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Abstract

Modern reinforcement learning has shown empirical success in various real world1

settings with complex models and large state-action spaces. The existing analytical2

results, however, typically focus on settings with a small number of state-actions or3

simple models such as linearly modeled state-action value functions. To derive RL4

policies that efficiently handle large state-action spaces with more general value5

functions, some recent works have considered nonlinear function approximation6

using kernel ridge regression. We propose π-KRVI, an optimistic modification of7

least-squares value iteration, when the state-action value function is represented by8

an RKHS. We prove the first order-optimal regret guarantees under a general setting.9

Our results show a significant polynomial in the number of episodes improvement10

over the state of the art. In particular, with highly non-smooth kernels (such as11

Neural Tangent kernel or some Matérn kernels) the existing results lead to trivial12

(superlinear in the number of episodes) regret bounds. We show a sublinear regret13

bound that is order optimal in the cases where a lower bound on regret is known14

(which includes the kernels mentioned above).15

1 Introduction16

Reinforcement learning (RL) in real world often has to deal with large state action spaces and17

complex unknown models. While RL policies using complex function approximations have been18

empirically effective in various fields including gaming [1, 2, 3], autonomous driving [4], microchip19

design [5], robot control [6], and algorithm search [7], little is known about theoretical performance20

guarantees in such settings. The analysis of RL algorithms has predominantly focused on simpler21

cases such as tabular or linear Markov decision processes (MDPs). In a tabular setting, a regret bound22

of Õ(
√
H3|S × A|T ) has been shown for optimistic state-action value learning algorithms [e.g.,23

see, 8], where H is the length of episodes, T is the number of episodes, and S and A are finite state24

and action spaces. This bound does not scale well when the size of state-action space grows large.25

When the model (the state-action value function or the transitions) admits a d-dimensional linear26

representation in some state-action features, a regret bound of Õ(
√
H3d3T ) is established [9], that27

scales with the dimension of the linear model rather than the cardinality of the state-action space.28

Several recent studies have explored the utilization of complex models with large state-action spaces.29

A very general model entails representing the state-action value function using a reproducing kernel30

Hilbert space (RKHS). This approach allows using kernel ridge regression to obtain confidence31

intervals, which facilitate the design and analysis of RL algorithms. The most significant contribution32

to this general RL problem is [10] (also see the extended version on arXiv [11]), that provides regret33

guarantees for an optimistic least-squares value iteration (LSVI) algorithm, referred to as kernel34

optimistic least-squares value iteration (KOVI). The main assumption is that the state-action value35

function can be represented using the RKHS of a known kernel k. The regret bounds reported in [10]36
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scale as Õ
(
H2
√

(Γ(T ) + logN (ε)) Γ(T )T
)

, with ε = H
T , where Γ(T ) and N (ε) are two kernel37

related complexity terms, respectively, referred to as maximum information gain and ε-covering38

number of the class of state-action value functions. The definitions are given in Section 4. Both39

complexity terms are determined using the spectrum of the kernel. While for smooth kernels, charac-40

terized by exponentially decaying Mercer eigenvalues, such as Squared Exponential kernel, Γ(T )41

and logN (HT ) are logarithmic in T , for more general kernels with greater representation capacity,42

these terms may grow polynomially in T , possibly making the regret bound trivial (superlinear).43

To have a better understanding of the existing result, let {σm > 0}∞m=1 denote the Mercer eigenvalues44

of the kernel k in a decreasing order. Also, let {φm}∞m=1 denote the corresponding eigenfeatures.45

Refer to Section 2.2 for details. The kernel k is said to have a polynomial eigendecay when σm46

decay at least as fast as m−p for some p > 1. The polynomial eigendecay profile satisfies for many47

kernels of practical and theoretical interest such as Matérn family of kernels [12] and the Neural48

Tangent (NT) kernel [13]. For a Matérn kernel with smoothness parameter ν on a d-dimensional49

domain, p = 2ν+d
d [e.g., see, 14]. For a NT kernel with s − 1 times differentiable activations,50

p = 2s−1+d
d [15]. In [10], the regret bound is specialized for the class of kernels with polynomially51

decaying eigenvalues, by bounding the complexity terms based on the kernel spectrum. However,52

the reported regret bound is sublinear in T only when the kernel eigenvalues decay very fast. In53

particular, let p̃ = p(1− 2η), where for η > 0, σηmφm is uniformly bounded. Then, [10, Corollary54

4.4] reports a regret bound of Õ(T ξ
∗+κ∗+ 1

2 ), with55

κ∗ = max{ξ∗, 2d+ p+ 1

(d+ p)(p̃− 1)
,

2

p̃− 3
}, ξ∗ =

d+ 1

2(p+ d)
. (1)

The regret bound Õ(T ξ
∗+κ∗+ 1

2 ) is sublinear only when p and p̃ are sufficiently large. That, at least,56

requires 2ξ∗ < 1
2 , implying p > d + 2, when p̃ is also sufficiently large. For instance, for Matérn57

kernels, this requirement can be expressed as ν > d(d+1)
2 , when (2ν+d)(1−2η)

d is sufficiently large.58

Special case of bandits. A similar issue existed in the simpler problem of kernelized bandits,59

corresponding to the special case whereH = 1, |S| = 1. Specifically, the Õ(Γ(T )
√
T ) regret bounds60

reported for optimistic sampling [16, GP-UCB], as well as for Thompson sampling [17, GP-TS] are61

also trivial (superlinear) when Γ(T ) grows faster than
√
T . It remains an open problem whether the62

suboptimal performance guarantees for these two algorithms is a fundamental shortcoming or an63

artifact of the proof. This observation is formalized as an open problem on the online confidence64

intervals for RKHS elements in [18]. For the kernelized bandits problem, [19] proved lower bounds65

on regret in the case of Matérn family of kernels. In particular, they proved an Ω(T
ν+d
2ν+d ) lower bound66

on regret of any bandit algorithm. Several recent algorithms, different from GP-UCB and GP-TS,67

have been developed to alleviate the suboptimal and superlinear regret bounds in kernelized bandits68

and obtain an Õ(
√

Γ(T )T ) regret bound [20, 21], that matches the lower bound in the case of the69

Matérn family of kernels. The Sup variation of the UCB algorithms also obtain the optimal regret70

bound in the contextual kernel bandit setting with finite actions [22].71

Main contribution. The RL setting presents a greater level of complexity compared to the bandit72

setting due to the Markovian dynamics. None of the solutions in [20, 21, 22] seem appropriate in73

the MDP setting, thereby leaving the question of order optimal regret bounds open in the RL setting.74

In Section 3, we propose a domain partitioning kernel ridge regression based least-squares value75

iteration policy (π-KRVI), that obtains a sublinear regret of Õ(H2
√

Γ(T )T ) for a large class of76

kernels with polynomially decaying eigenvalues, as formally defined in Definition 1, including the77

Matérn family of kernels and the NT kernel. Our result can be expressed as an Õ(H2T
p̃+1
2p̃ ) regret78

bound. Not only this is the first sublinear regret bound under such a general stetting, it is also order79

optimal in terms of T in the case of Matérn kernels, given the lower bound obtained under the special80

case of kernelized bandits in [19].81

Our proposed policy, π-KRVI, is based on least-squares value iteration (similar to KOVI [10]).82

However, in order to effectively utilize the confidence intervals from kernel ridge regression, π-KRVI83

creates a partitioning of the state-action domain and builds the confidence intervals only based on the84

observations within the same partition element. The domain partitioning allows us to leverage the85

scaling of the kernel eigenvalues with respect to the domain size, as formally given in Definition 1.86

The inspiration for this idea is drawn from π-GP-UCB algorithm introduced in [14] for kernelized87
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bandits. In comparison to [14], π-KRVI and its analysis present greater complexity due to the88

