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Abstract

Recently, the challenge of compositional gen-001
eralization in NLP has attracted more and002
more attention. Specifically, many prior works003
show that neural networks struggle with com-004
positional generalization where training and005
test distributions differ. However, most of006
these works are based on word-level synthetic007
data or a specific data split method to gener-008
ate compositional biases. In this work, we009
propose a clause-level compositional example010
generation method, and we focus on text-to-011
SQL tasks. We first split the sentences in the012
Spider text-to-SQL dataset into several sub-013
sentences, then we annotate each sub-sentence014
with its corresponding SQL clause, resulting015
in our new dataset Spider-SS. Building upon016
Spider-SS, we further construct a new dataset017
named Spider-CG, by composing Spider-SS018
sub-sentences to test the ability of models019
to generalize compositionally. Experiments020
show that previous models suffer significant021
performance degradation when evaluated on022
Spider-CG, even though every sub-sentence is023
seen during training. To deal with this prob-024
lem, we modify the RATSQL+GAP model to025
fit the segmented data of Spider-SS, and we026
show that this method improves the generaliza-027
tion performance.1028

1 Introduction029

Neural models in supervised learning settings show030

good performance on data drawn from the training031

distribution. However, the generalization perfor-032

mance can be poor on out-of-distribution (OOD)033

samples (Finegan-Dollak et al., 2018; Suhr et al.,034

2020; Kaushik et al., 2020; Sagawa et al., 2020).035

This observation might hold even when the new036

samples are composed of known constituents; e.g.,037

on SCAN dataset (Lake and Baroni, 2018), many038

models provide the wrong predictions for the input039

“jump twice and walk”, even when “jump twice”,040

1We will release code and dataset upon publication.

“walk”, and “walk twice” are seen during training. 041

This (often lacking) ability to generalize to novel 042

combinations of elements observed during training 043

is referred to as compositional generalization. 044

Previous work on compositional generalization 045

in text-to-SQL focuses on data split and word sub- 046

stitution (Finegan-Dollak et al., 2018; Shaw et al., 047

2021). However, data split methods are limited by 048

the dataset content, making it difficult to construct 049

a challenging benchmark while ensuring that every 050

compound appears in the training set. Ensuring a 051

reasonable data split may also lead to a reduction 052

in the size of the dataset, e.g., the training set drop 053

from 7000 to 3282 in the Spider TCMD split (Yu 054

et al., 2018b; Shaw et al., 2021). 055

Word substitution is often used to generate com- 056

positional variations for data augmentation (Yu 057

et al., 2021; Andreas, 2020). However, this method 058

cannot generate more complex sentences, i.e., can- 059

not generate “jump twice and walk” from the 060

data only containing “jump twice”, “walk”, and 061

“walk twice”. In addition, in the cross-domain 062

text-to-SQL setting, examples generated by word 063

substitution are supposed to be considered as in- 064

distribution data, since cross-domain models are 065

expected to generalize to unseen domains with un- 066

seen utterances, including examples generated by 067

word substitution. 068

In this work, we first introduce our Spider-SS 069

dataset (SS stands for sub-sentence) derived from 070

the Spider benchmark (Yu et al., 2018b). Figure 1 071

presents a comparison between Spider and Spider- 072

SS. To build Spider-SS, we design a sentence split 073

algorithm to split every Spider sentence into sev- 074

eral sub-sentences until indivisible. Next, we an- 075

notate every sub-sentence with its corresponding 076

SQL clause. In order to reduce the difficulty of an- 077

notation, we annotate the query in an intermediate 078

representation called NatSQL (Gan et al., 2021b), 079

because it is simpler and syntactically aligns better 080

with natural language (NL). 081
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What type of pet is the youngest animal, and 

how much does it weigh?

SELECT PetType , Weight FROM Pets
ORDER BY Pet_Age LIMIT 1

Sentence:

SQL:

What type of petSubSentence:

Spider Example:

Spider-SS Example:

SELECT Pets.PettypeNatSQL:

, and how much does it weigh?SubSentence:

SELECT Pets.Weight NatSQL:

is the youngest animalSubSentence:

ORDER BY Pets.Pet_Age
LIMIT 1

NatSQL:

Figure 1: A natural language sentence in the original
Spider benchmark is split into three sub-sentences in
Spider-SS, where each sub-sentence has a correspond-
ing NatSQL clause.

