Kernelized Reinforcement Learning with Order Optimal Regret Bounds

Anonymous Author(s)
Affiliation
Address
email

Abstract

Modern reinforcement learning has shown empirical success in various real world settings with complex models and large state-action spaces. The existing analytical results, however, typically focus on settings with a small number of state-actions or simple models such as linearly modeled state-action value functions. To derive RL policies that efficiently handle large state-action spaces with more general value functions, some recent works have considered nonlinear function approximation using kernel ridge regression. We propose π-KRVI, an optimistic modification of least-squares value iteration, when the state-action value function is represented by an RKHS. We prove the first order-optimal regret guarantees under a general setting. Our results show a significant polynomial in the number of episodes improvement over the state of the art. In particular, with highly non-smooth kernels (such as Neural Tangent kernel or some Matérn kernels) the existing results lead to trivial (superlinear in the number of episodes) regret bounds. We show a sublinear regret bound that is order optimal in the cases where a lower bound on regret is known (which includes the kernels mentioned above).

1 Introduction

Reinforcement learning (RL) in real world often has to deal with large state action spaces and complex unknown models. While RL policies using complex function approximations have been empirically effective in various fields including gaming [1, 2, 3], autonomous driving [4], microchip design [5], robot control [6], and algorithm search [7], little is known about theoretical performance guarantees in such settings. The analysis of RL algorithms has predominantly focused on simpler cases such as tabular or linear Markov decision processes (MDPs). In a tabular setting, a regret bound of $\tilde{\mathcal{O}}\left(\sqrt{H^{3}|\mathcal{S} \times \mathcal{A}| T}\right)$ has been shown for optimistic state-action value learning algorithms [e.g., see, [8], where H is the length of episodes, T is the number of episodes, and \mathcal{S} and \mathcal{A} are finite state and action spaces. This bound does not scale well when the size of state-action space grows large. When the model (the state-action value function or the transitions) admits a d-dimensional linear representation in some state-action features, a regret bound of $\tilde{\mathcal{O}}\left(\sqrt{H^{3} d^{3} T}\right)$ is established [9], that scales with the dimension of the linear model rather than the cardinality of the state-action space.
Several recent studies have explored the utilization of complex models with large state-action spaces. A very general model entails representing the state-action value function using a reproducing kernel Hilbert space (RKHS). This approach allows using kernel ridge regression to obtain confidence intervals, which facilitate the design and analysis of RL algorithms. The most significant contribution to this general RL problem is [10] (also see the extended version on arXiv [11]), that provides regret guarantees for an optimistic least-squares value iteration (LSVI) algorithm, referred to as kernel optimistic least-squares value iteration (KOVI). The main assumption is that the state-action value function can be represented using the RKHS of a known kernel k. The regret bounds reported in [10]
scale as $\tilde{\mathcal{O}}\left(H^{2} \sqrt{(\Gamma(T)+\log \mathcal{N}(\epsilon)) \Gamma(T) T}\right)$, with $\epsilon=\frac{H}{T}$, where $\Gamma(T)$ and $\mathcal{N}(\epsilon)$ are two kernel related complexity terms, respectively, referred to as maximum information gain and ϵ-covering number of the class of state-action value functions. The definitions are given in Section 4 . Both complexity terms are determined using the spectrum of the kernel. While for smooth kernels, characterized by exponentially decaying Mercer eigenvalues, such as Squared Exponential kernel, $\Gamma(T)$ and $\log \mathcal{N}\left(\frac{H}{T}\right)$ are logarithmic in T, for more general kernels with greater representation capacity, these terms may grow polynomially in T, possibly making the regret bound trivial (superlinear).
To have a better understanding of the existing result, let $\left\{\sigma_{m}>0\right\}_{m=1}^{\infty}$ denote the Mercer eigenvalues of the kernel k in a decreasing order. Also, let $\left\{\phi_{m}\right\}_{m=1}^{\infty}$ denote the corresponding eigenfeatures. Refer to Section 2.2 for details. The kernel k is said to have a polynomial eigendecay when σ_{m} decay at least as fast as m^{-p} for some $p>1$. The polynomial eigendecay profile satisfies for many kernels of practical and theoretical interest such as Matérn family of kernels [12] and the Neural Tangent (NT) kernel [13]. For a Matérn kernel with smoothness parameter ν on a d-dimensional domain, $p=\frac{2 \nu+d}{d}$ [e.g., see, 14]. For a NT kernel with $s-1$ times differentiable activations, $p=\frac{2 s-1+d}{d}$ [15]. In [10], the regret bound is specialized for the class of kernels with polynomially decaying eigenvalues, by bounding the complexity terms based on the kernel spectrum. However, the reported regret bound is sublinear in T only when the kernel eigenvalues decay very fast. In particular, let $\tilde{p}=p(1-2 \eta)$, where for $\eta>0, \sigma_{m}^{\eta} \phi_{m}$ is uniformly bounded. Then, [10, Corollary 4.4] reports a regret bound of $\tilde{\mathcal{O}}\left(T^{\xi^{*}+\kappa^{*}+\frac{1}{2}}\right)$, with

$$
\begin{equation*}
\kappa^{*}=\max \left\{\xi^{*}, \frac{2 d+p+1}{(d+p)(\tilde{p}-1)}, \frac{2}{\tilde{p}-3}\right\}, \quad \xi^{*}=\frac{d+1}{2(p+d)} \tag{1}
\end{equation*}
$$

The regret bound $\tilde{\mathcal{O}}\left(T^{\xi^{*}+\kappa^{*}+\frac{1}{2}}\right)$ is sublinear only when p and \tilde{p} are sufficiently large. That, at least, requires $2 \xi^{*}<\frac{1}{2}$, implying $p>d+2$, when \tilde{p} is also sufficiently large. For instance, for Matérn kernels, this requirement can be expressed as $\nu>\frac{d(d+1)}{2}$, when $\frac{(2 \nu+d)(1-2 \eta)}{d}$ is sufficiently large.
Special case of bandits. A similar issue existed in the simpler problem of kernelized bandits, corresponding to the special case where $H=1,|\mathcal{S}|=1$. Specifically, the $\tilde{\mathcal{O}}(\Gamma(T) \sqrt{T})$ regret bounds reported for optimistic sampling [16, GP-UCB], as well as for Thompson sampling [17, GP-TS] are also trivial (superlinear) when $\Gamma(T)$ grows faster than \sqrt{T}. It remains an open problem whether the suboptimal performance guarantees for these two algorithms is a fundamental shortcoming or an artifact of the proof. This observation is formalized as an open problem on the online confidence intervals for RKHS elements in [18]. For the kernelized bandits problem, [19] proved lower bounds on regret in the case of Matérn family of kernels. In particular, they proved an $\Omega\left(T^{\frac{\nu+d}{2 \nu+d}}\right)$ lower bound on regret of any bandit algorithm. Several recent algorithms, different from GP-UCB and GP-TS, have been developed to alleviate the suboptimal and superlinear regret bounds in kernelized bandits and obtain an $\tilde{\mathcal{O}}(\sqrt{\Gamma(T) T})$ regret bound [20, 21], that matches the lower bound in the case of the Matérn family of kernels. The Sup variation of the UCB algorithms also obtain the optimal regret bound in the contextual kernel bandit setting with finite actions [22].
Main contribution. The RL setting presents a greater level of complexity compared to the bandit setting due to the Markovian dynamics. None of the solutions in [20, 21, 22] seem appropriate in the MDP setting, thereby leaving the question of order optimal regret bounds open in the RL setting. In Section 3, we propose a domain partitioning kernel ridge regression based least-squares value iteration policy (π-KRVI), that obtains a sublinear regret of $\tilde{\mathcal{O}}\left(H^{2} \sqrt{\Gamma(T) T}\right)$ for a large class of kernels with polynomially decaying eigenvalues, as formally defined in Definition 1, including the Matérn family of kernels and the NT kernel. Our result can be expressed as an $\tilde{\mathcal{O}}\left(H^{2} T^{\frac{\tilde{p}+1}{2 \tilde{p}}}\right)$ regret bound. Not only this is the first sublinear regret bound under such a general stetting, it is also order optimal in terms of T in the case of Matérn kernels, given the lower bound obtained under the special case of kernelized bandits in [19].

Our proposed policy, π-KRVI, is based on least-squares value iteration (similar to KOVI [10]). However, in order to effectively utilize the confidence intervals from kernel ridge regression, π-KRVI creates a partitioning of the state-action domain and builds the confidence intervals only based on the observations within the same partition element. The domain partitioning allows us to leverage the scaling of the kernel eigenvalues with respect to the domain size, as formally given in Definition 1 The inspiration for this idea is drawn from π-GP-UCB algorithm introduced in [14] for kernelized
bandits. In comparison to [14], π-KRVI and its analysis present greater complexity due to the Markovian dynamics in the MDP setting. Furthermore, we provide a finer analysis that significantly improves the results compared to [14]. Although [14] obtained sublinear regret guarantees in the kernelized bandit setting, there still remained a polynomial in T gap between their regret bounds and the lower bound reported in [19]. As a consequence of our results, we also close this gap.
There are several novel contributions in our analysis that lead to the improved and order optimal regret bounds. We establish confidence intervals for kernel ridge regression that apply uniformly to all functions in the state-action value function class (Theorem 1). A similar confidence interval was given in [10]. We however provide flexibility with respect to setting the parameters of the confidence interval, that eventually contributes to the improved regret bounds, with a proper choice of parameters. We also derive bounds on the maximum information gain (Lemma 2) and the function class covering number (Lemma 3), taking into consideration the size of the state-action domain. These bounds are important for the analysis of our domain partitioning policy which effectively controls the number of observations utilized in kernel ridge regression by partitioning the domain into subdomains of diminishing size. These intermediate results may also be of general interest in similar problems.

The π-KRVI policy enjoys an efficient runtime, polynomial in T, and linear in $|\mathcal{A}|$, similar to the runtime of KOVI [10]. The dependency of the runtime on $|\mathcal{A}|$ limits the scope of the policy to finite \mathcal{A}, while allowing a continuous \mathcal{S} (with $|\mathcal{S}|$ infinite). The assumption of finite \mathcal{A} can be relaxed, provided there is an efficient optimizer of a certain state-action value function. See the details in Section 3.2
Other related work. There is an extensive literature on the analysis of RL policies which do not rely on a generative model or an exploratory behavioral policy. The literature has primarily focused on the tabular setting [8, 23, 24]. The domain of potential applications for this setting is very limited, as in many real world problems, the state-action space is very large or even infinite. In response to this, recent literature has placed a notable emphasis on employing function approximation in RL, particularly within the context of generalized linear settings. This approach involves representing the value function or transition model through a linear transformation to a well-defined feature mapping. Important contributions include the work of [9, 25], as well as subsequent studies by [26, 27, 28, 29, 30]. Furthermore, there have been several efforts to extend these techniques to a kernelized setting, as explored in [10, 30, 31, 32, 33]. These works are also inspired by methods originally designed for linear bandits [34, 35], as well as kernelized bandits [36, 22, 17]. However, all known regret bounds in the RL setting [10, 30, 31, 32, 33] are not order optimal. We compare our regret bounds with the state of the art reported in [10]. A similar issue existed for classic kernelized bandit algorithms. A detailed discussion can be found in [18]. The authors in [30] considered finite state-actions under a kernelized MDP model where the transition model can be directly estimated. That is different from the setting considered in our work and [10].

2 Preliminaries and Problem Formulation

In this section, we overview the background on episodic MDPs and kernel ridge regression.

2.1 Episodic Markov Decision Processes

An episodic MDP can be described by the tuple $M=(\mathcal{S}, \mathcal{A}, H, P, r)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, the integer H is the length of each episode, $r=\left\{r_{h}\right\}_{h=1}^{H}$ are the reward functions and $P=\left\{P_{h}\right\}_{h=1}^{H}$ are the transition probability distributions ${ }^{1}$ We use the notation $\mathcal{Z}=\mathcal{S} \times \mathcal{A}$ to denote the state-action space. For each $h \in[H]$, the reward $r_{h}: \mathcal{Z} \rightarrow[0,1]$ is the reward function at step h, which is supposed to be deterministic for simplicity, and $P_{h}(\cdot \mid s, a)$ is the transition probability distribution on \mathcal{S} for the next state from state-action pair (s, a).
A policy $\pi=\left\{\pi_{h}\right\}_{h=1}^{H}$, at each step h, determines the (possibly random) action $\pi_{h}: \mathcal{S} \rightarrow \mathcal{A}$ taken by the agent at state s. At the beginning of each episode $t=1,2, \cdots$, the environment picks an arbitrary state s_{1}^{t}. The agent determines a policy $\pi^{t}=\left\{\pi_{h}^{t}\right\}_{h=1}^{H}$. Then, at each step $h \in[H]$, the agent observes the state $s_{h}^{t} \in \mathcal{S}$, picks an action $a_{h}^{t}=\pi_{h}^{t}\left(s_{h}^{t}\right)$ and observes the reward $r_{h}\left(s_{h}^{t}, a_{h}^{t}\right)$.