Markovian dynamics in the MDP setting. Furthermore, we provide a finer analysis that significantly89

improves the results compared to [14]. Although [14] obtained sublinear regret guarantees in the90

kernelized bandit setting, there still remained a polynomial in T gap between their regret bounds and91

the lower bound reported in [19]. As a consequence of our results, we also close this gap.92

There are several novel contributions in our analysis that lead to the improved and order optimal93

regret bounds. We establish confidence intervals for kernel ridge regression that apply uniformly to94

all functions in the state-action value function class (Theorem 1). A similar confidence interval was95

given in [10]. We however provide flexibility with respect to setting the parameters of the confidence96

interval, that eventually contributes to the improved regret bounds, with a proper choice of parameters.97

We also derive bounds on the maximum information gain (Lemma 2) and the function class covering98

number (Lemma 3), taking into consideration the size of the state-action domain. These bounds are99

important for the analysis of our domain partitioning policy which effectively controls the number100

of observations utilized in kernel ridge regression by partitioning the domain into subdomains of101

diminishing size. These intermediate results may also be of general interest in similar problems.102

The π-KRVI policy enjoys an efficient runtime, polynomial in T , and linear in |A|, similar to the103

runtime of KOVI [10]. The dependency of the runtime on |A| limits the scope of the policy to finite104

A, while allowing a continuous S (with |S| infinite). The assumption of finite A can be relaxed,105

provided there is an efficient optimizer of a certain state-action value function. See the details in106

Section 3.2.107

Other related work. There is an extensive literature on the analysis of RL policies which do not rely108

on a generative model or an exploratory behavioral policy. The literature has primarily focused on109

the tabular setting [8, 23, 24]. The domain of potential applications for this setting is very limited,110

as in many real world problems, the state-action space is very large or even infinite. In response to111

this, recent literature has placed a notable emphasis on employing function approximation in RL,112

particularly within the context of generalized linear settings. This approach involves representing113

the value function or transition model through a linear transformation to a well-defined feature114

mapping. Important contributions include the work of [9, 25], as well as subsequent studies by115

[26, 27, 28, 29, 30]. Furthermore, there have been several efforts to extend these techniques to a116

kernelized setting, as explored in [10, 30, 31, 32, 33]. These works are also inspired by methods117

originally designed for linear bandits [34, 35], as well as kernelized bandits [36, 22, 17]. However,118

all known regret bounds in the RL setting [10, 30, 31, 32, 33] are not order optimal. We compare our119

regret bounds with the state of the art reported in [10]. A similar issue existed for classic kernelized120

bandit algorithms. A detailed discussion can be found in [18]. The authors in [30] considered finite121

state-actions under a kernelized MDP model where the transition model can be directly estimated.122

That is different from the setting considered in our work and [10].123

2 Preliminaries and Problem Formulation124

In this section, we overview the background on episodic MDPs and kernel ridge regression.125

2.1 Episodic Markov Decision Processes126

An episodic MDP can be described by the tuple M = (S,A, H, P, r), where S is the state space, A127

is the action space, the integer H is the length of each episode, r = {rh}Hh=1 are the reward functions128

and P = {Ph}Hh=1 are the transition probability distributions.1 We use the notation Z = S ×A to129

denote the state-action space. For each h ∈ [H], the reward rh : Z → [0, 1] is the reward function at130

step h, which is supposed to be deterministic for simplicity, and Ph(·|s, a) is the transition probability131

distribution on S for the next state from state-action pair (s, a).132

A policy π = {πh}Hh=1, at each step h, determines the (possibly random) action πh : S → A taken133

by the agent at state s. At the beginning of each episode t = 1, 2, · · · , the environment picks an134

arbitrary state st1. The agent determines a policy πt = {πth}Hh=1. Then, at each step h ∈ [H], the135

agent observes the state sth ∈ S, picks an action ath = πth(sth) and observes the reward rh(sth, a
t
h).136

1We intentionally do note use the standard term transition kernel for Ph, to avoid confusion with the term
kernel in kernel-based learning.
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The new state sth+1 then is drawn from the transition distribution Ph(·|sth, ath). The episode ends137

when the agent receives the final reward rH(stH , a
t
H).138

The goal is to find a policy π that maximizes the expected total reward in the episode, starting at step139

h, i.e., the value function defined as140

V πh (s) = E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
, ∀s ∈ S, h ∈ [H], (2)

where the expectation is taken with respect to the randomness in the trajectory {(sh, ah)}Hh=1141

obtained by the policy π. It can be shown that under mild assumptions (e.g., continuity of Ph,142

compactness of Z , and boundedness of r) there exists an optimal policy π? which attains the143

maximum possible value of V πh (s) at every step and at every state [e.g., see, 37]. We use the144

notation V ?h (s) = maxπ V
π
h (s), ∀s ∈ S, h ∈ [H]. By definition V π

?

h = V ?h . For a value function145

V : S → [0, H], we define the following notation146

[PhV ](s, a) := Es′∼Ph(·|s,a)[V (s′)]. (3)

We also define the state-action value function Qπh : Z → [0, H] as follows.147

Qπh(s, a) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
, (4)

where the expectation is taken with respect to the randomness in the trajectory {(sh, ah)}Hh=1 obtained148

by the policy π. The Bellman equation associated with a policy π then is represented as149

Qπh(s, a) = rh(s, a) + [PhV
π
h+1](s, a), V πh (s) = Eπ[Qπh(s, πh(s))], V πH+1 := 0, (5)

where the expectation is taken with respect to the randomness in the policy π. The Bellman op-150

timality equation is also given as Q?h(s, a) = rh(s, a) + [PhV
?
h+1](s, a), V ?h (s) = maxaQ

?
h(s, a),151

V ?H+1 := 0. The performance of a policy πt is measured in terms of the loss in the value function,152

referred to as regret, denoted byR(T ) in the following definition153

R(T ) =

T∑
t=1

(V ?1 (st1)− V π
t

1 (st1)). (6)

Recall that πt is the policy executed by the agent at episode t, where st1 is the initial state in that154

episode determined by the environment.155

2.2 Kernel Ridge Regression156

We assume that the state-action value functions belong to a known reproducing kernel Hilbert space157

(RKHS). See Assumption 1 and Lemma 1 for the formal statement. This is a very general assumption,158

considering that the RKHS of common kernels can approximate almost all continuous functions on the159

compact subsets of Rd [16]. Consider a positive definite kernel k : Z×Z → R. LetHk be the RKHS160

induced by k, whereHk contains a family of functions defined on Z . Let 〈·, ·〉Hk : Hk ×Hk → R161

and ‖ · ‖Hk : Hk → R denote the inner product and the norm ofHk, respectively. The reproducing162

property implies that for all f ∈ Hk, and z ∈ Z , 〈f,K(·, z)〉Hk = f(z). Without loss of generality,163

we assume k(z, z) ≤ 1 for all z. Mercer theorem implies, under certain mild conditions, k can be164

represented using an infinite dimensional feature map:165

k(z, z′) =

∞∑
m=1

σmφm(z)φm(z′), (7)

where σm > 0, and
√
σmφm ∈ Hk form an orthonormal basis ofHk. In particular, any f ∈ Hk can166

be represented using this basis and wights wm ∈ R as167

f =

∞∑
m=1

wm
√
σmφm, (8)
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where ‖f‖2Hk =
∑∞
m=1 w

2
m. A formal statement and the details are provided in Appendix B. We168

refer to σm and φm as (Mercer) eigenvalues and eigenfeatures of k, respectively.169

Kernel-based models provide powerful predictors and uncertainty estimators which can be leveraged170

to guide the RL algorithm. In particular, consider a fixed unknown function f ∈ Hk. Consider a set171

