. Chang
et al. (2021) re-interpret relative embeddings as
lightweight convolutions and incorporate them as
composite attention. In summary, these modified
models mostly benefit from the incorporation of
convolutions and achieve better performance on
downstream tasks.

3 Methodology

In this section, we introduce main architecture of
TACO model and its detailed implementation.

3.1 Model Architecture

For a single sentence or a pair of sentences, we
follow the procedure as BERT (Devlin et al., 2019)
to tokenize them into tokens and pack them to-
gether. When the input sequence has been con-
structed, TACO firstly retrieves word embedding
x; and positional embedding p; for each token @
and then concatenates them together as its com-
plete representation e; = concat(x;, p;). Next, the
initial representations of all tokens are fed to TACO
model for further process.

As seen in Figure 2 left, we employ a multi-layer
TACO encoder to encode contextual information of
input representation. The main difference of each
TACO layer from traditional Transformer lies in
the pseudo-Siamese structure consisting of feed-
forward networks and layer normalizations, as well
as a joint self-attention sub-layer with several sig-
nificant modifications. To resolve the ambiguity
of Siamese components, we use WE and PE as
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Figure 2: Basic architecture of TACO model. The left presents the main structure of TACO mostly like Transformer
encoder. The primary difference is that TACO uses two feed-forward networks, separated residual connection and
layer normalization in each layer for token content and positional vectors respectively. The self-attention of each
layer is unified, in order to produce attention distributions using complete token and positional information. The
right depicts the workflow of how TACO computes attention states for token content and position through attention

convolution over multi-source attention maps.

identifiers to distinguish distinct vector represen-
tations, sub-layer components, model parameters
and hyper-parameters with respect to token con-
tent and position. Generally, the pseudo-Siamese
structure indicates that WE and PE input vectors
are separately transformed through distinct FFN
sub-layers and layer normalizations in each layer
and they do not share internal parameters.

Here, we briefly describe the workflow of our
model. After taking in the initial token vectors,
TACO firstly computes multiple attention maps
using WE or PE representations for queries and
keys respectively. Then a unified convolution is
performed over all attention maps stacked together
in order to generate different attention weights for
WE and PE heads (Figure 2 right). Subsequently,
TACO aggregates and projects hidden states using
vector representations and attention weights of all
heads for WE and PE separately. Passing through
corresponding residual connections and layer nor-
malizations, WE and PE hidden vectors are then
fed to different feed-forward sub-layers, followed
by similar post-processing operations to those af-

ter self-attention. At last, TACO concatenates WE
and PE output vector of each token as its complete
representation, and feeds them to next layer. The
complete representations of last layer are exploited
to fine-tune downstream tasks through task-specific
output layer.

3.2 Disentangled Positional Representation

We use a multi-layer TACO encoder to transform
token and positional representations of an input
sentence. Given the input sentence, the token vec-
tors are denoted as X = {xj,...,xx} and the
position vectors P = {pi,...,pnx}. The hidden
size of WE is denoted as dwg and PE hidden size
dpg. Then an L-layer TACO model encodes the
input as:

(Hiyg, Hpg) = TACO'(H' ™)

H'! = concat(HYg, Hhp) (1)
where [ € [1, L], H® = concat(X,P) and H* =
[hf,... h%]. Obviously, the contextualized repre-
sentation hiL € Réwetdre j5 achieved by concate-



nating WE and PE hidden vector of token ¢ from
last layer.

As shown in Figure 2 right, in order to produce
WE and PE representations separately with the uni-
fied self-attention, we split multiple heads into two
sets, hweg WE heads and hpg PE heads, to compute
token and positional attention weights respectively.
The computational process of self-attention is es-
sentially analogous to Transformer except two ma-
jor differences. One of them is that we use a similar
process to compute two outputs from multi-head
self-attention with respect to WE and PE. The other
is that the attention weights are computed by more
complex method than Transformer. We formulate
the process as:

Hyp = concat(headyg, . . ., headp V¥ YW
heady = f(H; iwe) Hwe Wy

Hjy, = concat(headpy, ..., headi® )W,

headp, = f(H; jee) HeeWpg  (2)

where Hweg is the input matrix composed of WE
hidden vectors of all tokens from previous layer as
equation (1). Wy € R™WEXdv s the projection
matrix for the ¢-th head to project WE vectors into
low-dimensional space. W{p € Rhwedvxdwe jg
the output projection to fuse hidden states of all
WE heads. Hpg, Wi € R%7exdv and WG, €
Rheedoxdee are corresponding matrices related to
PE. f(-) is a unified function to generate attention
weights for each WE and PE head. H{, and Hpg
are output vectors of self-attention, which will be
fed to FFN sub-layers after residual connections
and layer normalizations.

