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ABSTRACT

A model that can authentically restore a low-quality face image to a high-quality
one can benefit many applications. While existing approaches for face restora-
tion make significant progress in generating high-quality faces, they often fail to
preserve facial features that compromise the authenticity of reconstructed faces.
Because the human visual system is very sensitive to faces, even minor facial
changes may alter the identity and significantly degrade the perceptual quality. In
this work, we argue the problems of existing models can be traced down to the
two sub-tasks of the face restoration problem, i.e. face generation and face recon-
struction, and the fragile balance between them. Based on the observation, we
propose a new face restoration model that improves both generation and recon-
struction by learning a stochastic model and enhancing the latent features respec-
tively. Furthermore, we adapt the number of skip connections for a better balance
between the two sub-tasks. Besides the model improvement, we also introduce
a new evaluation metric for measuring models’ ability to preserve the identity in
the restored faces. Extensive experiments demonstrate that our model achieves
state-of-the-art performance on multiple face restoration benchmarks. The user
study shows that our model produces higher quality faces while better preserving
the identity 86.4% of the time compared with the best performing baselines.

1 INTRODUCTION

Face images play a critical role in our daily life and are at the very center of success for many
applications such as portrait taking, face identification, etc. While these applications usually rely on
having decent quality faces as inputs, low-quality face images are inevitable in real world due to a
variety of reasons: image resolution, motion blur, defocus blur, sensor noises, encoding artifacts and
etc. Therefore, a method that can faithfully restore a degraded face into a high-fidelity one regardless
of the type of degradation is highly desired.

Much progress has been made in face restoration in the past few years, thanks to the rapid develop-
ment of deep generative adversarial networks (GAN) (Goodfellow et al., 2014). Existing works treat
face restoration as a conditional image generation problem and often resort to U-Net architectures
to restore high-quality faces from low-quality images (Bulat & Tzimiropoulos, 2018; Li et al., 2018;
2020; Menon et al., 2020; Yang et al., 2021; Wang et al., 2021). Despite being able to generate
realistic faces, they still suffer from unique challenges introduced by face restoration. Specifically,
they often fail to preserve delicate facial features in the input but instead hallucinate a high-quality
face that does not resemble the original subject. For example, the model may change the subject’s
eye color or change the eyelids from monolid to double eyelid, as shown in Figure 1. Usually these
changes are negligible in pixel space and irrelevant for realisticness but essential for authenticity,
which can lead to biometric characteristics deviate from the original subject, thus may significantly
degrade the perceptual quality, especially for people familiar with the subject.

In this paper, we argue that the above issues are caused by the fragile balance between face gen-
eration and face restoration. We show that the face restoration problem is a combination of two
sub-tasks, i.e. generation and reconstruction, where face generation aims to learn the distribution
of high quality faces and face reconstruction aims to capture the face characteristic (e.g. shape and
texture) from an image regardless of its quality (Choi et al., 2020; Wang et al., 2021). A model
that overemphasizes generation and fails in reconstruction may hallucinate a face that does not be-
long to the subject. In contrast, a model that fails in generation lead to unsatisfactory restoration
quality. Therefore, a successful face restoration model has to adequately address the two sub-tasks
simultaneously, which remains to be realized.
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Figure 1: Problems of state-of-the-art face restoration models. GPEN and GFPGAN are biased
toward face generation and may alter facial details (e.g. eye color) that are highly correlated with
the identity. DFDNet is biased toward reconstruction and does not remove all degradations. Our
approach achieves the best balance and restore a high quality face while preserving the identity.

Therefore we propose a new model that aims to improve both generation and reconstruction. To
improve face generation, we inject an adaptive conditional noise to the model, motivated by the
great success of recent image generation models. The noises empower the restoration model with
stochastic property and allow the model to capture the non-deterministic nature of the face restora-
tion problem. To improve face reconstruction, we enhance the latent features in the skip connections
of the U-Net architecture by 1) quantizing the features using a codebook learned from high-quality
images and 2) introducing a global feature fusion module for an adaptive combination of the features
from the decoder and the skip connections. These improvements are based on the observations that
the features extracted by the encoder may harm the reconstruction performance, especially when the
input quality is poor. Finally, we explore the architecture of the model, particularly the number of
skip connections, to optimize the balance between generation and reconstruction.

