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ABSTRACT

Flow-based generative models refer to deep generative models with tractable like-
lihoods, and offer several attractive properties including efficient density estima-
tion and sampling. Despite many advantages, current formulations (e.g., normaliz-
ing flow) often have an expensive memory/runtime footprint, which hinders their
use in a number of applications. In this paper, we consider the setting where we
have access to an autoencoder, which is suitably effective for the dataset of in-
terest. Under some mild conditions, we show that we can calculate a mapping
to a RKHS which subsequently enables deploying mature ideas from the kernel
methods literature for flow-based generative models. Specifically, we can explic-
itly map the RKHS distribution (i.e., approximate the flow) to match or align with a
template/well-characterized distribution, via kernel transfer operators. This leads
to a direct and resource efficient approximation avoiding iterative optimization.
We empirically show that this simple idea yields competitive results on popular
datasets such as CelebA, as well as promising results on a public 3D brain imag-
ing dataset where the sample sizes are much smaller.

1 INTRODUCTION

A flow-based generative model refers to a deep generative model composed using a set of invertible
transformations. While GANs and VAEs remain the two dominant generative models in the com-
munity, flow based formulations have continually evolved and now offer competitive performance
in applications including audio/speech synthesis [Kim et al.| (2019; 2020), text to speech |[Miao et al.
(2020), photo-realistic image generation [Kingma & Dhariwal| (2018)), and learning cross-domain
mappings [Mahajan et al.| (2020). An important property of such models is the explicit use of a
tractable likelihood function, which enables leveraging maximum likelihood principles during train-
ing as well as efficient/exact density estimation and sampling. The formulation is invertible by design
but this involves higher memory requirements. For example, permitting the bijective mapping to be
expressive enough involves increases in the memory footprint |Lee et al.| (2020); Kim et al.| (2019),
an issue that is a focus of several recent results|Jacobsen et al.| (2018)); |Chen et al.|(2016). Moreover,
in these models we need to calculate the inverse and backpropagate through all invertible transfor-
mations during training. Calculating the inverse incurs a multiplicative increase in cost, usually as a
function of the feature dimension, relative to the calculation of the likelihood, an issue addressed to
some extent in|Dinh et al.|(2017); [Kingma & Dhariwal| (2018).

At a high level, a flow-based generative model bijectively pushes the data density from a source to a
target, i.e., from a known simple distribution to an unknown (may be intractable) data distribution.
During training, we seek to learn this bijective mapping by maximizing the likelihood of the mapped

Figure 1: Representative generated images (of resolution 128 x 128) using our proposed algorithm.



Under review as a conference paper at ICLR 2021

training samples. In the generation step, we need the inverse of this mapping (given such an inverse
exists) to map from a sample drawn from the known distribution back to the input (data) space.
When the Jacobian of the transformation mapping can be efficiently computed or estimated (e.g.,
having a lower triangular form), directly optimizing the likelihood of the training samples is possible.
However, in training flow-based generative either we must restrict the expressiveness at each layer
or fall back on more numerically heavy solutions, see (Chen et all 2018)). Next, we discuss how
several existing results may provide a simplification strategy.

1.1 RELATED WORKS AND RATIONALE

Our starting point is the existing literature on Koopman and Perron-Frobenius operators [Song et al.
(2009); [Fukumizu et al.| (2013)); Klus et al.| (2020), that offers an arguably easier, optionally linear,
procedure that can be used to analyze non-linear dynamics of measurements that evolve temporally.
For instance, as described in[Arbabi| (2018)); [Lusch et al.| (2018]), if we view the data/measurements
as evaluations of functions of the state (of a dynamical system) — where the functions are also called
observables — then the entire set of such functions forms a linear vector space. Transfer operators
on this space describe a linear evolution of the dynamics, i.e., finite-dimensional nonlinear dynam-
ics are replaced by infinite-dimensional linear dynamics [Brunton et al.| (2017), perfectly evolving
one set of measurements to another over time if the space can be well characterized. Of course,
this is not practically beneficial because constructing such infinite-dimensional spaces could be in-
tractable. Nonetheless, results in optimal control demonstrate that the idea can still be effective in
specific cases, using approximations with either spectral analysis of large but finite number of func-
tions |Williams et al. or via a search for potential eigenfunctions of the operators using neural
networks|Li et al.|(2017); Lusch et al.[(2018). Within the last year, several results describe its poten-
tial benefits of such operators in machine learning problems as well [Li et al.| (2020); [Azencot et al.

(2020).

