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Abstract

The three-dimensional reconstruction of multiple interacting humans given a
monocular image is crucial for the general task of scene understanding, as cap-
turing the subtleties of interaction is often the very reason for taking a picture.
Current 3D human reconstruction methods either treat each person independently,
ignoring most of the context, or reconstruct people jointly, but cannot recover inter-
actions correctly when people are in close proximity. In this work, we introduce
REMIPS, a model for 3D Reconstruction of Multiple Interacting People under
Weak Supervision. REMIPS can reconstruct a variable number of people directly
from monocular images. At the core of our methodology stands a novel transformer
network that combines unordered person tokens (one for each detected human)
with positional-encoded tokens from image features patches. We introduce a novel
unified model for self- and interpenetration-collisions based on a mesh approxi-
mation computed by applying decimation operators. We rely on self-supervised
losses for flexibility and generalisation in-the-wild and incorporate self-contact and
interaction-contact losses directly into the learning process. With REMIPS, we
report state-of-the-art quantitative results on common benchmarks even in cases
where no 3D supervision is used. Additionally, qualitative visual results show
that our reconstructions are plausible in terms of pose and shape and coherent for
challenging images, collected in-the-wild, where people are often interacting.

1 Introduction

Reconstructing three-dimensional models of multiple interacting people from images is an important
computer vision task with applications in behavior analysis, automatic video analysis of sport events,
or collaborative augmented reality applications. As the demands on the depth of analysis increase,
beyond qualitative pose, one often seeks to know whether people are in contact or not, what is the
nature of that contact, and how long it lasts. As such questions become important, it is clear that very
coarse estimates of pose or even shape are no longer sufficient. One needs accurate models of shape
and contact with predictable response over time. This is difficult due to the various degree of occlusion
that occurs, the depth ambiguities particularly given only monocular images (but more generally
given that occlusion and self-occlusion for people are frequent), the high degree of variability of even
valid human poses, their different scales and underlying spatial image support, ranging from the large
body parts like torso or thighs – informed by larger image regions – to hands, with parts typically
accounted for by smaller spatial support, comparatively.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Most of the volumetric human pose and shape recovery methods focus on a single person and require
detecting the humans in the image and then running the inference model on each positive response.
This approach has achieved good results and scales linearly in the number of people in the scene.
There are multi people reconstruction methods which either predict 3D pose only and defer the
shape reconstruction step to a later optimization step[1] or rely on an orthographic camera model
[2]. However, it is nontrivial to obtain a realistic 3D scene placement for all the reconstructed human
models such that their 3D spatial relations are plausible and the alignment with the image evidence
is good. All aforementioned methods train using full 3D supervision coming from mocap datasets.
However, this often lacks scenarios of interactions or fine grained self-contact. Recent work such as
[3, 4] designed datasets for interaction analysis, with additional interaction signature annotations, and
showed that models able to represent those produce more realistic reconstructions. However, they
only work in an optimization framework and reconstruct only pairs of people in close interaction.
Ideally one would like to be able to precisely model contacts, rely on attention models to identify the
important element of interaction, have a framework that can accommodate more than two people and
learn such models from data, using only weak supervision.

Our main contributions can be summarized as proposing the following: (1) fast, accurate and unified
3d self collision and interpenetration models for multiple people; (2) a novel vision transformer
architecture to predict 3D pose and shape for multiple people; (3) weakly supervised models which
do not require 3D annotations during training; (4) state of the art results on challenging datasets, with
favorable performance compared to competing predictive or optimization-based methods.

In this paper, we propose REMIPS, a hybrid convolutional-transformer where the output of a human
detector is combined with high-level convolutional image features. They are processed by a series of
transformer encoder layers that iteratively refine the 3D pose and shape reconstruction estimates for all
detected humans in the scene, irrespective of their number. Decoupling the detection component has
the advantage of benefiting from innovations in that space without necessarily paying a performance
cost (detection models are already quite fast, close to real time, and providing accurate results).
Similar to [5], we use a full perspective camera model, allowing us to infer translations for all humans
in the same camera coordinate system. We propose novel interpenetration and self-collision losses
that are amenable to a deep-learning-based training process and work in a weakly-supervised regime.