[^0]The new state s_{h+1}^{t} then is drawn from the transition distribution $P_{h}\left(\cdot \mid s_{h}^{t}, a_{h}^{t}\right)$. The episode ends when the agent receives the final reward $r_{H}\left(s_{H}^{t}, a_{H}^{t}\right)$.
The goal is to find a policy π that maximizes the expected total reward in the episode, starting at step h, i.e., the value function defined as

$$
\begin{equation*}
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \mid s_{h}=s\right], \quad \forall s \in \mathcal{S}, h \in[H] \tag{2}
\end{equation*}
$$

where the expectation is taken with respect to the randomness in the trajectory $\left\{\left(s_{h}, a_{h}\right)\right\}_{h=1}^{H}$ obtained by the policy π. It can be shown that under mild assumptions (e.g., continuity of \bar{P}_{h}, compactness of \mathcal{Z}, and boundedness of r) there exists an optimal policy π^{\star} which attains the maximum possible value of $V_{h}^{\pi}(s)$ at every step and at every state [e.g., see, 37]. We use the notation $V_{h}^{\star}(s)=\max _{\pi} V_{h}^{\pi}(s), \forall s \in \mathcal{S}, h \in[H]$. By definition $V_{h}^{\pi^{\star}}=V_{h}^{\star}$. For a value function $V: \mathcal{S} \rightarrow[0, H]$, we define the following notation

$$
\begin{equation*}
\left[P_{h} V\right](s, a):=\mathbb{E}_{s^{\prime} \sim P_{h}(\cdot \mid s, a)}\left[V\left(s^{\prime}\right)\right] . \tag{3}
\end{equation*}
$$

We also define the state-action value function $Q_{h}^{\pi}: \mathcal{Z} \rightarrow[0, H]$ as follows.

$$
\begin{equation*}
Q_{h}^{\pi}(s, a)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \mid s_{h}=s, a_{h}=a\right], \tag{4}
\end{equation*}
$$

where the expectation is taken with respect to the randomness in the trajectory $\left\{\left(s_{h}, a_{h}\right)\right\}_{h=1}^{H}$ obtained by the policy π. The Bellman equation associated with a policy π then is represented as

$$
\begin{equation*}
Q_{h}^{\pi}(s, a)=r_{h}(s, a)+\left[P_{h} V_{h+1}^{\pi}\right](s, a), \quad V_{h}^{\pi}(s)=\mathbb{E}_{\pi}\left[Q_{h}^{\pi}\left(s, \pi_{h}(s)\right)\right], \quad V_{H+1}^{\pi}:=0 \tag{5}
\end{equation*}
$$

where the expectation is taken with respect to the randomness in the policy π. The Bellman optimality equation is also given as $Q_{h}^{\star}(s, a)=r_{h}(s, a)+\left[P_{h} V_{h+1}^{\star}\right](s, a), V_{h}^{\star}(s)=\max _{a} Q_{h}^{\star}(s, a)$, $V_{H+1}^{\star}:=0$. The performance of a policy π^{t} is measured in terms of the loss in the value function, referred to as regret, denoted by $\mathcal{R}(T)$ in the following definition

$$
\begin{equation*}
\mathcal{R}(T)=\sum_{t=1}^{T}\left(V_{1}^{\star}\left(s_{1}^{t}\right)-V_{1}^{\pi^{t}}\left(s_{1}^{t}\right)\right) . \tag{6}
\end{equation*}
$$

Recall that π^{t} is the policy executed by the agent at episode t, where s_{1}^{t} is the initial state in that episode determined by the environment.

2.2 Kernel Ridge Regression

We assume that the state-action value functions belong to a known reproducing kernel Hilbert space (RKHS). See Assumption 1 and Lemma 1 for the formal statement. This is a very general assumption, considering that the RKHS of common kernels can approximate almost all continuous functions on the compact subsets of \mathbb{R}^{d} [16]. Consider a positive definite kernel $k: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$. Let \mathcal{H}_{k} be the RKHS induced by k, where \mathcal{H}_{k} contains a family of functions defined on \mathcal{Z}. Let $\langle\cdot, \cdot\rangle_{\mathcal{H}_{k}}: \mathcal{H}_{k} \times \mathcal{H}_{k} \rightarrow \mathbb{R}$ and $\|\cdot\|_{\mathcal{H}_{k}}: \mathcal{H}_{k} \rightarrow \mathbb{R}$ denote the inner product and the norm of \mathcal{H}_{k}, respectively. The reproducing property implies that for all $f \in \mathcal{H}_{k}$, and $z \in \mathcal{Z},\langle f, K(\cdot, z)\rangle_{\mathcal{H}_{k}}=f(z)$. Without loss of generality, we assume $k(z, z) \leq 1$ for all z. Mercer theorem implies, under certain mild conditions, k can be represented using an infinite dimensional feature map:

$$
\begin{equation*}
k\left(z, z^{\prime}\right)=\sum_{m=1}^{\infty} \sigma_{m} \phi_{m}(z) \phi_{m}\left(z^{\prime}\right) \tag{7}
\end{equation*}
$$

where $\sigma_{m}>0$, and $\sqrt{\sigma_{m}} \phi_{m} \in \mathcal{H}_{k}$ form an orthonormal basis of \mathcal{H}_{k}. In particular, any $f \in \mathcal{H}_{k}$ can be represented using this basis and wights $w_{m} \in \mathbb{R}$ as

$$
\begin{equation*}
f=\sum_{m=1}^{\infty} w_{m} \sqrt{\sigma_{m}} \phi_{m} \tag{8}
\end{equation*}
$$

where $\|f\|_{\mathcal{H}_{k}}^{2}=\sum_{m=1}^{\infty} w_{m}^{2}$. A formal statement and the details are provided in Appendix B We refer to σ_{m} and ϕ_{m} as (Mercer) eigenvalues and eigenfeatures of k, respectively.

Kernel-based models provide powerful predictors and uncertainty estimators which can be leveraged to guide the RL algorithm. In particular, consider a fixed unknown function $f \in \mathcal{H}_{k}$. Consider a set $Z^{t}=\left\{z^{i}\right\}_{i=1}^{t} \subset \mathcal{Z}$ of t inputs. Assume t noisy observations $\left\{Y\left(z^{i}\right)=f\left(z^{i}\right)+\varepsilon^{i}\right\}_{i=1}^{t}$ are provided, where ε^{i} are independent zero mean noise terms. Kernel ridge regression provides the following predictor and uncertainty estimate, respectively [see, e.g., 38],

$$
\begin{align*}
\mu^{t, f}(z) & =k_{Z^{t}}^{\top}(z)\left(K_{Z^{t}}+\lambda^{2} I^{t}\right)^{-1} Y_{Z^{t}} \\
\left(b^{t}(z)\right)^{2} & =k(z, z)-k_{Z^{t}}^{\top}(z)\left(K_{Z^{t}}+\lambda^{2} I\right)^{-1} k_{Z^{t}}(z), \tag{9}
\end{align*}
$$

where $k_{Z^{t}}(z)=\left[k\left(z, z^{1}\right), \ldots, k\left(z, z^{t}\right)\right]^{\top}$ is a $t \times 1$ vector of the kernel values between z and observations, $K_{Z^{t}}=\left[k\left(z^{i}, z^{j}\right)\right]_{i, j=1}^{t}$ is the $t \times t$ kernel matrix, $Y_{Z^{t}}=\left[Y\left(z^{1}\right), \ldots, Y\left(Z^{t}\right)\right]^{\top}$ is the $t \times 1$ observation vector, I is the identity matrix of dimensions t, and $\lambda>0$ is a free regularization parameter. The predictor and uncertainty estimate could be interpreted as posterior mean and variance of a surrogate centered Gaussian process (GP) model with covariance k, and zero mean Gaussian noise with variance λ^{2} [e.g., see, 39].

2.3 Technical Assumption

We assume that the reward functions $\left\{r_{h}\right\}_{h=1}^{H}$ and the transition probability distributions $P_{h}\left(s^{\prime} \mid \cdot, \cdot\right)$ belong to the 1-ball of the RKHS. We use the notation $\mathcal{B}_{k, R}=\left\{f:\|f\|_{\mathcal{H}_{k}} \leq R\right\}$ to denote the R-ball of the RKHS.

Assumption 1 We assume

$$
\begin{equation*}
r_{h}(\cdot, \cdot), P_{h}\left(s^{\prime} \mid \cdot, \cdot\right) \in \mathcal{B}_{k, 1}, \quad \forall h \in[H], \forall s^{\prime} \in \mathcal{S} \tag{10}
\end{equation*}
$$

This is a mild assumption considering the generality of RKHSs, that is also supposed to hold in [10]. Similar assumptions are made in linear MDPs which are significantly more restrictive [e.g., see, 9].

An immediate consequence of Assumption 1 is that for any integrable $V: \mathcal{S} \rightarrow[0, H], r_{h}+$ $\left[P_{h} V_{h+1}\right] \in \mathcal{B}_{k, H+1}$. This is formalized in the following lemma.

Lemma 1 Consider any integrable $V: \mathcal{S} \rightarrow[0, H]$. Under Assumption 1] we have

$$
\begin{equation*}
r_{h}+\left[P_{h} V_{h+1}\right] \in \mathcal{B}_{k, H+1} \tag{11}
\end{equation*}
$$

3 Domain Partitioning Least-Squares Value Iteration Policy

A standard policy in episodic MDPs is the least-squares value iteration (LSVI), which computes an estimate \widehat{Q}_{h}^{t} for $\left\{Q_{h}^{\star}\right\}_{h=1}^{H}$ at episode t, by recursively applying Bellman equation as discussed in the previous section. In addition, an exploration bonus term $b_{h}^{t}: \mathcal{Z} \rightarrow \mathbb{R}$ is typically added leading to

$$
\begin{equation*}
Q_{h}^{t}=\min \left\{\widehat{Q}_{h}^{t}+\beta b_{h}^{t}, H-h+1\right\} . \tag{12}
\end{equation*}
$$

The term $\widehat{Q}_{h}^{t}+\beta b_{h}^{t}$ is an upper confidence bound on the state-action value function, that is inspired by the principle of optimism in the face of uncertainty. Since the rewards are assumed to be at most 1 , the state-action value function at step h is also bounded by $H-h+1$. In episode t, then π^{t} is the greedy policy with respect to $Q^{t}=\left\{Q_{h}^{t}\right\}_{h=1}^{H}$. Under Assumption 1 , the estimate \widehat{Q}_{h}^{t}, the parameter β and the exploration bonus b_{h}^{t} can all be designed using kernel ridge regression. Specifically, having the Bellman equation in mind, \widehat{Q}_{h}^{t} is the (kernel ridge) predictor for $r_{h}+\left[P_{h} V_{h+1}^{t}\right]$ using (possibly some of) the past $t-1$ observations $\left\{r_{h}\left(z_{h}^{\tau}\right)+V_{h+1}^{t}\left(s_{h+1}^{\tau}\right)\right\}_{\tau=1}^{t-1}$ at points $\left\{z_{h}^{\tau}\right\}_{\tau=1}^{t-1}$. Recall that $\mathbb{E}\left[r_{h}\left(z_{h}^{\tau}\right)+V_{h+1}^{t}\left(s_{h+1}^{\tau}\right)\right]=r_{h}\left(z_{h}^{\tau}\right)+\left[P_{h} V_{h+1}^{t}\right]\left(z_{h}^{\tau}\right)$, where the expectation is taken with respect to $P_{h}\left(\cdot \mid z_{h}^{\tau}\right)$. The observation noise $V_{h+1}^{t}\left(s_{h+1}^{\tau}\right)-\left[P_{h} V_{h+1}^{t}\right]\left(z_{h}^{\tau}\right)$ is due to random transitions and is bounded by $H-h \leq H$.

3.1 Domain Partitioning

To overcome the suboptimal performance guarantees rooted in the online confidence intervals in kernel ridge regression, we introduce domain partitioning kernel ridge regression based least-squares value iteration (π-KRVI). The proposed policy partitions the state-action space \mathcal{Z} into subdomains and builds kernel ridge regression only based on the observations within each subdomain. By doing so, we obtain tighter confidence intervals, ultimately resulting in a tighter regret bound. To formalize this procedure, we consider the state-action space $\mathcal{Z} \subset[0,1]^{d}$. Let $\mathcal{S}_{h}^{t}, h \in[H], t \in[T]$ be sets of hypercubes overlapping only at edges, covering the entire $[0,1]^{d}$. For any hypercube $\mathcal{Z}^{\prime} \in \mathcal{S}_{h}^{t}$, we use $\rho_{\mathcal{Z}^{\prime}}$ to denote the length of any of its sides, and $N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)$ to denote the number of observations at step h in \mathcal{Z}^{\prime} up to episode t :

$$
\begin{equation*}
N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)=\sum_{\tau=1}^{t} \mathbf{1}\left\{\left(s_{h}^{\tau}, a_{h}^{\tau}\right) \in \mathcal{Z}^{\prime}\right\} \tag{13}
\end{equation*}
$$

For all $h \in[H]$, we initialize $\mathcal{S}_{h}^{1}=\left\{[0,1]^{d}\right\}$. At each episode t, for each step h, after observing a sample from $r_{h}+\left[P_{h} V_{h+1}^{t}\right]$ at $\left(s_{h}^{t}, a_{h}^{t}\right)$, we construct a new cover \mathcal{S}_{h}^{t} as follows. We divide every element $\mathcal{Z}^{\prime} \in \mathcal{S}_{h}^{t-1}$ that satisfies $\rho_{\mathcal{Z}}^{-\alpha}<\left|N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)\right|+1$, into two equal halves along each side, generating 2^{d} hypercubes. The parameter $\alpha>0$ in the splitting rule is a constant specified in Definition 1 Subsequently, we define \mathcal{S}_{h}^{t} as the set of newly created hypercubes and the elements of \mathcal{S}_{h}^{t-1} that were not split.
The construction of the cover sets described above ensures the number $N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)$ of observations within each cover element \mathcal{Z}^{\prime} remains relatively small with respect to the size of \mathcal{Z}^{\prime}, while also controlling the total number $\left|\mathcal{S}_{h}^{t}\right|$ of cover elements. The key parameter managing this tradeoff is α, which is carefully chosen to achieve an appropriate width for the confidence interval, as shown in Section 4 .