Our annotated Spider-SS provides us with sub-082

sentences paired with NatSQL clauses, which serve083

as our compounds. Based on Spider-SS, we fur-084

ther construct the dataset Spider-CG (CG stands for085

compositional generalization), by substituting the086

sub-sentences with those from other samples, or087

composing two sub-sentences to form a more com-088

plicated sample. Spider-CG contains two subsets,089

and we present one example for each subset in Fig-090

ure 2. The first subset includes 24,134 examples091

generated by substituting sub-sentences, and we092

consider most data in this subset as in-distribution.093

The second subset contains 22,531 examples gener-094

ated by appending sub-sentences, which increases095

the length and complexity of the sentence and the096

SQL query compared to the original samples, and097

we consider most examples in this subset as OOD.098

We demonstrate that when models are only trained099

on the original Spider dataset, they suffer a signifi-100

cant performance drop on the second OOD subset101

of Spider-CG, even though the domain appears in102

the training set.103

To improve the generalization performance104

of text-to-SQL models, we modify the RAT-105

SQL+GAP+NatSQL (Wang et al., 2020; Shi et al.,106

2021; Gan et al., 2021b) model so that it can be107

applied to the Spider-SS dataset, with the model108

trained sub-sentence by sub-sentence. This modifi-109

cation obtains more than 7.8% accuracy improve-110

ment evaluated on the second subset of Spider-CG.111

To our knowledge, this is the first sub-sentence-112

based text-to-SQL model.113

In short, we make the following contributions:114

• Besides the sentence split algorithm, we115

What is the name and nation of the singerSubSentence:

Spider-SS :

SELECT Singer.Name

SELECT Singer.Country
NatSQL:

What are the names of the singersSubSentence:

SELECT Singer.NameNatSQL:

who have a song having 'Hey' in its name?SubSentence:

WHERE Concert.Song_Name like '%Hey%'NatSQL:

Example-1:

who performed in a concert in 2014?SubSentence:

WHERE Concert.Year = 2014NatSQL:

Example-2:

What is the name and nation of the singer
who performed in a concert in 2014?

Sentence:

Spider-CG :

SELECT Singer.Name, Singer.Country

WHERE Concert.Year = 2014
NatSQL:

Subset-1: sub-sentence substitution in Example 1 and 2 2

What is the name and nation of the singer

who have a song having ‘Hey’ in its name and
who performed in a concert in 2014?

Sentence:

SELECT Singer.Name, Singer.Country

WHERE Concert.Song_Name like '%Hey%‘
AND Concert.Year = 2014

NatSQL:

Subset-2: Example-1 append a sub-sentence from Example-2

Figure 2: Two Spider-CG samples generated by: (1)
substituting the sub-sentence with one from another ex-
ample; or (2) composing sub-sentences from 2 exam-
ples in Spider-SS.

introduce Spider-SS, a human-curated sub- 116

sentence-based text-to-SQL dataset built upon 117

the Spider benchmark, by splitting its NL 118

questions into sub-sentences. 119

• We construct the Spider-CG benchmark for 120

measuring the compositional generalization 121

performance of text-to-SQL models. 122

• We show that the RATSQL+GAP+NatSQL 123

model can be adapted to sub-sentence-based 124

text-to-SQL data, and that this improves its 125

generalization performance. 126

2 Spider-SS 127

2.1 Overview 128

Figure 1 presents a comparison between Spider 129

and Spider-SS. Unlike Spider, which annotates a 130

whole SQL query to an entire sentence, Spider-SS 131

annotates the SQL clauses to sub-sentences. Spider- 132

SS uses NatSQL (Gan et al., 2021b) instead of SQL 133

because some examples are difficult to annotate 134

using SQL. The Spider-SS provides a combination 135

algorithm that collects all NatSQL clauses and then 136

generates the NatSQL query, where the NatSQL 137

query can be converted into an SQL query. 138

The purpose of building Spider-SS is to attain 139

clause-level text-to-SQL data to generate more 140
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For the 4 cylinder cars, which model has the most horsepower?

pobj
relcl

nsubj dobj

For the 4 cylinder cars, | which model | has the most horsepower?