2 Related Work

The field of 3D human pose and shape reconstruction from images has received increasing attention
in recent years. This has been driven by progress in 3D statistical and articulated human body models
[6, 7] and advances in 2D [8, 9, 10] and 3D [1, 11] pose estimation. Most reconstruction methods
focus on estimating the 3D pose and shape of a single person [5, 12, 13, 14, 15] although, more
recently, several papers focused on reconstructing multiple people coherently [2, 16, 1, 17].

Recent work started focusing on modeling inter-human contact [3] or self-contact [4, 18], developing
methodology for more principled, contact aware reconstructions and releasing datasets with ground
truth interaction [3] and self-contact [4] vertex-level annotations. We use these datasets in our training
and evaluation pipeline, together with other various supervision signals.

Physically plausible human mesh reconstructions require collision avoidance for single and multiple
interacting people. Prior work related to self-collisions [19, 20, 21, 22] rely on bounding volume
hierarchies [23] to detect the set of colliding triangles. We propose novel, efficient and faster human
mesh collision losses which are more appropriate for deep learning training pipelines. See §3.4 for
more details.

Recent innovations in the space of visual transformers [24, 25] have increased the capabilities of
neural network architectures for handling image features, and their ability to produce accurate
reconstructions for images in-the-wild [26, 27]. We take inspiration from this as well.

3 Methodology

3.1 Statistical 3D Human Body Models

We use a recently introduced statistical articulated 3D human body model called GHUM [6], to
represent the pose and the shape of the human body. The model has been trained end-to-end, in
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a deep learning framework, using a large corpus of human shapes and motions. The model has
generative body shape and facial expressions β =

(
βb,βf

)
represented using deep variational

auto-encoders and generative pose θ = (θb,θlh,θrh) for the body, left and right hands, respectively,
represented as normalizing flows [12]. The pelvis translation and rotation are controlled separately,
and represented by a 6D rotation [28] r ∈ R6×1 and a translation vector t ∈ R3×1 w.r.t the origin
(0, 0, 0). The GHUM mesh, M = (V,F), consists of a set of vertices V ∈ R10168×3 and a set of
facets F ∈ R20332×3. In experiments we infer the GHUM parameters (θb,βb, r, t) omitting facial
expression parameters βf and the left and right hand pose parameters θlh,θrh, as we focus only on
reconstructing the body pose and shape. We also drop the b subscript for convenience.

3.2 Camera Model

We use a perspective projection operator Π characterized by camera intrinsics C = [fx, fy, cx, cy]
which assumes that the camera coordinate system is aligned with the world reference frame using an
identity extrinsic rotation matrix and zero translation. This corresponds to a left handed coordinate
system with positive z values forward. All predictions are made in the camera coordinate system.
When processing the camera intrinsics for a crop we use the same approach as in [5].

3.3 Architecture

In fig. 1 we show an overview of REMIPS, our proposed hybrid learning architecture for monocular
multi-person 3D body pose and shape estimation. We draw inspiration from vision transformers [24],
as we also use a hybrid convolutional-transformer architecture, and from [5], as we explore the
idea of iteratively refining estimates by relying on cascaded, input-sensitive processing blocks, with
homogeneous parameters, as an end-to-end learnable surrogate for non-linear optimization.