3.2π-KRVI

Our proposed policy, π-KRVI, is derived by adopting the precise structure of an optimistic LSVI, as described previously, where the predictor and the exploration bonus are designed based on kernel ridge regression only on cover elements. In particular, for $z \in \mathcal{Z}$, let $\mathcal{Z}_{h}^{t}(z) \in \mathcal{S}_{h}^{t}$ be the cover element at step h of episode t containing z. Define $Z_{h}^{t}(z)=\left\{\left(s_{h}^{\tau}, a_{h}^{\tau}\right) \in \mathcal{Z}_{h}^{t}(z), \tau<t\right\}$ to be the set of past observations belonging to the same cover element as z. We then set

$$
\begin{equation*}
\widehat{Q}_{h}^{t}(z)=k_{Z_{h}^{t}(z)}^{\top}(z)\left(K_{Z_{h}^{t}(z)}+\lambda^{2} I\right)^{-1} Y_{Z_{h}^{t}(z)} \tag{14}
\end{equation*}
$$

where $k_{Z_{h}^{t}(z)}=\left[k\left(z, z^{\prime}\right)\right]_{z^{\prime} \in Z_{h}^{t}(z)}^{\top}$ is the kernel values between z and all observations z^{\prime} in $Z_{h}^{t}(z)$, $K_{Z_{h}^{t}(z)}=\left[k\left(z^{\prime}, z^{\prime \prime}\right)\right]_{z^{\prime}, z^{\prime \prime} \in Z_{h}^{t}(z)}$ is the kernel matrix for observations in $Z_{h}^{t}(z)$, and $Y_{Z_{h}^{t}(z)}=$ $\left[r_{h}\left(z^{\prime}\right)+V_{h+1}^{t}\left(s_{h+1}^{\prime}\right)\right]_{z^{\prime} \in Z_{h}^{t}(z)}^{\top}$, where s_{h+1}^{\prime} is drawn from the transition distribution $P_{h}\left(\cdot \mid z^{\prime}\right)$, denotes the observation values for the observation points $z^{\prime} \in Z_{h}^{t}(z)$. The vectors $k_{Z_{h}^{t}(z)}$ and $Y_{Z_{h}^{t}(z)}$ are $N_{h}^{t-1}\left(\mathcal{Z}_{h}^{t}(z)\right)$ dimensional column vectors, and $K_{Z_{h}^{t}(z)}$ and I are $N_{h}^{t-1}\left(\mathcal{Z}_{h}^{t}(z)\right) \times N_{h}^{t-1}\left(\mathcal{Z}_{h}^{t}(z)\right)$ dimensional matrices.

The exploration bonus is determined based on the uncertainty estimate of the kernel ridge regression model on cover elements defined as

$$
\begin{equation*}
b_{h}^{t}(z)=\left(k(z, z)-k_{Z_{h}^{t}(z)}^{\top}(z)\left(K_{Z_{h}^{t}(z)}+\lambda^{2} I\right)^{-1} k_{Z_{h}^{t}(z)}(z)\right)^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

The policy π-KRVI then is the greedy policy with respect to

$$
\begin{equation*}
Q_{h}^{t}(z)=\min \left\{\widehat{Q}_{h}^{t}(z)+\beta_{T}(\delta) b_{h}^{t}(z), H-h+1\right\} . \tag{16}
\end{equation*}
$$

Specifically, at step h of episode t, the following action is chosen, after observing s_{h}^{t},

$$
\begin{equation*}
a_{h}^{t}=\underset{a \in \mathcal{A}}{\arg \max } Q_{h}^{t}\left(s_{h}^{t}, a\right) . \tag{17}
\end{equation*}
$$

A pseudocode is provided in Appendix A

The predictor \widehat{Q}_{h}^{t}, the confidence interval width multiplier $\beta_{T}(\delta)$ and the exploration bonus b_{h}^{t} are all designed using kernel ridge regression limited to the observations within cover elements given above. The parameter $\beta_{T}(\delta)$, in particular, is designed in a way that Q_{h}^{t} is a $1-\delta$ upper confidence bound on $r_{h}+\left[P_{h} V_{h+1}^{t}\right]$. Using Theorem 1 on the confidence intervals, we show that a choice of $\beta_{T}(\delta)=\Theta\left(H \sqrt{\log \left(\frac{T H}{\delta}\right)}\right)$ satisfies this requirement.

Runtime complexity. The π-KRVI policy is also runtime efficient with a polynomial runtime complexity. In particular, an upper bound on the runtime of π-KRVI is $\mathcal{O}\left(H T^{4}+H|\mathcal{A}| T^{3}\right)$, that is similar to KOVI [10]. However, analogous to [14], we expect an improved runtime for π-KRVI in practice. In addition, the runtime can further improve in terms of T utilizing sparse approximations of kernel ridge predictor and uncertainty estimate [e.g., see, 40]. The dependency of the runtime on $|\mathcal{A}|$ is due to the step given in Equation (17). If this optimization can be done efficiently over continuous domains, π-KRVI (also KOVI) could handle infinite number of actions. The assumption that the upper confidence bound index can be efficiently optimized over continuous domains is often made in the kernelized bandits [e.g., see, 16].

4 Main Results and Regret Analysis

In this section, we present our main results. In Theorem 2 , we establish an $\tilde{\mathcal{O}}\left(\sqrt{T \Gamma_{k, \lambda}(T)}\right)$ regret bound for π-KRVI, for the class of kernels with polynomial eigendecay. We first prove bounds on maximum information gain and covering number of state-action value function class. Those enable us to present our uniform confidence interval for state-action value functions (Theorem 1), and subsequently the regret bound (Theorem 2).

Definition 1 (Polynomial Eigendecay) Consider the Mercer eigenvalues $\left\{\sigma_{m}\right\}_{m=1}^{\infty}$ of $k: \mathcal{Z} \times \mathcal{Z} \rightarrow$ \mathbb{R}, given in Equation (7), in a decreasing order, as well as the corresponding eigenfeatures $\left\{\phi_{m}\right\}_{m=1}^{\infty}$. Assume \mathcal{Z} is a d-dimensional hypercube with side length $\rho_{\mathcal{Z}}$. For some $C_{p}, \alpha>0, p>1$, the kernel k is said to have a polynomial eigendecay, if for all $m \in \mathbb{N}, \sigma_{m} \leq C_{p} m^{-p} \rho_{\mathcal{Z}}^{\alpha}$. In addition, for some $\eta>0, \sigma_{m}^{\eta} \phi_{m}(z)$ is uniformly bounded over all m and z. We use the notation $\tilde{p}=p(1-2 \eta)$.

The polynomial eigendecay profile encompasses a large class of common kernels, e.g., the Matérn family of kernels. For a Matérn kernel with smoothness parameter $\nu, p=\frac{2 \nu+d}{d}$ and $\alpha=2 \nu$ [e.g., see, 14]. Another example is the NT kernel [13]. It has been shown that the RKHS of the NT kernel, when the activations are $s-1$ times differentiable, is equivalent to the RKHS of a Matérn kernel with smoothness $\nu=s-\frac{1}{2}$ [15]. For instance, the RKHS of an NT kernel with ReLU activations is equivalent to the RKHS of a Matérn kernel with $\nu=\frac{1}{2}$ (also known as the Laplace kernel). In this case, $p=1+\frac{1}{d}$ and $\alpha=1$. The hypercube domain assumption is a technical formality that can be relaxed to other regular compact subsets of \mathbb{R}^{d}. The uniform boundedness of $\sigma_{m}^{\eta} \phi_{m}(z)$ also holds for a broad class of kernels, including the Matérn family, as discussed in [10]. Several works including [15, 41], have employed an averaging technique over subsets of eigenfeatures, demonstrating that, for the regret bounds and $\Gamma_{k, \lambda}$, the effective value of η can be considered as 0 in the case of Matérn and NT kernels.

4.1 Confidence Intervals for State-Action Value Functions

Confidence intervals are an important building block in the design and analysis of bandit and RL algorithms. For a fixed function f in the RKHS of a known kernel, $1-\delta$ confidence intervals of the form $\left|f(z)-\mu^{t, f}(z)\right| \leq \beta(\delta) b^{t}(z)$ are established in several works [16, 17, 42, 43] under various assumptions. In our setting of interest, however, these confidence intervals cannot be directly applied. This is due to the randomness of the target function itself. Specifically, in our case, the target function is $r_{h}+\left[P_{h} V_{h+1}^{t}\right]$, which is not a fixed function due to the temporal dependence within an episode. An argument based on the covering number of the state-action value function class was used in [10] to establish uniform confidence intervals over all $z \in \mathcal{Z}$ and all f in a specific function class. In Theorem 1, we prove a different confidence interval that offers flexibility with respect to setting the parameters of the confidence interval. Our approach leads to a more refined confidence interval, which, with a proper choice of parameters, contributes to the improved regret bound achieved by our policy.

We first give a formal definition of the two complexity terms: maximum information gain and the covering number of the state-action value function class, which appear in our confidence intervals.

Definition 2 (Maximum Information Gain) In the kernel ridge regression setting described in Section 2.2, the following quantity is referred to as maximum information gain: $\Gamma_{k, \lambda}(t)=$ $\max _{Z^{t} \subset \mathcal{Z}} \log \operatorname{det}\left(I+\frac{1}{\lambda^{2}} K_{Z^{t}}\right)$.

Upper bounds on maximum information gain based on the spectrum of the kernel are established in [14, 16, 44]. Maximum information gain is closely related to the effective dimension of the kernel. While the feature representation of common kernels is infinite dimensional, with a finite observation set, only a finite number of features have a significant impact on kernel ridge regression, that is referred to as the effective dimension. It has been shown that information gain and effective dimension are the same up to logarithmic factors [45]. This observation offers an intuitive understanding of information gain.
State-action value function class: Let us use $\mathcal{Q}_{k, h}(R, B)$ to denote the class of state-action value functions. In particular for a set of observations Z, let $b_{h}(z)$ be the uncertainty estimate obtained from kernel ridge regression as given in (9). We define
$\mathcal{Q}_{k, h}(R, B)=\left\{Q: Q(z)=\min \left\{Q_{0}(z)+\beta b_{h}(z), H-h+1\right\},\left\|Q_{0}\right\|_{\mathcal{H}_{k}} \leq R, \beta \leq B,|Z| \leq T\right\}$.

Definition 3 (Covering Set and Number) Consider a function class \mathcal{F}. For $\epsilon>0$, we define the minimum ϵ-covering set $\mathcal{C}(\epsilon)$ as the smallest subset of \mathcal{F} that covers it up to an ϵ error in l_{∞} norm. That is to say, for all $f \in \mathcal{F}$, there exists a $g \in \mathcal{C}(\epsilon)$, such that $\|f-g\|_{l_{\infty}} \leq \epsilon$. We refer to the size of $\mathcal{C}(\epsilon)$ as the ϵ-covering number.

We use the notation $\mathcal{N}_{k, h}(\epsilon ; R, B)$ to denote the ϵ-covering number of $\mathcal{Q}_{k, h}(R, B)$, that appears in the confidence interval.