Zt = {zi}ti=1 ⊂ Z of t inputs. Assume t noisy observations {Y (zi) = f(zi) + εi}ti=1 are provided,172

where εi are independent zero mean noise terms. Kernel ridge regression provides the following173

predictor and uncertainty estimate, respectively [see, e.g., 38],174

µt,f (z) = k>Zt(z)(KZt + λ2It)−1YZt ,

(bt(z))2 = k(z, z)− k>Zt(z)(KZt + λ2I)−1kZt(z), (9)

where kZt(z) = [k(z, z1), . . . , k(z, zt)]> is a t × 1 vector of the kernel values between z and175

observations, KZt = [k(zi, zj)]ti,j=1 is the t× t kernel matrix, YZt = [Y (z1), . . . , Y (Zt)]> is the176

t× 1 observation vector, I is the identity matrix of dimensions t, and λ > 0 is a free regularization177

parameter. The predictor and uncertainty estimate could be interpreted as posterior mean and variance178

of a surrogate centered Gaussian process (GP) model with covariance k, and zero mean Gaussian179

noise with variance λ2 [e.g., see, 39].180

2.3 Technical Assumption181

We assume that the reward functions {rh}Hh=1 and the transition probability distributions Ph(s′|·, ·)182

belong to the 1-ball of the RKHS. We use the notation Bk,R = {f : ‖f‖Hk ≤ R} to denote the183

R-ball of the RKHS.184

Assumption 1 We assume185

rh(·, ·), Ph(s′|·, ·) ∈ Bk,1, ∀h ∈ [H], ∀s′ ∈ S. (10)

This is a mild assumption considering the generality of RKHSs, that is also supposed to hold in [10].186

Similar assumptions are made in linear MDPs which are significantly more restrictive [e.g., see, 9].187

An immediate consequence of Assumption 1 is that for any integrable V : S → [0, H], rh +188

[PhVh+1] ∈ Bk,H+1. This is formalized in the following lemma.189

Lemma 1 Consider any integrable V : S → [0, H]. Under Assumption 1, we have190

rh + [PhVh+1] ∈ Bk,H+1. (11)

3 Domain Partitioning Least-Squares Value Iteration Policy191

A standard policy in episodic MDPs is the least-squares value iteration (LSVI), which computes an192

estimate Q̂th for {Q?h}Hh=1 at episode t, by recursively applying Bellman equation as discussed in the193

previous section. In addition, an exploration bonus term bth : Z → R is typically added leading to194

Qth = min{Q̂th + βbth, H − h+ 1}. (12)

The term Q̂th + βbth is an upper confidence bound on the state-action value function, that is inspired195

by the principle of optimism in the face of uncertainty. Since the rewards are assumed to be at most 1,196

the state-action value function at step h is also bounded by H − h+ 1. In episode t, then πt is the197

greedy policy with respect to Qt = {Qth}Hh=1. Under Assumption 1, the estimate Q̂th, the parameter198

β and the exploration bonus bth can all be designed using kernel ridge regression. Specifically, having199

the Bellman equation in mind, Q̂th is the (kernel ridge) predictor for rh + [PhV
t
h+1] using (possibly200

some of) the past t − 1 observations {rh(zτh) + V th+1(sτh+1)}t−1τ=1 at points {zτh}
t−1
τ=1. Recall that201

E
[
rh(zτh) + V th+1(sτh+1)

]
= rh(zτh) + [PhV

t
h+1](zτh), where the expectation is taken with respect202

to Ph(·|zτh). The observation noise V th+1(sτh+1)− [PhV
t
h+1](zτh) is due to random transitions and is203

bounded by H − h ≤ H .204
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3.1 Domain Partitioning205

To overcome the suboptimal performance guarantees rooted in the online confidence intervals in206

kernel ridge regression, we introduce domain partitioning kernel ridge regression based least-squares207

value iteration (π-KRVI). The proposed policy partitions the state-action space Z into subdomains208

and builds kernel ridge regression only based on the observations within each subdomain. By doing209

so, we obtain tighter confidence intervals, ultimately resulting in a tighter regret bound. To formalize210

this procedure, we consider the state-action space Z ⊂ [0, 1]d. Let Sth, h ∈ [H], t ∈ [T ] be sets of211

hypercubes overlapping only at edges, covering the entire [0, 1]d. For any hypercube Z ′ ∈ Sth, we212

use ρZ′ to denote the length of any of its sides, and N t
h(Z ′) to denote the number of observations at213

step h in Z ′ up to episode t:214

N t
h(Z ′) =

t∑
τ=1

1{(sτh, aτh) ∈ Z ′}. (13)

For all h ∈ [H], we initialize S1h = {[0, 1]d}. At each episode t, for each step h, after observing215

a sample from rh + [PhV
t
h+1] at (sth, a

t
h), we construct a new cover Sth as follows. We divide216

every element Z ′ ∈ St−1h that satisfies ρ−αZ′ < |N t
h(Z ′)| + 1, into two equal halves along each217

side, generating 2d hypercubes. The parameter α > 0 in the splitting rule is a constant specified in218

Definition 1. Subsequently, we define Sth as the set of newly created hypercubes and the elements of219

St−1h that were not split.220

The construction of the cover sets described above ensures the number N t
h(Z ′) of observations within221

each cover element Z ′ remains relatively small with respect to the size of Z ′, while also controlling222

the total number |Sth| of cover elements. The key parameter managing this tradeoff is α, which is223

carefully chosen to achieve an appropriate width for the confidence interval, as shown in Section 4.224

3.2 π-KRVI225

Our proposed policy, π-KRVI, is derived by adopting the precise structure of an optimistic LSVI, as226

described previously, where the predictor and the exploration bonus are designed based on kernel227

ridge regression only on cover elements. In particular, for z ∈ Z , let Zth(z) ∈ Sth be the cover228

element at step h of episode t containing z. Define Zth(z) = {(sτh, aτh) ∈ Zth(z), τ < t} to be the set229

of past observations belonging to the same cover element as z. We then set230

Q̂th(z) = k>Zth(z)
(z)(KZth(z)

+ λ2I)−1YZth(z), (14)

where kZth(z) = [k(z, z′)]>z′∈Zth(z)
is the kernel values between z and all observations z′ in Zth(z),231

KZth(z)
= [k(z′, z′′)]z′,z′′∈Zth(z) is the kernel matrix for observations in Zth(z), and YZth(z) =232

[rh(z′)+V th+1(s′h+1)]>z′∈Zth(z)
, where s′h+1 is drawn from the transition distribution Ph(·|z′), denotes233

the observation values for the observation points z′ ∈ Zth(z). The vectors kZth(z) and YZth(z) are234

N t−1
h (Zth(z)) dimensional column vectors, and KZth(z)

and I are N t−1
h (Zth(z)) × N t−1

h (Zth(z))235

dimensional matrices.236

The exploration bonus is determined based on the uncertainty estimate of the kernel ridge regression237

model on cover elements defined as238

bth(z) =
(
k(z, z)− k>Zth(z)(z)(KZth(z)

+ λ2I)−1kZth(z)(z)
) 1

2

. (15)

The policy π-KRVI then is the greedy policy with respect to239

Qth(z) = min{Q̂th(z) + βT (δ)bth(z), H − h+ 1}. (16)

Specifically, at step h of episode t, the following action is chosen, after observing sth,240

ath = arg max
a∈A

Qth(sth, a). (17)

A pseudocode is provided in Appendix A.241
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The predictor Q̂th, the confidence interval width multiplier βT (δ) and the exploration bonus bth are242

all designed using kernel ridge regression limited to the observations within cover elements given243

above. The parameter βT (δ), in particular, is designed in a way that Qth is a 1− δ upper confidence244

bound on rh + [PhV
t
h+1]. Using Theorem 1 on the confidence intervals, we show that a choice of245