Our network receives as input an image I ∈ RW×H×3 containing multiple people, together with the
pseudo ground-truth camera intrinsics C ∈ R1×4 of the image (see § 3.2). We apply a convolutional
neural network (CNN) on the input image and extract a downsampled feature map representation
F ∈ RW

32×
H
32×D. We flatten the feature map along the spatial dimensions to get a sequence of

N = W
32 ×

H
32 tokens. This sequence is linearly embedded by means of matrix E ∈ RD×D′

, where
D′ is the embedding dimensionality. Next, learnable positional embeddings Epos ∈ RN×D′

are
added to the sequence. In addition to image feature tokens, we also use a sequence of NP = 16
maximum tokens for the people in the image. We first run an off-the-shelf human detector on the
input image and collect the bounding box coordinates for each person index p, bp ∈ R1×4. For each
person p, we compute its initial GHUM parameters sp0 = {θ0,β0, r0, t

p
0} where we compute the

translation such that the default GHUM mesh projects in the center of the corresponding bounding
box bp. We denote by S0 = [s10, . . . s

NP
0 ] the initial state of GHUM parameters for all the people

in the image. For each person, we concatenate the bounding person coordinates, the initial GHUM
state and the camera intrinsics and construct the sequence of tokens corresponding to the persons
in the image P ∈ RNP×DP . We linearly project the people token sequence P by means of matrix
EP ∈ RDP×D′

. The two sequences of tokens are concatenated into a single input sequence Z0 and
iteratively transformed through a single shared transformer encoder layer [25], TL, for a number
of L steps. We collect at each step l ∈ {1 . . . L} a refinement update ∆Sl from each transformed
representation Zl, using a shared MLP applied on the corresponding transformed representation of
the people token sequence.

Z0 = [FsE + Epos,PEP ] (1)
Zl = TL(Zl−1) (2)

∆Sl = MLP(ZN :N+NP

l ). (3)

The refinement updates ∆Sl are added to the initial state GHUM parameters, S0, as

SL = S0 + λΣLl=1∆Sl (4)

where SL = {ΘL,BL,RL,TL} are the final GHUM parameter estimates for all the people detected
in the image and λ is a weighting term for the residual estimates.

Note that the maximum number of person tokens NP = 16 is chosen specifically for training
purposes, to batch training examples together. Yet, at inference time, we can actually use as many
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Figure 1: Overview of REMIPS, our proposed architecture to reconstruct the 3D pose and shape of multiple
interacting people. Starting from a single input image, we use an off-the-shelf detector to extract the human
bounding boxes. We create a sequence of person tokens from these detections to which we attach an initial
GHUM state estimate S0. On a separate branch, starting from the image, we run a backbone convolutional neural
network architecture and create an additional sequence of spatial image feature tokens, Fs. We concatenate the
two sequence representations and iteratively refine this joint representation through a single transformer encoder
layer for a number of L stages. At the end of each stage l, we collect the transformed representation for the
token sequence associated with the people and apply an MLP to regress the residual GHUM state estimates
∆Sl. Our final estimation is given by the weighted sum of all the residual state updates and the initial state. The
network is trained weakly-supervised on various datasets with 2D annotations. We use contact and collision
losses defined over the recovered geometries to ensure physical plausibility.

person tokens as the person detector outputs (even more than 16), as long as the quadratic memory
requirements for the attention mechanism are satisfied (i.e. in the order of thousands of persons). We
observe that, in practice, the differences in inference speed for a variable number of persons (between
1 and 32) to be almost negligible, i.e. at most 10% increase in running time.

We train the network by optimizing the following loss function:

L = Lsc + Lic + Lics + Lscs + Ld + Lka + Lθ + Lβ (5)

where the first 5 loss terms correspond to the physical plausibility of the reconstructed meshes as
follows: Lsc and Lic are the self-collision loss and the interpenetration loss, respectively; Lics
and Lscs correspond to the supervised self-contact [4] and interaction-contact [3] losses; Ld is the
depth-aware ordering loss from [2]. These losses are discussed and explained in more detail in
subsequent sections.

