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Abstract

Recently, the challenge of compositional gen-
eralization in NLP has attracted more and
more attention. Specifically, many prior works
show that neural networks struggle with com-
positional generalization where training and
test distributions differ. However, most of
these works are based on word-level synthetic
data or a specific data split method to gener-
ate compositional biases. In this work, we
propose a clause-level compositional example
generation method, and we focus on text-to-
SQL tasks. We first split the sentences in the
Spider text-to-SQL dataset into several sub-
sentences, then we annotate each sub-sentence
with its corresponding SQL clause, resulting
in our new dataset Spider-SS. Building upon
Spider-SS, we further construct a new dataset
named Spider-CG, by composing Spider-SS
sub-sentences to test the ability of models
to generalize compositionally. Experiments
show that previous models suffer significant
performance degradation when evaluated on
Spider-CG, even though every sub-sentence is
seen during training. To deal with this prob-
lem, we modify the RATSQL+GAP model to
fit the segmented data of Spider-SS, and we
show that this method improves the generaliza-
tion performance.'

1 Introduction

Neural models in supervised learning settings show
good performance on data drawn from the training
distribution. However, the generalization perfor-
mance can be poor on out-of-distribution (OOD)
samples (Finegan-Dollak et al., 2018; Suhr et al.,
2020; Kaushik et al., 2020; Sagawa et al., 2020).
This observation might hold even when the new
samples are composed of known constituents; e.g.,
on SCAN dataset (Lake and Baroni, 2018), many
models provide the wrong predictions for the input
“jump twice and walk”, even when “jump twice”,

"We will release code and dataset upon publication.

“walk”, and “walk twice” are seen during training.
This (often lacking) ability to generalize to novel
combinations of elements observed during training
is referred to as compositional generalization.

Previous work on compositional generalization
in text-to-SQL focuses on data split and word sub-
stitution (Finegan-Dollak et al., 2018; Shaw et al.,
2021). However, data split methods are limited by
the dataset content, making it difficult to construct
a challenging benchmark while ensuring that every
compound appears in the training set. Ensuring a
reasonable data split may also lead to a reduction
in the size of the dataset, e.g., the training set drop
from 7000 to 3282 in the Spider TCMD split (Yu
et al., 2018b; Shaw et al., 2021).

Word substitution is often used to generate com-
positional variations for data augmentation (Yu
et al., 2021; Andreas, 2020). However, this method
cannot generate more complex sentences, i.e., can-
not generate ‘“‘jump twice and walk” from the
data only containing “jump twice”, “walk”, and
“walk twice”. In addition, in the cross-domain
text-to-SQL setting, examples generated by word
substitution are supposed to be considered as in-
distribution data, since cross-domain models are
expected to generalize to unseen domains with un-
seen utterances, including examples generated by
word substitution.

In this work, we first introduce our Spider-SS
dataset (SS stands for sub-sentence) derived from
the Spider benchmark (Yu et al., 2018b). Figure 1
presents a comparison between Spider and Spider-
SS. To build Spider-SS, we design a sentence split
algorithm to split every Spider sentence into sev-
eral sub-sentences until indivisible. Next, we an-
notate every sub-sentence with its corresponding
SQL clause. In order to reduce the difficulty of an-
notation, we annotate the query in an intermediate
representation called NatSQL (Gan et al., 2021b),
because it is simpler and syntactically aligns better
with natural language (NL).



Spider Example:
What type of pet is the youngest animal, and

Sentence: how much does it weigh?
. SELECT PetType , Weight FROM Pets
SQL: ORDER BY Pet_Age LIMIT 1

Spider—SS Example:
SubSentence: What type of pet
NatSQL: SELECT Pets.Pettype

SubSentence: is the youngest animal

ORDER BY Pets.Pet_Age

NatSQL:  piMiT1

SubSentence: , and how much does it weigh?
NatSeQL: SELECT Pets.Weight

Figure 1: A natural language sentence in the original
Spider benchmark is split into three sub-sentences in
Spider-SS, where each sub-sentence has a correspond-
ing NatSQL clause.