3.3 Multi-source Attention Maps

As summarized by Lin et al. (2021), the prerequi-
site of attention weights is to calculate raw score of
any query token g; attending to any key £;. The raw
scores of all pairs of queries and keys form an atten-
tion map A, each element A% of which indicates
how much attention ¢; pays to k;. We individu-
ally use query information from token content and
position together with different key information to
generate diverse attention scores. We mainly cate-
gorize resulting attention maps into three groups in
terms of information sources of queries and keys.
Content attention and positional attention employ
query and key content or their positional informa-
tion to compute attention scores, respectively. As
for interactive attention, which includes content-

to-position and position-to-content terms, we use
relative position-based attentions as depicted in De-
BERTa (Refer to Appendix A.1 for more details).

Despite of three groups of attention maps de-
scribed above, we also create skip edges to connect
multi-head attention modules in adjacent layers like
RealFormer (He et al., 2021) and EA-Transformer
(Wang et al., 2021). Instead of directly adding to
the attention maps of current layer, we consider
the attention logit matrices from previous layer as
an additional source for further fusion. So far, we
achieve 4hwg + 2hpg attention maps in total for
each layer (except the first layer without residual
attentions), including hwg content maps, hpg posi-
tional maps, 2hwg interactive maps and hwg + hpg
residual maps of previous layer.

3.4 Fusion of Attention Maps

Once the attention maps composed of raw scores
have been computed, typical pre-trained models
transform them into attention weights by apply-
ing softmax over the last dimension. However,
our model slightly modifies the conventional pro-
cess by fusing multi-source attention maps using
convolution before softmax. Analog to images in
computer vision, 2-dimensional convolution is a
promising choice if we regard stacked attention
maps as multi-channel inputs and attention weights
of all heads as output feature maps. As a matter of
fact, we adopt convolution followed by PReL.U ac-
tivation (He et al., 2015) to fuse multi-source maps
for two reasons. One obvious reason is that the
number of attention maps differs from pre-defined
number of attention heads. It may cause redundant
or insufficient usage of certain maps if we insist
on matching them with attention weights of all
heads. The other is that TACO essentially requires
different attention weights for WE and PE heads
in order to model inherent dependencies from the
perspectives of semantic relation and word order.

For simplicity, we additionally specify kernel
size and stride to be 1 in directions of both width
and height in our model. At this point, the function
f () in equation (2) indeed stands for the generation
of multi-source attention maps, the 2d convolution
with PReLLU activation, and softmax.

3.5 Position Prediction Task

We here introduce two self-supervised tasks for
pre-training TACO model. We firstly use masked
language modeling (MLM) task to pre-train the
model as introduced in BERT (Devlin et al., 2019),



which has limited effect to drive the model to cap-
ture underlying patterns concerning word order of a
sentence. Therefore, we propose an additional task
similar to MLM for masked position prediction, as
a complementary to MLM objective.

Token Masking First of all, we adopt the span-
based masking scheme in SpanBERT (Joshi et al.,
2020) to generate an input sequence by masking
continuous segments of text instead of individual to-
kens. In practice, we set the probability of geomet-
ric distribution to 0.2 for span length sampling, and
also restrict sampled spans to a maximum length
of 3. The strategy to mask sampled spans is similar
to BERT (Devlin et al., 2019), which is also clearly
described in SpanBERT.

Position Masking Analog to token masking, we
come up with a similar procedure to corrupt a posi-
tion sequence for better modeling word order. For
a given sentence X, the position of every token is
denoted as P = (p1, p2, ..., pN). We create a sim-
ilar random generator as token masking to sample
spans of positions using a geometric distribution
with p = 0.2 and clip the span length at 6. As
a consequence, we select 15% of the positions in
total through the sampling generator. The masking
strategy for position spans is slightly different from
token masking. Refer to Appendix A.2 for detailed
procedure.