Similar to the approaches, the evaluation metrics for face restoration also suffer from overempha-
sizing either the generation or the reconstruction aspect of the problem. Existing works borrow
either metrics designed for image generation, e.g. Fréchet inception distance (FID) (Heusel et al.,
2017), or metrics developed for image reconstruction, e.g. Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), or Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018b). They focus on the perceptual quality or the pixel similarity between the output and the
target respectively, and neither of them was able to capture subtle changes in facial features that may
alter the identity. To this end, we propose a new evaluation metric that measures both image quality
and content preservation, where content preservation is defined by the ability to preserve the iden-
tity. Experiment results demonstrate that the proposed metric better correlates with the perceptual
quality of human raters in the face restoration problem.

The main contributions of this paper are as follows. First, we show that issues of existing face
restoration models may be traced down to the two sub-tasks of the problem, i.e. face generation and
face reconstruction. Second, we propose a new face restoration model by improving the model de-
sign for both sub-tasks. Finally, we introduce a new evaluation metric for face restoration that mea-
sures both the perceptual quality and identity preservation. Empirical results on two benchmarks,
blind face restoration (BFR) and super-resolution (SR), show that proposed model consistently out-
performs state-of-the-art methods, and the proposed metric better correlates with the perceptual
quality of human raters. In addition, user study shows that our model is preferred by human raters
86.4% of the time compared with the best performing baselines.

2 RELATED WORK

Face restoration Face image restoration has attracted considerable attention with a wide range
of valuable topics, e.g., face super resolution (Guo et al., 2017; Wang et al., 2018; Menon et al.,
2020; Yang et al., 2020; Ma et al., 2020), blind face restoration (Li et al., 2018; 2020; Wang et al.,
2021; Yang et al., 2021), deblurring (Yasarla et al., 2020; Shen et al., 2018; Kupyn et al., 2019),
denoising (Zhang et al., 2018a; Guo et al., 2019), inpainting (Yu et al., 2018; Zheng et al., 2019), etc.
Unlike other image domains, human perceptions are more sensitive to facial images and thus demand
more concrete and meticulous control. In terms of modeling strategy, all recent notable works
on high-resolution (, e.g., 512 × 512) resort to maximum likelihood estimation (MLE) to recover
realistic face characteristics and adversarial learning to generate a high-fidelity image distribution.

Current state-of-the-art BFR models finetune a GAN-prior network (Gu et al., 2020; Richardson
et al., 2021; Wang et al., 2021; Yang et al., 2021). This line of works takes advantage of the fact that
most high-dimensional data have support in the lower-dimensional manifold. Therefore, in most
cases, we can expect the prior network produces high-fidelity faces by mapping the degraded faces
into this lower-dimensional latent space. Proper finetuning, including iterative optimization (Menon
et al., 2020) at inference and model improvements (Wang et al., 2021; Yang et al., 2021), further
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Figure 2: The proposed model with one skip connection. (1-NN: 1-nearest neighbor search. Modu-
lation: feature modulation as in StyleGAN2 (Karras et al., 2020). LGF: linear gated feature fusion.)

enhances the identity information. Although they have shown inspiring performances, the prior
knowledge still dominates throughout the finetuning process, leading to unfaithful restoration, e.g.,
color shift and excessive image completion. In other words, when the generator has enough
capacity, high-fidelity generation is easy, however, faithful generation is hard. Notably, our
approach can be trained from scratch and reaches a good balance between content preservation and
generalization ability after tracing the causes of the above issues.

Evaluation metric Current works adopt PSNR, SSIM, and LPIPS to measure the restoration qual-
ity for every example while using FID to evaluate how the restored image distribution approaches
ground-truth distribution. However, they may cause inconsistent judgment from one to another. A
well-known example is blurring images that have better PSNR and SSIM (Zhang et al., 2018b).
FID is affected mainly by the number of evaluation samples and may also bring unfair comparisons
without prior knowledge of the evaluation system (Parmar et al., 2021). LPIPS appears to suggest a
better agreement with humans, but it fails to capture concrete face identities. We propose a robust
metric to simultaneously measure overall samples’ realism at the distribution level and individual
sample’s identity preservation to address these discrepancies.

3 APPROACH

In this section, we introduce the proposed approach for improving face restoration. We begin by
formulating the problem of face restoration and then introduce how to improve the generation and
reconstruction sub-tasks. Finally, we describe the objective function for training.