In Lemmas 2 and 3, we establish bounds on $\Gamma_{k, \lambda}(t)$ and $\mathcal{N}_{k, h}(\epsilon ; R, B)$, respectively.
Lemma 2 (Maximum information gain) Consider a positive definite kernel $k: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$, with polynomial eigendecay on a hypercube with side length $\rho_{\mathcal{Z}}$. The maximum information gain given in Definition 2 satisfies

$$
\Gamma_{k, \lambda}(T)=\mathcal{O}\left(T^{\frac{1}{\bar{p}}}(\log (T))^{1-\frac{1}{\bar{p}}} \rho_{\mathcal{Z}}^{\frac{\alpha}{\overline{\mathcal{P}}}}\right)
$$

Lemma 3 (Covering Number of $\mathcal{Q}_{k, h}(R, B)$) Recall the class of state-action value functions $\mathcal{Q}_{k, h}(R, B)$, where $k: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ satisfies the polynomial eigendecay on a hypercube with side length $\rho_{\mathcal{Z}}$. We have

$$
\log \mathcal{N}_{k, h}(\epsilon ; R, B)=\mathcal{O}\left(\left(\frac{R^{2} \rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{1}{\bar{p}-1}}\left(1+\log \left(\frac{R}{\epsilon}\right)\right)+\left(\frac{B^{2} \rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{2}{\bar{p}-1}}\left(1+\log \left(\frac{B}{\epsilon}\right)\right)\right) .
$$

Our bound on maximum information gain is stronger than the ones presented in [10, 14, 16] and is similar to the one given in [44], in terms of dependency on T. Our bound on function class covering number is similar to the one given in [10], in terms of dependency on T. Both Lemmas 2 and 3 given in this work are, however, novel in terms of dependency on the domain size $\rho_{\mathcal{Z}}$, and are required for the analysis of our domain partitioning algorithm.
We next present the confidence interval. Proofs are given in the appendix.
Theorem 1 (Confidence Interval) Let \widehat{Q}_{h}^{t} and b_{h}^{t} denote the kernel ridge predictor and uncertainty estimate of $r_{h}+\left[P_{h} V_{h+1}^{t}\right]$, using t observations $\left\{V_{h+1}^{t}\left(s_{h+1}^{\tau}\right)\right\}_{\tau=1}^{t}$ at $Z_{h}^{t}=\left\{z_{h}^{\tau}\right\}_{\tau=1}^{t} \subset \mathcal{Z}$, where s_{h+1}^{τ} is the next state drawn from $P_{h}\left(\cdot \mid z_{h}^{\tau}\right)$. Let $R_{T}=2 H \sqrt{\Gamma_{k, \lambda}(T)}$. For $\epsilon, \delta \in(0,1)$, with probability, at least $1-\delta$, we have, $\forall z \in \mathcal{Z}, h \in[H]$ and $t \in[T]$,

$$
\left|r_{h}(z)+\left[P_{h} V_{h+1}^{t}\right](z)-\widehat{Q}_{h}^{t}(z)\right| \leq \beta_{h}^{t}(\delta, \epsilon) b_{h}^{t}(z)+\epsilon,
$$

where $\beta_{h}^{t}(\delta, \epsilon)$ is set to any value satisfying

$$
\begin{equation*}
\beta_{h}^{t}(\delta, \epsilon) \geq H+1+\frac{H}{\sqrt{2}} \sqrt{\Gamma_{k, \lambda}(t)+\log \mathcal{N}_{k, h}\left(\epsilon ; R_{T}, \beta_{h}^{t}(\delta, \epsilon)\right)+1+\log \left(\frac{T H}{\delta}\right)}+\frac{3 \sqrt{t} \epsilon}{\lambda} . \tag{19}
\end{equation*}
$$

4.2 Regret of π-KRVI

A key step in the analysis of π-KRVI is to apply the confidence interval in Theorem 1 to a subdomain $\mathcal{Z}^{\prime} \in \mathcal{S}_{h}^{t}$. By design of the splitting rule, we can prove that the maximum information gain corresponding to \mathcal{Z}^{\prime} satisfies $\Gamma_{k, \lambda}\left(N_{h}^{T}\left(\mathcal{Z}^{\prime}\right)\right)=\mathcal{O}(\log (T))$. In addition, we choose $\epsilon=\frac{H \sqrt{\log \left(\frac{T H}{\delta}\right)}}{\sqrt{N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)}}$, when applying the confidence interval at step h of episode t on this subdomain. That ensures $\log \mathcal{N}_{k, h}\left(\epsilon ; R_{N_{h}^{T}\left(\mathcal{Z}^{\prime}\right)}, \beta_{h}^{t}(\delta, \epsilon)\right)=\mathcal{O}(\log (T))$. From these, and by applying a probability union bound over all subdomains \mathcal{Z}^{\prime} created in π-KRVI, we can deduce that the choice of $\beta_{T}(\delta)=$ $\Theta\left(H \sqrt{\log \left(\frac{T H}{\delta}\right)}\right)$ with a sufficiently large constant, satisfies the requirements for confidence interval widths based on Theorem 1 The details are provided in the proof of Theorem 2 in Appendix E Then, using standard tools from the analysis of optimistic LSVI algorithms, we arrive at the following regret bound.

Theorem 2 (Regret of π-KRVI) Consider the π-KRVI policy described in Section 3.2 with $\beta_{T}(\delta)=\Theta\left(H \sqrt{\log \left(\frac{T H}{\delta}\right)}\right)$ with a sufficiently large constant implied in the Θ notation. Under Assumption 1] for kernels given in Definition 1] with probability at least $1-\delta$, the regret of $\pi-K R V I$ satisfies

$$
\begin{equation*}
\mathcal{R}(T)=\mathcal{O}\left(H^{2} \log (T) \sqrt{T \Gamma_{k, \lambda}(T) \log \left(\frac{H}{\delta}\right)}\right) \tag{20}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\mathcal{R}(T)=\mathcal{O}\left(H^{2} T^{\frac{\tilde{p}+1}{2 \tilde{p}}} \sqrt{(\log (T))^{3-\frac{1}{\bar{p}}} \log \left(\frac{H}{\delta}\right)}\right) . \tag{21}
\end{equation*}
$$

The regret bound of π-KRVI provided in Theorem 2 represents a significant improvement over the state of the art regret bound in [10]. It improves their regret bound by removing an $\mathcal{O}\left(\sqrt{\Gamma_{k, \lambda}(T)+\log \mathcal{N}_{k, h}\left(\epsilon, R_{T}, B\right)}\right)$ factor, for some $B \geq \beta_{T}(\delta)$. Also, $\tilde{\mathcal{O}}\left(T^{\frac{\tilde{p}+1}{2 \tilde{p}}}\right)$ is sublinear with $\tilde{p}>1$, which is a substantial improvement over the requirement for sublinear regret in [10] (discussed in the introduction).
When specialized for the Matérn family of kernels, replacing $p=\frac{2 \nu+d}{d}$, our regret bound becomes

$$
\begin{equation*}
\mathcal{R}(T)=\mathcal{O}\left(H^{2} T^{\frac{(\nu+d)(1-2 \eta)}{2 \nu+d}} \sqrt{(\log (T))^{3-\frac{1}{p}} \log \left(\frac{H}{\delta}\right)}\right) . \tag{22}
\end{equation*}
$$

In terms of T scaling, this matches the lower bound for the special case of kernelized bandits [19], up to logarithmic factors, for cases where $\eta=0$. As discussed, even for cases where $\eta>0$, utilizing an averaging technique over eigenfeatures, η can be effectively considered 0 . For example, see [15, 41].

5 Conclusion

The analysis of RL algorithms has predominantly focused on simple settings such as tabular or linear MDPs. Several recent studies have considered more general models, including representing the state-action value functions using RKHSs. Notably, the work in [10] derives regret bounds for an optimistic LSVI policy. However, the regret bounds in [10] are sublinear only when the eigenvalues of the kernel decay rapidly. In this work, we leveraged a domain partitioning technique, a uniform confidence interval for state-action value functions, and bounds on complexity terms based on the domain size to propose π-KRVI, which attains a sublinear regret bound for a general class of kernels. Moreover, our regret bounds match the lower bound derived for Matérn kernels in the special case of kernelized bandits, up to logarithmic factors. It remains an open problem whether the suboptimal regret bounds in the case of standard optimistic LSVI policies [such as KOVI, 10] represent a fundamental shortcoming or an artifact of the proof.

References

[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
[2] Kyowoon Lee, Sol-A Kim, Jaesik Choi, and Seong-Whan Lee. Deep reinforcement learning in continuous action spaces: a case study in the game of simulated curling. In International Conference on Machine Learning,, pages 2937-2946. PMLR, 2018.
[3] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.
[4] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertaintyaware reinforcement learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.
[5] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology for fast chip design. Nature, 594(7862):207-212, 2021.
[6] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning, pages 651-673. PMLR, 2018.
[7] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610(7930):47-53, 2022.
[8] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient? Advances in neural information processing systems, 31, 2018.
[9] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with linear function approximation. In Conference on Learning Theory, pages 21372143. PMLR, 2020.
[10] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael Jordan. Provably efficient reinforcement learning with kernel and neural function approximations. Advances in Neural Information Processing Systems, 33:13903-13916, 2020.
[11] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function approximation in reinforcement learning: Optimism in the face of large state spaces. arXiv preprint arXiv:2011.04622, 2020.
[12] Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, et al. Matérn Gaussian processes on Riemannian manifolds. volume 33, pages 12426-12437, 2020.
[13] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. Advances in neural information processing systems, 32, 2019.
[14] David Janz, David Burt, and Javier González. Bandit optimisation of functions in the Matérn kernel RKHS. In International Conference on Artificial Intelligence and Statistics, pages 2486-2495. PMLR, 2020.
[15] Sattar Vakili, Michael Bromberg, Jezabel Garcia, Da-shan Shiu, and Alberto Bernacchia. Uniform generalization bounds for overparameterized neural networks. arXiv preprint arXiv:2109.06099, 2021.
[16] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML 2010-Proceedings, 27th International Conference on Machine Learning, pages 1015-1022, July 2010.
[17] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International Conference on Machine Learning, pages 844-853. PMLR, 2017.
[18] Sattar Vakili, Jonathan Scarlett, and Tara Javidi. Open problem: Tight online confidence intervals for RKHS elements. In Conference on Learning Theory, pages 4647-4652. PMLR, 2021.
[19] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy Gaussian process bandit optimization. In Conference on Learning Theory, pages 1723-1742. PMLR, 2017.
[20] Zihan Li and Jonathan Scarlett. Gaussian process bandit optimization with few batches. In International Conference on Artificial Intelligence and Statistics, 2022.
[21] Sudeep Salgia, Sattar Vakili, and Qing Zhao. A domain-shrinking based Bayesian optimization algorithm with order-optimal regret performance. Conference on Neural Information Processing Systems, 34, 2021.
[22] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time analysis of kernelised contextual bandits. In Uncertainty in Artificial Intelligence, 2013.
[23] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21. Curran Associates, Inc., 2008.
[24] Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in weakly communicating mdps. CoRR, abs/1205.2661, 2012.
[25] Hengshuai Yao, Csaba Szepesvári, Bernardo Avila Pires, and Xinhua Zhang. Pseudo-MDPs and factored linear action models. In 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages 1-9. IEEE, 2014.
[26] Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. Advances in Neural Information Processing Systems, 32, 2019.
[27] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric. Frequentist regret bounds for randomized least-squares value iteration. In International Conference on Artificial Intelligence and Statistics, pages 1954-1964. PMLR, 2020.
[28] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near optimal policies with low inherent Bellman error. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 10978-10989. PMLR, 13-18 Jul 2020.
[29] Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning. Advances in Neural Information Processing Systems, 33:1392-1403, 2020.
[30] Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and regret bound. In International Conference on Machine Learning, pages 10746-10756. PMLR, 2020.
[31] Sayak Ray Chowdhury and Aditya Gopalan. Online learning in kernelized Markov decision processes. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 3197-3205. PMLR, 2019.
[32] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function approximation in reinforcement learning: Optimism in the face of large state spaces. arXiv preprint arXiv:2011.04622, 2020.
[33] Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. Kernel-based reinforcement learning: A finite-time analysis. In International Conference on Machine Learning, pages 2783-2792. PMLR, 2021.
[34] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. Advances in Neural Information Processing Systems, 24, 2011.
[35] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In International conference on machine learning, pages 127-135. PMLR, 2013.
[36] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: no regret and experimental design. In Proceedings of the 27 th International Conference on International Conference on Machine Learning, pages 1015-1022, 2010.
[37] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley \& Sons, 2014.
[38] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002.
[39] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2. MIT press Cambridge, MA, 2006.
[40] Sattar Vakili, Jonathan Scarlett, Da-shan Shiu, and Alberto Bernacchia. Improved convergence rates for sparse approximation methods in kernel-based learning. In International Conference on Machine Learning, pages 21960-21983. PMLR, 2022.
[41] Parnian Kassraie and Andreas Krause. Neural contextual bandits without regret. In International Conference on Artificial Intelligence and Statistics, pages 240-278. PMLR, 2022.
[42] Yasin Abbasi-Yadkori. Online learning for linearly parametrized control problems. 2013.
[43] Sattar Vakili, Nacime Bouziani, Sepehr Jalali, Alberto Bernacchia, and Da-shan Shiu. Optimal order simple regret for Gaussian process bandits. Advances in Neural Information Processing Systems, 34:21202-21215, 2021.
[44] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in Gaussian process bandits. In International Conference on Artificial Intelligence and Statistics, pages 82-90. PMLR, 2021.
[45] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and Lorenzo Rosasco. Gaussian process optimization with adaptive sketching: scalable and no regret. In Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, Phoenix, USA, 25-28 Jun 2019. PMLR.
[46] J. Mercer. Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 209:415-446, 1909.
[47] Andreas Christmann and Ingo Steinwart. Support Vector Machines. Springer New York, NY, 2008.
[48] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected works of Wassily Hoeffding, pages 409-426, 1994.
[49] Constantine Pozrikidis. An introduction to grids, graphs, and networks. Oxford University Press, 2014.