We use a standard keypoint alignment loss, Lka, that measures the error between the 3D joints from
the GHUM reconstructions, projected onto the image plane, J = {Ji}i=1,...,K , and the available 2D
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keypoints annotations in the image {ji}i=1,...,K

Lka =
1

K

K∑
i=1

‖ji −Π (Ji,C) ‖22. (6)

Note that for some datasets we do not have 2D pose annotations available. In that case we supervise
with the predictions of an off-the-shelf 2D pose estimator.

For body shape and pose, we use regularization losses:

Lθ = ‖θ‖22, Lβ = ‖β‖22. (7)

3.4 Physical Collision for GHUM

In our methodology, we use an approximation for the GHUM mesh topology, which we denote
by M̂ = (V̂, F̂). This mesh topology is obtained by applying decimation operators on the default
GHUM model resulting in a mesh with Nv̂ = 512 vertices and Nt̂ = 1020 triangles. We refer to this
low resolution approximation of the GHUM mesh as PHUM. As V̂ is a subset of the GHUM vertices,
this easily allows the PHUM mesh to be reposed and reshaped with respect to the underlying GHUM
mesh it approximates. The ICP loss of our approximation (i.e. for each vertex on the GHUM mesh not
included in PHUM, we compute the distance to the closest point on the PHUM surface) is of 2.8mm.
By using PHUM, we drastically reduce the computation cost of our proposed self-collision and
interpenetration losses as they are quadratic in the number of vertices. We use generalized winding
numbers [29] to rapidly test whether 3D points are inside/outside relative to a closed mesh topology.

Self-collision loss Given a GHUM mesh, M, we compute its PHUM approximation M̂. We apply
the generalized winding number test L = φM̂(V̂) on its set of vertices V̂, with respect to its own
mesh topology M̂ and gather the binary inside/outside labeling L ∈ {0, 1}Nv̂×1. The vertices marked
as inside, V̂L+

, with L+ = {l ∈ L : l = 1}, are pushed out of the mesh in the direction of their
nearest neighbor vertices, NN(V̂L+

, M̂):

Lsc =
∑
l∈L+

‖V̂l − NN(V̂l, M̂)‖2 (8)

The nearest neighbors are extruded outside the mesh by a small amount (i.e. 5mm) in the direction of
their normal before computing the loss, such that inside vertices get pushed outside the mesh. For the
GHUM mesh, we have body part labeling information available which is transferred onto PHUM.
That is, for each vertex in the mesh we have its associated body part label class from a total of 14
body parts. When computing a nearest neighbor vertex we either consider vertices that are exterior or
on another body part than the query vertex, and we choose the one with the smallest distance. The
body part labeling allows us to avoid situations where an interior vertex can choose to exit the mesh
geometry through a vertex from the same body part as itself.

Interpenetration loss Interpenetration is straightforward to handle by our representation. Given
a pair of meshes M̂1 and M̂2, we compute the generalized winding number test for both L1 =

φM̂2
(V̂1) and L2 = φM̂1

(V̂2). The loss is then given by:

Lic =
∑
l∈L1+

‖V̂1,l − NN(V̂1,l, M̂2)‖2 +
∑
l∈L2+

‖V̂2,l − NN(V̂2,l, M̂1)‖2 (9)

This time, when we compute the nearest neighbor for inside vertices of a mesh, we query from all
vertices in the colliding mesh.

Relation to Prior Work Whereas in our formulation self-collision and interpenetration collision
are handled based on a common unified representation, in the literature different approaches are used
for each type of collision. For self-collision, most related work [19, 20, 21, 22] uses bounding volume
hierarchies (BVH) [23] to detect a list of colliding triangles. Using local conic 3D distance fields,
penetrations are penalized by the depth of the intrusion. The choice of penalizing collisions only for
colliding triangles (at the border) is done solely for performance reasons (as pointed out in Section
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3.2.4 from [20]). Ideally, one would use the full set of points inside the mesh and their distance
to the surface, which is our case. We compare the running time of the forward pass of the self-
collision loss proposed in [21] with that of our self-collision loss, based on PHUM and generalized
winding numbers. For a batch size of 1, on one NVIDIA Tesla V100 32GB, our self-collision loss
computation takes 33.5ms, while the one proposed in [21] takes 50.8ms. Differently from the BVH
implementation, we did not write any custom CUDA kernel, but instead rely on standard TensorFlow
[30] operations with batch support.