Figure 3: Dependency structure of a sentence and how
to split this sentence into three sub-sentences.

complex examples through the combination of141

clauses. Besides, it is easier to build models with142

better performance based on more finely labeled143

data, especially in areas with relatively few re-144

sources, i.e., there are only 7000 training samples in145

the Spider dataset. Consistent with Spider, Spider-146

SS contains 7000 training and 1034 development147

examples, but Spider-SS does not contain a test148

set since the Spider test set is not public. There149

are two steps to build Spider-SS. First, design a150

sentence split algorithm to cut the sentence into151

sub-sentences, and then manually annotate the Nat-152

SQL clause corresponding to each sub-sentence.153

2.2 Sentence Split Algorithm154

We build our sentence split algorithm upon the NL155

dependency parser spaCy 2, which provides the156

grammatical structure of a sentence. Basically, we157

split the sentence with the following dependencies:158

prep, relcl, advcl, acl, nsubj, npadvmod, csubj,159

nsubjpass and conj. According to (de Marnee and160

Manning, 2016), these dependencies help us sepa-161

rate the main clause, subordinate clauses, and mod-162

ifiers. Figure 3 shows the dependency structure163

of a sentence and how to split this sentence into164

three sub-sentences. However, not every sentence165

would be split since there are some non-splittable166

sentences, such as the third example in Figure 4,167

with the same annotation as the Spider dataset. Al-168

though this method can separate sentences well in169

most cases, due to the variability of natural lan-170

guage, some examples cannot be perfectly split.171

To address the remaining issues in sentence split,172

we design some refinement steps tailored to text-to-173

SQL applications. For example, when the phase of174

a schema column or table is accidentally divided175

into two sub-sentences, these two sub-sentences are176

automatically concatenated. Besides, when there is177

only one word in a sub-sentence, the corresponding178

split should also be undone.179

We sampled 500 examples from the Spider-180

SS development set to evaluate the acceptability181

2https://github.com/explosion/spaCy

SubSentence:

Spider-SS :

SELECT Customers.Email_Address
SELECT Customers.Phone_Number

NatSQL:

List the total number of horses on farmsSubSentence:

SELECT Farm.Total_HorsesNatSQL:

ordered by email addressSubSentence:

ORDER BY Customers.Email_Address ASCNatSQL:

Example-1: Use the “extra” keyword.                         d
to compensate for split errors d

in ascending order.SubSentence:

ORDER BY Farm.Total_Horses ASCNatSQL:

Example-2: Columns that are not mentioned in the d
sub-sentence are specifically annotated

Who advises student 1004?SubSentence:

SELECT Student.Advisor

WHERE Student.StuID = 2014
NatSQL:

Example-3: Some sentences cannot be split d

NO MENTIONED

Find the emails and phone numbers of all the 
customers,

and phone numbers.SubSentence:

EXTRA Customers.Phone_NumberNatSQL:

Figure 4: Spider-SS examples in three special cases.

of splitting results manually, and only < 3% of 182

the splitting results are unsatisfactory. For exam- 183

ple, in the splitting results of the first example 184

in Figure 4, the last two sub-sentence should be 185

combined to correspond to “ORDER BY Cus- 186

tomer.Email_Address, Customer.Phone_Number 187

ASC ”. In this example, we did not simply give an 188

“ORDER BY Customer.Phone_Number ASC ” to 189

the last sub-sentence, because it does not mention 190

anything related to “ORDER BY ”. Here, we in- 191

troduce “extra”, a new NatSQL keyword designed 192

for the Spider-SS dataset, indicating that this sub- 193

sentence mentions a column that temporarily does 194

not fit in any other NatSQL clauses. When combin- 195

ing NatSQL clauses into the final NatSQL query, 196

the combining algorithm determines the final posi- 197

tion for the “extra” column based on the clauses be- 198

fore and after. Note that even if there is a small pro- 199

portion of unsatisfactory splitting results, as long 200

as the model trained on Spider-SS can give the cor- 201

rect output according to the input sub-sentence, the 202

quality of the sub-sentences itself does not strongly 203

affect the model utility. 204

2.3 Data Annotation 205

When we get the split results from the last step, 206

we can start data annotation. We give precise an- 207

notations based on the sub-sentence content, such 208

as the “extra” column annotation discussed in the 209

last subsection. Besides, if the description of the 210

schema column is missing in the sub-sentence, we 211

will give the schema column an additional “NO 212
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MENTIONED” mark. For example, in the second213