βT (δ) = Θ(H
√

log(THδ )) satisfies this requirement.246

Runtime complexity. The π-KRVI policy is also runtime efficient with a polynomial runtime247

complexity. In particular, an upper bound on the runtime of π-KRVI is O(HT 4 +H|A|T 3), that is248

similar to KOVI [10]. However, analogous to [14], we expect an improved runtime for π-KRVI in249

practice. In addition, the runtime can further improve in terms of T utilizing sparse approximations250

of kernel ridge predictor and uncertainty estimate [e.g., see, 40]. The dependency of the runtime251

on |A| is due to the step given in Equation (17). If this optimization can be done efficiently over252

continuous domains, π-KRVI (also KOVI) could handle infinite number of actions. The assumption253

that the upper confidence bound index can be efficiently optimized over continuous domains is often254

made in the kernelized bandits [e.g., see, 16].255

4 Main Results and Regret Analysis256

In this section, we present our main results. In Theorem 2, we establish an Õ(
√
TΓk,λ(T )) regret257

bound for π-KRVI, for the class of kernels with polynomial eigendecay. We first prove bounds258

on maximum information gain and covering number of state-action value function class. Those259

enable us to present our uniform confidence interval for state-action value functions (Theorem 1),260

and subsequently the regret bound (Theorem 2).261

Definition 1 (Polynomial Eigendecay) Consider the Mercer eigenvalues {σm}∞m=1 of k : Z×Z →262

R, given in Equation (7), in a decreasing order, as well as the corresponding eigenfeatures {φm}∞m=1.263

AssumeZ is a d-dimensional hypercube with side length ρZ . For some Cp, α > 0, p > 1, the kernel k264

is said to have a polynomial eigendecay, if for all m ∈ N, σm ≤ Cpm−pραZ . In addition, for some265

η > 0, σηmφm(z) is uniformly bounded over all m and z. We use the notation p̃ = p(1− 2η).266

The polynomial eigendecay profile encompasses a large class of common kernels, e.g., the Matérn267

family of kernels. For a Matérn kernel with smoothness parameter ν, p = 2ν+d
d and α = 2ν [e.g.,268

see, 14]. Another example is the NT kernel [13]. It has been shown that the RKHS of the NT kernel,269

when the activations are s − 1 times differentiable, is equivalent to the RKHS of a Matérn kernel270

with smoothness ν = s− 1
2 [15]. For instance, the RKHS of an NT kernel with ReLU activations271

is equivalent to the RKHS of a Matérn kernel with ν = 1
2 (also known as the Laplace kernel). In272

this case, p = 1 + 1
d and α = 1. The hypercube domain assumption is a technical formality that273

can be relaxed to other regular compact subsets of Rd. The uniform boundedness of σηmφm(z)274

also holds for a broad class of kernels, including the Matérn family, as discussed in [10]. Several275

works including [15, 41], have employed an averaging technique over subsets of eigenfeatures,276

demonstrating that, for the regret bounds and Γk,λ, the effective value of η can be considered as 0 in277

the case of Matérn and NT kernels.278

4.1 Confidence Intervals for State-Action Value Functions279

Confidence intervals are an important building block in the design and analysis of bandit and RL280

algorithms. For a fixed function f in the RKHS of a known kernel, 1− δ confidence intervals of the281

form |f(z)− µt,f (z)| ≤ β(δ)bt(z) are established in several works [16, 17, 42, 43] under various282

assumptions. In our setting of interest, however, these confidence intervals cannot be directly applied.283

This is due to the randomness of the target function itself. Specifically, in our case, the target function284

is rh + [PhV
t
h+1], which is not a fixed function due to the temporal dependence within an episode.285

An argument based on the covering number of the state-action value function class was used in [10]286

to establish uniform confidence intervals over all z ∈ Z and all f in a specific function class. In287

Theorem 1, we prove a different confidence interval that offers flexibility with respect to setting the288

parameters of the confidence interval. Our approach leads to a more refined confidence interval,289

which, with a proper choice of parameters, contributes to the improved regret bound achieved by our290

policy.291
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We first give a formal definition of the two complexity terms: maximum information gain and the292

covering number of the state-action value function class, which appear in our confidence intervals.293

Definition 2 (Maximum Information Gain) In the kernel ridge regression setting described in294

Section 2.2, the following quantity is referred to as maximum information gain: Γk,λ(t) =295

maxZt⊂Z log det(I + 1
λ2KZt).296

Upper bounds on maximum information gain based on the spectrum of the kernel are established297

in [14, 16, 44]. Maximum information gain is closely related to the effective dimension of the kernel.298

While the feature representation of common kernels is infinite dimensional, with a finite observation299

set, only a finite number of features have a significant impact on kernel ridge regression, that is300

referred to as the effective dimension. It has been shown that information gain and effective dimension301

are the same up to logarithmic factors [45]. This observation offers an intuitive understanding of302

information gain.303

State-action value function class: Let us use Qk,h(R,B) to denote the class of state-action value304

functions. In particular for a set of observations Z, let bh(z) be the uncertainty estimate obtained305

from kernel ridge regression as given in (9). We define306

Qk,h(R,B) =
{
Q : Q(z) = min {Q0(z) + βbh(z), H − h+ 1} , ‖Q0‖Hk ≤ R, β ≤ B, |Z| ≤ T

}
.

(18)

Definition 3 (Covering Set and Number) Consider a function class F . For ε > 0, we define the307

minimum ε-covering set C(ε) as the smallest subset of F that covers it up to an ε error in l∞ norm.308

That is to say, for all f ∈ F , there exists a g ∈ C(ε), such that ‖f − g‖l∞ ≤ ε. We refer to the size of309

C(ε) as the ε-covering number.310

We use the notation Nk,h(ε;R,B) to denote the ε-covering number of Qk,h(R,B), that appears in311

the confidence interval.312

In Lemmas 2 and 3, we establish bounds on Γk,λ(t) and Nk,h(ε;R,B), respectively.313

Lemma 2 (Maximum information gain) Consider a positive definite kernel k : Z ×Z → R, with314

polynomial eigendecay on a hypercube with side length ρZ . The maximum information gain given in315

Definition 2 satisfies316

Γk,λ(T ) = O
(
T

1
p̃ (log(T ))1−

1
p̃ ρ

α
p̃

Z

)
.

Lemma 3 (Covering Number of Qk,h(R,B)) Recall the class of state-action value functions317

Qk,h(R,B), where k : Z × Z → R satisfies the polynomial eigendecay on a hypercube with318

side length ρZ . We have319

logNk,h(ε;R,B) = O

((
R2ραZ
ε2

) 1
p̃−1

(
1 + log

(
R

ε

))
+

(
B2ραZ
ε2

) 2
p̃−1

(
1 + log

(
B

ε

)))
.

Our bound on maximum information gain is stronger than the ones presented in [10, 14, 16] and is320

similar to the one given in [44], in terms of dependency on T . Our bound on function class covering321

number is similar to the one given in [10], in terms of dependency on T . Both Lemmas 2 and 3 given322

in this work are, however, novel in terms of dependency on the domain size ρZ , and are required for323

the analysis of our domain partitioning algorithm.324

We next present the confidence interval. Proofs are given in the appendix.325

Theorem 1 (Confidence Interval) Let Q̂th and bth denote the kernel ridge predictor and uncertainty326

estimate of rh + [PhV
t
h+1], using t observations {V th+1(sτh+1)}tτ=1 at Zth = {zτh}tτ=1 ⊂ Z , where327

sτh+1 is the next state drawn from Ph(·|zτh). Let RT = 2H
√

Γk,λ(T ). For ε, δ ∈ (0, 1), with328

probability, at least 1− δ, we have, ∀z ∈ Z, h ∈ [H] and t ∈ [T ],329

|rh(z) + [PhV
t
h+1](z)− Q̂th(z)| ≤ βth(δ, ε)bth(z) + ε,

where βth(δ, ε) is set to any value satisfying330

βth(δ, ε) ≥ H + 1 +
H√

2

√
Γk,λ(t) + logNk,h(ε;RT , βth(δ, ε)) + 1 + log

(
TH

δ

)
+

3
√
tε

λ
. (19)
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4.2 Regret of π-KRVI331

A key step in the analysis of π-KRVI is to apply the confidence interval in Theorem 1 to a subdomain332

Z ′ ∈ Sth. By design of the splitting rule, we can prove that the maximum information gain333

corresponding to Z ′ satisfies Γk,λ(NT
h (Z ′)) = O(log(T )). In addition, we choose ε =