For interpenetration collision, the most popular approach [22, 2] is to first voxelize the two meshes
and then compute a signed distance field (SDF) for each of them. The SDF of each mesh is queried
by the vertices of the other mesh to compute the loss. The voxelization step takes around 45ms for a
mesh and the SDF computation is implemented using a custom CUDA kernel. The running time is
more than an order of magnitude higher than our generalized winding number computation and has a
considerably more complex implementation.

3.5 Depth-Ordering Loss

We follow the same procedure as in [2] to train using a depth-ordering loss. We use ground-truth
instance segmentation masks from COCO [31] during training. For our differentiable mesh rasterizer
we use DIRT [32] to render the depth maps, Dk, for each person. We use the depth ordinal loss:

Ld =
∑
p∈S

log(1 + exp(Dy(p)(p)−Dŷ(p)(p)) (10)

where S = {p ∈ I : y(p) > 0, ŷ(p) > 0, y(p) 6= ŷ(p)}, I is the RGB image, y(p) is the index of the
person occupying pixel p and ŷ(p) is the ground-truth index of the person occupying pixel p.

3.6 Contact Losses

Similarly to [3, 4], we employ contact losses when ground truth annotations are available. For a pair
of people, P1, P2, in contact in an image I , we define the contact signature Cics(I, P1, P2) at the
facet level [3] as a matrix where Cf1,f2ics (I, P1, P2) = 1 if facet f1 ∈M (P1) is in contact with facet
f2 ∈M (P2) and 0 otherwise, where M (P ) is the mesh corresponding to person P . The distance
between two facets f1 and f2 is defined as the Euclidean distance d (f1, f2) between the centers of
the two facets [3]. We define the following interaction-contact signature loss

Lics(I, P1, P2) =
∑

f1∈M(P1),f2∈M(P2)

Cics(I, P1, P2)d(f1, f2) (11)

In a similar fashion, the self contact signature Cscp (I, P ) [4] of a person P in an image I is defined
as Cscp (I, P ) = Cics (I, P, P ), where Cf1,f2scp (I, P ) = 1 if facet f1 ∈ M (P ) is in contact with
facet f2 ∈M (P ). Subsequently, the self-contact signature loss is defined as

Lscs(I, P ) =
∑

f1∈M(P ),f2∈M(P )

Cscp(I, P )d(f1, f2) (12)

In practice, contact signature matrices are sparse (have less than 100 non zero values) so the computa-
tion of Lics and Lscp while training our models is efficient.

4 Experiments

In this section, we offer implementation details regarding the network architectures and training
hyperparameters, we describe the datasets used for training and evaluating our models, and we present
state-of-the-art results on the challenging Panoptic [33] and CHI3D [3] datasets, as well as several
studies illustrating the importance of the proposed components and design choices.

4.1 Implementation details

For all our models we use a ResNet50 [34] backbone pretrained on ImageNet [35]. The network has a
total number of 26M parameters, out of which 23M parameters for the backbone and 3M parameters

6



for the transformer layers. We use L = 4 stages, an embedding size of 512 and 8 heads for the
MultiHeadAttention layer. The network is trained for 150 epochs with a batch size of 32, starting
learning rate of 1e− 4 and exponential decay of 0.98. Our code is implemented in TensorFlow and
we employ random scaling, rotation, horizontal flipping and cropping augmentations during training.
All images are resized to 480× 480 while preserving the original aspect ratio using padding when
necessary. All networks are trained on a single V100 GPU with 32GB of memory.