If we consider the transformations that flow-based generative models learn as a non-linear dynamics,
also used in [2018), a data-driven approximation strategy one can consider is to map the
given data (or distribution) into infinite dimension space of functions through the kernel trick, which
may allow the use of well known results based on kernel methods, including old and new results
on powerful neural kernels [Neal| (1994); Jacot et al.| (2018); [Arora et al.| (2019). Utilizing these
results, a mean embedding on the corresponding Reproducing Kernel Hilbert Space (RKHS) would
correspond to the distribution in the input space (the distribution from which input samples are
drawn). Therefore, the problem of identifying a nonlinear mapping (or dynamics) in the input space
(going from an intractable distribution to a known distribution or vice-versa) reduces to estimating
a linear mapping operator between two empirical mean kernel embeddings where recent results on
kernel transfer operators (2020) could be relevant or applicable. However, due to the high
variability of the data, estimation of the distribution directly in the input space, as we will see shortly,
can be difficult. But, if the input space is low-dimensional or otherwise structured, this problem could
be mitigated. Fortunately, for many image datasets, one can identify a low-dimensional latent space
such that, in theory, the above pipeline could be instantiated, enabling us to learn a transfer operator.

Conceptually, it is not difficult to see how the foregoing idea could potentially help (or simplify)
flow-based generative models. In principle, using a transfer operator, one could push-forward the
input data distribution to a target distribution of our choice, if both have already been mapped to
a sufficiently high dimensional space. If — additionally — the operator could also be inverted, this
strategy may, at least, be viable. Of course, several key components are missing. We need to (a) as-
sess if setting up a suitable infinite dimensional space is possible, (b) identify if we can estimate the
transfer operator and then finally, (¢) check if the procedure works at all. In the following sections
of the paper, we will verify these key components and show that using only a linear operator yield
surprisingly competitive results on several image generation tasks.

2 PRELIMINARIES

Auto-encoders. Images often lie close to an (unknown) lower dimensional manifold M C R™ such
that dim(M) < m, and operating with densities in a lower dimensional setting is often much easier.
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VAE:s leverage this explicitly via auto-encoders. If the parameterized empirical density is p,(z), in
VAEs, we write it as [ p,(z|2)p(z)dz where z is the low dimensional representation with a suitable
prior. We then use a decoder distribution ¢, (z|z) and an encoder distribution p,(x|z) and train the
parameters 7 and 7'. In practice, p,(-) and ¢,(-) are assumed to be Gaussian, but it is known that
jointly fitting the manifold as well as regressing to a particular prior distribution can be challenging
in VAEs |Kingma et al.|(2016); Dai & Wipf (2019). Now, consider the following approach, where we
do not impose a distributional assumption on z. If a well-regularized auto-encoder is able to capture
information about the data generating density |Alain & Bengio| (2014), we can think of z as the
input measurements (likely, meaningful representations from the input data) which is subsequently
mapped to an infinite dimensional space (of observables of these measurements). Now, if we could
push-forward the embedded RKHS distribution to the RKHS mapping of a simpler distribution,
similar to flow-based generation, one could easily sample from the simple (e.g., standard normal)
distribution and transform it via the learned mapping to samples on the latent space. In summary,
instead of explicitly searching for the eigenfunctions, we propose to Step 1: embed the density from
an auto-encoder into a RKHS, Step 2: learn a kernel transfer operator in RKHS in one step. In the
remainder of this paper, we will provide the details to operationalize this idea and show that this
simple approach, in fact, performs surprisingly well with highly favorable computational properties.

We now introduce the definition of reproducing kernel Hilbert space (RKHS) and the kernel embed-
ding of probability distributions which are the building blocks of this paper.

Definition 1 (RKHS |Aronszajn| (1950)). Given a set X and ‘H to be a set of functions ¢ : X — R,
H is called a reproducing kernel Hilbert space (RKHS) with corresponding product (., .}y if there
exists a function k : X x X — R (called a reproducing kernel) such that (i) VX € X, ¢ €

H, p(X) = (¢, k(X, )y (i) H = span({k(X,.), X € X}), where = is the completion.

The kernel mean embedding can be used to embed a probability measure in a RKHS.

Definition 2 (Kernel Mean Embedding |Smola et al.| (2007)). Given a probability measure p on X
with an associated RKHS H equipped with a reproducing kernel k such that sup xc» k(X,X) <
oo, the kernel mean embedding of p in RKHS H, denoted by py € H, is defined as py =
[ k(X,.)p(X), and the mean embedding operator € : L*(X) — H is defined as py = Ep.

For a characteristic kernel, the mapping from an input space distribution to its corresponding kernel
mean embedding is one-to-one. Thus, two distributions in the input space are identical if and only
if their kernel mean embedding matches exactly. This property enables Maximum Mean Discrep-

ancy (MMD) for distribution matching. For a finite number of samples {Xi}i.vzl, drawn from the

probability measure p, an empirical estimation of pyy is fiyy = % Zi\;l k(X .).