example of Figure 4, the “in ascending order” sub-214

sentence does not mention the “Farm.Total_Horses”215

column. Therefore, we add a “NO MENTIONED”216

mark for it. For those sub-sentences that do not217

mention anything related to the query, we give a218

“NONE mark, representing there are no NatSQL219

clauses.220

Since the annotation is carried out according221

to the sub-sentence content, the equivalent SQL222

that is more consistent with the sub-sentence will223

be preferred to the original SQL. Similarly, if the224

original SQL annotation is wrong, we correct it225

according to the content.226

We annotate the sub-sentence using NatSQL227

instead of SQL, where NatSQL is an intermedi-228

ate representation of SQL, only keeping the SE-229

LECT, WHERE, and ORDER BY clauses from SQL.230

Since some sub-sentences need to be annotated231

with GROUP BY clause, we choose the version of232

NatSQL augmented with GROUP BY. We did not233

use SQL directly because it is difficult to annotate234

in some cases, such as the SQL in Figure 5. The235

difficulty is that there are two SELECT clauses in236

this SQL query, but none of the sub-sentences seem237

to correspond to two SELECT clauses. In addition,238

considering that the two WHERE conditions corre-239

spond to different SELECT clauses, the annotation240

work based on SQL is far more difficult to com-241

plete. As shown in Figure 5, we can use NatSQL to242

complete the annotation quickly, while the NatSQL243

can be converted back to the target SQL.244

3 Spider-CG245

3.1 Overview246

Spider-CG is a synthetic dataset, which is gener-247

ated by recombining the sub-sentences of Spider-248

SS. There are two recombination methods. The249

first is sub-sentence substitution between differ-250

ent examples, and the second is to append a sub-251

sentence into another sentence. To facilitate the252

follow-up discussion, we named the Spider-CG253

subset generated by the sub-sentence substitution254

method CG-SUB, and the other named CG-APP.255

In CG-SUB, there are 21,168 examples gener-256

ated from the Spider-SS training set, while 2,966257

examples are generated from the development set.258

In CG-APP, examples generated from training and259

development sets are 19,241 and 3,290, respec-260

tively. Therefore, the whole Spider-CG contains261

46,665 examples, which is about six times the Spi-262

What are the locations that have both tracks 

with more than 90000 seats, and tracks with 
fewer than 70000 seats?

Sentence:

A sentence and its corresponding SQL and NatSQL:

SELECT Location FROM Track WHERE seating

>  90000 
INTERSECT SELECT Location FROM Track

WHERE seating  <  70000

SQL:

Spider-SS :

SELECT Track.Location

WHERE Track. Seating >  90000 
AND Track.Seating <  70000

NatSQL:

We can think about how to correctly annotate
the INTERSECT clause if using the SQL query

What are the locationsSubSentence:

SELECT Track.LocationNatSQL:

that have both tracks with more than 90000 
seats,

SubSentence:

WHERE Track. Seating >  90000 NatSQL:

and tracks with fewer than 70000 seats?SubSentence:

AND Track.Seating <  70000NatSQL:

Figure 5: It is difficult to annotate if using the SQL
instead of NatSQL.

der dataset. If need more data, we can append 263

sub-sentences to the CG-SUB examples. 264

3.2 Generation Algorithm 265

Before generating the Spider-CG, we need to gen- 266

erate the compositional element. Considering that 267

there are some unsatisfactory splitting results in 268

spider-SS, in order to ensure the quality of gener- 269

ated sentences, compositional elements abandoned 270

the examples with “NO MENTIONED” and “ex- 271

tra” column, such as the first and second examples 272

in Figure 4. Each element contains one or more 273

sub-sentences, but these sub-sentences must be an- 274

notated as WHERE or ORDER BY clauses. We col- 275

lect the sub-sentences for compositional elements 276

by scanning all sub-sentence from top to bottom or 277

from bottom to top and stopping when encounter- 278

ing clauses except WHERE and ORDER BY. For 279

example, we generate a compositional element con- 280

taining the last two sub-sentences of the Spider-SS 281

example in Figure 5 In contrast, we do not generate 282

any element from the example in Figure 1. 283

According to Algorithm 1, we can generate the 284

CG-SUB and CG-APP based on compositional ele- 285

ments. It should be noted that elements in a domain 286

cannot be used in another because the schema items 287

are different. So as many domains as there are, it 288

needs to run Algorithm 1 how many times. 289
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Algorithm 1 Generate CG-SUB and CG-APP dataset in a certain domain
Input: e_list . All compositional elements in a domain
Output: cg_sub and cg_app . CG-SUB and CG-APP dataset in a certain domain
1: for Every element1 in e_list do
2: for Every element2 in e_list do
3: if element1 != element2 then
4: if element1.can_be_substituted_by( element2 ) then
5: cg_sub.append( element1.generate_substitution_example( element2 ) )
6: if element1.can_append( element2 ) then
7: cg_app.append( element1.generate_appending_example( element2 ) )
8: return cg_sub, cg_app

Ques List the name and age of the heads of
departments are older than 56 ?