4.2 Datasets

In our experiments, we train weakly supervised on various datasets with 2D supervision in the form
of annotated body joints and instance segmentation masks. When available, we use vertex-level
self-contact and person-to-person contact supervision. Each dataset usually contains only a subset of
annotation types, so we employ the corresponding losses accordingly.

MPII [36] is an indoor/outdoor image dataset of 25K images containing multiple people with around
40K 2D pose annotations. We only use a subset of 10k images of this dataset for training.

PoseTrack [37] is an in-the-wild dataset containing 1.3K video sequences with 2D poses for multiple
people annotated across multiple frames. We use a subset of 25K images and 160K 2D pose
annotations from the trainval subset of this dataset, for training only.

LSP [38] and LSP Extended [39] are in-the-wild datasets with single person 2D pose annotations.
We use the training subsets consisting of approximately 1K, respectively 10K images with ground
truth 2D pose annotations.

COCO [31] is a dataset containing 40K images with multiple people. In total, 100K annotated poses
are used for training our models. Similarly to [2], the instance person segmentation masks are used
for computing the depth-ordering loss, in training only.

FlickrCI3D [3] and FlickrSC3D [4] contain in-the-wild images with multiple people engaged in
various activities involving human interactions and self-contacts. Ground truth interactions and
self-contact annotations are available for this dataset at facet granularity. These datasets have no
annotations for 2D keypoints, so we generate them by running a 2D human pose predictor on each of
the images to obtain pseudo ground-truth 2D pose annotations. We use a total of 15K images with
more than 25K interactions or self-contact annotations for training.

The Panoptic studio [33] is an indoor multiple people dataset captured in a multi-view laboratory
system. We use the same data selection as in [16, 2] resulting in 9.6K images containing ground truth
3D pose for multiple people in each image. We use this dataset for evaluation purposes only.

CHI3D [3] is an indoor dataset with 3D ground truth joints from mocap containing images from
631 sequences and 4 cameras. Each sequence contains 2 people in various interactions and contact
ground-truth annotations exist for each image. We use this dataset for evaluation purposes only.

Human3.6M [40] is a single-person 3d pose dataset containing sequences of people performing
various activities, containing more than 3 million 3d skeletons. We use it only in one experiment (see
table 1) for evaluation under protocol P1 and use no 3d ground truth during training.

4.3 Results

Although our method is designed to reconstruct any number of people, we first evaluate REMIPS
on the popular Human3.6M dataset [40] to ensure it is competitive in the simpler single-person
scenario. For this experiment only, REMIPS is fine-tuned on the training images from the P1 protocol
of Human3.6m. We do this only in a self-supervised regime, i.e. fine-tuning only with supervision
from predicted 2d keypoints, no ground truth 3d information being used. We compare favorably with
[13] and [5] (table 1), which also report results of their methods trained without full 3d supervision.

We now start the multi-person evaluation of our model on the challenging Panoptic [33] dataset.
We follow the evaluation protocol from [16, 1, 2] (without training on any data from the Panoptic
dataset). We present state-of-the-art results in table 2, showing that REMIPS performs better than
other optimization- [16] or inference-based multiple people reconstruction methods [1, 2].

We continue our evaluation on the CHI3D [3] dataset, which is not used during training. CHI3D
consists of sequences of two interacting people, together with ground-truth motion capture markers,
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Method MPJPE-PA MPJPE
HMR [13] 67.4 106.8
HUND [5] 66.0 91.8
REMIPS (ours) 64.3 96.1

Table 1: Evaluation on the Human3.6M dataset [40] - protocol P1. We report mean per joint positional error
(MPJPE) and its version including Procrustes Analysis (MPJPE-PA). All errors are reported in mm.