A A Pseudocode for π-KRVI

A pseudocode for the π-KRVI policy, presented in Section 3 , is provided in Algorithm 1

```
Algorithm 1 The \(\pi\)-KRVI Policy
```

Algorithm 1 The π-KRVI Policy
Input: $\lambda, \beta_{T}(\delta), k, M=(\mathcal{S}, \mathcal{A}, H, P, r)$.
Input: $\lambda, \beta_{T}(\delta), k, M=(\mathcal{S}, \mathcal{A}, H, P, r)$.
For all $h \in[H]$, let $\mathcal{S}_{h}^{1}=\left\{[0,1]^{d}\right\}$.
For all $h \in[H]$, let $\mathcal{S}_{h}^{1}=\left\{[0,1]^{d}\right\}$.
for Episode $t=1,2, \ldots, T$, do
for Episode $t=1,2, \ldots, T$, do
Receive the initial state s_{1}^{t}.
Receive the initial state s_{1}^{t}.
Set $V_{H+1}^{t}(s)=0$, for all s.
Set $V_{H+1}^{t}(s)=0$, for all s.
for step $h=H, \ldots, 1$ do
for step $h=H, \ldots, 1$ do
Obtain value functions $Q_{h}^{t}(z)$ as in 16.
Obtain value functions $Q_{h}^{t}(z)$ as in 16.
end for
end for
for step $h=1,2, \ldots, H$ do
for step $h=1,2, \ldots, H$ do
Take action $a_{h}^{t} \leftarrow \arg \max _{a \in \mathcal{A}} Q_{h}^{t}\left(x_{h}^{t}, a\right)$.
Take action $a_{h}^{t} \leftarrow \arg \max _{a \in \mathcal{A}} Q_{h}^{t}\left(x_{h}^{t}, a\right)$.
Observe the reward $r_{h}\left(s_{h}^{t}, a_{h}^{t}\right)$ and the next state s_{h+1}^{t}.
Observe the reward $r_{h}\left(s_{h}^{t}, a_{h}^{t}\right)$ and the next state s_{h+1}^{t}.
Split any element $\mathcal{Z}^{\prime} \in \mathcal{S}_{h}^{t-1}$, for which $\rho_{\mathcal{Z}}^{-\alpha}<\left|N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)\right|+1$ along the middle of each
Split any element $\mathcal{Z}^{\prime} \in \mathcal{S}_{h}^{t-1}$, for which $\rho_{\mathcal{Z}}^{-\alpha}<\left|N_{h}^{t}\left(\mathcal{Z}^{\prime}\right)\right|+1$ along the middle of each
side, and obtain \mathcal{S}_{h}^{t}.
side, and obtain \mathcal{S}_{h}^{t}.
end for
end for
end for

```
    end for
```

Figure 1 demonstrates the domain partitioning used in π-KRVI on a 2 -dimensional domain. The colors represent the value of the target function. The observation points are expected to concentrate around the areas where the target function has a high value. As a result the domain is partitioned to smaller squares in that region.

Figure 1: A 2-dimensional domain partitioned into smaller squares.

B Mercer Theorem and the RKHSs

Mercer theorem [46] provides a representation of the kernel in terms of an infinite dimensional feature map [e.g., see, 47, Theorem 4.49]. Let \mathcal{Z} be a compact metric space and μ be a finite Borel measure on \mathcal{Z} (we consider Lebesgue measure in a Euclidean space). Let $L_{\mu}^{2}(\mathcal{Z})$ be the set of square-integrable functions on \mathcal{Z} with respect to μ. We further say a kernel is square-integrable if

$$
\int_{\mathcal{Z}} \int_{\mathcal{Z}} k^{2}\left(z, z^{\prime}\right) d \mu(z) d \mu\left(z^{\prime}\right)<\infty
$$

Theorem 3 (Mercer Theorem) Let \mathcal{Z} be a compact metric space and μ be a finite Borel measure on \mathcal{Z}. Let k be a continuous and square-integrable kernel, inducing an integral operator T_{k} : $L_{\mu}^{2}(\mathcal{Z}) \rightarrow L_{\mu}^{2}(\mathcal{Z})$ defined by

$$
\left(T_{k} f\right)(\cdot)=\int_{\mathcal{Z}} k\left(\cdot, z^{\prime}\right) f\left(z^{\prime}\right) d \mu\left(z^{\prime}\right)
$$

where $f \in L_{\mu}^{2}(\mathcal{Z})$. Then, there exists a sequence of eigenvalue-eigenfeature pairs $\left\{\left(\sigma_{m}, \phi_{m}\right)\right\}_{m=1}^{\infty}$ such that $\sigma_{m}>0$, and $T_{k} \phi_{m}=\sigma_{m} \phi_{m}$, for $m \geq 1$. Moreover, the kernel function can be represented as

$$
k\left(z, z^{\prime}\right)=\sum_{m=1}^{\infty} \sigma_{m} \phi_{m}(z) \phi_{m}\left(z^{\prime}\right)
$$

where the convergence of the series holds uniformly on $\mathcal{Z} \times \mathcal{Z}$.
According to the Mercer representation theorem [e.g., see, 47, Theorem 4.51], the RKHS induced by k can consequently be represented in terms of $\left\{\left(\sigma_{m}, \phi_{m}\right)\right\}_{m=1}^{\infty}$.

Theorem 4 (Mercer Representation Theorem) Let $\left\{\left(\sigma_{m}, \phi_{m}\right)\right\}_{i=1}^{\infty}$ be the Mercer eigenvalue eigenfeature pairs. Then, the RKHS of k is given by

$$
\mathcal{H}_{k}=\left\{f(\cdot)=\sum_{m=1}^{\infty} w_{m} \sigma_{m}^{\frac{1}{2}} \phi_{m}(\cdot): w_{m} \in \mathbb{R},\|f\|_{\mathcal{H}_{k}}^{2}:=\sum_{m=1}^{\infty} w_{m}^{2}<\infty\right\}
$$

Mercer representation theorem indicates that the scaled eigenfeatures $\left\{\sqrt{\sigma_{m}} \phi_{m}\right\}_{m=1}^{\infty}$ form an orthonormal basis for \mathcal{H}_{k}.

C Proof of Theorem 1 (Confidence Interval)

Confidence bounds of the form given in Theorem 1 have been established for a fixed function f with bounded RKHS norm and sub-Gaussian observation noise in several works including [42, 17, 43]. In the RL setting, however, we apply the confidence interval to $f=r_{h}+\left[P_{h} V_{h+1}^{t}\right]$. Although the RKHS norm of this target function is bounded by $H+1$, this is not a fixed function as it depends on V_{h+1}^{t}. In addition the observation noise terms $V_{h+1}\left(s_{h+1}^{t}\right)-\left[P_{h} V_{h+1}^{t}\right]\left(s_{h}^{t}, a_{h}^{t}\right)$ also depend on V_{h+1}^{t}. To handle this setting, we prove a confidence interval that holds for all possible $V_{h+1}^{t}: \mathcal{S} \rightarrow[0, H]$. For this purpose, we use a probability union bound and a covering set argument over the function class of V_{h+1}^{t}.
We first recall the confidence interval for a fixed function and noise sequence given in [17] Theorem 2]. See also [42, Corollary 3.15].

Lemma 4 Let $\left\{z^{t} \in \mathcal{Z}\right\}_{t=1}^{T}$ be a stochastic process predictable with respect to the filtration $\left\{\mathcal{F}_{t}\right\}_{t=0}^{T}$. Let $\left\{\epsilon^{t}\right\}_{t=1}^{T}$ be a real valued \mathcal{F}_{t} measurable stochastic process with a σ sub-Gaussian distribution conditioned on \mathcal{F}_{t-1}. Let $\mu^{t, f}$ and b^{t} be the kernel ridge predictor and uncertainty estimate of f using t noisy observations of the form $\left\{f\left(z^{\tau}\right)+\epsilon^{\tau}\right\}_{\tau=1}^{t}$. Assume $f \in \mathcal{B}_{k, R}$. Then with probability at least $1-\delta$, for all $z \in \mathcal{Z}$ and $t \geq 1$,

$$
\begin{equation*}
\left|f(z)-\mu^{t, f}(z)\right| \leq \beta_{1} b^{t}(z) \tag{23}
\end{equation*}
$$

where $\beta_{1}=R+\sigma \sqrt{2\left(\Gamma_{k, \lambda}(t)+1+\log \left(\frac{1}{\delta}\right)\right)}$.
As discussed above, we cannot directly use this confidence interval on $r_{h}+\left[P_{h} V_{h+1}^{t}\right]$ in the RL setting. Instead, we need to prove a new confidence interval that holds true for all possible V_{h+1}^{t}. We thus define \mathcal{V} to be the function class of V_{h+1}^{t} as follows.

$$
\begin{equation*}
\mathcal{V}_{k, h}(R, B)=\left\{V: V(s)=\max _{a \in \mathcal{A}} Q(s, a), \text { for some } Q \in \mathcal{Q}_{k, h}(R, B)\right\} \tag{24}
\end{equation*}
$$

For simplicity of presentation, we specify the parameters R and B later.
Let $\mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$ be the smallest ϵ-covering set of $\mathcal{V}_{k, h}(R, B)$ in terms of l_{∞} norm. That is to say for all $V \in \mathcal{V}_{k, h}(R, B)$, there exists some $\bar{V} \in \mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$ such that $\|V-\bar{V}\|_{l_{\infty}} \leq \epsilon$. Let $\mathcal{N}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$ denote the ϵ covering number of $\mathcal{V}_{k, h}(R, B)$. By definition $\mathcal{N}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)=$ $\left|\mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)\right|$.

We can create a confidence bound for all $\bar{V} \in \mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$, using Lemma 4 and a probability union bound over $\mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$. Fix $h \in[H]$ and $t \in[T]$. Let us use the notation $\hat{\bar{Q}}^{t}$ for the kernel ridge predictor with \bar{V}. That is $\hat{\bar{Q}}^{t}(z)=k_{Z_{t}}^{\top}(z)\left(K_{Z_{t}}+\lambda^{2} I\right)^{-1} \bar{Y}$, where $\bar{Y}^{\top}=\left[\bar{V}\left(s_{h+1}^{\tau}\right)\right]_{\tau=1}^{t}$, and s_{h+1}^{τ} is the next state drawn randomly from probability distribution $P_{h}\left(\cdot \mid z_{h}^{\tau}\right)$. In addition, to simplify the notation, we use $g=r_{h}+\left[P_{h} \bar{V}\right]$ and $\mu^{t, g}=\widehat{\bar{Q}}^{t}$. Also, let $b^{t}(z)=\left(k(z, z)-k_{Z_{t}}^{\top}(z)\left(K_{Z_{t}}+\right.\right.$ $\left.\left.\lambda^{2} I\right)^{-1} k_{Z_{t}}(z)\right)^{\frac{1}{2}}$. Then, we have, with probability at least $1-\delta$, for all $\bar{V} \in \mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$ and for all $z \in \mathcal{Z}$,

$$
\begin{equation*}
\left|g(z)-\mu^{t, g}(z)\right| \leq \beta_{2} b^{t}(z) \tag{25}
\end{equation*}
$$

where $\beta_{2}=H+1+\frac{H}{\sqrt{2}} \sqrt{\Gamma_{k, \lambda}(t)+\log \mathcal{N}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)+1+\log \left(\frac{1}{\delta}\right)}$.
Confidence interval (25) is a direct application of Lemma 4 and using a probability union bound over all $\bar{V} \in \mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$. Note that, $\left\|r_{h}+P_{h} \bar{V}\right\|_{\mathcal{H}_{k}} \leq H+1$ (Lemma 1). In addition, $\bar{V}\left(s_{h+1}^{\tau}\right)-$ $\left[P_{h} \bar{V}\right]\left(z_{h}^{\tau}\right) \in[0, H]$ for all h and τ. A bounded random variable in $[0, H]$ is a $H / 2$ sub-Gaussian random variable based on Hoeffding inequality [48].
Now, we extend the uniform confidence interval over all $\bar{V} \in \mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$ to a uniform confidence interval over all $V \in \mathcal{V}_{k, h}(R, B)$. For some $V \in \mathcal{V}_{k, h}(R, B)$, define $f=r_{h}+\left[P_{h} V\right]$ and $\mu^{t, f}=\widehat{Q}^{t}$, similar to g and $\mu^{t, g}$. By definition of $\mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$, there exists $\bar{V} \in \mathcal{C}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$, such that $\|V-\bar{V}\|_{l_{\infty}} \leq \epsilon$. Thus, for all $z \in \mathcal{Z}$,

$$
\begin{equation*}
f(z)-g(z)=[P V](z)-[P \bar{V}](z) \leq \sup _{s \in \mathcal{S}}|V(s)-\bar{V}(s)| \leq \epsilon \tag{26}
\end{equation*}
$$