Our annotated Spider-SS provides us with sub-
sentences paired with NatSQL clauses, which serve
as our compounds. Based on Spider-SS, we fur-
ther construct the dataset Spider-CG (CG stands for
compositional generalization), by substituting the
sub-sentences with those from other samples, or
composing two sub-sentences to form a more com-
plicated sample. Spider-CG contains two subsets,
and we present one example for each subset in Fig-
ure 2. The first subset includes 24,134 examples
generated by substituting sub-sentences, and we
consider most data in this subset as in-distribution.
The second subset contains 22,531 examples gener-
ated by appending sub-sentences, which increases
the length and complexity of the sentence and the
SQL query compared to the original samples, and
we consider most examples in this subset as OOD.
We demonstrate that when models are only trained
on the original Spider dataset, they suffer a signifi-
cant performance drop on the second OOD subset
of Spider-CG, even though the domain appears in
the training set.

To improve the generalization performance
of text-to-SQL models, we modify the RAT-
SQL+GAP+NatSQL (Wang et al., 2020; Shi et al.,
2021; Gan et al., 2021b) model so that it can be
applied to the Spider-SS dataset, with the model
trained sub-sentence by sub-sentence. This modifi-
cation obtains more than 7.8% accuracy improve-
ment evaluated on the second subset of Spider-CG.
To our knowledge, this is the first sub-sentence-
based text-to-SQL model.

In short, we make the following contributions:

* Besides the sentence split algorithm, we

Spider—SS -
Example—1:
SubSentence: What is the name and nation of the singer
. SELECT Singer.Name
NatSQL:
oL SELECT Singer.Country
SubSentence: who have a song having 'Hey' in its name?
NatSQL: WHERE Concert.Song_Name like '$Hey%'
Example—2:
SubSentence: What are the names of the singers
NatSQL: SELECT Singer.Name
SubSentence: who performed in a concert in 20147
NatS@L: WHERE Concert.Year = 2014
Spider-CG :

Subset-1: sub—sentence substitution in Example 1 and 2
What is the name and nation of the singer

Sentence: who performed in a concert in 2014?

NatSQL: SELECT Singer.Name, Singer.Country
WHERE Concert.Year = 2014

Subset-2: Example—1 append a sub—sentence from Example-2

What is the name and nation of the singer

who have a song having ‘Hey’ in its name and

who performed in a concert in 2014?

Sentence:

SELECT Singer.Name, Singer.Country
WHERE Concert.Song_Name like '%$Hey%'
AND Concert.Year = 2014

NatSQL:

Figure 2: Two Spider-CG samples generated by: (1)
substituting the sub-sentence with one from another ex-
ample; or (2) composing sub-sentences from 2 exam-
ples in Spider-SS.

introduce Spider-SS, a human-curated sub-
sentence-based text-to-SQL dataset built upon
the Spider benchmark, by splitting its NL
questions into sub-sentences.

* We construct the Spider-CG benchmark for
measuring the compositional generalization
performance of text-to-SQL models.

* We show that the RATSQL+GAP+NatSQL
model can be adapted to sub-sentence-based
text-to-SQL data, and that this improves its
generalization performance.

2 Spider-SS

2.1 Overview

Figure 1 presents a comparison between Spider
and Spider-SS. Unlike Spider, which annotates a
whole SQL query to an entire sentence, Spider-SS
annotates the SQL clauses to sub-sentences. Spider-
SS uses NatSQL (Gan et al., 2021b) instead of SQL
because some examples are difficult to annotate
using SQL. The Spider-SS provides a combination
algorithm that collects all NatSQL clauses and then
generates the NatSQL query, where the NatSQL
query can be converted into an SQL query.

The purpose of building Spider-SS is to attain
clause-level text-to-SQL data to generate more



relc

For the 4 cylinder cars,

which model has the most horsepower?

For the 4 cylinder cars, | which model | has the most horsepower?