H
√

log(THδ )√
Nth(Z′)

,334

when applying the confidence interval at step h of episode t on this subdomain. That ensures335

logNk,h(ε;RNTh (Z′), β
t
h(δ, ε)) = O(log(T )). From these, and by applying a probability union336

bound over all subdomains Z ′ created in π-KRVI, we can deduce that the choice of βT (δ) =337

Θ(H
√

log(THδ )) with a sufficiently large constant, satisfies the requirements for confidence interval338

widths based on Theorem 1. The details are provided in the proof of Theorem 2 in Appendix E. Then,339

using standard tools from the analysis of optimistic LSVI algorithms, we arrive at the following regret340

bound.341

Theorem 2 (Regret of π-KRVI) Consider the π-KRVI policy described in Section 3.2, with342

βT (δ) = Θ(H
√

log(THδ )) with a sufficiently large constant implied in the Θ notation. Under343

Assumption 1, for kernels given in Definition 1, with probability at least 1− δ, the regret of π-KRVI344

satisfies345

R(T ) = O

(
H2 log(T )

√
TΓk,λ(T ) log

(
H

δ

))
. (20)

Equivalently,346

R(T ) = O

(
H2T

p̃+1
2p̃

√
(log(T ))3−

1
p̃ log

(
H

δ

))
. (21)

The regret bound of π-KRVI provided in Theorem 2 represents a significant improvement over347

the state of the art regret bound in [10]. It improves their regret bound by removing an348

O(
√

Γk,λ(T ) + logNk,h(ε, RT , B)) factor, for some B ≥ βT (δ). Also, Õ(T
p̃+1
2p̃ ) is sublinear349

with p̃ > 1, which is a substantial improvement over the requirement for sublinear regret in [10]350

(discussed in the introduction).351

When specialized for the Matérn family of kernels, replacing p = 2ν+d
d , our regret bound becomes352

R(T ) = O

(
H2T

(ν+d)(1−2η)
2ν+d

√
(log(T ))3−

1
p̃ log

(
H

δ

))
. (22)

In terms of T scaling, this matches the lower bound for the special case of kernelized bandits [19], up353

to logarithmic factors, for cases where η = 0. As discussed, even for cases where η > 0, utilizing an354

averaging technique over eigenfeatures, η can be effectively considered 0. For example, see [15, 41].355

5 Conclusion356

The analysis of RL algorithms has predominantly focused on simple settings such as tabular or357

linear MDPs. Several recent studies have considered more general models, including representing358

the state-action value functions using RKHSs. Notably, the work in [10] derives regret bounds359

for an optimistic LSVI policy. However, the regret bounds in [10] are sublinear only when the360

eigenvalues of the kernel decay rapidly. In this work, we leveraged a domain partitioning technique,361

a uniform confidence interval for state-action value functions, and bounds on complexity terms based362

on the domain size to propose π-KRVI, which attains a sublinear regret bound for a general class363

of kernels. Moreover, our regret bounds match the lower bound derived for Matérn kernels in the364

special case of kernelized bandits, up to logarithmic factors. It remains an open problem whether365

the suboptimal regret bounds in the case of standard optimistic LSVI policies [such as KOVI, 10]366

represent a fundamental shortcoming or an artifact of the proof.367
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A A Pseudocode for π-KRVI502

A pseudocode for the π-KRVI policy, presented in Section 3, is provided in Algorithm 1.503

Algorithm 1 The π-KRVI Policy
1: Input: λ, βT (δ), k, M = (S,A, H, P, r).
2: For all h ∈ [H], let S1h = {[0, 1]d}.
3: for Episode t = 1, 2, . . . , T , do
4: Receive the initial state st1.
5: Set V tH+1(s) = 0, for all s.
6: for step h = H, . . . , 1 do
7: Obtain value functions Qth(z) as in (16).
8: end for
9: for step h = 1, 2, . . . ,H do

10: Take action ath ← arg maxa∈AQ
t
h(xth, a).

11: Observe the reward rh(sth, a
t
h) and the next state sth+1.

12: Split any element Z ′ ∈ St−1h , for which ρ−αZ′ < |N t
h(Z ′)|+ 1 along the middle of each

side, and obtain Sth.
13: end for
14: end for

Figure 1 demonstrates the domain partitioning used in π-KRVI on a 2-dimensional domain. The504

colors represent the value of the target function. The observation points are expected to concentrate505

around the areas where the target function has a high value. As a result the domain is partitioned to506

smaller squares in that region.507

Figure 1: A 2-dimensional domain partitioned into smaller squares.

B Mercer Theorem and the RKHSs508

Mercer theorem [46] provides a representation of the kernel in terms of an infinite dimensional509

feature map [e.g., see, 47, Theorem 4.49]. Let Z be a compact metric space and µ be a finite Borel510

measure on Z (we consider Lebesgue measure in a Euclidean space). Let L2
µ(Z) be the set of511

square-integrable functions on Z with respect to µ. We further say a kernel is square-integrable if512 ∫
Z

∫
Z
k2(z, z′) dµ(z)dµ(z′) <∞.

Theorem 3 (Mercer Theorem) Let Z be a compact metric space and µ be a finite Borel measure513

on Z . Let k be a continuous and square-integrable kernel, inducing an integral operator Tk :514

L2
µ(Z)→ L2

µ(Z) defined by515

(Tkf) (·) =

∫
Z
k(·, z′)f(z′) dµ(z′) ,
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where f ∈ L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(σm, φm)}∞m=1516

such that σm > 0, and Tkφm = σmφm, for m ≥ 1. Moreover, the kernel function can be represented517

as518

k (z, z′) =

∞∑
m=1

σmφm(z)φm (z′) ,

where the convergence of the series holds uniformly on Z × Z .519

According to the Mercer representation theorem [e.g., see, 47, Theorem 4.51], the RKHS induced520

by k can consequently be represented in terms of {(σm, φm)}∞m=1.521

Theorem 4 (Mercer Representation Theorem) Let {(σm, φm)}∞i=1 be the Mercer eigenvalue eigen-522

feature pairs. Then, the RKHS of k is given by523

Hk =

{
f(·) =

∞∑
m=1

wmσ
1
2
mφm(·) : wm ∈ R, ‖f‖2Hk :=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {√σmφm}∞m=1 form an or-524

thonormal basis forHk.525

C Proof of Theorem 1 (Confidence Interval)526

Confidence bounds of the form given in Theorem 1 have been established for a fixed function f with527

bounded RKHS norm and sub-Gaussian observation noise in several works including [42, 17, 43]. In528

the RL setting, however, we apply the confidence interval to f = rh+[PhV
t
h+1]. Although the RKHS529

norm of this target function is bounded by H + 1, this is not a fixed function as it depends on V th+1.530

In addition the observation noise terms Vh+1(sth+1)− [PhV
t
h+1](sth, a

t
h) also depend on V th+1. To531

handle this setting, we prove a confidence interval that holds for all possible V th+1 : S → [0, H]. For532

this purpose, we use a probability union bound and a covering set argument over the function class533

of V th+1.534

We first recall the confidence interval for a fixed function and noise sequence given in [17, Theorem 2].535

See also [42, Corollary 3.15].536

Lemma 4 Let {zt ∈ Z}Tt=1 be a stochastic process predictable with respect to the filtration {Ft}Tt=0.537

Let {εt}Tt=1 be a real valued Ft measurable stochastic process with a σ sub-Gaussian distribution538

conditioned on Ft−1. Let µt,f and bt be the kernel ridge predictor and uncertainty estimate of f539

using t noisy observations of the form {f(zτ ) + ετ}tτ=1. Assume f ∈ Bk,R .Then with probability at540

least 1− δ, for all z ∈ Z and t ≥ 1,541

|f(z)− µt,f (z)| ≤ β1bt(z), (23)

where β1 = R+ σ
√

2(Γk,λ(t) + 1 + log( 1
δ )).542

As discussed above, we cannot directly use this confidence interval on rh + [PhV
t
h+1] in the RL543

setting. Instead, we need to prove a new confidence interval that holds true for all possible V th+1. We544

thus define V to be the function class of V th+1 as follows.545

Vk,h(R,B) = {V : V (s) = max
a∈A

Q(s, a), for some Q ∈ Qk,h(R,B)}. (24)