As described above, we independently employ
these two masking schemes to generate training
data, resulting in a pair of examples for one sen-
tence. For a given sentence X and its position
sequence P, we generate {X, P} by following the
procedure of token masking and {X, P} by po-
sition masking, where X and P are denoted as
corrupted sequences of tokens and positions after
masking respectively.

Using masked tokens and original positions
{X, P}, our model can try to reconstruct the origi-
nal tokens through bi-directional contexts. This is
the typical pre-training task known as MLM orig-
inally introduced in BERT (Devlin et al., 2019).
Denote K as the set of indices of masked tokens.
Then MLM pre-trains the model § by maximizing
the following objective

Lyim = — Y log Pr(z;|{X,P}0) (3)
ek

On the hand, TACO is also trained to recover the
right order from masked positions together with

original tokens. We refer this task to as masked
position modeling (MPM) for convenience. MPM
is essentially complementary to MLM task and is
of vital importance in word order modeling (See
Appendix A.3). Analog to MLM, the objective of
MPM is formulated as below

Lyiem = — Y _ log Pr(p;|{X, P};0) ¥
j€Z

where Z is the set of indices of masked positions.
TACO sums the losses from both MLM and MPM
objectives to jointly learn WE and PE representa-
tions in a self-supervised way. Namely, a pair of
examples derived from the same sentence are fed
into the model to produce one summed loss for
pre-training.

4 Experiments

In this section, we present fine-tuning results on 12
NLP tasks.

As introduced in previous section, our model
requires more hyper-parameters to determine the
structure due to more complex design than conven-
tional BERT and DeBERTa. We conduct several
experiments to search for an optimal set of hyper-
parameters (See Appendix A.5). As a consequence,
we follow the optimal settings listed in Table 7
to pre-train a base-size TACO model. For train-
ing data, we use 160GB text corpora from English
Wikipedia', BookCorpus (Zhu et al., 2015), Open-
WebText> and CommonCrawl News (Liu et al.,
2019). We use 6 machines (48 A30 GPUs) to train
the models. It takes 5 weeks to train a TACO-base
model with 1200 batch size and 500K steps.

4.1 Fine-tuning Results of Downstream Tasks

GLUE We compare TACO-base to several strong
baselines, i.e., BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019)
and DeBERTa (He et al., 2020), on 8 GLUE tasks,
and report the results on the development set of
each task in Table 1. All the models are in base-
size for fair comparison. Although TACO has not
completely converged (with only 46K pre-training
steps so far), we still achieve comparable perfor-
mance to classic BERT baseline (84.5 vs 83.1).
Specifically, TACO slightly exceeds BERT on STS
(+0.4%), MRPC (+3.1%), and RTE (+10.8%) tasks.
However, our model performs slightly worse in the

"https://dumps.wikimedia.org/enwiki/
Zhttp://Skylion007.github.io/OpenWebTextCorpus



Model MNLI-m/mm QQP QNLI SST-2 CoLA STS MRPC RTE A
Acc Acc Acc Acc MCC PCC Acc Acc Ve
BERT 84.3/84.7 91.3 91.7 93.2 589 89.5 87.3 68.6 83.1
XL Net 86.8/- 914 91.7 947 60.2 89.5 88.2 74.0 84.6
RoBERTa 87.6/- 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4
DeBERTa* 88.7/88.5 91.8 93.7 95.5 643 92.1 91.2 86.3 87.9
TACO (46K) ‘ 84.2/84.8 91.3 91.0 92.3 57.3 89.9 90.4 79.4 84.5

Table 1: Results of base-size models on the development set of the GLUE benchmark. * The DeBERTa-base models
are fine-tuned using the code and model weights released in HuggingFace (Wolf et al., 2019).

Model SQuAD 1.1 SQuAD 2.0 RACE SWAG
EM/F1 EM/F1 Acc Acc
BERT 80.8/88.5 73.7/76.3 65.0 81.6
RoBERTa 84.6/91.5 80.5/83.7 - 84.0*
DeBERTa 87.2/93.1 83.1/86.2 72.2% 86.3*
TACO (46K) ‘ 84.5/91.1 78.7/81.7 68.4 75.1

Table 2: Results of base-size models on the development set of SQUAD v1.1/v2.0, RACE and SWAG. * These results
are collected by fine-tuning corresponding models using the code and model weights released in HuggingFace (Wolf

etal., 2019).

natural language inference tasks including MNLI
and QNLI, indicating that knowledge inference
probably needs more training to learn high-level
semantic patterns.