Figure 3: Dependency structure of a sentence and how
to split this sentence into three sub-sentences.

complex examples through the combination of
clauses. Besides, it is easier to build models with
better performance based on more finely labeled
data, especially in areas with relatively few re-
sources, i.e., there are only 7000 training samples in
the Spider dataset. Consistent with Spider, Spider-
SS contains 7000 training and 1034 development
examples, but Spider-SS does not contain a test
set since the Spider test set is not public. There
are two steps to build Spider-SS. First, design a
sentence split algorithm to cut the sentence into
sub-sentences, and then manually annotate the Nat-
SQL clause corresponding to each sub-sentence.

2.2 Sentence Split Algorithm

We build our sentence split algorithm upon the NL
dependency parser spaCy 2, which provides the
grammatical structure of a sentence. Basically, we
split the sentence with the following dependencies:
prep, relcl, advcl, acl, nsubj, npadvmod, csubj,
nsubjpass and conj. According to (de Marnee and
Manning, 2016), these dependencies help us sepa-
rate the main clause, subordinate clauses, and mod-
ifiers. Figure 3 shows the dependency structure
of a sentence and how to split this sentence into
three sub-sentences. However, not every sentence
would be split since there are some non-splittable
sentences, such as the third example in Figure 4,
with the same annotation as the Spider dataset. Al-
though this method can separate sentences well in
most cases, due to the variability of natural lan-
guage, some examples cannot be perfectly split.

To address the remaining issues in sentence split,
we design some refinement steps tailored to text-to-
SQL applications. For example, when the phase of
a schema column or table is accidentally divided
into two sub-sentences, these two sub-sentences are
automatically concatenated. Besides, when there is
only one word in a sub-sentence, the corresponding
split should also be undone.

We sampled 500 examples from the Spider-
SS development set to evaluate the acceptability

Zhttps://github.com/explosion/spaCy

Spider—SS :
Example—I1: Use the “extra” keyword.
to compensate for split errors
Find the emails and phone numbers of all the
customers,
SELECT Customers.Email Address
SELECT Customers.Phone_Number

SubSentence: ordered by email address
NatSQL: ORDER BY Customers.Email_Address ASC

SubSentence:

NatSQL:

SubSentence: and phone numbers.
NatSeL: EXTRA Customers.Phone_Number

Example—2: Columns that are not mentioned in the
sub—sentence are specifically annotated
SubSentence: List the total number of horses on farms
NatSeL: SELECT Farm.Total_Horses

SubSentence: in ascending order.
NatSQrL: ORDER BY |Farm.Total Horses| ASC
NO MENTIONED

Example—3: Some sentences cannot be split
SubSentence: Who advises student 1004?
SELECT Student.Advisor

YatS@L:  WHERE Student.StulD = 2014

Figure 4: Spider-SS examples in three special cases.

of splitting results manually, and only < 3% of
the splitting results are unsatisfactory. For exam-
ple, in the splitting results of the first example
in Figure 4, the last two sub-sentence should be
combined to correspond to “ORDER BY Cus-
tomer.Email_Address, Customer.Phone_Number
ASC ”. In this example, we did not simply give an
“ORDER BY Customer.Phone_ Number ASC ” to
the last sub-sentence, because it does not mention
anything related to “ORDER BY ”. Here, we in-
troduce “extra”, a new NatSQL keyword designed
for the Spider-SS dataset, indicating that this sub-
sentence mentions a column that temporarily does
not fit in any other NatSQL clauses. When combin-
ing NatSQL clauses into the final NatSQL query,
the combining algorithm determines the final posi-
tion for the “extra” column based on the clauses be-
fore and after. Note that even if there is a small pro-
portion of unsatisfactory splitting results, as long
as the model trained on Spider-SS can give the cor-
rect output according to the input sub-sentence, the
quality of the sub-sentences itself does not strongly
affect the model utility.

2.3 Data Annotation

When we get the split results from the last step,
we can start data annotation. We give precise an-
notations based on the sub-sentence content, such
as the “extra” column annotation discussed in the
last subsection. Besides, if the description of the
schema column is missing in the sub-sentence, we
will give the schema column an additional “NO



MENTIONED” mark. For example, in the second
example of Figure 4, the “in ascending order” sub-
sentence does not mention the “Farm.Total_Horses”
column. Therefore, we add a “NO MENTIONED”
mark for it. For those sub-sentences that do not
mention anything related to the query, we give a
“NONE mark, representing there are no NatSQL
clauses.