Therefore, with probability at least $1-\delta$,

$$
\begin{align*}
\left|f(z)-\mu^{t, f}(z)\right| & \leq|f(z)-g(z)|+\left|g(z)-\mu^{t, g}(z)\right|+\left|\mu^{t, g}(z)-\mu^{t, f}(z)\right| \\
& \leq \beta_{2} b^{t}(z)+\epsilon+\left|\mu^{t, g}(z)-\mu^{t, f}(z)\right| . \tag{27}
\end{align*}
$$

Next, we prove that $\left|\mu^{t, f}(z)-\mu^{t, g}(z)\right| \leq \frac{3 \epsilon \sqrt{t} b^{t}(z)}{\lambda}$.
Let us further simplify the notation by introducing $\alpha_{t}(z)=\left(K_{Z_{t}}+\lambda^{2} I\right)^{-1} k_{Z_{t}}(z), F_{t}^{\top}=\left[f\left(z_{h}^{\tau}\right)\right]_{\tau=1}^{t}$, $E_{t}^{\top}=\left[\varepsilon^{\tau}=V\left(s_{h+1}^{\tau}\right)-\left[P_{h} V\right]\left(z_{h}^{\tau}\right)\right]_{\tau=1}^{t}, G_{t}^{\top}=\left[g\left(z_{h}^{\tau}\right)\right]_{\tau=1}^{t}, \bar{E}_{t}^{\top}=\left[\bar{\varepsilon}^{\tau}=\bar{V}\left(s_{h+1}^{\tau}\right)-\left[P_{h} \bar{V}\right]\left(z_{h}^{\tau}\right)\right]_{\tau=1}^{t}$ so that $\mu^{t, f}(z)=\alpha^{\top}(z)\left(F_{t}+E_{t}\right)$ and $\mu^{t, g}(z)=\alpha^{\top}(z)\left(G_{t}+\bar{E}_{t}\right)$.
As discussed earlier, the observation noise terms ε^{t} also depend on V. We have, for all $t \geq 1$,

$$
\begin{aligned}
\left|\varepsilon^{t}-\bar{\varepsilon}^{t}\right| & =\mid V\left(s_{h+1}^{\tau}\right)-\bar{V}\left(s_{h+1}^{\tau}\right)-\left(\left[P_{h} V\right]\left(z_{h}^{\tau}\right)-\left[P_{h} \bar{V}\right]\left(z_{h}^{\tau}\right) \mid\right. \\
& \leq 2 \epsilon
\end{aligned}
$$

Using the difference between f and g, as well as the difference between noise terms, we have

$$
\begin{aligned}
\left|\mu^{t, f}(z)-\mu^{t, g}(z)\right| & =\left|\alpha_{t}^{\top}(z)\left(F_{t}+E_{t}\right)-\alpha^{\top}(z)\left(G_{t}+\bar{E}_{t}\right)\right| \\
& \leq\left\|\alpha_{t}(z)\right\|\left\|F_{t}-G_{t}+E_{t}-\bar{E}_{t}\right\| \\
& \leq 3 \epsilon \sqrt{t}\left\|\alpha_{t}(z)\right\| \\
& \leq \frac{3 \epsilon \sqrt{t} b^{t}(z)}{\lambda}
\end{aligned}
$$

where the last inequality follows from $\left\|\alpha_{t}(z)\right\| \leq \frac{b^{t}(z)}{\lambda}$ [e.g., see, 43, Proposition 1].
The bound on $\left|\mu^{t, f}(z)-\mu^{t, g}(z)\right|$ combined with 27) proves that for a fixed $t \in[T]$, fixed $h \in[H]$, for all $z \in \mathcal{Z}$ and for all $V \in \mathcal{V}_{k, h}(R, B)$,

$$
\left|f(z)-\mu^{t, f}(z)\right| \leq \beta_{3} b^{t}(z)+\epsilon
$$

where

$$
\begin{equation*}
\beta_{3}=H+1+\frac{H}{\sqrt{2}} \sqrt{\Gamma_{k, \lambda}(t)+\log \mathcal{N}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)+1+\log \left(\frac{1}{\delta}\right)}+\frac{3 \sqrt{t} \epsilon}{\lambda} . \tag{28}
\end{equation*}
$$

The confidence interval holds uniformly for all $h \in[H]$ and $t \in[T]$ using a probability union bound, when β_{3} is replaced with the following

$$
\begin{equation*}
\beta_{4}=H+1+\frac{H}{\sqrt{2}} \sqrt{\Gamma_{k, \lambda}(t)+\log \mathcal{N}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)+1+\log \left(\frac{H T}{\delta}\right)}+\frac{3 \epsilon \sqrt{t}}{\lambda} \tag{29}
\end{equation*}
$$

To complete the proof, we bound $\mathcal{N}_{k, h}^{\mathcal{V}}(\epsilon ; R, B)$ in terms of the specific parameters of the problem. Firstly, the ϵ covering number of $\mathcal{V}_{k, h}(R, B)$ is bounded by that of $\mathcal{Q}_{k, h}(R, B)$ [10, proof of Lemma $D .1]$. Recall the definition of $\mathcal{Q}_{k, h}(R, B)$ in (18). We note that $\left\|\widehat{Q}_{h}^{t}\right\|_{\mathcal{H}_{k}} \leq 2 H \sqrt{\Gamma_{k, \lambda}(t)}$, 10 , Lemma C.1]. Thus, the theorem follows with $\beta_{h}^{t}(\delta, \epsilon)$, where $\beta_{h}^{t}(\delta, \epsilon)$ is set to some value satisfying

$$
\begin{equation*}
\beta_{h}^{t}(\delta, \epsilon) \geq H+1+\frac{H}{\sqrt{2}} \sqrt{\Gamma_{k, \lambda}(t)+\log \mathcal{N}_{k, h}\left(\epsilon ; R_{t}, \beta_{h}^{t}(\delta, \epsilon)\right)+1+\log \left(\frac{H T}{\delta}\right)}+\frac{3 \epsilon \sqrt{t}}{\lambda} \tag{30}
\end{equation*}
$$

with $R_{t}=2 \sqrt{\Gamma_{k, \lambda}(t)}$. That completes the proof of Theorem 1 .

D Proof of Lemmas 2](Maximum Information Gain) and 3](Covering Number).

We first introduce the projection of the RKHS on a lower dimensional RKHS that is used in the proof of both lemmas. We then present the proofs. Recall the Mercer theorem and the representation of kernel using Mercer eigenvalues and eigenfeatures. Using Mercer representation theorem, any $f \in \mathcal{B}_{R}$ can be written as

$$
\begin{equation*}
f=\sum_{m=1}^{\infty} w_{m} \sqrt{\sigma_{m}} \phi_{m} \tag{31}
\end{equation*}
$$

with $\sum_{m=1}^{\infty} w_{m}^{2} \leq R^{2}$. For some $D \in \mathbb{N}$, let $\Pi_{D}[f]$ denote the projection of f onto the D dimensional RKHS corresponding to the first D features with the largest eigenvalues

$$
\begin{equation*}
\Pi_{D}[f]=\sum_{m=1}^{D} w_{m} \sqrt{\sigma_{m}} \phi_{m} \tag{32}
\end{equation*}
$$

Let us use the notations $\boldsymbol{w}_{D}=\left[w_{1}, w_{2}, \cdots, w_{D}\right]^{\top}$ for the D-dimensional column vector of weights, $\phi_{D}(z)=\left[\phi_{1}(z), \phi_{2}(z), \cdots, \phi_{D}(z)\right]^{\top}$ for the D-dimensional column vector of eigenfeatures, and $\Sigma_{D}=\operatorname{diag}\left(\left[\sigma_{1}, \sigma_{2}, \cdots, \sigma_{D}\right]\right)$ for the diagonal matrix of eigenvalues with $\left[\sigma_{1}, \sigma_{2}, \cdots, \sigma_{D}\right]$ as the diagonal entries. We also use the notations

$$
\begin{equation*}
k^{D}\left(z, z^{\prime}\right)=\phi_{D}^{\top}(z) \Sigma_{D} \phi_{D}(z) \tag{33}
\end{equation*}
$$

to denote the kernel corresponding to the D-dimensional RKHS, as well as $k^{0}\left(z, z^{\prime}\right)=k\left(z, z^{\prime}\right)-$ $k^{D}\left(z, z^{\prime}\right)$.

D. 1 Proof of Lemma 2 on Maximum Information Gain

Recall the definition of $\Gamma_{k, \lambda}(t)$. We have

$$
\begin{aligned}
\frac{1}{2} \log \operatorname{det}\left(I+\frac{1}{\lambda^{2}} K_{Z^{t}}\right) & =\frac{1}{2} \log \operatorname{det}\left(I+\frac{1}{\lambda^{2}}\left(K_{Z^{t}}^{D}+K_{Z^{t}}^{0}\right)\right) \\
& =\underbrace{\frac{1}{2} \log \operatorname{det}\left(I+\frac{1}{\lambda^{2}} K_{Z^{t}}^{D}\right)}_{\text {Term }(i)}+\underbrace{\frac{1}{2} \log \operatorname{det}\left(I+\frac{1}{\lambda^{2}}\left(I+\frac{1}{\lambda^{2}} K_{Z^{t}}^{D}\right)^{-1} K_{Z^{t}}^{0}\right)}_{\text {Term (ii) }} .
\end{aligned}
$$

We next bound the two terms on the right hand side.
Term (i): Note that for k^{D} corresponding to the D-dimensional RKHS, we have $K_{Z^{t}}^{D}=\boldsymbol{\Phi}_{t} \Sigma_{D} \boldsymbol{\Phi}_{t}^{\top}$, where $\boldsymbol{\Phi}_{t}=\left[\phi_{D}(z)\right]_{z \in Z^{t}}^{\top}$ is a $t \times D$ matrix that stacks the feature vectors $\phi_{D}\left(z^{\tau}\right), \tau=1, \cdots, t$, as it rows. By Weinstein-Aronszajn identity [49] (a special case of matrix determinant lemma),

$$
\begin{align*}
\log \operatorname{det}\left(I^{t}+\frac{1}{\lambda^{2}} K_{Z^{t}}^{D}\right) & =\log \operatorname{det}\left(I^{t}+\frac{1}{\lambda^{2}} \boldsymbol{\Phi}_{t} \Sigma_{D} \boldsymbol{\Phi}_{t}^{\top}\right) \tag{34}\\
& =\log \operatorname{det}\left(I^{D}+\frac{1}{\lambda^{2}} \Sigma_{D}^{\frac{1}{2}} \boldsymbol{\Phi}_{t} \boldsymbol{\Phi}_{t}^{\top} \Sigma_{D}^{\frac{1}{2}}\right) \\
& \leq D \log \left(\frac{\operatorname{tr}\left(I^{D}+\frac{1}{\lambda^{2}} \Sigma_{D}^{\frac{1}{2}} \boldsymbol{\Phi}_{t} \boldsymbol{\Phi}_{t}^{\top} \Sigma_{D}^{\frac{1}{2}}\right)}{D}\right) \\
& \leq D \log \left(1+\frac{t}{\lambda^{2} D}\right) .
\end{align*}
$$

The first inequality follows from the inequality of arithmetic and geometric means on eigenvalues of the argument, and the second inequality follows from $k^{D} \leq 1$. For clarity, we used the notations I^{t} and I^{D} for identity matrices of dimension t and D, respectively. Otherwise, we drop the superscript.

Term (ii): Similarly using the inequality of arithmetic and geometric means on eigenvalues, we bound the \log det by the \log of the trace of the argument. Let us use ϵ_{D} to denote an upper bound on k^{0}.

$$
\begin{align*}
\log \operatorname{det}\left(I+\frac{1}{\lambda^{2}}\left(I+\frac{1}{\lambda^{2}} K_{Z^{t}}^{D}\right)^{-1} K_{Z^{t}}^{0}\right) & \leq t \log \left(\frac{\operatorname{tr}\left(I+\frac{1}{\lambda^{2}}\left(I+\frac{1}{\lambda^{2}} K_{Z^{t}}^{D}\right)^{-1} K_{Z^{t}}^{0}\right)}{t}\right) \tag{35}\\
& \leq t \log \left(1+\frac{\epsilon_{D}}{\lambda^{2}}\right) \\
& \leq \frac{t \epsilon_{D}}{\lambda^{2}}
\end{align*}
$$

The last inequality uses $\log (1+x) \leq x$ which holds for all $x \in \mathbb{R}$.
Combining the bounds on Term (i) and Term (ii), we have

$$
\begin{equation*}
\Gamma_{k, \lambda}(t) \leq \frac{D}{2} \log \left(1+\frac{t}{\lambda^{2} D}\right)+\frac{t \epsilon_{D}}{2 \lambda^{2}} \tag{36}
\end{equation*}
$$

Choosing $D=C t^{\frac{1}{\bar{p}}} \rho_{\mathcal{Z}}^{\frac{\alpha}{\overline{\mathcal{L}}}}(\log (t))^{-\frac{1}{\bar{p}}}$, with constant $C=\frac{1}{2}\left(\frac{C_{1}^{2} C_{p}}{(\tilde{p}-1) \lambda^{2}}\right)^{\frac{1}{\tilde{p}}}$ we obtain

$$
\begin{equation*}
\Gamma_{k, \lambda}(t) \leq C t^{\frac{1}{\bar{p}}} \rho_{\mathcal{Z}}^{\frac{\alpha}{\bar{p}}}\left(\log (t)^{-\frac{1}{\bar{p}}} \log \left(1+\frac{t}{\lambda^{2} D}\right)+(\log (t))^{1-\frac{1}{\bar{p}}}\right) \tag{39}
\end{equation*}
$$ that completes the proof.