Let X denote the degraded low-quality image domain, Y denote the high-quality image domain,
and PY denote the distribution of high-quality images. Assume that there exists a one-to-many
degradation function Deg: Y → X , the goal of face restoration is to learn a inverse function G:
X → Y that satisfies

min
G
D(PG(X)||PY ) + Ey∼Y Ex∼Deg(y)κ(G(x), y), (1)

where D is a distribution distance measure and κ(·) is a pair-wise distance between two images.
The first half of Eq. 1 encourages the restored images to look realistic and be indistinguishable from
real high-quality images. The second half of Eq. 1 encourages the restored image to preserve facial
features in the high-quality image from which the input image is degraded from. A common practice
is to implement G based on U-Net architecture as illustrated in Figure 2 and implement the first and
second half of Eq. 1 using an adversarial loss and reconstruction losses respectively.

Eq. 1 clearly shows that the face restoration problem is a combination of the face generation and face
reconstruction sub-task. The generation sub-task is driven by D(PG(X)||PY ) and aims to learn the
distribution of real high-quality image. It can be further mapped to the decoder in G, which learns
to generate realistic image from a latent feature. On the other hand, the reconstruction sub-task is
driven by Ey∼Y Ex∼Deg(y)κ(G(x), y). It aims to learn a feature extractor that projects an image to
the latent feature space of the generation model such that the corresponding high-quality image may
be generated from the extracted feature. To restore images with different degradations, the feature
extractor also has to be robust to the degradation in the input image. Based on this interpretation,
we next describe how to improve the generation and reconstruction sub-tasks respectively to achieve
better face restoration.

3.1 IMPROVING RECONSTRUCTION

As mentioned before, the face reconstruction sub-task requires fine-grained control on face details in
the generated image based on the input image. This is achieved by conditioning the generation model
using the latent features extracted by the encoder. More specifically, the skip connections in the U-
Net architecture passes low to high level information to the decoder for an authentic reconstruction
of the input face.
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Figure 3: Qualitative comparison by varying the number of skip connections. We count from the
layer with feature resolution 8 × 8, i.e., there exist possible skip connections at resolution nodes
{2n+2 × 2n+2}6n=1 when we set the maximum input resolution at 512× 512.

Although the U-Net architecture is widely adopted in prior works, our empirical results suggest
that it may be sub-optimal for face restoration, particularly for inputs with severe degradation. The
encoder were unable to extract useful low-level features from low quality images, and the low qual-
ity features hinder the restoration performance. To address this issue, we propose the following
improvements for the U-Net architecture.

3.1.1 BALANCING GENERATION AND RECONSTRUCTION

Ideally, a face restoration model should put more emphasis on face generation than on reconstruction
when there exists severe degradation in the input image and vice versa, because a severely degraded
face may not contain sufficient details for reconstruction. Given that a successful face restoration
model should handle degradations of various types and strength, it is important to strike a balance
between the two sub-tasks. However, our empirical analysis show that the skip connections in the
U-Net architecture imposes a strong condition on the generation model and may bias the model
toward reconstruction. The more skip connections we add, starting from higher to lower layers, the
stronger reconstruction the model performs. See Figure 3.

To improve the overall restoration performance, we propose to re-balance the generation and recon-
struction sub-task. This is achieved by reducing the number of skip connections, particularly skip
connection in the lower layers, because low-level skip connections tend to impose stronger condi-
tions on the generation model and weaken its generalization ability. Furthermore, low-level features
tend to be less informative in low quality inputs given that the information may be corrupted by the
degradation. Empirical results show that this strategy help to improve the face restoration perfor-
mance. Please refer to the experiments and Appendix C.1 for more information.

3.1.2 FEATURE QUANTIZATION

To help the model generalize to severely degraded image, we propose to enhance the features ex-
tracted by the encoder. In particular, we adopt the feature quantization approach that has attracted
much attention in representation learning and generative model recently (Oord et al., 2017; Razavi
et al., 2019; Zhao et al., 2020b; Esser et al., 2021; Ramesh et al., 2021) for feature enhancement.
The idea is that, given a codebook C={ck}Kk=1, ck∈Rd of high quality features, we can enhance a
corrupted feature pij∈Rd by quantizing pij to a code word ck in the codebook C. In other word,
we replace a feature extracted by the encoder that may be corrupted with a feature in the codebook
such that the resulting quantized feature always consists of high quality features.