Question Answering We further validate TACO-
base model on different types of question-
answering tasks (Refer to Appendix A.4 for de-
tailed description). The performance of TACO-
base and other baselines are collected in Table 2.
We observe significant improvements of TACO on
four question-answering tasks compared to BERT,
+2.6% (F1) on SQuAD 1.1 and +5.4% (F1) on
SQuAD 2.0, +3.4% on RACE. These improve-
ments over BERT partially demonstrate the effec-
tiveness of several significant modifications intro-
duced in the proposed TACO model.

According to Table 1 and 2, we inescapably dis-
cover a performance gap between our proposed
TACO model and other two baselines, RoOBERTa
and DeBERTa. The primary reason responsible for
these unexpected results is probably insufficient
pre-training, since our fine-tuning models are de-
rived from an intermediate checkpoint with only
46K pre-training steps. Based on the superior per-
formance to BERT, we believe our model would
achieve much better results when the pre-training
is complete.

Even though the proposed TACO has not show
superior performance than RoBERTa and De-
BERTa yet, it is still a promising model with com-
parable ability to BERT and with great potential to
outperform RoBERTa and DeBERTa.

4.2 Ablation Study

We present an ablation study to evaluate the effec-
tiveness of different modifications introduced in
TACO. We thus develop two variations by eliminat-
ing two particular components:

- The first shares the same architecture as
TACO-base, except the exclusion of MPM
loss in pre-training.

- Another variant is the TACO-base model with-
out convolution in the computation of atten-
tion weights. Interactive attention maps are
added to corresponding content maps as De-
BERTa (He et al., 2020), while position maps
are used to independently generate attention
weights for PE heads. Attention maps from
previous layer are still incorporated before
softmax.

We follow the same settings as BERT-base to pre-
train ablation models. Table 3 summarizes the re-
sults on four benchmark datasets. We use a check-



MNLI-m/mm SQuAD 1.1 SQuAD 2.0 RACE

Model #Param Acc EM/F1 EM/F1 Acc
BERT 108.9M 84.3/84.7 81.0/88.5  73.7/763  65.0
RoBERTa 124.1M 84.7/- -190.6 1797 65.6
DeBERTa 138.6M 86.3/86.2 86.1/92.1  79.3/825 717
TACO (42K) 100.1M 84.0/84.3 83.9/90.5  77.2/803  65.9

— MPM loss 100.1M 83.8/84.2 83.5/904  76.7/798 654

_ Attention Convolution  100.1M 83.7/84.0 834/902  76.0/795  64.7

Table 3: Ablation study of the TACO-base model. All models are pre-trained over Wikipedia and BookCorpus for

IM steps with a batch size of 256.

point pre-trained with 42K steps to evaluate the
fine-tuning performance of ablation models. Obvi-
ously, we can affirm the importance of MPM task
through the decreased performance of the first vari-
ant (-0.2% on MNLI-matched, -0.1% on SQuAD
1.1, -0.5% on SQuAD 2.0 and -0.5% on RACE).
Despite that, the convolution also helps to better
capture complex patterns with regard to both se-
mantic relation and word order ( 84.0 vs 83.7 on
MNLI-matched, 90.5 vs 90.2 on SQuAD 1.1, 80.3
vs 79.5 on SQuUAD 2.0, and 65.9 vs 64.7 on RACE).
We also observe significant improvements of TACO
model over BERT on question-answering tasks,
and achieve comparable results with RoOBERTa ex-
cept for MNLI task.

5 Conclusion

We present a novel architecture TACO by explicitly
disentangling positional representations and incor-
porating convolution over multi-source attention
maps before softmax in self-attention. We pre-train
a language model based on this architecture with an
additional MPM task to jointly learn positional rep-
resentations concerning word order. MPM is essen-
tially complementary to the classic MLM objective
by introducing word order modeling to enhance
robustness of learned representations against minor
permutations of a natural sentence. Experiments
show that our TACO model integrating above nov-
elties consistently improves the end-task results on
several language understanding benchmarks.
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A Appendix

A.1 Multi-source Attention Maps

Content Attention The first group is content at-
tention by employing query and key content to
measure the attention level between a query and a
key. The query content is obviously represented by
its WE hidden vector, so is the key content. This
type of attention maps, which are included in nearly
all pre-trained language models such as BERT (De-
vlin et al., 2019), DeBERTa (He et al., 2020) and
TUPE (Ke et al., 2020a), is the most fundamental
and crucial source to model global and local de-
pendencies within the input sentence. We compute
content attention map of each WE head following
the equation below.