D. 2 Proof of Lemma 3 on Covering Number of State-Action Value Function Class

Recall the definition of the state-action value function class,

$$
\mathcal{Q}_{k, h}(R, B)=\left\{Q: Q(z)=\min \left\{Q_{0}(z)+\beta b(z), H-h+1\right\},\left\|Q_{0}\right\|_{\mathcal{H}_{k}} \leq R, \beta \leq B,|Z| \leq T\right\}
$$

and the notation $\mathcal{N}_{k, h}(\epsilon ; R, B)$ for its ϵ-covering number. Let us use the notation $\mathcal{N}_{k, R}(\epsilon)$ for the ϵ-covering number of RKHS ball $\mathcal{B}_{k, R}=\left\{f:\|f\|_{\mathcal{H}_{k}} \leq R\right\}, \mathcal{N}_{[0, B]}(\epsilon)$ for the ϵ-covering number of interval $[0, B]$ with respect to Euclidean distance, and $\mathcal{N}_{k, \boldsymbol{b}}(\epsilon)$ for the ϵ-covering number of class of uncertainty functions $\boldsymbol{b}_{k}=\left\{b(z)=\left(k(z, z)-k_{Z}^{\top}(z)\left(K_{Z}+\lambda^{2} I\right)^{-1} k_{Z}(z)\right)^{\frac{1}{2}},|Z| \leq T\right\}$.

Consider $Q, \bar{Q} \in \mathcal{Q}_{k, h}(R, B)$ where $Q(z)=\min \left\{Q_{0}(z)+\beta b(z), H-h+1\right\}$ and $\bar{Q}(z)=$ $\min \left\{\bar{Q}_{0}(z)+\bar{\beta} \bar{b}(z), H-h+1\right\}$. We have

$$
\begin{equation*}
|Q(z)-\bar{Q}(z)| \leq\left|Q_{0}(z)-\bar{Q}_{0}(z)\right|+|\beta-\bar{\beta}|+B|b(z)-\bar{b}(z)| . \tag{40}
\end{equation*}
$$

That implies

$$
\begin{equation*}
\mathcal{N}_{k, h}(\epsilon ; R, B) \leq \mathcal{N}_{k, R}\left(\frac{\epsilon}{3}\right) \mathcal{N}_{[0, B]}\left(\frac{\epsilon}{3}\right) \mathcal{N}_{k, \boldsymbol{b}}\left(\frac{\epsilon}{3 B}\right) . \tag{41}
\end{equation*}
$$

For the ϵ-covering number of the $[0, B]$ interval, we simply have $\mathcal{N}_{[0, B]}(\epsilon / 3) \leq 1+3 B / \epsilon$. In the next lemmas, we bound the ϵ-covering number of the RKHS ball and the class of uncertainty functions.

Lemma 5 (RKHS Covering Number) Consider a positive definite kernel $k: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$, with polynomial eigendecay on a hypercube with side length $\rho_{\mathcal{Z}}$. The ϵ-covering number of R-ball in the RKHS satisfies

$$
\begin{equation*}
\log \mathcal{N}_{k, R}(\epsilon)=\mathcal{O}\left(\left(\frac{R^{2} \rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{1}{\mathcal{p}-1}} \log \left(1+\frac{R}{\epsilon}\right)\right) \tag{42}
\end{equation*}
$$

Lemma 6 (Uncertainty Class Covering Number) Consider a positive definite kernel $k: \mathcal{Z} \times \mathcal{Z} \rightarrow$ \mathbb{R}, with polynomial eigendecay on a hypercube with side length $\rho_{\mathcal{Z}}$. The ϵ-covering number of the class of uncertainty functions satisfies

$$
\begin{equation*}
\log \mathcal{N}_{k, \boldsymbol{b}}(\epsilon)=\mathcal{O}\left(\left(\frac{\rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{2}{\bar{p}-1}}\left(1+\log \left(\frac{1}{\epsilon}\right)\right)\right) \tag{43}
\end{equation*}
$$

that completes the proof of Lemma 3 Next, we provide the proof of two lemmas above on the covering numbers of the RKHS ball and the uncertainty function class.

Proof 1 (Proof of Lemma 5) For f in the $R K H S$, recall the following representation

$$
\begin{equation*}
f=\sum_{m=1}^{\infty} w_{m} \sqrt{\sigma_{m}} \phi_{m} \tag{45}
\end{equation*}
$$

as well as its projection on the D-dimensional RKHS

$$
\begin{equation*}
\Pi_{D}[f]=\sum_{m=1}^{D} w_{m} \sqrt{\sigma_{m}} \phi_{m} \tag{46}
\end{equation*}
$$

We note that

$$
\begin{aligned}
\left\|f-\Pi_{D}[f]\right\|_{\infty} & =\sum_{m=D+1}^{\infty} w_{m} \sqrt{\sigma_{m}} \phi_{m} \\
& \leq C_{1} \sum_{m=D+1}^{\infty}\left|w_{m}\right| \sqrt{\sigma_{m}^{1-2 \eta}} \\
& \leq C_{1} C_{p}^{\frac{1}{2}-\eta} \rho_{\mathcal{Z}}^{\alpha / 2} \sum_{m=D+1}^{\infty}\left|w_{m}\right| m^{-p\left(\frac{1}{2}-\eta\right)} \\
& \leq C_{1} C_{p}^{\frac{1}{2}-\eta} \rho_{\mathcal{Z}}^{\alpha / 2}\left(\sum_{m=D+1}^{\infty}\left|w_{m}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{m=D+1}^{\infty} m^{-p(1-2 \eta)}\right)^{\frac{1}{2}} \\
& \leq C_{1} C_{p}^{\frac{1}{2}-\eta} \rho_{\mathcal{Z}}^{\alpha / 2} R\left(\int_{D}^{\infty} x^{-\tilde{p}} d x\right)^{\frac{1}{2}} \\
& =\frac{C_{1} C_{p}^{\frac{1}{2}-\eta} \rho_{\mathcal{Z}}^{\alpha / 2} R}{\sqrt{\tilde{p}-1}} D^{\frac{-\tilde{p}+1}{2}} .
\end{aligned}
$$

In the expressions above, C_{1} is the uniform bound on $\sigma_{m}^{\eta} \phi_{m}$, and C_{p} is the constant specified in Definition 1. The third inequality follows form Cauchy-Schwarz inequality.

Now, let D_{0} be the smallest D such that the right hand side is bounded by $\frac{\epsilon}{2}$. There exists a constant $C_{2}>0$, only depending on constants C_{1}, C_{p}, η and \tilde{p}, such that

$$
\begin{equation*}
D_{0} \leq C_{2}\left(\frac{R^{2} \rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{1}{\tilde{p}-1}} \tag{47}
\end{equation*}
$$

For a D-dimensional linear model, where the norm of the weights is bounded by R, the ϵ-covering is at most $C_{3} D\left(1+\log \left(\frac{R}{\epsilon}\right)\right.$, for some constant C_{3} [e.g., see, 10]. Using an $\epsilon / 2$ covering number for the space of $\Pi_{D}[f]$ and using the minimum number of dimensions that ensures $\left|f-\Pi_{D}[f]\right| \leq \epsilon / 2$, we conclude that

$$
\begin{aligned}
\log \mathcal{N}_{k, R}(\epsilon) & \leq C_{3} D_{0}\left(1+\log \left(\frac{R}{\epsilon}\right)\right) \\
& \leq C_{2} C_{3}\left(\frac{R^{2} \rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{1}{p-1}}\left(1+\log \left(\frac{R}{\epsilon}\right)\right)
\end{aligned}
$$

that completes the proof of the lemma.
Proof 2 (Proof of Lemma 6 Let us define $\boldsymbol{b}_{k}^{2}=\left\{b^{2}: b \in \boldsymbol{b}_{k}\right\}$ and $\mathcal{N}_{k, \boldsymbol{b}^{2}}(\epsilon)$ to be its ϵ-covering number. We note that, for $b, \vec{b} \in \boldsymbol{b}$,

$$
\begin{equation*}
|b(z)-\bar{b}(z)| \leq \sqrt{\left|(b(z))^{2}-(\bar{b}(z))^{2}\right|} \tag{48}
\end{equation*}
$$

Thus, an ϵ-covering number of \boldsymbol{b} is bounded by an ϵ^{2}-covering of \boldsymbol{b}^{2} :

$$
\begin{equation*}
\mathcal{N}_{k, \boldsymbol{b}}(\epsilon) \leq \mathcal{N}_{k, \boldsymbol{b}^{2}}\left(\epsilon^{2}\right) \tag{49}
\end{equation*}
$$

We next bound $\mathcal{N}_{k, \boldsymbol{b}^{2}}\left(\epsilon^{2}\right)$.
Using the feature space representation of the kernel, we obtain

$$
\begin{equation*}
(b(z))^{2}=\sum_{m=1}^{\infty} \gamma_{m} \sigma_{m} \phi_{m}^{2}(z) \tag{50}
\end{equation*}
$$

654 655
for some $\gamma_{m} \in[0,1]$. Based on the GP interpretation of the model, γ_{m} can be understood as the posterior variances of the weights. Let D_{0} be the smallest D such that $\sum_{m=D+1}^{\infty} \sigma_{m} \phi_{m}^{2}(z) \leq \epsilon^{2} / 2$.

From Equation (38), we can see that, for some constant C_{4}, only depending on constants C_{1}, C_{p}, η and \tilde{p},

$$
\begin{equation*}
D_{0} \leq C_{4}\left(\frac{\rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{1}{\bar{p}-1}} \tag{51}
\end{equation*}
$$

For $\sum_{m=1}^{D_{0}} \gamma_{m} \sigma_{m} \phi_{m}^{2}(z)$ on a finite D_{0}-dimensional spectrum, as shown in Lemma D. 3 of [10], an $\epsilon^{2} / 2$ covering number scales with D_{0}^{2}. Specifically, an $\epsilon^{2} / 2$ covering number of $\sum_{m=1}^{D_{0}} \gamma_{m} \sigma_{m} \phi_{m}^{2}(z)$ covering number is bounded by

$$
\begin{equation*}
C_{5} D_{0}^{2}\left(1+\log \left(\frac{1}{\epsilon}\right) .\right. \tag{52}
\end{equation*}
$$

Combining Equations (51) and (52), we obtain

$$
\begin{aligned}
\mathcal{N}_{k, \boldsymbol{b}^{2}}\left(\epsilon^{2}\right) & \leq C_{5} D_{0}^{2}\left(1+\log \left(\frac{1}{\epsilon}\right)\right) \\
& \leq C_{5} C_{4}^{2}\left(\frac{\rho_{\mathcal{Z}}^{\alpha}}{\epsilon^{2}}\right)^{\frac{2}{\bar{p}-1}}
\end{aligned}
$$

that completes the proof of the lemma.

E Proof of Theorem 2 (Regret of π-KRVI).

Following the standard analysis of optimisitc LSVI policies, for any $h \in[H], t \in[T]$, we define temporal difference error $\delta_{h}^{t}: \mathcal{Z} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\delta_{h}^{t}(z)=r_{h}(z)+\left[P_{h} V_{h+1}^{t}\right](z)-Q_{h}^{t}(z), \quad \forall z \in \mathcal{Z} \tag{53}
\end{equation*}
$$

Roughly speaking, $\left\{\delta_{h}^{t}(z)\right\}_{h=1}^{H}$ quantify how far the $\left\{Q_{h}^{t}\right\}_{h=1}^{H}$ are from satisfying the Bellman optimality equation.