Since the annotation is carried out according
to the sub-sentence content, the equivalent SQL
that is more consistent with the sub-sentence will
be preferred to the original SQL. Similarly, if the
original SQL annotation is wrong, we correct it
according to the content.

We annotate the sub-sentence using NatSQL
instead of SQL, where NatSQL is an intermedi-
ate representation of SQL, only keeping the SE-
LECT, WHERE, and ORDER BY clauses from SQL.
Since some sub-sentences need to be annotated
with GROUP BY clause, we choose the version of
NatSQL augmented with GROUP BY. We did not
use SQL directly because it is difficult to annotate
in some cases, such as the SQL in Figure 5. The
difficulty is that there are two SELECT clauses in
this SQL query, but none of the sub-sentences seem
to correspond to two SELECT clauses. In addition,
considering that the two WHERE conditions corre-
spond to different SELECT clauses, the annotation
work based on SQL is far more difficult to com-
plete. As shown in Figure 5, we can use NatSQL to
complete the annotation quickly, while the NatSQL
can be converted back to the target SQL.

3 Spider-CG

3.1 Overview

Spider-CG is a synthetic dataset, which is gener-
ated by recombining the sub-sentences of Spider-
SS. There are two recombination methods. The
first is sub-sentence substitution between differ-
ent examples, and the second is to append a sub-
sentence into another sentence. To facilitate the
follow-up discussion, we named the Spider-CG
subset generated by the sub-sentence substitution
method CG-SUB, and the other named CG-APP.

In CG-SUB, there are 21,168 examples gener-
ated from the Spider-SS training set, while 2,966
examples are generated from the development set.
In CG-APP, examples generated from training and
development sets are 19,241 and 3,290, respec-
tively. Therefore, the whole Spider-CG contains
46,665 examples, which is about six times the Spi-

A sentence and its corresponding SQL and NatSQL:

What are the locations that have both tracks
with more than 90000 seats, and tracks with
fewer than 70000 seats?

SELECT Location FROM Track WHERE seating
> 90000

INTERSECT SELECT Location FROM Track
WHERE seating < 70000

SELECT Track.Location
WHERE Track. Seating > 90000
AND Track.Seating < 70000

Sentence:

sQL:

NatSQL:

We can think about how to correctly annotate
the INTERSECT clause if using the SQL query

Spider-SS :
SubSentence: What are the locations
NatSQL: SELECT Track.Location

that have both tracks with more than 90000
seats,
WHERE Track. Seating > 90000

SubSentence:

NatSQL:

and tracks with fewer than 70000 seats?
AND Track.Seating < 70000

SubSentence:
NatSQL:

Figure 5: It is difficult to annotate if using the SQL
instead of NatSQL.

der dataset. If need more data, we can append
sub-sentences to the CG-SUB examples.

3.2 Generation Algorithm

Before generating the Spider-CG, we need to gen-
erate the compositional element. Considering that
there are some unsatisfactory splitting results in
spider-SS, in order to ensure the quality of gener-
ated sentences, compositional elements abandoned
the examples with “NO MENTIONED” and “ex-
tra” column, such as the first and second examples
in Figure 4. Each element contains one or more
sub-sentences, but these sub-sentences must be an-
notated as WHERE or ORDER BY clauses. We col-
lect the sub-sentences for compositional elements
by scanning all sub-sentence from top to bottom or
from bottom to top and stopping when encounter-
ing clauses except WHERE and ORDER BY. For
example, we generate a compositional element con-
taining the last two sub-sentences of the Spider-SS
example in Figure 5 In contrast, we do not generate
any element from the example in Figure 1.

According to Algorithm 1, we can generate the
CG-SUB and CG-APP based on compositional ele-
ments. It should be noted that elements in a domain
cannot be used in another because the schema items
are different. So as many domains as there are, it
needs to run Algorithm 1 how many times.