Qwe = HWEW\(}?;E Kwe = Hwg Whg

_ QweKyg

Aw
Vi

&)

where W\%E, WEL € RIweXdk are parameter ma-
trices to project WE vectors into the same dj-
dimensional space.
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Position Attention Analog to content attention,
the second group is positional attention, which uses
query’s and key’s positional information to com-
pute attention scores as employed by TUPE (Ke
et al., 2020a). Specifically, positional information
of a query and a key is explicitly expressed by
their corresponding PE vectors. We believe that
positional attention is very helpful to model word
orders of a given sentence. The positional attention
map of each PE head is also computed via scaled
dot-product similar to content attention.

Qpg = HPEWSEy Kpp = Hpp W
_ QreKip
Vg

where WIC;E, WE. € R¥eXdk are parameter matri-
ces to project PE vectors. The dimension dj of PE
queries and keys of each head is set the same as
that of WE queries.

Ap (6)

Interactive Attention The last group is interac-
tive attention, which has two different forms. One
form is to use query content and key’s position to
calculate content-to-position attention score as De-
BERTa (He et al., 2020). Accordingly, the other is
position-to-content term using query’s positional
information and key content. Since both terms
integrate token content and position in a same low-
dimensional space and then assess the interaction
between a query and a key, we unite them as in-
teractive attention implying that it bridges the gap
between the representation subspaces of token con-
tent and position.

Intuitively, we use relative positional encodings
to compute interactive attention maps as DeBERTa
(He et al., 2020), which can be expressed as:

1, riiNT
i Qwe(Ky’)
Kr =Rpp Wy, Agh =
& Aes g
o i (K )T
Q= Ruw, A = 2 Ei)

Vi

where 7;; is the relative distance from a position
i to j, defined as 7;; = max(—k, min(k, j — 7))
as in Shaw et al. (2018). Rpg € RZk+1)xdre jg
relative positional encodings for total 2k+-1 relative
distances. WK Wg € R%exdk are parameter
matrices to project relative positional vectors. K;”
represents the projected vector of distance r;;, i.e.,
the 7;;-th row vector of Kg. The maximum relative
distance k is set to 511 due to the absolute positions



ranging from O to 512 (exclusive) in our model.
Besides, relative positional encodings are shared
across all layers of TACO model.

Despite of relative encodings, we in fact design
two more forms of interactive attention using posi-
tional representations Hpg of each layer. We will
investigate them in future work due to paper limit.

A.2 Position Masking

Slightly different from the masking strategy for
tokens, 15% positions are randomly masked by
performing the following procedure at the span
level instead of for each position individually:

* Suppose that we want to mask a span (2, 3) in
the original position sequence (1, 2, 3, 4, 5, 6)
for a sentence with six tokens.

* 80% of the time: Replace the positions with
a mask position such as -1 in our model, e.g.,
(15 27 3, 4’ 5’ 6) — (19 -15 _19 45 57 6)

10% of the time: Shuffle the positions, e.g.,
(1,2,3,4,5,6) = (1, 3,2, 4,5, 6). If the
span just contains one position such as (2), a
random position in the range from 0 to max-
imum sequence length is sampled to replace
the single position, e.g., (1, 2, 3,4, 5, 6) — (1,
8,3,4,5,0).

10% of the time: Keep the positions un-
changed, e.g., (1, 2, 3, 4, 5, 6) — (1, 2, 3,
4,5,6).

The shuffle operation in the procedure above coin-
cidently accords with the word structural objective
adopted by StructBERT (Wang et al., 2019), which
is to reconstruct the right order of certain number
of intentionally shuffled tokens.