SQL SELECT name, age FROM head
WHERE age > 56

Ques Show the name of employees
named Mark Young ?

SQL SELECT name FROM employee
WHERE name = ‘Mark Young’

Table 1: Two acceptable but not perfect examples in the
Spider-CG.

3.3 Quality Assurance290

We randomly sampled 2000 examples from the291

Spider-CG dataset, around 99% of which are ac-292

ceptable. Acceptable does not mean that there are293

no grammatical errors; it means that the sentence294

has been clearly expressed and does not cause ambi-295

guity. Besides, acceptable examples may be mean-296

ingless. We give two acceptable but not perfect297

examples in Table 1, where the first sentence con-298

tains the grammatical error. At the same time, the299

other is meaningless because the content it wants300

to query is the condition it gave. We define an ac-301

ceptable example as an example where you may302

not find a problem without studying it carefully.303

The ‘can_be_substituted_by’ and ‘can_append’304

function in Algorithm 1 prevent mistakes while gen-305

erating the Spider-CG. These two methods check306

whether the sub-sentences can be appropriately con-307

nected, e.g., whether the previous word is the same308

and whether the part of speech of the first word in309

the sub-sentence is the same. Besides, these two310

methods also prevent generating overly complex or311

contradictory SQL, e.g., ‘give me the name of the312

youngest student who is the oldest’.313

List name of student who is older than ten

sub-sentence-1:d
List name of student

0 1 2 3 4 5 6 7 8

sub-sentence-2:d
who is older than ten

Encoder

V0V1V2V3V4V5V6V7V8Encoder Vectors:

Decoder

WHERE Student.Age > 10

Figure 6: A example of encoding the whole sentence
but decoding only the sub-sentence.

4 Model 314

Existing text-to-SQL models input a sentence and 315

output the corresponding SQL query. So the eas- 316

iest way to think of using the Spider-SS dataset 317

is to train the model where inputting sub-sentence 318

and outputting the corresponding NatSQL clauses. 319

However, this method is not workable because it 320

will lose some essential schema information. For 321

example, if you only look at the third sub-sentence 322

in Figure 1, you do not know whether he ask about 323

the weight of pets or people. 324

In order to take into account the context and the 325

sub-sentence data of Spider-SS, we propose that a 326

seq2seq model can encode the whole sentence but 327

decode only the sub-sentence. Figure 6 presents 328

the workflow of encoding the whole sentence but 329

only decoding the sub-sentence of ‘who is older 330

than ten’ and outputting the corresponding NatSQL 331

clause. Based on this modification, a seq2seq text- 332

to-SQL model can be adapted to the Spider-SS. 333

We modify the RATSQL+GAP+NatSQL (Wang 334
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et al., 2020; Shi et al., 2021; Gan et al., 2021b)335