Algorithm 1 Generate CG-SUB and CG-APP dataset in a certain domain

Input: e_list
Output: cg_sub and cg_app
for Every element; in e_list do
for Every elements in e_list do
if element, != elementy then

> All compositional elements in a domain

> CG-SUB and CG-APP dataset in a certain domain

if element;.can_be_substituted_by( elementy ) then

if element;.can_append( element, ) then
cg_app.append( element;.generate_appending_example( elements ) )

1:
2
3
4
5: cg_sub.append( element;.generate_substitution_example( elements ) )
6
7
8:

return cg_sub, cg_app

Ques List the name and age of the heads of
departments are older than 56 ?

SQL SELECT name, age FROM head
WHERE age > 56

Ques Show the name of employees
named Mark Young ?

SQL SELECT name FROM employee

WHERE name = ‘Mark Young’

Table 1: Two acceptable but not perfect examples in the
Spider-CG.

3.3 Quality Assurance

We randomly sampled 2000 examples from the
Spider-CG dataset, around 99% of which are ac-
ceptable. Acceptable does not mean that there are
no grammatical errors; it means that the sentence
has been clearly expressed and does not cause ambi-
guity. Besides, acceptable examples may be mean-
ingless. We give two acceptable but not perfect
examples in Table 1, where the first sentence con-
tains the grammatical error. At the same time, the
other is meaningless because the content it wants
to query is the condition it gave. We define an ac-
ceptable example as an example where you may
not find a problem without studying it carefully.

The ‘can_be_substituted_by’ and ‘can_append’
function in Algorithm 1 prevent mistakes while gen-
erating the Spider-CG. These two methods check
whether the sub-sentences can be appropriately con-
nected, e.g., whether the previous word is the same
and whether the part of speech of the first word in
the sub-sentence is the same. Besides, these two
methods also prevent generating overly complex or
contradictory SQL, e.g., ‘give me the name of the
youngest student who is the oldest’.

WHERE Student.Age > 10

Vo Vi VoV Vy V5 VgV Vg

List name of student who is older than ten

o 1 2 3 4 5 6 7 8

sub-sentence—1: sub-sentence—2:
List name of student who is older than ten

Encoder Vectors:

Figure 6: A example of encoding the whole sentence
but decoding only the sub-sentence.

4 Model

Existing text-to-SQL models input a sentence and
output the corresponding SQL query. So the eas-
iest way to think of using the Spider-SS dataset
is to train the model where inputting sub-sentence
and outputting the corresponding NatSQL clauses.
However, this method is not workable because it
will lose some essential schema information. For
example, if you only look at the third sub-sentence
in Figure 1, you do not know whether he ask about
the weight of pets or people.

In order to take into account the context and the
sub-sentence data of Spider-SS, we propose that a
seq2seq model can encode the whole sentence but
decode only the sub-sentence. Figure 6 presents
the workflow of encoding the whole sentence but
only decoding the sub-sentence of ‘who is older
than ten’ and outputting the corresponding NatSQL
clause. Based on this modification, a seq2seq text-
to-SQL model can be adapted to the Spider-SS.

We modify the RATSQL+GAP+NatSQL (Wang



et al., 2020; Shi et al., 2021; Gan et al., 2021b)
model to adapt the Spider-SS. We choose this
model because its performance is high enough, and
it has the best performance among the text-to-SQL
models that support NatSQL. We keep the same
hyperparameters. Although re-search hyperparam-
eters may improve the performance, it requires con-
siderable computing resources (Wang et al., 2020).

5 Experiment

5.1 Experimental Setup

We evaluate the previous state-of-the-art models
on the Spider-CG and Spider (Yu et al., 2018b)
datasets. Since the Spider test set is not publicly ac-
cessible, Spider-CG does not contain a test set. As
discussed in Section 3.1, we divide the Spider-CG
into two subsets: CG-SUB and CG-APP. Therefore,
there are five evaluation sets:

* Spiderp,: the original Spider development
set with 1,034 examples for cross-domain in-
distribution text-to-SQL evaluation.