A.3 Relation between MLM and MPM tasks

Despite of analogy in masking schemes and train-
ing objectives, the MLM and MPM tasks essen-
tially supplement each other from the linguistic
perspective. We take the sentence “Bob once asked
Alice to borrow a book.” as an example to expound
the complementary effect of these two tasks. For a
corrupted sentence such as “Bob once asked Alice
to [MASK] a book.”, MLM requires a model to
fill in the masked token. In this task, the model
knows which position the masked token locates in
and thus predicts what is correct in this position.
Contrarily, MPM urges the model to find correct
position for each given candidate (e.g. “asked” and
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“borrow”) in the corrupted sentence like “Bob once
__Alice to __a book . . Owing to loose restric-
tion on the range of predicted positions, there is
an inevitable shortcoming inherent in this MPM
task. That is, the predicted position of each can-
didate may be overlapped with existing positions
occupied by known tokens or far beyond the sen-
tence scope. For example, TACO predicts position
2 for “asked” which conflicts with “once” in the
same position, or 12 for “borrow” which exceeds
the sentence length. Therefore, MPM is also a cru-
cial pre-training task in spite of less challenge than
MLM because of smaller number of pre-defined
possible positions than the size of token vocabu-
lary. To sum up, MLM and MPM together encour-
age a model to learn contextualized representations
of token content and position, and consequently
enhance positional robustness against changes of
word orders in language modeling.

A.4 Datasets

Datasets #Train/#Dev/#Test

Single-Sentence Classification

CoLA (Acceptability) 8.5k/1k/1k
SST-2 (Sentiment) 67k/872/1.8k
Pairwise Text Classification

MNLI (NLI) 393k/20k/20k
RTE (NLI) 2.5k/276/3k
QNLI (NLI) 105k/5.5k/5.5k
WNLI (NLI) 634/71/146
QQP (Paraphrase) 364k/40k/391k
MRPC (Paraphrase) 3.7k/408/1.7k
Text Similarity

STS-B (Similarity) 7k/1.5k/1.4k

Table 4: Statistics of GLUE datasets.

GLUE The General Language Understanding
Evaluation (GLUE) benchmark is a collection of 9
natural language understanding (NLU) tasks. Ta-
ble 4 summarizes the dataset details for GLUE.
We don’t use WNLI dataset for evaluation to keep
consistent with previous work (Devlin et al., 2019).

SQuAD The Standford Question Answering
Dataset (SQuAD) is a collection of 100k crowd-
sourced question/answer pairs (Rajpurkar et al.,
2016, 2018). For a given question and paragraph,
the task is to predict the answer span from the para-
graph. We fine-tune on two versions of SQuAD:



Hidden size

MNLI-m/mm SQuAD 1.1 SQuAD 2.0 RACE

(WE,pE)  raram Acc EM/F1 EM/F1 Acc
(648,120)  80.4M  82.0/82.7 82.1/89.0  73.2/765  62.0
(576,192)  71.IM  82.0/82.1 81.3/88.6  73.2/765 612
(504,264)  643M  81.4/82.0 81.2/88.4  72.8/758 593

Table 5: Performance of TACO models with different WE & PE hidden sizes.

v1.1 and v2.0. In v1.1, the context always contains
an answer, whereas in v2.0 some questions are not
answered in the provided context, making the task
more challenging.

RACE The ReAding Comprehension from Ex-
aminations (RACE) is a large-scale machine learn-
ing comprehension dataset, and is collected from
English examinations in China (Lai et al., 2017).
In RACE, each passage is associated with multi-
ple questions, and the task is to select one correct
answer from four options for every question.

SWAG The Situations With Adversarial Gener-
ations (SWAG) dataset is a large-scale adversarial
dataset for the task of grounded commonsense in-
ference, which unifies natural language inference
and physically grounded reasoning (Zellers et al.,
2018). SWAG contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference. For a given sentence, the task is to
predict the most plausible continuation among four
choices.

A.5 Comparison of Different Structures

To fairly and quickly compare different structures,
we conduct several light-weight experiments fol-
lowing the settings of BERT-base model (Devlin
et al., 2019), except that we use AdamW opti-
mizer (Loshchilov and Hutter, 2018) to pre-train
for 120k steps in total and learning rate warmup
over the first 10000 steps. For training data,
we only use Wikipedia and BookCorpus (Zhu
et al., 2015), which leads to a total data size
of 16GB after preprocessing. As in ROBERTa
(Liu et al., 2019), the benchmark datasets include
MNLI (matched/mismatched), SQuAD v1.1/v2.0
and RACE to validate the performance of pre-
trained models. We carefully evaluate a number
of configurations when pre-training TACO model,
including hidden size and the number of attention
heads.
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Hidden sizes We first evaluate the effect of differ-
ent WE and PE hidden size. In order to match the
settings of base-size classic models such as BERT
and DeBERTa, we attempt to choose hidden sizes
for WE and PE so that the summation equals to 768,
which indicates that the complete representation of
a token from TACO has the same dimension as
BERT-base or DeBERTa-base hidden vectors. For
this experiment, we specify the attention heads of
WE and PE to 6 and use relative position encodings
with dimension dpg to compute interactive maps.
The fine-tuning results are presented in Table 5.