model to adapt the Spider-SS. We choose this336

model because its performance is high enough, and337

it has the best performance among the text-to-SQL338

models that support NatSQL. We keep the same339

hyperparameters. Although re-search hyperparam-340

eters may improve the performance, it requires con-341

siderable computing resources (Wang et al., 2020).342

5 Experiment343

5.1 Experimental Setup344

We evaluate the previous state-of-the-art models345

on the Spider-CG and Spider (Yu et al., 2018b)346

datasets. Since the Spider test set is not publicly ac-347

cessible, Spider-CG does not contain a test set. As348

discussed in Section 3.1, we divide the Spider-CG349

into two subsets: CG-SUB and CG-APP. Therefore,350

there are five evaluation sets:351

• SpiderD: the original Spider development352

set with 1,034 examples for cross-domain in-353

distribution text-to-SQL evaluation.354

• CG-SUBT: the CG-SUB training set, contain-355

ing 21,168 examples generated from Spider-SS356

training set by substituting sub-sentence method.357

CG-SUBT is used for in-domain in-distribution358

text-to-SQL evaluation.359

• CG-SUBD: the CG-SUB development set con-360

taining 2,966 examples for cross-domain in-361

distribution text-to-SQL evaluation.362

• CG-APPT: the CG-APP training set, contain-363

ing 19,241 examples generated from Spider-364

SS training set by appending sub-sentence365

method. CG-APPT is used for in-domain out-366

of-distribution text-to-SQL evaluation.367

• CG-APPD: the CG-APP development set con-368

taining 3,290 examples for cross-domain out-of-369

distribution text-to-SQL evaluation.370

Our evaluation is based on the exact match and371

execution match metric defined in the original Spi-372

der benchmark. The exact match metric measures373

whether the syntax tree of the predicted query with-374

out condition values is the same as that of the375

gold query. The execution match metric measures376

whether the query results from the predicted query377

are the same as the gold query results. All mod-378

els are only trained on 7000 Spider or Spider-SS379

training examples. We evaluate the following open-380

source models that reach competitive performance381

on Spider:382

• RATSQL: The RATSQL+BERT model trained383

on Spider (Wang et al., 2020; Devlin et al., 2019).384

Dataset Exact Match Execution Match
Training Set 89.4% 94.0%
Development Set 90.0% 94.3%

Table 2: Use exact match and execution match metrics
to evaluate the difference between the SQL in Spider
and the SQL generated by NatSQL in Spider-SS.

Dataset easy medium hard extra
SpiderD 24.1% 43.1% 16.8% 16.1%
CG-SUBT 28.3% 38.4% 20.8% 12.5%
CG-SUBD 33.8% 37.4% 13.6% 12.6%
CG-APPT 3.2% 30.3% 27.3% 39.1%
CG-APPD 2.3% 41.9% 22.9% 32.8%

Table 3: The difficulty distribution of five different eval-
uation sets.

• RATSQLG: The RATSQL+GAP model trained 385

on Spider (Shi et al., 2021). 386

• RATSQLGN: The RATSQL+GAP+NatSQL 387

model trained on NatSQL (Gan et al., 2021b). 388

• RATSQLGNS: The modified RAT- 389

SQL+GAP+NatSQL model trained on Spider-SS, 390

as discussed in Section 4. 391

5.2 Dataset Analysis 392

Spider-SS. Table 2 presents the difference be- 393

tween the SQL in Spider and the SQL generated by 394

NatSQL in Spider-SS. Our evaluation results are 395

lower than the original NatSQL dataset (Gan et al., 396

2021b) because the Spider-SS uses equivalent SQL 397

and corrects some errors, as discussed in Section 398

2.3. Most equivalent and corrected SQL cannot get 399

positive results in exact match metric, while a small 400

part can not either in execution match. Therefore, 401

the model trained on Spider-SS may not be ideal for 402

chasing the Spider benchmark, especially based on 403

the exact match metric. Similarly, the RATSQLG 404

extending NatSQL had achieved a previous SOTA 405

result in the execution match of the Spider test set 406

but get a worse result than the original in the exact 407

match (Gan et al., 2021b). Thus, we recommend 408

using NatSQL-based datasets to evaluate models 409

trained on NatSQL. 410

Spider-CG. Table 3 presents the difficulty dis- 411

tribution of five different evaluation sets. The dif- 412

ficulty criteria are defined by Spider benchmark, 413

including easy, medium, hard and extra hard. Ex- 414

periments show that the more difficult the SQL is, 415

the more difficult it is to predict correctly (Wang 416

et al., 2020; Shi et al., 2021; Gan et al., 2021b). 417
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It can be found from Table 3 that the difficulty418