* CG-SUBT: the CG-SUB training set, contain-
ing 21,168 examples generated from Spider-SS
training set by substituting sub-sentence method.
CG-SUBT is used for in-domain in-distribution
text-to-SQL evaluation.

* CG-SUBp: the CG-SUB development set con-
taining 2,966 examples for cross-domain in-
distribution text-to-SQL evaluation.

* CG-APPt: the CG-APP training set, contain-
ing 19,241 examples generated from Spider-
SS training set by appending sub-sentence
method. CG-APPr is used for in-domain out-
of-distribution text-to-SQL evaluation.

* CG-APPp: the CG-APP development set con-
taining 3,290 examples for cross-domain out-of-
distribution text-to-SQL evaluation.

Our evaluation is based on the exact match and
execution match metric defined in the original Spi-
der benchmark. The exact match metric measures
whether the syntax tree of the predicted query with-
out condition values is the same as that of the
gold query. The execution match metric measures
whether the query results from the predicted query
are the same as the gold query results. All mod-
els are only trained on 7000 Spider or Spider-SS
training examples. We evaluate the following open-
source models that reach competitive performance
on Spider:

* RATSQL: The RATSQL+BERT model trained
on Spider (Wang et al., 2020; Devlin et al., 2019).

Dataset

Training Set
Development Set

Exact Match Execution Match

89.4% 94.0%
90.0% 94.3%

Table 2: Use exact match and execution match metrics
to evaluate the difference between the SQL in Spider
and the SQL generated by NatSQL in Spider-SS.

Dataset easy medium hard extra
Spiderp, 241%  43.1% 16.8% 16.1%
CG-SUBT 283% 384% 208% 12.5%
CG-SUBp 33.8% 37.4% 13.6% 12.6%
CG-APPT 32% 303% 273% 39.1%
CG-APPp 23% 419% 229% 32.8%

Table 3: The difficulty distribution of five different eval-
uation sets.

¢ RATSQLG: The RATSQL+GAP model trained
on Spider (Shi et al., 2021).

e RATSQLgGN: The RATSQL+GAP+NatSQL
model trained on NatSQL (Gan et al., 2021b).

* RATSQLGNs: The modified RAT-
SQL+GAP+NatSQL model trained on Spider-SS,
as discussed in Section 4.

5.2 Dataset Analysis

Spider-SS. Table 2 presents the difference be-
tween the SQL in Spider and the SQL generated by
NatSQL in Spider-SS. Our evaluation results are
lower than the original NatSQL dataset (Gan et al.,
2021b) because the Spider-SS uses equivalent SQL
and corrects some errors, as discussed in Section
2.3. Most equivalent and corrected SQL cannot get
positive results in exact match metric, while a small
part can not either in execution match. Therefore,
the model trained on Spider-SS may not be ideal for
chasing the Spider benchmark, especially based on
the exact match metric. Similarly, the RATSQLg
extending NatSQL had achieved a previous SOTA
result in the execution match of the Spider test set
but get a worse result than the original in the exact
match (Gan et al., 2021b). Thus, we recommend
using NatSQL-based datasets to evaluate models
trained on NatSQL.

Spider-CG. Table 3 presents the difficulty dis-
tribution of five different evaluation sets. The dif-
ficulty criteria are defined by Spider benchmark,
including easy, medium, hard and extra hard. Ex-
periments show that the more difficult the SQL is,
the more difficult it is to predict correctly (Wang
et al., 2020; Shi et al., 2021; Gan et al., 2021b).



It can be found from Table 3 that the difficulty
distribution of CG-SUBT and CG-SUBp is simi-
lar to that of Spiderp. The similar distributions
among CG-SUBT, CG-SUBp, and Spiderp sup-
port the view discussed in Section 1 that the ex-
amples generated by the substitution method are
in-distribution.

On the other hand, the difficulty distributions of
CG-APPt and CG-APPp are obviously different
from that of Spiderpy. Due to appending the sub-
sentence, the NL and SQL in CG-APP become
more complex, where the proportion of SQL in
extra hard increased significantly, while easy was
the opposite.