We incorporate feature quantization into our model as follows. Given a learned codebook C and
a feature map p∈RH×W×d extracted by the encoder, we replace the feature vector at each spatial
location pij using its closest entry in C:

pqij = argck min ||pij − ck||2, (2)

and the original feature map p is replaced by the quantized feature map pq in the following opera-
tions. See Figure 2.

We learn one codebook for each skip connection feature map during training by optimizing

LVQ = ||sg(p)− pq||22 + ||p− sg(pq)||22, (3)
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where sg(·) is a stop-gradient operator. Note that only the first term in LVQ optimizes the codebook
while the second term encourages the model to utilize quantized feature. In practice, we approximate
the first term using exponential moving average (EMA) and optimize the model using the second
term only, following prior works on feature quantization (Oord et al., 2017; Razavi et al., 2019).
To ensure that the codebook contain only high-quality features and contain useful information for
reconstruction, EMA is computed over features extracted from ground truth high-quality images.

3.1.3 LINEAR GATED FEATURE FUSION

Another way to address the problem of uninformative features from the encoder is to fuse only
suitable features in the skip connections into the feature maps of the decoder. However, exiting
works use addition, concatenation (Yang et al., 2021), or spatial feature transform (Li et al., 2020;
Wang et al., 2021) to combine the features, and none of them are aware of whether the fused features
are suitable for restoration or not. To address this issue, we propose a linear gated feature fusion
(LGF) module which integrates information from both encoder and decoder to filters uninformative
features. It integrates global information from both features and also filters the feature combination
with a confidence score.

Let p,q∈RH×W×C represent the features from the corresponding encoder and decoder block re-
spectively. The LGF module computes:

Global score: o = DownSampler(p+ q) ·W (4)
Gated score: s = UpSampler(Sigmoid(o))

Fused feature: q∗ = s ∗ (p+ q) + (1− s) ∗ q

where r is the window size for downsample and upsample and W ∈ R
HW
r2
×HW

r2 is a linear projection
matrix performed on spatial dimension. The LGF module uses global information to estimate the
per-location weight for the fused feature p + q and then combine the fused feature and decoder
features using the predicted weight. The model can therefore learn to disregard unsuitable features
from the encoder. Empirically, we set r = 2log2H−5 when H > 25, otherwise r = 1.

3.2 IMPROVING GENERATION

As reconstruction-based restoration often produces blurry faces, we further resort to adversarial
learning to generate crispy and clear faces, as in Eq. 1. Most face restoration approaches (Li et al.,
2020; Wang et al., 2021; Yang et al., 2021) treat G as a deterministic function where each input x
is associated by only one output x̂ = G(x). In most scenarios, we can observe that the input x and
the output x̂ are usually not far away from each other, e.g. Figure 1 and Figure 3. This peculiarity
will lead x to become a strong conditional signal where G(x) largely relies on deep internal features
of x, e.g., textures and shapes. The internal skip connections can further intensify those signals.
However, as the real degradation functions Deg(·) is usually unknown, strong conditions usually
fail representation learning and prevent the model’s generalization ability, e.g., the second row in
Figure 3. We propose a stochastic restoration model to increase the generation power.

3.2.1 FROM DETERMINISTIC TO STOCHASTIC

We claim that it is beneficial to assume G as a stochastic function by introducing a noise term ε,

x̂ = G(x, ε), ε ∼ N (0, 1), (5)

Gaussian noise has a relatively high bandwidth to deal with various degradation scenarios by confin-
ing high-dimensional data into a low-dimensional manifold. It is consistent with the intuition that re-
cent facial prior-based techniques can handle more complex cases than training from scratch (Wang
et al., 2021; Yang et al., 2021). We herein propose a generic approach by perturbing the correlated
low-quality skip features with independent Gaussian noises.

As shown in Figure 2, we connect the noise signals to two parts: decoder blocks and skip connection
blocks. Using noise in the decoder part as a modulation signal has been seen in StyleGAN-related
literature (Karras et al., 2019; 2020; Choi et al., 2020; Zhao et al., 2021). The purpose of injecting
noise in skip-connection is somewhat different. As we claimed in Section 3.1, skip connections are
crucial to maintaining source contents.
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Adaptive latent gate LetEnc denote the encoder. Assume the latent vector z = Enc(x), we enable
conditional noises εc by applying a linear soft gate on ε:

εc = Sigmoid(z) ∗ ε, ε ∼ N (0, 1) (6)

where ∗ denotes element-wise multiplication. The formulation intermediately yields two advan-
tages, specifically for face restoration. Firstly, εc encapsulates the input representation z and thus
imposes more content-aware control on the multi-scale features than unconditional random noises.
Secondly, in practice, εc is a scaled version of ε, which is gradually learned to implicitly control
a single sample’s quality by reducing overall samples’ variety (Brock et al., 2018; Karras et al.,
2019). Consequently, both coincide with the goal of content preservation from the perspective of a
generative model.