It is found that that TACO with 120-dimensional
position encodings outperforms other models in
MNLI (matched & mismatched), SQuAD v1.1 and
RACE datasets, and achieves comparable results
in SQuUAD v2.0 to the model of 192 PE hidden
size. According to Table 5, TACO basically per-
forms worse on downstream tasks when the repre-
sentation space of token content with dimension
dwg becomes smaller. It implies that a pre-trained
model with more free parameters usually has a
greater potential to capture complex semantic pat-
terns. Besides, the increase of position-related
parameters can not compensate the performance
degradation caused by reduced WE hidden size.
Although small-sized positional space results in a
large model, we can not choose too small values
for PE hidden size, which may lead to the inability
to model word orders through the MPM task. We
use PE hidden size of 120 for the following TACO
models of base size.

Attention heads Next, we intend to choose
proper numbers of WE and PE attention heads.
We follow most settings as previous TACO model
with dpg = 120, except for different numbers of
attention heads.

As seen in Table 6, our model exhibits superior
performance on all five tasks if we increase the
number of WE heads from 6 to 12. Contrarily,
more PE heads tends to impede the improvement
of learning capability of TACO model. This abnor-



Attention Heads

MNLI-m/mm SQuAD 1.1 SQuAD 2.0 RACE

(WE, PE) #Param Acc EM/FI EM/F1 Acc
(6, 6) 80.4M  82.0/82.7 82.1/89.0  73.2/765  62.0
(12, 6) 875M  82.5/82.7 82.8/89.4  75.5/78.6  62.6

(12, 12) 88.6M  82.5/82.7 822/89.0  74.0/77.6 622

Table 6: Performance of TACO models with different numbers of WE & PE attention heads.

mal phenomenon of decreased performance when
increasing model parameters may be induced by
insufficient pre-training, namely the model does
not fully converge after 120k steps. We simply
leave this uncertainty to future work and use 12
WE heads and 6 PE heads as default base settings.

In summary, we finally choose 648 and 120 as
WE and PE hidden sizes, 12 WE attention heads

and 6 PE heads to pre-train TACO-base model.

Additionally, we enlarge the dimension of relative
position embeddings to 768 since relative distance
may enhance the capability of our model in both
MLM and MPM tasks.

A.6 Pre-training details

As shown in Table 7, the main hyperparameters
used for pre-training TACO-base is presented. The
hidden size and number of attention heads for WE
and PE are chosen according to comparison results
in section A.5S.

Number of Layers 12
Hidden size (WE, PE) (648, 120)
FEN inner hidden size (WE, PE) (2592, 480)
Attention heads (WE, PE) (12, 6)
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Steps 10000
Peak Learning Rate le-4
Batch Size 1200
Weight Decay 0.01
Max Steps 500K
Learning Rate Decay Linear
Adam € le-6
Adam [ 0.9
Adam [ 0.999
Gradient Clipping 1.0

Table 7: Hyperparameters for pre-training TACO-base.
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A.7 Fine-tuning details

Table 8 reports the hyperparameters used for fine-
tuning TACO-base on GLUE, SQuAD, RACE, and
SWAG benchmarks. We report the median result
of five runs starting from different seeds for each
set of hyperparameters for every task.



Datasets Batch Size Learning Rate Max Epochs Weight Decay

GLUE [16,32})  {le-5,2e-5,3e-5,5¢-5)  {3,4,5,6) 0.01
SQuAD 32 {le-5, 2e-5, 3e-5, 5¢-5}  {2,3,4,5) 0.01
RACE 16 le-5 6 0.1
SWAG (16,32} {le-5, 1.5¢-5, 2e-5} {4,5) 0.01

Table 8: Hyperparameters for fine-tuning TACO-base and ablation models on GLUE, SQuAD, RACE, and SWAG.
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