5.3 Sentence Split Algorithm Evaluation

We generate the Spider-CG based on the combina-
tion of Spider-SS sub-sentences split by the algo-
rithm introduced in Section 2.2. We can reuse this
algorithm to split the sentence in Spider-CG and
then compare the splitting results with the Spider-
SS sub-sentences to evaluate the stability of the
splitting algorithm. We consider that a deviation
of one or two words in the splitting result is ac-
ceptable. For example, in Figure 1, we consider
that putting the comma of the third sub-sentence
into the second sub-sentence does not change the
meaning of sub-sentences, same for moving both
the comma and the word ‘and’.

Table 4 presents the similarity between sub-
sentences in Spider-SS and Spider-CG, which are
generated by the same split algorithm under the
deviation of one or two words. The similarity ex-
ceeds 90% in all evaluation set when two deviation
words are allowed. Considering that the model
trained on the Spider-SS does not require consis-
tent split results, as discussed in Section 2.2, the
similarity results of the splitting algorithm are good
enough. The similarity of CG-SUB is higher than
that of CG-APP, which means the more complex
the sentence, the greater the challenge to the al-
gorithm. Although the algorithm has been refined
on the training set, the similarity between training
and development in CG-SUB and CG-APP is close,
showing that the algorithm performs consistently
for unseen datasets. In summary, we consider that
as long as the sentences are not more complex than
CG-APP, the algorithm can be used stably in other
text-to-SQL datasets.

Dataset Deviation <=1 Deviation <=2

CG-SUBt 93.2% 94.4%
CG-SUBp 92.9% 94.1%
CG-APPT 86.0% 90.4%
CG-APPp 88.9% 92.6%

Table 4: The similarity between sub-sentences in
Spider-SS and Spider-CG generated by the same split
algorithm under the deviation of one or two words.

Approach
RATSQL
RATSQLG
RATSQLGN
RATSQLGNs

Spider, CG-SUBt CG-SUBp CG-APPt CG-APPp
72.0% 79.5% 72.0% 45.1% 47.2%
72.7% 80.9% 70.3% 45.2% 44.2%
73.9% 90.2% 75.0% 67.8% 60.5%
74.5% 91.4% 76.7 % 82.5% 68.3%

Table 5: Exact match accuracy on evaluation sets.

5.4 Model Results

Table 5 presents the exact match accuracy on the
five different evaluation sets. Specifically, the
RATSQLGNs consistently outperforms other mod-
els. We use the sentence split algorithm to split
every sentence before inputting the RATSQLGNs-
Although there are some un-similar splitting results,
it did not prevent the RATSQLgNg from getting
good performance. RATSQLgNs and RATSQLGN
have close results in the in-distribution dataset,
i.e., Spiderp, CG-SUBT, and CG-SUBp, but
the RATSQLGNs significantly improves over
RATSQLGN on the OOD dataset, i.e., CG-APPt
and CG-APPp. The results demonstrate that the
sub-sentence-based method can improve the gener-
alization performance.

The evaluation results of all models in Spiderp,
and CG-SUBp are close, which further confirm
that the sub-sentence substitution method gener-
ates in-distribution data in a cross-domain text-to-
SQL setting. In the two OOD datasets, CG-APPt
and CG-APPp, the performance of all models has
dropped by about 10% to 30%.

Although the performance of all models on
Spiderp is close, the performance of RATSQLgN
and RATSQLgNs is significantly better in the
rest four datasets. One of the reasons is that
RATSQL and RATSQL; are trained on SQL while
RATSQLgN and RATSQLGNs use NatSQL for
training. As discussed in Section 5.2, since the
training data of Spider and Spider-SS are about
10% different, this leads to the performance degra-
dation in the model trained on Spider when eval-
uated on the SQL generated by the NatSQL of
Spider-SS, and vice versa. On the other hand, ex-



Approach
RATSQLGN
RATSQLGNs

Spider, CG-SUBy CG-SUBp CG-APP; CG-APP,
758%  86.1% 78.0% 704 % 68.9%
767%  $8.3% 80.4% 78.8% 75.1%

Table 6: Execution match accuracy on evaluation sets.

periments in (Gan et al., 2021b) show that Nat-
SQL improve the model performance in extra hard
SQL. Therefore, RATSQLgN and RATSQLGNS
suffer less performance degradation in CG-APPt
and CG-APPp than RATSQL g and RATSQL.