3.3 LEARNING OBJECTIVE

This section describes the objective function for training. We instantiate the face restoration prob-
lem, i.e. Eq. 1, using the following objective function:

L = αLADV + LREC + LVQ. (7)

The first two terms are the adversarial generation loss and reconstruction losses and correspond to
the two terms in Eq. 1. The last term is the feature quantization loss described in Section 3.1.2. α is
a hyper-parameter that balances generation and reconstruction. See appendix for ablation study on
the impact of α.

In practice, we implement LADV using non-saturating loss (Goodfellow et al., 2014) and optimize
the model by alternating between Optimize D:

min
D
−Ey∼Y log [D(Aug(y))]− Ex∼X log [1−D(Aug(G(x))] (8)

Optimize G (partially):
min
G
−Ex∼X log [D(Aug(G(x))] , (9)

where D is the discriminator and Aug(·) is the differentiable data augmentation (Zhao et al., 2020a)
including random color transform and translation. The reconstruction loss is implemented by

LREC = L1 + Lpercep, (10)

where L1 is the L1-loss between the target and restored image and Lprecep is the perceptual loss
based on a pre-trained VGG-19 network (Simonyan & Zisserman, 2014) following existing works
in image generation (Gatys et al., 2016; Johnson et al., 2016; Wang et al., 2021; Li et al., 2020). See
Appendix A for details.

4 A METRIC FOR IDENTITY PRESERVATION AND PERCEPTUAL QUALITY

Current face restoration evaluation system, e.g., PSNR, FID and LPIPS, is not designed for the
purpose of face restoration. Specifically, PSNR is not sensitive to perceptual quality, FID doesn’t
consider pairwise content preservation and LPIPS excludes face-specific identities.

Inspired by the proposed precision and recall metric in (Kynkäänniemi et al., 2019), we adapt it to
the face restoration tasks to simultaneously measure both perceptual quality and identity preserva-
tion. We present two metrics iPrecision and iRecall both of which measure the probability of one
distribution falling into another distribution by considering image identities. Concretely, iPrecision
measures the probability of generated images overlaps with real images, and iRecall measures the
probability of real images overlaps with generated images. Figure 4 illustrates the idea of identity-
preserved iPrecision. The two metrics naturally conclude the perceptual distance in the feature
space such that it can indicate the perceptual quality. By adding identity information, it is more
beneficial to evaluate face restoration. Therefore, it is worth noting that the two measured aspects
coincide with the goals of generation and reconstruction respectively. The metric evaluation process
includes two steps:

Feature prediction Given a pretrained feature extractor, e.g., Inception V3 (Szegedy et al., 2015) or
FaceNet (Schroff et al., 2015), we calculate two sets of image embeddings as {Eg,Er}, respectively
corresponding to the paired restored images and real images. For each feature e, we use a face
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Figure 4: Illustration of iPrecision. (a) Precision measures the portion (overlapped area) of restored
images (blue region) that fall into real images (red region). (b) For each restored image, we deter-
mine whether it falls into real image manifold by calculating its vectorized feature distance to every
real image. (c)-(e) show the decision of one restored image e. We consider four neighbors of each
real image and identities satisfy Ie = Ie′1 , Ie 6= Ie′2 .. (c) e is the nearest neighbor of e′1 and both
have the same ID. (d) show e is not inside the k-nearest neighborhood. (e) e and e′2 have different
IDs though e is the nearest one. Among (c)-(e), only (c) counts as a correct match with iPred = 1.

identity-related binary prediction iPred(·) to get a relative prediction in the disjoint set E, e.g.,
{iPred(eg,Er)|eg ∈ Eg} and {iPred(er,Eg)|er ∈ Er},

iPred(e,E) =

{
1(Ie = Ie′), ∃ κ(e, e′) ≤ κ(e′,NNk(e′,E))

0, otherwise

where Ie, Ie′ are face identities and NNk(·) returns the kth nearest feature by querying the feature e
to the set E. We choose Euclidean distance function as κ(·). This prediction takes both feature-level
similarity and real face identities into consideration. More importantly, the whole real image set is
included to measure how realistic the restored image is (Kynkäänniemi et al., 2019).