Definition 3 (Flow-based generative model |Dinh et al.|(2014)). A flow-based generative model ex-
plicitly learns the data distribution by trying to bijectively map it to a tractable density via invertible
transformations. Formally, given a random variable z following a tractable density, i.e., z ~ py(z),
a flow-based model learns an invertible mapping fs such that the data sample x = f;(z) and the

corresponding data distribution, pz(x) = f.pe(z), where, f. = \%| is the push-forward operator.

3 A SIMPLIFICATION STRATEGY FOR FLOW-BASED GENERATIVE MODELS

Flow-based generative model directly learn the mapping from a known distribution to the target data
distribution in the input space through likelihood maximization. During image generation, the fact
that data may often lie on or near a low-dimensional manifold is usually not explicitly leveraged.
If one could estimate this manifold perfectly, we could uniquely identify a distribution in the input
space. But often, the manifold can only be empirically estimated. Our simplifying assumption here is
that with some structural or smoothness constraints on the distribution on the latent space, we should
still be able to approximately identify the true distribution. VAEs use this intuition to make the
latent distribution consistent with a standard normal distribution, and several contemporary works
also propose estimating flow on latent spaces Kingma et al.| (2016)); Mahajan et al.| (2020). We will
follow this rationale and use an autoencoder — here, benefiting from the reduced variance in the
latent space, our approach will effectively learn the mapping from a known simple distribution to
the empirical latent distribution.
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Structure of the latent space. We will assume that a suitable auto-encoder is either provided or can
be successfully trained from scratch for the data at hand. Given measurements from an input data
space, M, we seek to learn a mapping £ : M — £ C R4, with d < m, where M C R™ and
L is the latent space. Additionally, we also learn the inverse of the mapping F which is denoted by
D : L — M,i.e., werequire D o E = id (identity). Further, we require £ to be a bounded subset
of R%. For simplicity, we model it as a unit hypersphere S~1. This essentially ensures that L is
(a) bounded (b) geodesically complete (c¢) geodesically convex space.

b NxN o for 1 . bx N
X 0D VX1 perator learning:
' ® O sample
N xd (pre )" J encoder
- K(D ) D ) KLKZI :- ( - +”€I)71 [\ decoder
Nxd 3 1atent
2t Generation: El latent kernel
N d - prior kernel
N x ¢
=K (D ) D ) N xd D prior sample
Tyl — 1 Ko1K .
Nxd V=K K, K D D ) D new prior
bxd sample

(a) (b) (c) (d)

Figure 2: A description of generative procedure in our method. (a) schematic of an auto-encoder (b) kernel
representations of latent space and noise from prior (c) operator learning and inferencing (d) solve pre-image
and decode the generated latent representation to obtain final generation result in data space

Remark 1. A bounded latent space with specified structure provides several benefits over one without
any such constraints. First, it guarantees that the Gram matrix constructed with a (positive-definite)
kernel function is bounded, which is required for a valid empirical estimation of the mean embedding
in Def. 2][Song et al.| (2009). Moreover, the projection onto the hypersphere also helps ensure the
positive-definiteness of kernels constructed using the latent representations, which is discussed in
[3:2] At this point, the requirement of geodesic completeness and convexity may not be apparent but
these properties will be useful for sample generation.

3.1 USING TRANSFER OPERATORS TO ESTIMATE FLOW

If training the auto-encoder provides us a suitably well-structured latent space, as desired, we can
now study how the density transfer operators can help transfer a tractable density to the density on
the latent space, i.e., mimicking the mechanics within a flow-based generative model.

Transfer operators. Let { X;},., be a stationary and ergodic Markov process defined on X'. Then,
we can define the transition density function, p, (with time lag 7), by

P[Xi1r € A|Xy =x] = / p-(y|z)dy, where A is a measurable set on X'. (1)
A

Let L*(X) be the space of probability densities. We wish to emulate the dynamical system of interest
by instead utilizing a well-known transfer operator, namely the (Ruelle) Perron-Frobenius operator
Mayer| (1980), where the “transfer” terminology originates from statistical mechanics. Notice that
the notion of ¢ in our work is not literal - it merely serves as a convenient way to describe the transfer
operators in the context of evolution of states, and is also analogous to how flow is considered
explicitly as continuous dynamical systems in Neural ODE (Chen et al.|(2018))

Definition 4 (Perron-Frobenius operator Mayer| (1980)). The Perron-Frobenius (PF) operator P :
LY(X) — LY(X) push-forwards or transfers a probability density p; € L'(X) given the lag T as

(Ppe) (y) = [ pr(ylz)pe(x)da.