Since RATSQL and RATSQLgG do not sup-
port generating executable SQL, we compare
the execution results between RATSQLgN and
RATSQLgNs in Table 6. RATSQLGNg again con-
sistently outperform the RATSQLGN.

6 Related Work

Text-to-SQL translation. To achieve text-to-
SQL translation, researchers have built various
benchmarks (Iyer et al., 2017; Ana-Maria Popescu
et al., 2003; Tang and Mooney, 2000; Giordani
and Moschitti, 2012; Li and Jagadish, 2014; Yagh-
mazadeh et al., 2017; Zhong et al., 2017; Yu et al.,
2018b). In particular, most recent works focus
on improving the performance on Spider bench-
mark (Yu et al., 2018b), where models are required
to generate complex SQL in cross-domain setting.
Among various model architectures (Guo et al.,
2019; Zhang et al., 2019; Wang et al., 2020), most
of them have implemented the pre-training method,
including the latest state-of-the-art model (Scholak
etal., 2021; Cao et al., 2021), where Yu et al. (2021)
and Rubin and Berant (2021) augment the text-to-
SQL data for pre-training.

Data augmentation for text-to-SQL models.
Data augmentation has been commonly used for
improving performance (Xiong and Sun, 2019; Li
et al., 2019). In the context of text-to-SQL genera-
tion, Yu et al. (2018a) generate synthetic training
samples from some pre-defined SQL and NL ques-
tion templates. Parikh et al. (2020) introduces an
table-to-text dataset with over 120,000 examples
that proposes a controlled generation task: given
a Wikipedia table and a set of highlighted table
cells, produce a one-sentence description. Yu et al.
(2021) sample from the given examples and then
give a large number of tables to generate new syn-
thetic examples. Shi et al. (2021) present a model
pre-training framework that jointly learns repre-
sentations of NL utterances and table schemas by

leveraging generation models to generate pre-train
data.

Compositional generalization for semantic
parsing. Compositional generalization for se-
mantic parsing has captured wide attention recently
(Finegan-Dollak et al., 2018; Oren et al., 2020;
Furrer et al., 2020; Conklin et al., 2021). Most
prior works on text-to-SQL tasks focus on the cross-
domain generalization, which mainly assess how
the models generalize the domain knowledge to
new database schemas (Suhr et al., 2020; Gan et al.,
2021a). On the other hand, Shaw et al. (2021) in-
troduces TMCD splits for studying compositional
generalization in semantic parsing, where they aim
to maximize the divergence of SQL compounds
between the training and test sets. However, this
method does not support the benchmark construc-
tion for cross-domain out-of-distribution composi-
tion generalization evaluation.

Our model is inspired by prior works on neural
parsers constructed to capture granular informa-
tion from a whole. Yin et al. (2021) describe a
span-level supervised attention loss that improves
compositional generalization in semantic parsers.
Herzig and Berant (2021) propose SpanBasedSP,
a parser that predicts a span tree over an input ut-
terance, and dramatically improves performance
on splits that require compositional generalization.
Chen et al. (2020) propose the Neural-Symbolic
Stack machine (NeSS), which integrates a symbolic
stack machine into a seq2seq generation frame-
work, and learns a neural network as the controller
to operate the machine.

7 Conclusion

We introduce Spider-SS and Spider-CG for mea-
suring compositional generalization of text-to-SQL
models. Specifically, Spider-SS is a human-curated
sub-sentence-based text-to-SQL dataset built upon
the Spider benchmark. Spider-CG is a synthetic
text-to-SQL dataset constructed by substituting
and appending sub-sentences of different sam-
ples, so that the training and test sets consist
of different compositions of sub-sentences. We
found that the performance of previous text-to-
SQL models drop dramatically on the Spider-
CG OOD examples, while modifying the RAT-
SQL+GAP+NatSQL model to fit the segmented
data of Spider-SS improves compositional general-
ization performance.
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