iPrecision and iRecall Next, we would like to compute identity-related precision and recall as:

iPrecision(Er,Eg) =
1

|Eg|
∑
eg∈Eg

iPred(eg,Er) (11)

iRecall(Er,Eg) =
1

|Er|
∑
er∈Er

iPred(er,Eg) (12)

Therefore, iPrecision is a good indicator for measuring a face restoration model’s actual capability
of producing high-fidelity and faithful restorations. In Figure 4, we illustrate the meaning of the
proposed metric. We list the pseudo-code for calculating precision in Algorithm 1 in Appendix .

Figure 5: The advantage of using the pro-
posed metric iPred.

Figure 5 visualizes the advantage of using the pro-
posed metric to measure a face restoration’s perfor-
mance, compared with traditional PSNR and SSIM.
The top row shows that PSNR and SSIM somehow
fail to detect facial image artifacts though their val-
ues are relatively high. The bottom row indicates
they also place globally equal weight at each pixel,
which is not as desired in face restoration. Because
the restored face areas should be relatively more
noteworthy than the background. In contrast, the
proposed identity-related metric doesn’t suffer from
these issues. Later, we present quantitative numbers
that indicate that the metric correlates better with human evaluations than other metrics.

5 EXPERIMENTS

We evaluate the performance of the proposed model on standard benchmarks for face restoration.
The goal is to verify that (1) the proposed method improves face restoration performance, and (2)
the proposed evaluation metric better captures the perceptual image quality in face restoration.

5.1 EXPERIMENTAL SETTINGS

Our model is trained on the full 70K FFHQ and 27K CelebA-HQ training split. The remaining 3K
CelebA-HQ images are used for evaluation. In all experiments, images are resized to 512 × 512
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Figure 6: Qualitative comparison. (Top) BFR. Note the eyelash and skin tone difference. (Bottom)
×16 : 322 → 5122 SR. Note the expression and wrinkle differences.

with Pillow.Image.LANZCOS filter. Following previous works (Wang et al., 2021; Li et al., 2020),
the training samples x are generated from high-quality face images y from the training set using a
degradation function,

x = [(y ⊗ kσ)↓r + nδ]JPEGq
(13)

where kσ is the blur kernel with kernel size σ, r denotes the downsample size, nδ denotes Gaussian
noise with standard deviation δ, and q is the JPEG compression ratio. We thus can construct (input,
target) image pairs (x, y) and train the model following Eq. 7. Similar to GFPGAN (Wang et al.,
2021), we randomly sample σ, r, δ and q from [0.2, 10], [1, 8], [0, 15] and [60, 100]. We evaluate the
model performance using (1) standard evaluation metrics including PSNR, SSIM, LPIPS and FID,
(2) the proposed iPrecision and iRecall metrics, and (3) user study. See Appendix A for details.

5.2 OBJECTIVE EVALUATION

We compare our model with state-of-the-art approaches on the tasks of Blind Face Restoration
(BFR) and Super Resolution (SR). Table 1 shows the comparison across state-of-the-art models on
BFR task. Our model achieves the best quantitative numbers on all metrics by a large margin, mean-
ing that our model exceeds all baselines in both image fidelity and content preservation. Figure 6
shows the qualitative results. We can observe that our model can synthesize realistic faces with
source contents better preserved. More examples including real world low-quality image restoration
samples are given in Figure 12 and Figure 13 in Appendix.

For super resolution, we create two sets of evaluation images with resolution 64 × 64 and 32 × 32
respectively for ×8 and ×16 SR tasks. For fair comparison, the resizing method follows original
implementation of each approach. As in Table 1, our model achieves the best quantitative numbers
on most metrics. Figure 6 shows that our method can achieve the best perceptual performance and
faithfully restore most source details. More examples are given in Figure 14 and 15.