Remark 2. 1If such an operator can be efficiently estimated, we can use it to transfer the tractable
probability density from a known distribution p; to the target distribution p;;, whose density is
generally unknown. Since we do not make any distributional assumptions on the target distribution,
a linear solution to such dynamics in the input space, in general, may not exist. Nevertheless, in
spaces spanned by a sufficiently large set of non-linear functions, or specifically, an RKHS, one can
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potentially identify a linear operator that is equivalent to a highly non-linear operator in the input
space. In (2020), the authors showed two important results that define such operators
in RKHS in terms of covariance and cross-covariance operators, namely kernel Perron-Frobenius
operator (kPF) P and embedded Perron-Frebenius operator (ePF) Pg.

Let X ~ p; and Y ~ pyy . be observations at time ¢ and ¢ + 7. Let H and G be the RKHSs associ-
ated with a certain kernel k, ¢y and ¢¢ be their respective feature mapping. The cross-covariance
operator Cy x : H — Gisdefined as Cy x = Eyx [0 (Y) @ ¢ (X)], and the covariance operator
Cxx : H — H is defined analogously. If both densities of interest live in the same RKHS, that
is, py € H and p,, € H, Pj, can be used to push forward the density such that p,, = Pxp;.
However, in our setting, P}, is not directly applicable since the densities we are interested are ele-
ments of L!(X). Therefore, the densities need to be first embedded into the RKHS and can then be
transferred using the Pg in the embedded form, namely Ep;1, = (Pg o E)py.

Definition 5 (Embedded Perron-Frobenius operator (2020)). Given p, € L'(X) and
Di+r € Ll(X). Let jip = Epy and piy4r = Epiyr be their respective kernel mean embedding. The

kernel Perron-Frobenius (kPF) operator, denoted by Ps : H — G, is defined by . = Pepy =
Cyx(Cxx + el)™ s (2), under the condition that (i) Cx x is injective (i) j1; € Range(Cxx)
(i) ElY|X =] € H.

Notice that the above defined Pg essentially has the same form as the kernel conditional embedding
in [Song et al]] (2013). While the first two conditions in the above definition can be satisfied (see
Theorem 2 of [Fukumizu et al|(2013)), the last condition requires 3f € H s.t. Va, f(z) = E[Y|X =
], which highlights the importance of the kernel choice. With this operator, we can transfer p; to
D4~ in their embedded forms. The following proposition demonstrates the implication of using the
embedded Perron-Frobenius operator.

Proposition 1 (Klus et al.|(2020)). With the above notations, £ o P = Pg o &.

Remark 3. The commutativity in the proposition shows that the transferred kernel mean embedding
of p; by the linear operator we constructed in RKHS is equivalent to the kernel mean embedding of
transferred p, by a highly nonlinear operator in the input space.

Since py4., is generally intractable, the operator can only be empirically estimated. Given samples
X = {z;}Y, ~pY andY = {y;}Y, ~ pf. ., let Dy and O denote the feature maps of X
and Y, respectively. The sample estimate of the embedded Perron-Frobenius operator is given by
Pe = Cyx(Cxx +el)™t = ¢ (Gxx + Nel) ' ®% (3), where Gxx = &Py is the Gram
matrix of @y . To generate a sample of the transferred density which is approximately p,., using
a sample z* of p;, we can construct ¢g(y*) = Peop(xl) = ®g(Gxx + eI) " k(X,z*). The
distribution of the resulting samples has the following property,

Theorem 1 (Proof in E[) Let - be the kernel mean embedding of the true distribution p; ;.
The resulting empirical mean embedding fiy, ., = % S da(yy) satisfies E[fif, ] = putr

Theorem (1| simply implies that P fi,, is an unbiased estimator of the kernel mean embedding of
the true distribution on the latent space. If the kernel is characteristic and the exact preimage exists,

then ¢ Y(Pegpa(x*)) ~ pesr asymptotically, which concludes our main result.

3.2 KERNEL TRANSFER OPERATOR FOR SAMPLE GENERATION

We now present an algorithm for sample generation assuming that a pre-trained auto-encoder is
available. The detailed algorithm is described in Figure 3] The idea is simple yet powerful: we
first generate n samples from a simple distribution restricted to a hypersphere (which we model
as a uniform distribution on S™~1). Then, we will construct the operator on RKHS described in
the previous section using the sampled points and the latent representations of training samples. At
inference time, we will use the operator to transfer new points sampled from the simple distribu-
tion to the target feature map. Since it is not practically possible to compute the preimage directly
from the infinite-dimensional feature map, we left multiply with ® and use the geodesic interpola-
tion (gl) module to construct an approximate preimage. Finally, we decodes the interpolated latent
representation to the image space. A visual description is shown in Figure 2}
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Properties. If K 7 is indeed invertible, the empirical mean (RC R e