For simplicity of presentation, we specify the parameters R and B later.546

Let CVk,h(ε;R,B) be the smallest ε-covering set of Vk,h(R,B) in terms of l∞ norm. That is to547

say for all V ∈ Vk,h(R,B), there exists some V ∈ CVk,h(ε;R,B) such that ‖V − V ‖l∞ ≤ ε.548

Let NVk,h(ε;R,B) denote the ε covering number of Vk,h(R,B). By definition NVk,h(ε;R,B) =549

|CVk,h(ε;R,B)|.550
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We can create a confidence bound for all V ∈ CVk,h(ε;R,B), using Lemma 4 and a probability union551

bound over CVk,h(ε;R,B). Fix h ∈ [H] and t ∈ [T ]. Let us use the notation Q̂
t

for the kernel ridge552

predictor with V . That is Q̂
t

(z) = k>Zt(z)(KZt + λ2I)−1Y , where Y
>

= [V (sτh+1)]tτ=1, and sτh+1553

is the next state drawn randomly from probability distribution Ph(·|zτh). In addition, to simplify554

the notation, we use g = rh + [PhV ] and µt,g = Q̂
t

. Also, let bt(z) = (k(z, z) − k>Zt(z)(KZt +555

λ2I)−1kZt(z))
1
2 . Then, we have, with probability at least 1− δ, for all V ∈ CVk,h(ε;R,B) and for556

all z ∈ Z ,557

|g(z)− µt,g(z)| ≤ β2bt(z), (25)

where β2 = H + 1 + H√
2

√
Γk,λ(t) + logNVk,h(ε;R,B) + 1 + log( 1

δ ).558

Confidence interval (25) is a direct application of Lemma 4 and using a probability union bound over559

all V ∈ CVk,h(ε;R,B). Note that, ‖rh + PhV ‖Hk ≤ H + 1 (Lemma 1). In addition, V (sτh+1) −560

[PhV ](zτh) ∈ [0, H] for all h and τ . A bounded random variable in [0, H] is a H/2 sub-Gaussian561

random variable based on Hoeffding inequality [48].562

Now, we extend the uniform confidence interval over all V ∈ CVk,h(ε;R,B) to a uniform confidence563

interval over all V ∈ Vk,h(R,B). For some V ∈ Vk,h(R,B), define f = rh+ [PhV ] and µt,f = Q̂t,564

similar to g and µt,g. By definition of CVk,h(ε;R,B), there exists V ∈ CVk,h(ε;R,B), such that565

‖V − V ‖l∞ ≤ ε. Thus, for all z ∈ Z ,566

f(z)− g(z) = [PV ](z)− [PV ](z) ≤ sup
s∈S
|V (s)− V (s)| ≤ ε. (26)

Therefore, with probability at least 1− δ,567

|f(z)− µt,f (z)| ≤ |f(z)− g(z)|+ |g(z)− µt,g(z)|+ |µt,g(z)− µt,f (z)|
≤ β2b

t(z) + ε+ |µt,g(z)− µt,f (z)|. (27)

Next, we prove that |µt,f (z)− µt,g(z)| ≤ 3ε
√
tbt(z)
λ .568

Let us further simplify the notation by introducing αt(z) = (KZt+λ
2I)−1kZt(z), F>t = [f(zτh)]tτ=1,569

E>t = [ετ = V (sτh+1)−[PhV ](zτh)]tτ=1,G>t = [g(zτh)]tτ=1,E
>
t = [ε̄τ = V (sτh+1)−[PhV ](zτh)]tτ=1570

so that µt,f (z) = α>(z)(Ft + Et) and µt,g(z) = α>(z)(Gt + Et).571

As discussed earlier, the observation noise terms εt also depend on V . We have, for all t ≥ 1,572

|εt − ε̄t| =

∣∣∣∣V (sτh+1)− V (sτh+1)− ([PhV ](zτh)− [PhV ](zτh)

∣∣∣∣
≤ 2ε.

Using the difference between f and g, as well as the difference between noise terms, we have573

|µt,f (z)− µt,g(z)| = |α>t (z)(Ft + Et)− α>(z)(Gt + Et)|
≤ ‖αt(z)‖‖Ft −Gt + Et − Et‖
≤ 3ε

√
t‖αt(z)‖

≤ 3ε
√
tbt(z)

λ
,

where the last inequality follows from ‖αt(z)‖ ≤ bt(z)
λ [e.g., see, 43, Proposition 1].574

The bound on |µt,f (z)− µt,g(z)| combined with (27) proves that for a fixed t ∈ [T ], fixed h ∈ [H],575

for all z ∈ Z and for all V ∈ Vk,h(R,B),576

|f(z)− µt,f (z)| ≤ β3bt(z) + ε,
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where577

β3 = H + 1 +
H√

2

√
Γk,λ(t) + logNVk,h(ε;R,B) + 1 + log(

1

δ
) +

3
√
tε

λ
. (28)

The confidence interval holds uniformly for all h ∈ [H] and t ∈ [T ] using a probability union bound,578

when β3 is replaced with the following579

β4 = H + 1 +
H√

2

√
Γk,λ(t) + logNVk,h(ε;R,B) + 1 + log(

HT

δ
) +

3ε
√
t

λ
. (29)

To complete the proof, we bound NVk,h(ε;R,B) in terms of the specific parameters of the problem.580

Firstly, the ε covering number of Vk,h(R,B) is bounded by that of Qk,h(R,B) [10, proof of Lemma581

D.1]. Recall the definition of Qk,h(R,B) in (18). We note that ‖Q̂th‖Hk ≤ 2H
√

Γk,λ(t) [10,582

Lemma C.1]. Thus, the theorem follows with βth(δ, ε), where βth(δ, ε) is set to some value satisfying583

βth(δ, ε) ≥ H + 1 +
H√

2

√
Γk,λ(t) + logNk,h(ε;Rt, βth(δ, ε)) + 1 + log(

HT

δ
) +

3ε
√
t

λ
, (30)

with Rt = 2
√

Γk,λ(t). That completes the proof of Theorem 1.584

D Proof of Lemmas 2 (Maximum Information Gain) and 3 (Covering585

Number).586

We first introduce the projection of the RKHS on a lower dimensional RKHS that is used in the587

proof of both lemmas. We then present the proofs. Recall the Mercer theorem and the representation588

of kernel using Mercer eigenvalues and eigenfeatures. Using Mercer representation theorem, any589

f ∈ BR can be written as590

f =

∞∑
m=1

wm
√
σmφm, (31)

with
∑∞
m=1 w

2
m ≤ R2. For some D ∈ N, let ΠD[f ] denote the projection of f onto the D-591

dimensional RKHS corresponding to the first D features with the largest eigenvalues592

ΠD[f ] =

D∑
m=1

wm
√
σmφm. (32)

Let us use the notations wD = [w1, w2, · · · , wD]> for the D-dimensional column vector of weights,593

φD(z) = [φ1(z), φ2(z), · · · , φD(z)]> for the D-dimensional column vector of eigenfeatures, and594

ΣD = diag([σ1, σ2, · · · , σD]) for the diagonal matrix of eigenvalues with [σ1, σ2, · · · , σD] as the595

diagonal entries. We also use the notations596

kD(z, z′) = φ>D(z)ΣDφD(z), (33)

to denote the kernel corresponding to the D-dimensional RKHS, as well as k0(z, z′) = k(z, z′)−597

kD(z, z′).598

D.1 Proof of Lemma 2 on Maximum Information Gain599

Recall the definition of Γk,λ(t). We have600

1

2
log det

(
I +

1

λ2
KZt

)
=

1

2
log det

(
I +

1

λ2
(KD

Zt +K0
Zt)