Method Haggling Mafia Ultimate Pizza Mean
Zanfir et al. [16] 140.0 165.9 150.7 156.0 153.4
Zanfir et al. [1] 141.4 152.3 145.0 162.5 150.3
Jiang et al. [2] 129.6 133.5 153.0 156.7 143.2
REMIPS (ours) 121.6 137.1 146.4 148.0 138.3

Table 2: Performance on the Panoptic [33] dataset for pose and shape reconstruction methods focusing on
multiple people. All errors represent mean per joint position errors and are reported in mm, relative to the root
joint. The evaluation protocol is the same as the one in [16, 1, 2]. Our model achieves lower error compared to
optimization- or learning-based approaches.

3d joints and GHUM parameters available for one of the two. For each sequence, one contact frame
is annotated with an interaction contact signature. We use the same evaluation protocol as in Fieraru
et al. [3] and, for the contact frames, we compute the 3D joint error for the prediction which has the
highest 2D bounding box overlap with the ground truth. In table 3, we present state-of-the-art results
when we compare again against optimization [3] and inference only [2] methods. To run the model
from [2] on the CHI3D [3] dataset, we use their publicly available code repository.

Method MPJPE MPVPE Translation Error #2D #3D
Fieraru et al. [3] 125.4 − 368.0 N/A N/A
Jiang et al. [2] 136.0 N/A N/A 100K 300K
REMIPS (ours) 120.8 134.7 284.1 115K 0

Table 3: Performance on the CHI3D [3] dataset for multiple person pose and shape reconstruction methods.
In columns 2, 3, 4 we show the mean per joint position error (MPJPE), the mean per vertex position error
(MPVPE) and the translation error. All errors are reported in mm and are relative to the root joint. Our method
has lower errors compared to the other optimization and inference based methods. We also compare the number
of #2D and #3D annotations used as supervision during the training of the different models. Our models use no
#3D and achieve better performance on the challenging dataset CHI3D [3].

In table 4, we present a series of ablations on the CHI3D [3] dataset for the loss components in eq. 5
that are used during training. We also show the results for a version of REMIPS that does not take
pseudo ground-truth camera intrinsics parameters as input. The lowest error is achieved using all of
the introduced losses and inputting camera intrinsics, which supports their individual importance.

Method MPJPE MPVPE
REMIPS (w/o Lic) 122.7 134.9
REMIPS (w/o Lsc) 123.5 137.1
REMIPS (w/o Lics) 127.1 142.1
REMIPS (w/o Lscs) 125.3 140.0
REMIPS (w/o camera instrinsics) 139.0 158.0
REMIPS (ours) 120.8 134.7

Table 4: Ablation study on the CHI3D dataset for multiple person pose and shape reconstruction methods. We
report mean per joint positional error (MPJPE) and mean per vertex positional error (MPVPE). All errors are
reported in mm and are relative to the root joint. The model trained with all proposed losses Lic,Lsc,Lics,Lscs

and taking camera intrinsics as input achieves the lowest error.

To study how the number of people in the scene and the spatial context affect the performance of
REMIPS, we run our method in three different ways and introduce a new baseline based on the single
person body and pose estimator SPIN [14]. We evaluate each scenario on the Panoptic dataset [33]
where we report the MPJPE under the same protocol as in [16, 1, 2], averaged across all frames and
actions. We propose the following experiments: (1) multi-person setting - where the input image
is a crop around all detected persons and bounding boxes are provided to the transformer together
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for all persons in the crop (this is the original version of REMIPS); (2) single-person setting with
context - where the input image is a crop around all detected persons and each bounding box is
provided separately to REMIPS (i.e. one bounding box token at a time); (3) single-person setting
without context - where each input image consists of a crop of only one detected person and REMIPS
receives only its bounding box (i.e. like in a standard single-person 3d pose reconstruction setting,
such as in SPIN [14], HMR [13], HUND [5]); (4) single-person setting without context (baseline
with SPIN [14]) - where each input image consists of a crop of only one detected person that, this
time, is processed by SPIN [14]. Results are illustrated in table 5. Comparing scenarios (1) and (2),