eml?eddlng of sgmples ger.lerated.usmg thc? proposed al- (@ Let the imputs be {L,}7_, C S~ and {us}_.
gorithm (assuming the preimage is exact) is equal to the | ) mitalizem =1, =1
empirical mean embedding of the latent representations, | (c) Forj=2,--- 5 .
indicating a match in distribution. Further, we use locally- Eﬁ; Isje;at:e 9/ Ty s 6 = arccos(m ;).
weighted Fréchet mean on sphere to construct approxi- "

mate preimage of sample in RKHS. Since a closed-form m= ) (msin ((1—1)0) +1; sin (6)) .
solution for the weighted Fréchet mean does not exist on
the sphere, we propose to use a simple and efficient al-

gorithm, namely the geOdeSiC interp()lation (gD Figure 4: The geodesic interpolation algorithm
(2015)), that uses the geodesic on a hypersphere to
iteratively computes the weighted Fréchet mean (1948) of top -y latent representations (see

Fig. ). The algorithm has the following properties: (i) the geodesically completeness of the latent
space guarantees that the geodesic interpolation is well-defined (ii) the geodesic convexity of the la-
tent space guarantees that the output of “gI” algorithm lies on the latent space (iii) the “gI” algorithm
converges asymptotically to the Fréchet mean Salehian et al.| (2015)).

Choice of Kernels. In order to be able to linearize the dynamics between the prior and the target
distribution, one must first identify a set of nonlinear basis functions such that the corresponding
dynamics lies in its span. Known results in dynamical systems guarantee the existence of such a
linear operator, such as the Koopman operator (1931), given an infinite set of basis func-
tions. But rather than identifying certain modes that best characterize the dynamics
(2015); |Brunton et al.| (2016) we care most about minimizing the error of the transferred density,
and whether the span of functions is rich/expressive enough and can be efficiently computed. There-
fore, the choice of kernel is important since it directly determines the family of functions spanned
by the operator. We empirically evaluate the effect of using several different kernels by a simple
experiment on MNIST. The MNIST digits are first trained for 100 epochs using an autoencoder with
latent space restricted to S2, then samples are generated using procedure described in Fi gureusing
the respective kernel function. Subplot (b) and (c) show the generated samples when using Radial
Basis Function (RBF) kernel and arc-cosine kernel, respectively. Observe that the choice of kernel
has a clear influence on the posterior, but and a kernel with superior empirical behavior would be
desirable.

NTK. We use Neural Tangent Kernel (NTK) Jacot et al.| (2018) as our embedding kernel due to
the following properties: (a) NTK, in theory, corresponds to a trained infinitely-wide neural net-
work, and can be non-asymptotically approximated |Arora et al.| (2019). (b) For well-conditioned
inputs (i.e., no duplicates) on the sphere, the positive-definiteness of NTK is proved in
(2018). Therefore, invertibility of G x x is guaranteed if the sampling distribution is restricted on a

(d) Return m as the output.

Generator

(a) Let z* be a sample drawn from uga-1. We first post-multiply with k(z*,.) to get
Pek(z*,.) = ®¢ (Gxx + Nel) ' [k(zi,2*)]" (4), where, (@) Gxx = [k (24, 2;)).
() 26 = [k(L;,.)]"

(b) Take inner product, (.,.)g of ®¢ with 73Jc(z*7 .) to get
(@, Pek(z*,.)) = dLdo (Gxx + Nel)™! [k(zi,2%)] " = [k(1,,1,)] -

(Ik (zi,2;)] +Nel)™! [k(zg,2*)]| = KL(Kz + Nel)™'vT, where K; =
(k(1,,1,)] € RN and K = [k (24, 2;)] € RV*V; v = [k(zy,2*)] € RV.

(c) Notice that both K7, and (K7 + Nel)~! can be pre-computed.

) Let s = (®g,P.k(z",.)). Let {lj};.yzl be the latent representations of v > 0 data
samples with largest inner products in s (in descending order).

(e) Return the generated sample X = D (gI ({lj }]7:1 Aw; };:1)) Here, D denotes the

decoder function, w; = si/3; s, gI(.,.) is the geodesic interpolation algorithm (as
presented in Fig.[4).

Figure 3: Step by step details of our sample generation algorithm.
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Figure 5: 10k samples from MNIST dataset (left to right) (a) projected on S? shown in (6, ¢) using auto-
encoder, and 10K generated samples using (b) RBF (c) arccos (d) NTK. Minimum regularization has been
applied to all kernels to ensure invertibility. Color of sampled points represents the class of their *nearest’ point
in the feature space.

hypersphere, which is true by our modeling choice. (¢) Unlike other parametric kernels such as RBF
kernels, NTK is less sensitive to hyperparameters, as long as the number of units used is large enough
Arora et al.[(2019). The embedding of generated samples for MNIST using NTK is also shown in
Fig.[5] Observe that the sample distribution more closely resembles the original distribution.