)
=

1

2
log det

(
I +

1

λ2
KD
Zt

)
︸ ︷︷ ︸

Term (i)

+
1

2
log det

(
I +

1

λ2
(I +

1

λ2
KD
Zt)
−1K0

Zt

)
︸ ︷︷ ︸

Term (ii)

.
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We next bound the two terms on the right hand side.601

Term (i): Note that for kD corresponding to the D-dimensional RKHS, we have KD
Zt = ΦtΣDΦ>t ,602

where Φt = [φD(z)]>z∈Zt is a t×D matrix that stacks the feature vectors φD(zτ ), τ = 1, · · · , t, as603

it rows. By Weinstein–Aronszajn identity [49] (a special case of matrix determinant lemma),604

log det
(
It +

1

λ2
KD
Zt

)
= log det

(
It +

1

λ2
ΦtΣDΦ>t

)
(34)

= log det
(
ID +

1

λ2
Σ

1
2

DΦtΦ
>
t Σ

1
2

D

)

≤ D log(
tr(ID + 1

λ2 Σ
1
2

DΦtΦ
>
t Σ

1
2

D)

D
)

≤ D log(1 +
t

λ2D
).

The first inequality follows from the inequality of arithmetic and geometric means on eigenvalues of605

the argument, and the second inequality follows from kD ≤ 1. For clarity, we used the notations It606

and ID for identity matrices of dimension t and D, respectively. Otherwise, we drop the superscript.607

Term (ii): Similarly using the inequality of arithmetic and geometric means on eigenvalues, we608

bound the log det by the log of the trace of the argument. Let us use εD to denote an upper bound on609

k0.610

log det
(
I +

1

λ2
(I +

1

λ2
KD
Zt)
−1K0

Zt

)
≤ t log

(
tr(I + 1

λ2 (I + 1
λ2K

D
Zt)
−1K0

Zt)

t

)
(35)

≤ t log(1 +
εD
λ2

)

≤ tεD
λ2

.

The last inequality uses log(1 + x) ≤ x which holds for all x ∈ R.611

Combining the bounds on Term (i) and Term (ii), we have612

Γk,λ(t) ≤ D

2
log(1 +

t

λ2D
) +

tεD
2λ2

. (36)

Now, using the polynomial eigendecay profile given in Definition 2,613

k0(z, z′) =

∞∑
m=D+1

σmφm(z)φm(z′) (37)

≤ C2
1

∞∑
m=D+1

σ1−2η
m

≤ C2
1Cpρ

α
Z

∞∑
m=D+1

m−p(1−2η)

≤ C2
1Cpρ

α
Z

∫ ∞
D

x−p̃dx

≤ C2
1Cpρ

α
Z

p̃− 1
D−p̃+1. (38)

The constant C1 is the uniform bound on σηmφm, and Cp is the parameter in Definition 1.614

Choosing D = Ct
1
p̃ ρ

α
p̃

Z (log(t))−
1
p̃ , with constant C = 1

2 (
C2

1Cp
(p̃−1)λ2 )

1
p̃ we obtain615

Γk,λ(t) ≤ Ct
1
p̃ ρ

α
p̃

Z

(
log(t)−

1
p̃ log(1 +

t

λ2D
) + (log(t))1−

1
p̃

)
, (39)

that completes the proof.616
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D.2 Proof of Lemma 3 on Covering Number of State-Action Value Function Class617

Recall the definition of the state-action value function class,618

Qk,h(R,B) =
{
Q : Q(z) = min {Q0(z) + βb(z), H − h+ 1} , ‖Q0‖Hk ≤ R, β ≤ B, |Z| ≤ T

}
.

and the notation Nk,h(ε;R,B) for its ε-covering number. Let us use the notation Nk,R(ε) for the619

ε-covering number of RKHS ball Bk,R = {f : ‖f‖Hk ≤ R}, N[0,B](ε) for the ε-covering number of620

interval [0, B] with respect to Euclidean distance, and Nk,b(ε) for the ε-covering number of class of621

uncertainty functions bk = {b(z) =
(
k(z, z)− k>Z (z)(KZ + λ2I)−1kZ(z)

) 1
2 , |Z| ≤ T}.622

Consider Q,Q ∈ Qk,h(R,B) where Q(z) = min {Q0(z) + βb(z), H − h+ 1} and Q(z) =623

min
{
Q0(z) + β̄b̄(z), H − h+ 1

}
. We have624

|Q(z)−Q(z)| ≤ |Q0(z)−Q0(z)|+ |β − β̄|+B|b(z)− b̄(z)|. (40)

That implies625

Nk,h(ε;R,B) ≤ Nk,R(
ε

3
)N[0,B](

ε

3
)Nk,b(

ε

3B
). (41)

For the ε-covering number of the [0, B] interval, we simply haveN[0,B](ε/3) ≤ 1+3B/ε. In the next626

lemmas, we bound the ε-covering number of the RKHS ball and the class of uncertainty functions.627

Lemma 5 (RKHS Covering Number) Consider a positive definite kernel k : Z × Z → R, with628

polynomial eigendecay on a hypercube with side length ρZ . The ε-covering number of R-ball in the629

RKHS satisfies630

logNk,R(ε) = O

((
R2ραZ
ε2

) 1
p̃−1

log(1 +
R

ε
)

)
. (42)

Lemma 6 (Uncertainty Class Covering Number) Consider a positive definite kernel k : Z×Z →631

R, with polynomial eigendecay on a hypercube with side length ρZ . The ε-covering number of the632

class of uncertainty functions satisfies633

logNk,b(ε) = O
(

(
ραZ
ε2

)
2
p̃−1 (1 + log(

1

ε
))

)
(43)

Combining (41) with Lemmas 5 and 6, we obtain634

logNk,h(ε;R,B) = O
(

(
R2ραZ
ε2

)
1
p̃−1 (1 + log(

R

ε
)) + (

B2ραZ
ε2

)
2
p̃−1 (1 + log(

B

ε
))

)
, (44)

that completes the proof of Lemma 3. Next, we provide the proof of two lemmas above on the635

covering numbers of the RKHS ball and the uncertainty function class.636

Proof 1 (Proof of Lemma 5) For f in the RKHS, recall the following representation637

f =

∞∑
m=1

wm
√
σmφm, (45)

as well as its projection on the D-dimensional RKHS638

ΠD[f ] =

D∑
m=1

wm
√
σmφm. (46)

18



We note that639

‖f −ΠD[f ]‖∞ =

∞∑
m=D+1

wm
√
σmφm

≤ C1

∞∑
m=D+1

|wm|
√
σ1−2η
m

≤ C1C
1
2−η
p ρ

α/2
Z

∞∑
m=D+1

|wm|m−p(
1
2−η)

≤ C1C
1
2−η
p ρ

α/2
Z

( ∞∑
m=D+1

|wm|2
) 1

2
( ∞∑
m=D+1

m−p(1−2η)

) 1
2

≤ C1C
1
2−η
p ρ

α/2
Z R

(∫ ∞
D

x−p̃dx

) 1
2

=
C1C

1
2−η
p ρ

α/2
Z R√

p̃− 1
D
−p̃+1

2 .