distribution of CG-SUBT and CG-SUBD is simi-419

lar to that of SpiderD. The similar distributions420

among CG-SUBT, CG-SUBD, and SpiderD sup-421

port the view discussed in Section 1 that the ex-422

amples generated by the substitution method are423

in-distribution.424

On the other hand, the difficulty distributions of425

CG-APPT and CG-APPD are obviously different426

from that of SpiderD. Due to appending the sub-427

sentence, the NL and SQL in CG-APP become428

more complex, where the proportion of SQL in429

extra hard increased significantly, while easy was430

the opposite.431

5.3 Sentence Split Algorithm Evaluation432

We generate the Spider-CG based on the combina-433

tion of Spider-SS sub-sentences split by the algo-434

rithm introduced in Section 2.2. We can reuse this435

algorithm to split the sentence in Spider-CG and436

then compare the splitting results with the Spider-437

SS sub-sentences to evaluate the stability of the438

splitting algorithm. We consider that a deviation439

of one or two words in the splitting result is ac-440

ceptable. For example, in Figure 1, we consider441

that putting the comma of the third sub-sentence442

into the second sub-sentence does not change the443

meaning of sub-sentences, same for moving both444

the comma and the word ‘and’.445

Table 4 presents the similarity between sub-446

sentences in Spider-SS and Spider-CG, which are447

generated by the same split algorithm under the448

deviation of one or two words. The similarity ex-449

ceeds 90% in all evaluation set when two deviation450

words are allowed. Considering that the model451

trained on the Spider-SS does not require consis-452

tent split results, as discussed in Section 2.2, the453

similarity results of the splitting algorithm are good454

enough. The similarity of CG-SUB is higher than455

that of CG-APP, which means the more complex456

the sentence, the greater the challenge to the al-457

gorithm. Although the algorithm has been refined458

on the training set, the similarity between training459

and development in CG-SUB and CG-APP is close,460

showing that the algorithm performs consistently461

for unseen datasets. In summary, we consider that462

as long as the sentences are not more complex than463

CG-APP, the algorithm can be used stably in other464

text-to-SQL datasets.465

Dataset Deviation <= 1 Deviation <= 2
CG-SUBT 93.2% 94.4%
CG-SUBD 92.9% 94.1%
CG-APPT 86.0% 90.4%
CG-APPD 88.9% 92.6%

Table 4: The similarity between sub-sentences in
Spider-SS and Spider-CG generated by the same split
algorithm under the deviation of one or two words.

Approach SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

RATSQL 72.0% 79.5% 72.0% 45.1% 47.2%
RATSQLG 72.7% 80.9% 70.3% 45.2% 44.2%
RATSQLGN 73.9% 90.2% 75.0% 67.8% 60.5%
RATSQLGNS 74.5% 91.4% 76.7% 82.5% 68.3%

Table 5: Exact match accuracy on evaluation sets.

5.4 Model Results 466

Table 5 presents the exact match accuracy on the 467

five different evaluation sets. Specifically, the 468

RATSQLGNS consistently outperforms other mod- 469

els. We use the sentence split algorithm to split 470

every sentence before inputting the RATSQLGNS. 471

Although there are some un-similar splitting results, 472

it did not prevent the RATSQLGNS from getting 473

good performance. RATSQLGNS and RATSQLGN 474

have close results in the in-distribution dataset, 475

i.e., SpiderD, CG-SUBT, and CG-SUBD, but 476

the RATSQLGNS significantly improves over 477

RATSQLGN on the OOD dataset, i.e., CG-APPT 478

and CG-APPD. The results demonstrate that the 479

sub-sentence-based method can improve the gener- 480

alization performance. 481

The evaluation results of all models in SpiderD 482

and CG-SUBD are close, which further confirm 483

that the sub-sentence substitution method gener- 484

ates in-distribution data in a cross-domain text-to- 485

SQL setting. In the two OOD datasets, CG-APPT 486

and CG-APPD, the performance of all models has 487

dropped by about 10% to 30%. 488

Although the performance of all models on 489

SpiderD is close, the performance of RATSQLGN 490

and RATSQLGNS is significantly better in the 491

rest four datasets. One of the reasons is that 492

RATSQL and RATSQLG are trained on SQL while 493

RATSQLGN and RATSQLGNS use NatSQL for 494

training. As discussed in Section 5.2, since the 495

training data of Spider and Spider-SS are about 496

10% different, this leads to the performance degra- 497

dation in the model trained on Spider when eval- 498

uated on the SQL generated by the NatSQL of 499

Spider-SS, and vice versa. On the other hand, ex- 500
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Approach SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

RATSQLGN 75.8% 86.7% 78.0% 70.4 % 68.9%
RATSQLGNS 76.7% 88.3% 80.4% 78.8% 75.1%

Table 6: Execution match accuracy on evaluation sets.