Nystrom’s approximation. A known bottleneck with kernel based methods is instantiating a kernel
matrix whose size depends on the dataset size. Here, we use use the Nystrom’s method
VXN

(1930) to obtain approximate kernel matrices. More specifically, a kernel matrix K € R can

be approximated by K = KS (STKS)T STK, where S € RN*# is the sampling matrix. To
minimize information loss, we use the RecursiveRLS-Nystrém algorithm proposed in
to sample S based on the approximate ridge leverage scores. We refer the readers to
the work by |[Musco & Musco|(2017)) for detailed algorithm. Notice that after the approximation, we
only need to store K.S € R™V>% and ST K'S € R*** matrices to obtain the Nystrém approximation
of K, bringing down the memory complexity from O(N?) to O(Ns + s?). When s < N, the
savings are significant.

4 EXPERIMENTAL RESULTS

MNIST CIFAR CelebA

We qualitatively evaluate the proposed gen- WGAN 6.7 55.2 41.3
erative model on two types of applications, WGAN-GP 20.3 558 30.3
(a) datasets with a sufficient number of sam- Vanilla VAE 13.7 1110 o2

Nt Two-stage VAE 18.3 110.3 44.7
ples to model the data distribution (b) datasets SRAE sund interp 785 104.7 643
with fewer number of samples so that learn- SRAEgiow 26.1 1109 509

ing the data distribution is harder . In the first SEQERBHPF 10 (ours) %4-7 345 5717
case, we use standard vision datasets, including Sli AEx TA1/<T fP": ; yi 10:;5”0(1:)';:2&) 12(9) 1 13431 ggg
MNIST, CIFAR10, and CelebA, where the num- - -
ber of data samples is larger than the dimension. Table 1: Comparative FID values. SRAE in-
In order to handle the more challenging second dicates an autoencoder with hyperspherical la-
case, we use a dataset of T1 Magnetic Reso- tent space and spectral regularization following
nance (MR) images from a public brain imag- Ghosh et al.|(2020). Subscripts indicates the cor-

ing project called Alzheimer’s Disease Neuro- responding sampling techniques on latent space.
Imaging Initiative (ADNI). rand_interp: geodesic interpolation with uniform

weights among 10 uniformly sampled latent rep-

The purpose of the first set of experiments is t0 resentations. Glow: samples from a Glow model
show that the proposed method yields competi- trained on latent representations

tive measures compared to other non-adversarial

generative methods while enjoying the benefit of one step density estimation. In the second setting,
our goal is to demonstrate that unlike traditional non-adversarial models, our proposed method pro-
duces reasonable sample generation both quantitative and qualitatively.

Computer vision datasets: We evaluate the quality by calculating the Fréchet Inception Distance
(FID) [Heusel et al.| (2017)). All models share the same encoder-decoder architecture and trained for
100 epochs. Subscript 10k indicates the kPF is estimated using 10000 latent points, whereas Nystrom
indicates approximation using 4000 landmark points from all latent points. Comparative results are
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shown in Table [T} We compare our results to vanilla VAE [Kingma & Welling| (2013)), 2-Stage VAE
Dai & Wipf (2019)), and Glow + AE (denoted by SRAE ;.. in the table). FIDs of two best GAN
methods are also reported from [Dai & Wipf] (2019) for comparison (note that the reported scores
have been optimized by large-scale neural architecture search). We observe that for images with
structured feature spaces, e.g., MNIST and CelebA, the proposed method matches or outperforms
other non-adversarial generative models. On the contrary, on images with less structured features
such as CIFAR10, our model performs worse. We suspect that this is due to a non-smooth latent
space, and we evaluate this by showing that visually similar images picked by our operators decodes
to out-of-distribution (blurred-out) images (see Fig.[6). Here, we use a regularized AE Ghosh et al/|
(2020) with a latent space restricted to the hypersphere (denoted by SRAE).

Figure 6: Generations (in red box) and training samples corresponding to the top-5 latent represen-
tations used in geodesic interpolation. It can be observed that the samples with top kernel values
indeed share high visual similarity.

Further, we present qualitative results on CelebA (in Fig. [7), where we compare our kPF based
model with other density estimation techniques on the latent space. Observe that our model gener-
ates comparative visual results with SRAEg;,.,. Hence, when a sufficient number of samples are
available, our method performs as good as the alternatives, which is beneficial given the efficient
training stage. We present training time comparison and show that our proposed method is about
40 x faster as in Fig.