Method MPJPE
(1) multi-person (REMIPS) 138.3
(2) single-person w. context (REMIPS) 138.2
(3) single-person w/o context (REMIPS) 141.7
(4) single-person w/o context (SPIN) 164.9

Table 5: Performance comparison on the Panoptic [33] dataset for different scenarios of REMIPS and a
SPIN baseline. Scenarios (1) and (2) suggest that pose accuracy is not affected by the number of people
detections. Comparing (2) and (3), we observe the benefits of providing the large context of the image as input,
while comparing (3) with (4) highlights the accuracy of REMIPS over recent methods, even in the tight crop
single-person scenario.

results are almost identical in terms of pose accuracy, leading us to suspect that, at inference time,
attention to the image feature tokens is the most important part of the transformer architecture, given
a larger context. This means that spatial image features already encode information regarding the
other persons in the scene, due to the way the network is trained (i.e. reasoning about all the persons
at once). Pose accuracy is not affected by the number of people in the input as long as the context is
large/informative enough. Comparing scenarios (2) and (3), we see the benefit of providing the large
context of the scene as input (3.5mm accuracy improvement). Comparing scenarios (3) and (4), we
observe that even in a single-person scenario with crops tight around each person, REMIPS performs
much better than SPIN (a significant difference of 23.2mm). Note that neither of the two methods
was trained on Panoptic, and our method has not used any 3d ground-truth mesh supervision. We
observe large errors for SPIN in cases of occlusions and close people interactions.

To study the effect that the distance between a person and the camera has on REMIPS, we perform
another study on the Panoptic dataset. We downscale our input image by factors of 2, 4 and 8, and
then upscale it back to our working resolution of 480× 480, to simulate increasing the distance from
the camera. The results, reported in MPJPE over all frames of the Panoptic dataset, are as follows:
138.3mm (factor of 1 - no downscaling), 140.2mm (factor of 2), 151.7mm (factor of 4) and 210.5mm
(factor of 8). As expected, higher resolution of the input image correlates with better pose estimates.
Critical degradation is observed only for very small people occupying a few pixels (factor of 8).

In figure 2, we show visual reconstructions of REMIPS on in-the-wild photos from the COCO
validation set. Note the reconstruction quality even in high occlusion cases (either partial views or
occlusion by the environment) and the robustness to the size of the humans in the image, ranging
from very far away to very close to the camera. Additionally, in figure 3 we show reconstruction
results on samples from the test split of CHI3D, with and without using the collision and contact
losses. It is to be noted the better physical plausibility when using all losses.

5 Conclusion

To better reconstruct and analyse scenes with multiple interacting people, we have emphasized
the importance of attention modeling and the role of weak supervision for scalability and good
generalisation. We have introduced REMIPS, a new transformer-based neural network architecture
for multiple person 3D pose and shape estimation from RGB images, which relies on GHUM
[6], a generative and articulated full body statistical 3D model. Our network produces physically
plausible human mesh reconstructions with realistic scene placement under a fully perspective
camera projection model. We also introduce new collision losses uniformly applicable to both
self-contacts and inter-person contact, and more efficient than previously proposed models by an
order of magnitude. We demonstrate state-of-the-art 3d human pose and shape reconstruction results
on challenging datasets like CHI3D[3] or Panoptic [33] which contain multiple people involved in
complex interactions.
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Figure 2: 3D human pose and shape predictions on the COCO validation set (rows 1-5) for in-the-
wild images. We show the initial image together with an overlaid reconstruction of the meshes as
well as a rendering from a different viewpoint which better illustrates the physical consistency of the
REMIPS reconstructions. Best seen in color.

Figure 3: Visual 3D human pose and shape predictions on the CHI3D datasets. On columns 2-3
we show the results of a model which is not using any of the 4 losses Lic,Lsc,Lics,Lscs, while on
columns 4-5 we illustrate the predictions of our full REMIPS model, trained using the previously
mentioned 4 losses. We observe more physically plausible results when training with all losses. Best
seen in color.
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