periments in (Gan et al., 2021b) show that Nat-501

SQL improve the model performance in extra hard502

SQL. Therefore, RATSQLGN and RATSQLGNS503

suffer less performance degradation in CG-APPT504

and CG-APPD than RATSQLG and RATSQL.505

Since RATSQL and RATSQLG do not sup-506

port generating executable SQL, we compare507

the execution results between RATSQLGN and508

RATSQLGNS in Table 6. RATSQLGNS again con-509

sistently outperform the RATSQLGN.510

6 Related Work511

Text-to-SQL translation. To achieve text-to-512

SQL translation, researchers have built various513

benchmarks (Iyer et al., 2017; Ana-Maria Popescu514

et al., 2003; Tang and Mooney, 2000; Giordani515

and Moschitti, 2012; Li and Jagadish, 2014; Yagh-516

mazadeh et al., 2017; Zhong et al., 2017; Yu et al.,517

2018b). In particular, most recent works focus518

on improving the performance on Spider bench-519

mark (Yu et al., 2018b), where models are required520

to generate complex SQL in cross-domain setting.521

Among various model architectures (Guo et al.,522

2019; Zhang et al., 2019; Wang et al., 2020), most523

of them have implemented the pre-training method,524

including the latest state-of-the-art model (Scholak525

et al., 2021; Cao et al., 2021), where Yu et al. (2021)526

and Rubin and Berant (2021) augment the text-to-527

SQL data for pre-training.528

Data augmentation for text-to-SQL models.529

Data augmentation has been commonly used for530

improving performance (Xiong and Sun, 2019; Li531

et al., 2019). In the context of text-to-SQL genera-532

tion, Yu et al. (2018a) generate synthetic training533

samples from some pre-defined SQL and NL ques-534

tion templates. Parikh et al. (2020) introduces an535

table-to-text dataset with over 120,000 examples536

that proposes a controlled generation task: given537

a Wikipedia table and a set of highlighted table538

cells, produce a one-sentence description. Yu et al.539

(2021) sample from the given examples and then540

give a large number of tables to generate new syn-541

thetic examples. Shi et al. (2021) present a model542

pre-training framework that jointly learns repre-543

sentations of NL utterances and table schemas by544

leveraging generation models to generate pre-train 545

data. 546

Compositional generalization for semantic 547

parsing. Compositional generalization for se- 548

mantic parsing has captured wide attention recently 549

(Finegan-Dollak et al., 2018; Oren et al., 2020; 550

Furrer et al., 2020; Conklin et al., 2021). Most 551

prior works on text-to-SQL tasks focus on the cross- 552

domain generalization, which mainly assess how 553

the models generalize the domain knowledge to 554

new database schemas (Suhr et al., 2020; Gan et al., 555

2021a). On the other hand, Shaw et al. (2021) in- 556

troduces TMCD splits for studying compositional 557

generalization in semantic parsing, where they aim 558

to maximize the divergence of SQL compounds 559

between the training and test sets. However, this 560

method does not support the benchmark construc- 561

tion for cross-domain out-of-distribution composi- 562

tion generalization evaluation. 563

Our model is inspired by prior works on neural 564

parsers constructed to capture granular informa- 565

tion from a whole. Yin et al. (2021) describe a 566

span-level supervised attention loss that improves 567

compositional generalization in semantic parsers. 568

Herzig and Berant (2021) propose SpanBasedSP, 569

a parser that predicts a span tree over an input ut- 570

terance, and dramatically improves performance 571

on splits that require compositional generalization. 572

Chen et al. (2020) propose the Neural-Symbolic 573

Stack machine (NeSS), which integrates a symbolic 574

stack machine into a seq2seq generation frame- 575

work, and learns a neural network as the controller 576

to operate the machine. 577

7 Conclusion 578

We introduce Spider-SS and Spider-CG for mea- 579

suring compositional generalization of text-to-SQL 580

models. Specifically, Spider-SS is a human-curated 581

sub-sentence-based text-to-SQL dataset built upon 582

the Spider benchmark. Spider-CG is a synthetic 583

text-to-SQL dataset constructed by substituting 584

and appending sub-sentences of different sam- 585

ples, so that the training and test sets consist 586

of different compositions of sub-sentences. We 587

found that the performance of previous text-to- 588

SQL models drop dramatically on the Spider- 589

CG OOD examples, while modifying the RAT- 590

SQL+GAP+NatSQL model to fit the segmented 591

data of Spider-SS improves compositional general- 592

ization performance. 593
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