Figure 7: Comparison of different sampling techniques using AE trained on CelebA 64x64. Left to
right: (1) Interpolation among 10 random latent points (2) samples of SRAE+Glow (3) samples of
two-stage VAE (4) samples of kPF-flow using 10k latent points

Brain Imaging dataset: In this section, we present results on generating high-resolution (160 x
196 x 160) 3D brain images from ADNI consists of 183 samples from group AD (diagnosed as
Alzheimer’s Disease) and 291 samples from group CN (control normals). In this setting (where
n = 474 < d = 5017600), it is often hard to model the data distribution using either variational
methods or flow-based methods due to the high variance of the data or the memory-inefficiency of
the operations. However, benefiting from the regularized and linear nature of our kernel operator
[Willoughby| (1979); |Arora et al|(2020), we can still generate high-quality samples in such resolu-
tion that are in-distribution. As before, we present the comparative results with respect to the VAE
model. The generated samples presented in Fig. [§] clearly demonstrate that proposed method gen-
erates sharper images. To evaluate whether these results are also scientifically meaningful (and not
merely visually pleasing), we tested consistency between statistical group difference testing on the
real images (groups were AD and CN) and the same testing performed on the generated samples. We
performed a FWER corrected two-sample t-test/Ashburner & Friston| (2000) in a manner consistent
with standard practice [Ashburner & Friston| (2000); Winkler et al.| (2014). The results (see Fig|[g)
show that while there is a deterioration in regions identified to be affected by disease (and different
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across groups), most of the statistically-significant regions from the test on the original images are
preserved in tests performed on the generated images.

Figure 8: Left. Top: data, generated samples of Middle: VAE samples, Bottom: kPF samples. Standard Glow
failed to fit into system memory for image of this resolution. Right. Statistically significant regions Top: data,
Bottom: samples are shown in negative log p-value thresholded at p < 0.01.

Take-home message: We conclude that due to the kernel approach and one-step formulation of the
proposed model, it offers better memory and sample efficiency than other non-adversarial generative
methods. This is useful in many tasks, e.g., medical image analysis, where the number of samples is
usually much less than the dimension of data. Moreover, in case of datasets with larger number of
samples, the proposed method still performs well (and sometimes better) compared to alternatives,
with a sizably smaller resource footprint.

5 DISCUSSION

We have shown that when a dataset allows a low-

dimensional structured latent space representation, a kernel o0 ————
Perron-Frobenius operator can provide an efficient strat- =K nysirom

. . - B Two-Stage VAE (30 epochs)
egy to simplify flow-based generative models to transfer — °°°] == siow zoepocns

the density from a known simple distribution to the empir-
ical data distribution. While the algorithmic simplifications
proposed here can be variously useful, deriving the density
of the posterior given a mean embedding or providing an
exact preimage for the generated sample in RKHS remain
unresolved at this time. While the problem of deriving the
density has been addressed in Schuster et al.|(2020)), iden- o
tifying a pre-image can be hard and often ill-posed. We

also note that our geodesic interpolation only converges Figure 9: Comparision of additional
asymptotically to the weighted Fréchet mean which we use training time to other density estimation
as the approximate preimage, and additional improvements model on the latent space.

on this front are possible.

Comparison of training time

training time (sec)

6 CONCLUSION

In this paper, we show that with the assistance of recent developments in regularized autoencoder and
neural kernels, a linear kernel transfer operator can potentially be an efficient substitute to flow-based
generative models. Our proposed method shows comparable empirical results to other state-of-the-
art generative models on several computer vision datasets, while enjoying higher computational
efficiency. The results on brain imaging data also shed light on the potential application on high-
volume data generation, which are typically hard to model using existing methods.
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A APPENDIX

A.1 PROOF FOR THEOREM[I]

The proof follows easily from the fact that Pg is linear and independent to {z;} ,,
N 1 n R R 1 n
Elpiy.] = E[ﬁ Z Peg(z;)] = E[PS]E[E Z ¢(x;)] = Pepe = pe4r
i=1 i=1

A.2 ABLATION STUDIES

We present ablation studies on MNIST (Fig. [I0),
showing importance and different components of our
proposed method. Our proposed framework in gen-
eral consists of (a) learning latent space (b) estimating
transfer operator using kPF. We replace the first part
in two ways (i) remove AE and directly transfer the

distribution from image space to the known distribu-
tion (ii) replace AE with known invertible basis rep- - =

resentation, e.g., mapping onto Fourier basis . In both
these cases, we observe that the generation quality de- q 3 a 6 O 2 q é
teriorates. Notice that such degradation can be justi-
fied due to the lack of smoothness on the input space.
Next, we fixed the AE and replace the kPF operator
with a normalizing flow model Kingma & Dhariwal

(2018) as transfer operator. Observe that the genera-
tion quality are comparable between the two methods.