Models
BFR SR

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓
×8 ×16 ×8 ×16 ×8 ×16

DeblurGANv2 (Kupyn et al., 2019) 25.91 0.695 0.400 52.69 - - - - - -
PSFRGAN (Chen et al., 2021) 24.71 0.656 0.434 47.59 - - - - - -
HiFaceGAN (Yang et al., 2020) 24.92 0.620 0.477 66.09 26.36 24.66 0.211 0.266 29.95 36.26
DFDNet (Li et al., 2020) 23.68 0.662 0.434 59.08 25.37 23.11 0.212 0.266 29.97 35.46
mGANprior (Gu et al., 2020) 24.30 0.676 0.458 82.27 21.44 21.29 0.521 0.518 104.20 100.84
PULSE (Menon et al., 2020) - - - - 24.32 22.54 0.421 0.425 65.89 65.33
pSp (Richardson et al., 2021) - - - - 18.99 18.73 0.415 0.424 40.97 43.37
GFPGAN (Wang et al., 2021) 25.08 0.678 0.365 42.62 23.80 19.67 0.293 0.382 36.67 63.24
GFPGAN* (Wang et al., 2021) 24.19 0.681 0.296 38.15 24.12 21.77 0.298 0.342 34.22 37.61
GPEN (Yang et al., 2021) 23.91 0.686 0.331 25.87 24.97 23.27 0.322 0.361 30.49 31.37

Ours 28.01 0.747 0.224 18.87 26.58 24.17 0.205 0.260 18.27 22.94

Table 1: Quantitative comparison on blind face restoration (BFR) and super-resolution (SR). GFP-
GAN* denotes the model without colorization. (‘-’ indicates the number of not available.)
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(a) (b)

Figure 7: (a) iPrecision and iRecall with different neighborhood sizes on BFR. DEG* indicates the
created degraded images. (b) Precision versus recall from various approaches and different tasks. (
© denotes BFR task, � for ×8 SR and4 for ×16 SR.)

5.3 PROPOSED IPRECISION AND IRECALL METRICS

To validate whether the proposed metric is more effective than others in face restoration, we start by
ablating neighborhood size as in Figure 7(a), (i) Increasing the neighborhood sizes leads to higher
precision and recall by allowing more misses. (ii) Our approach consistently gives the best restora-
tion quality even when we set the neighborhood size k = 1, meaning that restored faces with our
approach are the closest ones among all 3K testing images to the sources. (iii) Varying neighbor-
hood size would not change ranking order of different methods, demonstrating the robustness of
proposed metrics, therefore in our experiments, we set k = 4. Moreover, as is shown in Figure 7(b),
including hard-coded identity information indeed produces more discriminative numbers than cal-
culating distances only. In a word, low precision and recall tell us that the model is very likely to
generate a “fake face” of some different person even if the appearance is sharp. By default, we use
FaceNet as the feature extractor and find Inception V3 gives similar result in Appendix B.

5.4 SUBJECTIVE EVALUATION

We further conduct a user study to assess the correlation between the proposed metric and human
opinions. As is seen in Table 2, our model has achieved the best result and the proposed iPrecision
has a better correlation with human opinions. The underlined numbers mean that the metric is
inconsistent with human rates. More human study details are provided in Appendix D.

Methods PSNR↑ LPIPS↓ iPrecision↑ Preference (%)↑
Bicubic 26.62 0.361 0.482 0.8
GFPGAN 24.12 0.298 0.687 5.4
GPEN 24.97 0.322 0.732 7.4
Ours 26.58 0.205 0.980 86.4

Table 2: Metric comparison on ×8 SR.

Fusion types PSNR↑ SSIM↑ LPIPS↓ FID↓
Baseline 26.85 0.710 0.251 20.02
+ LGF 27.13 0.729 0.243 19.55
+ Quantization 27.35 0.737 0.238 19.77
+ Noise 27.40 0.738 0.225 19.12

Table 3: Ablation results.

5.5 ABLATION STUDY

We conduct ablation studies to understand how each model component affects face restoration per-
formance. For fast validation, we apply 1/2 size of a previously used model. We here study the
impact of the proposed three techniques: linear gated feature fusion, feature quantization and noise
injection. As is observed in Table 3, they all can boost the overall performance. In practice, we also
find that linear gated fusion is more stable than the other two fusion methods when we increase the
degradation level in training. More ablation results can be found in Appendix C.

6 CONCLUSION

This work revisits the face restoration problem. We show that the face restoration problem can be
decomposed into two sub-tasks, i.e. face generation and face reconstruction, and that the issues of
existing models stem from the failures in the two sub-tasks. To address the practical problems, we
introduce a new face restoration model by improving the model design for better generation and
reconstruction. We further propose a new objective metric that simultaneously assesses a model’s
generation and reconstruction performance. Future work will explore personalized face restoration
by exploiting additional references or text guidance.
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