For any $h \in[H], t \in[T]$, we also define

$$
\begin{align*}
\xi_{h}^{t} & =\left(V_{h}^{t}\left(s_{h}^{t}\right)-V_{h}^{\pi^{t}}\left(s_{h}^{t}\right)\right)-\left(Q_{h}^{t}\left(z_{h}^{t}\right)-Q_{h}^{\pi^{t}}\left(z_{h}^{t}\right)\right), \\
\zeta_{h}^{t} & =\left(\left[P_{h} V_{h+1}^{t}\right]\left(z_{h}^{t}\right)-\left[P_{h} V_{h+1}^{\pi^{t}}\right]\left(z_{h}^{t}\right)\right)-\left(V_{h+1}^{t}\left(s_{h+1}^{t}\right)-V_{h+1}^{\pi^{t}}\left(s_{h+1}^{t}\right)\right) . \tag{54}
\end{align*}
$$

Using the notation defined above, we then have the following regret decomposition into three parts.
Lemma 7 (Lemma 5.1 in [10] on regret decomposition) We have

$$
\begin{align*}
\mathcal{R}(T)= & \underbrace{\sum_{t=1}^{T} \sum_{h=1}^{H} \mathbb{E}_{\pi^{\star}}\left[\delta_{h}^{t}\left(z_{h}\right) \mid s_{1}=s_{1}^{t}\right]-\delta_{h}^{t}\left(z_{h}^{t}\right)}_{(i)}+\underbrace{\sum_{t=1}^{T} \sum_{h=1}^{H}\left(\xi_{h}^{t}+\zeta_{h}^{t}\right)}_{(i i)} \\
& +\underbrace{\sum_{t=1}^{T} \sum_{h=1}^{H} \mathbb{E}_{\pi^{\star}}\left[Q_{h}^{t}\left(s_{h}, \pi_{h}^{\star}\left(s_{h}\right)\right)-Q_{h}^{t}\left(s_{h}, \pi_{h}^{t}\left(s_{h}\right)\right) \mid s_{1}=s_{1}^{t}\right]}_{(i i i)} . \tag{55}
\end{align*}
$$

The third term is negative, by definition of π_{h}^{t} that is the greedy policy with respect to Q_{h}^{t} :

$$
Q_{h}^{t}\left(s_{h}, \pi_{h}^{\star}\left(s_{h}\right)\right)-Q_{h}^{t}\left(s_{h}, \pi_{h}^{t}\left(s_{h}\right)\right)=Q_{h}^{t}\left(s_{h}, \pi_{h}^{\star}\left(s_{h}\right)\right)-\max _{a \in \mathcal{A}} Q_{h}^{t}\left(s_{h}, a\right) \leq 0
$$

We also note that

$$
\begin{align*}
\Gamma_{k, \lambda}\left(N_{h, \mathcal{Z}^{\prime}}^{T}\right) & \leq C\left(N_{h, \mathcal{Z}^{\prime}}^{T}\right)^{\frac{1}{\bar{p}}}\left(\log \left(N_{h, \mathcal{Z}^{\prime}}^{T}\right)\right)^{1-\frac{1}{\bar{p}}} \rho^{\frac{\alpha}{\overline{\mathcal{Z}}}} \\
& \leq C\left(\rho_{\mathcal{Z}^{\prime}}\right)^{\frac{-\alpha}{\bar{p}}}\left(\log \left(N_{h, \mathcal{Z}^{\prime}}^{T}\right)\right)^{1-\frac{1}{\bar{p}}} \rho_{\mathcal{Z}^{\prime}}^{\frac{\alpha}{\bar{p}}} \\
& \leq C\left(\log \left(N_{h, \mathcal{Z}^{\prime}}^{T}\right)\right)^{1-\frac{1}{\bar{p}}} \\
& \leq C \log (T), \tag{59}
\end{align*}
$$

Lemma 8 (Lemma 5.3 in [10]) For any $\delta \in(0,1)$, with probability at least $1-\delta$, we have

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{h=1}^{H}\left(\xi_{h}^{t}+\zeta_{h}^{t}\right) \leq 4 \sqrt{T H^{3} \log \left(\frac{2}{\delta}\right)} \tag{56}
\end{equation*}
$$

Term (i): It turns out that the dominant term and the challenging term to bound is the first term in Lemma 7 We next provide an upper bound on this term.
Let $\mathcal{U}_{h}^{T}=\bigcup_{t=1}^{T} \mathcal{S}_{h}^{t}$ be the union of all cover elements used by π-KRVI over all episodes. The size of \mathcal{U}_{h}^{T} is bounded in the following lemma and is useful in the analysis of Term (i).

Lemma 9 (Lemma 2 in [14]) The size of \mathcal{U}_{h}^{T} satisfies

$$
\begin{equation*}
\left|\mathcal{U}_{h}^{T}\right| \leq C \Gamma_{k, \lambda}(T) \tag{57}
\end{equation*}
$$

for some constant C.
Now, consider a cover element $\mathcal{Z}^{\prime} \in \mathcal{U}_{h}^{T}$. Using Theorem 1 , we have, with probability at least $1-\delta$, for all $h \in[H], t \in[T], z \in \mathcal{Z}^{\prime}$, for some $\epsilon_{h}^{t} \in(0,1)$,

$$
\begin{equation*}
\left|r_{h}(z)+\left[P_{h} V_{h+1}\right](z)-\widehat{Q}_{h}^{t}(z)\right| \leq \beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right) b_{h}^{t}(z)+\epsilon_{h}^{t} \tag{58}
\end{equation*}
$$

where $\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)$ is the smallest value satisfying

$$
\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right) \geq H+1+\frac{H}{\sqrt{2}} \sqrt{\Gamma_{k, \lambda}(N)+\log \mathcal{N}_{k, h}\left(\epsilon_{h}^{t} ; R_{N}, \beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)\right)+1+\log \left(\frac{N H}{\delta}\right)}+\frac{3 \sqrt{N} \epsilon_{h}^{t}}{\lambda}
$$

with $N=N_{h, \mathcal{Z}^{\prime}}^{T}$ and $\epsilon_{h}^{t}=\frac{H \sqrt{\log \left(\frac{T H}{\delta}\right)}}{\sqrt{N_{h, \mathcal{Z}^{\prime}}^{T}}}$.
where the first inequality is based on Lemma 2 the second inequality is by the design of partitioning in π-KRVI. Recall that each hypercube is partitioned when $\rho_{\mathcal{Z}^{\prime}}^{-\frac{1}{b}}<N_{h, \mathcal{Z}^{\prime}}^{t}+1$ ensuring $N_{h, \mathcal{Z}^{\prime}}^{t}$ remains at most $\rho_{\mathcal{Z}^{\prime}}^{-\alpha}$.
For the covering number, with the choice of $\epsilon_{h}^{t}=\frac{H \sqrt{\log \left(\frac{T H}{\delta}\right)}}{\sqrt{N_{h, \mathcal{Z}^{\prime}}^{t}}}$, we have

$$
\begin{aligned}
& \log \mathcal{N}_{k, h}\left(\epsilon_{h}^{t} ; R_{N}, \beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)\right) \\
& \quad \leq C\left(\frac{R_{N}^{2} \rho_{\mathcal{Z}}^{\alpha}}{\left(\epsilon_{h}^{t}\right)^{2}}\right)^{\frac{1}{\bar{p}-1}}\left(1+\log \left(\frac{R_{N}}{\epsilon_{h}^{t}}\right)\right)+\left(\frac{\left(\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)\right)^{2} \rho_{\mathcal{Z}^{\prime}}^{\alpha}}{\left(\epsilon_{h}^{t}\right)^{2}}\right)^{\frac{2}{\bar{p}-1}}\left(1+\log \left(\frac{\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)}{\epsilon_{h}^{t}}\right)\right) \\
& \quad \leq C\left(\frac{R_{N}^{2}}{H^{2} \log \left(\frac{H T}{\delta}\right)}\right)^{\frac{1}{\bar{p}-1}}\left(1+\log \left(\frac{R_{N}}{\epsilon_{h}^{t}}\right)\right)+\left(\frac{\left(\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)\right)^{2}}{H^{2} \log \left(\frac{H T}{\delta}\right)}\right)^{\frac{2}{\bar{p}-1}}\left(1+\log \left(\frac{\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)}{\epsilon_{h}^{t}}\right)\right)
\end{aligned}
$$

We thus see that the choice of $\beta_{h}^{t}\left(\delta, \epsilon_{h}^{t}\right)=\Theta\left(H \sqrt{\log \left(\frac{T H}{\delta}\right)}\right)$ satisfies the requirement for confidence interval width on \mathcal{Z}^{\prime} based on Theorem 1 . We now use probability union bound over all $\mathcal{Z}^{\prime} \in \mathcal{U}_{h}^{T}$ to obtain

$$
\begin{equation*}
\beta_{T}(\delta)=\Theta\left(H \sqrt{\log \left(\frac{T H\left|H \mathcal{U}_{h}^{T}\right|}{\delta}\right)}\right)=\Theta\left(H \sqrt{\log \left(\frac{T H}{\delta}\right)} .\right. \tag{60}
\end{equation*}
$$

for which, we have with probability at least $1-\delta$, for all $h \in[H], t \in[T], z \in \mathcal{Z}$,

$$
\begin{equation*}
\left|r_{h}(z)+\left[P_{h} V_{h+1}\right](z)-\widehat{Q}_{h}^{t}(z)\right| \leq \beta_{T}(\delta) b_{h}^{t}(z)+\epsilon_{h}^{t} \tag{61}
\end{equation*}
$$

where in the above expression ϵ_{h}^{t} is the parameter of the covering number corresponding to \mathcal{Z}^{\prime} when $z \in \mathcal{Z}^{\prime}$.
Therefore, we have, with probability at least $1-\delta$

$$
\begin{equation*}
\operatorname{Term}(i) \leq \sum_{t=1}^{T} \sum_{h=1}^{H}-\delta_{h}^{t}\left(z_{h}^{t}\right) \leq 2 \beta_{T}(\delta)\left(\sum_{t=1}^{T} \sum_{h=1}^{H} b_{h}^{t}\left(z_{h}^{t}\right)\right)+2 \epsilon_{h}^{t} \tag{62}
\end{equation*}
$$

with

$$
\begin{equation*}
\epsilon_{h}^{t}=\frac{H \sqrt{\log \left(\frac{T H}{\delta}\right)}}{\sqrt{N_{h, \mathcal{Z}\left(z_{h}^{t}\right)}^{t}}} \tag{63}
\end{equation*}
$$

697
We bound the total uncertainty in the kernel ridge regression measured by $\sum_{t=1}^{T}\left(b_{h}^{t}\left(z_{h}^{t}\right)\right)^{2}$

$$
\begin{aligned}
\sum_{t=1}^{T}\left(b_{h}^{t}\left(z_{h}^{t}\right)\right)^{2} & =\sum_{\mathcal{Z}^{\prime} \in \mathcal{U}_{h}^{T}} \sum_{z_{h}^{t} \in \mathcal{Z}^{\prime}}\left(b_{h}^{t}\left(z_{h}^{t}\right)\right)^{2} \\
& \leq \sum_{\mathcal{Z}^{\prime} \in \mathcal{U}_{h}^{T}} \frac{2}{\log \left(1+1 / \lambda^{2}\right)} \Gamma_{k, \lambda}\left(N_{h, \mathcal{Z}^{\prime}}^{T}\right) \\
& \leq \sum_{\mathcal{Z}^{\prime} \in \mathcal{U}_{h}^{T}} \frac{2 C}{\log \left(1+1 / \lambda^{2}\right)} \log (T) \\
& \leq \frac{2 C\left|\mathcal{U}_{h}^{T}\right|}{\log \left(1+1 / \lambda^{2}\right)} \log (T) \\
& \leq C \Gamma_{k, \lambda}(T) \log (T)
\end{aligned}
$$

The first inequality is commonly used in kernelized bandits. For example see [16, Lemma 5.4]. The 699 second and fourth inequality follow from Equation (59) and Lemma 9, respectively. Also, we have

$$
\begin{align*}
\sum_{t=1}^{T}\left(\epsilon_{h}^{t}\right)^{2} & =\sum_{t=1}^{T} \frac{H^{2} \log \left(\frac{T H}{\delta}\right)}{N_{h, \mathcal{Z}\left(z_{h}^{t}\right)}^{t}} \tag{64}\\
& \leq \sum_{\mathcal{Z}^{\prime} \in \mathcal{U}_{h}^{T}} \sum_{z_{h}^{t} \in \mathcal{Z}^{\prime}} \frac{H^{2} \log \left(\frac{T H}{\delta}\right)}{N_{h, \mathcal{Z}^{\prime}}^{t}} \\
& \leq\left|\mathcal{U}_{h}^{T}\right| H^{2} \log \left(\frac{T H}{\delta}\right) \log (T) \\
& \leq C \Gamma_{k, \lambda}(T) H^{2} \log \left(\frac{T H}{\delta}\right) \log (T)
\end{align*}
$$

700 We are now ready to bound the

$$
\begin{align*}
\operatorname{Term}(i) & \leq 2 \beta_{T}(\delta)\left(\sum_{t=1}^{T} \sum_{h=1}^{H} b_{h}^{t}\left(z_{h}^{t}\right)\right)+2 \sum_{t=1}^{T} \sum_{h=1}^{H} \epsilon_{h}^{t} \tag{65}\\
& \leq 2 \beta_{T}(\delta) \sqrt{T} \sum_{h=1}^{H} \sqrt{\sum_{t=1}^{T}\left(b_{h}^{t}\left(z_{h}^{t}\right)\right)^{2}}+2 \sqrt{T} \sum_{h=1}^{H} \sqrt{\sum_{t=1}^{T}\left(\epsilon_{h}^{t}\right)^{2}} \\
& =\mathcal{O}\left(H^{2} \sqrt{\log (T) T \Gamma_{k, \lambda}(T) \log \left(\frac{T H}{\delta}\right)}\right) .
\end{align*}
$$

701 The proof is completed.

[^0]: ${ }^{1}$ We intentionally do note use the standard term transition kernel for P_{h}, to avoid confusion with the term kernel in kernel-based learning.