Figure 10: Top to bottom: no latent space
with kPF, (2) interpolation in Fourier space,
(3) Glow as transfer operator, (4) kPF as
transfer operator

We further show the advantage of using a regularized MNIST CIFAR CelebA
AE over a regular one. The regularization scheme we SAEwrcirr o 223 1336 412
applied is derived from|Ghosh et al.|(2020), where we  SRAEy;xiprion 15.0 123.3 39.9
apply spectral normalization on all encoder-decoder
transformations. Regularization has been shown to Table 2: vanilla vs. regularized AE.

lead to smoother latent spaces|Alain & Bengio|(2014)),

and therefore is critical in our interpolation-based sampling approach. The effect of such regulariza-
tion can be seen in Table 2] where it leads to higher FIDs in all three datasets using smoother latent
space.

Take-home message: To summarize, the presented ablation study demonstrates the importance of the
latent space as well as the richness of our one-step estimated operator. Moreover, the boundedness
and smoothness of the latent space is crucial as can be justified by replacing AE with a Fourier basis
or by using a regularized AE.

A.3 ADNI DATASET AND BRAIN IMAGE PROCESSING

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can be found at: |.

The T1 MR brain data we use consists of images from 184 subjects diagnosed with Alzheimers’s
disease and 292 control normal subjects. Images were first coregisted to a MNI template and seg-
mented to keep only the white matter and grey matter. Then, all images were resliced and resized to
160 x 196 x 160 and rescaled to the range of [—1, 1]. Voxel-based morphometry (VBM) was used
to obtain the p-value map of data and generated images.
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A.4 FID SCORES ON CELEBA DATASET USING RAE DECODER

WGAN 2-Stage VAE SAE,pr SRAE,pp
FID | 565 45.25 76.1 44.6

Table 3: FID scores using the architecture and training protocol from|Ghosh et al|(2020)

A.5 IMAGE QUALITY EVALUATION
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Figure 11: Randomly picked samples from (1) VAE (2) 2-Stage VAE (3) SAEn7k.kpr 10k (4)

SRAEN7k.kpF 10k- All models trained with the architecture in |Ghosh et al| (2020) without tuning
for hyperparamters

A.6 CHOICE OF vy

In the inference stage, our proposed method finds the approximate preimage of the transferred kernel
embeddings by interpolating among the top y latent representations of the training samples weighted
by their kernel values. The choice of v therefore has implications on the generation quality. From
Figure[T2] we can observe that, in general, FID worsens as  increases. This observation aligns with
our intuition of preserving only the local similarities in kernel embeddings, and similar idea has
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been used in the literature Kwok & Tsang| (2004). However, significantly decreasing ~y leads to the
undesirable result where the generator merely generates the training samples (in the extreme case
where v = 1, generated samples will just be reconstructions of training samples). Therefore, in our
experiments, we choose v = 10 to achieve a balance between generation quality and the distance to
training samples.

—— mnist
cifar
—— celeba64

250

200

150 4

FID

100 4
50 4

///

50

T T T T
100 500 1000 5000

Figure 12: FID versus choice of ~y

A.7 EXPERIMENTAL SPECIFICATIONS

For all experiments in Table [T] except the GAN experiments, we adapted a custom ResNet imple-
mentation where each block has residual connection

— BatchNorm — Swish — 3x3 Conv — BatchNorm — Swish — 3x3 Conv —

The detailed architecture is given by the following table

MNIST [ CIFAR-10 [
5x5 conv, stride 1

CelebA

ResBlockso x 2
ResBlockgy X 2

ResBlockss x 2
ResBlockgy x 2

ResBlockss, x 2
ResBlockgy x 2

Encoder ResBlockisg x 2 | ResBlockiog x 2 | ResBlockiog x 2
ResBlockssg X 2 | ResBlockasg x 2 | ResBlockosg x 2
ResBlocksio x 2

ResBlockssg X 2 | ResBlockasg x 2 | ResBlocksia x 2
ResBlockiog X 2 | ResBlockiag X 2 | ResBlockasg X 2

Decoder ResBlockgy x 2 ResBlockgy x 2 | ResBlockyog X 2

ResBlockso x 2

ResBlockss x 2

ResBlockgy x 2
ResBlockss x 2

5x5 conv, stride 1

Table 4: Detailed network architecture for experiments in Table|1| Subscript denotes the number of
input channels. Upsampling and downsampling are performed using strided convolutions.

We train each model for 100 epochs on every dataset using Adam optimizer |Kingma & Ba| (2014)
with 5 = (0.9,0.999) and batch size of 512. The learning rate starts from le-3 and is halved every
30 epochs. We used implemetation of [Novak et al/ (2020) to estimate the NTK with four fully-
connected layers, each with 10000 units, and Erf activation. VAE and 2-Stage VAE are trained using

learnable-v as in [Dai & Wipf] (2019). For experiments in [A4] and [A.5] we adopted the training
procedure and architecture in|Ghosh et al.|(2020)
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