In the expressions above, C1 is the uniform bound on σηmφm, and Cp is the constant specified in640

Definition 1. The third inequality follows form Cauchy–Schwarz inequality.641

Now, let D0 be the smallest D such that the right hand side is bounded by ε
2 . There exists a constant642

C2 > 0, only depending on constants C1, Cp, η and p̃, such that643

D0 ≤ C2

(
R2ραZ
ε2

) 1
p̃−1

. (47)

For a D-dimensional linear model, where the norm of the weights is bounded by R, the ε-covering is644

at most C3D(1 + log(Rε ), for some constant C3 [e.g., see, 10]. Using an ε/2 covering number for645

the space of ΠD[f ] and using the minimum number of dimensions that ensures |f −ΠD[f ]| ≤ ε/2,646

we conclude that647

logNk,R(ε) ≤ C3D0(1 + log(
R

ε
))

≤ C2C3

(
R2ραZ
ε2

) 1
p̃−1

(1 + log(
R

ε
)),

that completes the proof of the lemma.648

Proof 2 (Proof of Lemma 6) Let us define b2k = {b2 : b ∈ bk} and Nk,b2(ε) to be its ε-covering649

number. We note that, for b, b̄ ∈ b,650

|b(z)− b̄(z)| ≤
√
|(b(z))2 − (b̄(z))2|. (48)

Thus, an ε-covering number of b is bounded by an ε2-covering of b2:651

Nk,b(ε) ≤ Nk,b2(ε2). (49)

We next bound Nk,b2(ε2).652

Using the feature space representation of the kernel, we obtain653

(b(z))2 =

∞∑
m=1

γmσmφ
2
m(z), (50)

for some γm ∈ [0, 1]. Based on the GP interpretation of the model, γm can be understood as the654

posterior variances of the weights. Let D0 be the smallest D such that
∑∞
m=D+1 σmφ

2
m(z) ≤ ε2/2.655
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From Equation (38), we can see that, for some constant C4, only depending on constants C1, Cp, η656

and p̃,657

D0 ≤ C4

(
ραZ
ε2

) 1
p̃−1

. (51)

For
∑D0

m=1 γmσmφ
2
m(z) on a finite D0-dimensional spectrum, as shown in Lemma D.3 of [10], an658

ε2/2 covering number scales with D2
0 . Specifically, an ε2/2 covering number of

∑D0

m=1 γmσmφ
2
m(z)659

covering number is bounded by660

C5D
2
0(1 + log(

1

ε
). (52)

Combining Equations (51) and (52), we obtain661

Nk,b2(ε2) ≤ C5D
2
0(1 + log(

1

ε
))

≤ C5C
2
4

(
ραZ
ε2

) 2
p̃−1

,

that completes the proof of the lemma.662

E Proof of Theorem 2 (Regret of π-KRVI).663

Following the standard analysis of optimisitc LSVI policies, for any h ∈ [H], t ∈ [T ], we define664

temporal difference error δth : Z → R as665

δth(z) = rh(z) + [PhV
t
h+1](z)−Qth(z), ∀z ∈ Z. (53)

Roughly speaking, {δth(z)}Hh=1 quantify how far the {Qth}Hh=1 are from satisfying the Bellman666

optimality equation.667

For any h ∈ [H], t ∈ [T ] , we also define668

ξth =
(
V th(sth)− V π

t

h (sth)
)
−
(
Qth(zth)−Qπ

t

h (zth)
)
,

ζth =
(

[PhV
t
h+1](zth)− [PhV

πt

h+1](zth)
)
−
(
V th+1(sth+1)− V π

t

h+1(sth+1)
)
. (54)

Using the notation defined above, we then have the following regret decomposition into three parts.669

Lemma 7 (Lemma 5.1 in [10] on regret decomposition) We have670

R(T ) =

T∑
t=1

H∑
h=1

Eπ? [δth(zh)|s1 = st1]− δth(zth)︸ ︷︷ ︸
(i)

+

T∑
t=1

H∑
h=1

(ξth + ζth)︸ ︷︷ ︸
(ii)

+

T∑
t=1

H∑
h=1

Eπ? [Qth(sh, π
?
h(sh))−Qth(sh, π

t
h(sh))|s1 = st1]︸ ︷︷ ︸

(iii)

. (55)

The third term is negative, by definition of πth that is the greedy policy with respect to Qth:671

Qth(sh, π
?
h(sh))−Qth(sh, π

t
h(sh)) = Qth(sh, π

?
h(sh))−max

a∈A
Qth(sh, a) ≤ 0,

for all sh ∈ S. The second term is bounded using the following lemma.672
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Lemma 8 (Lemma 5.3 in [10]) For any δ ∈ (0, 1), with probability at least 1− δ, we have673

T∑
t=1

H∑
h=1

(ξth + ζth) ≤ 4

√
TH3 log

(
2

δ

)
. (56)

Term (i): It turns out that the dominant term and the challenging term to bound is the first term in674

Lemma 7. We next provide an upper bound on this term.675

Let UTh =
⋃T
t=1 Sth be the union of all cover elements used by π-KRVI over all episodes. The size of676

UTh is bounded in the following lemma and is useful in the analysis of Term (i).677

Lemma 9 (Lemma 2 in [14]) The size of UTh satisfies678

|UTh | ≤ CΓk,λ(T ), (57)

for some constant C.679

Now, consider a cover element Z ′ ∈ UTh . Using Theorem 1, we have, with probability at least 1− δ,680

for all h ∈ [H], t ∈ [T ], z ∈ Z ′, for some εth ∈ (0, 1),681 ∣∣rh(z) + [PhVh+1](z)− Q̂th(z)
∣∣ ≤ βth(δ, εth)bth(z) + εth, (58)

where βth(δ, εth) is the smallest value satisfying682

βth(δ, εth) ≥ H + 1 +
H√

2

√
Γk,λ(N) + logNk,h(εth;RN , βth(δ, εth)) + 1 + log

(
NH

δ

)
+

3
√
Nεth
λ

,

with N = NT
h,Z′ and εth =

H
√

log(THδ )√
NT
h,Z′

.683

We also note that684

Γk,λ(NT
h,Z′) ≤ C(NT

h,Z′)
1
p̃ (log(NT

h,Z′))
1− 1

p̃ ρ
α
p̃

Z′

≤ C(ρZ′)
−α
p̃ (log(NT

h,Z′))
1− 1

p̃ ρ
α
p̃

Z′

≤ C(log(NT
h,Z′))

1− 1
p̃

≤ C log(T ), (59)

where the first inequality is based on Lemma 2, the second inequality is by the design of partitioning685

in π-KRVI. Recall that each hypercube is partitioned when ρ−
1
b

Z′ < N t
h,Z′+1 ensuringN t

h,Z′ remains686

at most ρ−αZ′ .687

For the covering number, with the choice of εth =
H
√

log(THδ )√
Nt
h,Z′

, we have688

logNk,h(εth;RN , β
t
h(δ, εth))

≤ C

(
R2
Nρ

α
Z′

(εth)2

) 1
p̃−1

(1 + log(
RN
εth

)) +

(
(βth(δ, εth))2ραZ′

(εth)2

) 2
p̃−1

(1 + log(
βth(δ, εth)

εth
))

≤ C

(
R2
N

H2 log(HTδ )

) 1
p̃−1

(1 + log(
RN
εth

)) +

(
(βth(δ, εth))2

H2 log(HTδ )

) 2
p̃−1

(1 + log(
βth(δ, εth)

εth
)).

We thus see that the choice of βth(δ, εth) = Θ(H
√

log(THδ )) satisfies the requirement for confidence689

interval width on Z ′ based on Theorem 1. We now use probability union bound over all Z ′ ∈ UTh to690

obtain691

βT (δ) = Θ(H

√
log(

TH|HUTh |
δ

)) = Θ(H

√
log(

TH

δ
). (60)
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for which, we have with probability at least 1− δ, for all h ∈ [H], t ∈ [T ], z ∈ Z ,692 ∣∣rh(z) + [PhVh+1](z)− Q̂th(z)
∣∣ ≤ βT (δ)bth(z) + εth, (61)

where in the above expression εth is the parameter of the covering number corresponding to Z ′ when693

z ∈ Z ′.694

Therefore, we have, with probability at least 1− δ695

Term (i) ≤
T∑
t=1

H∑
h=1

−δth(zth) ≤ 2βT (δ)

(
T∑
t=1

H∑
h=1

bth(zth)

)
+ 2εth, (62)

with696

εth =
H
√

log(THδ )√
N t
h,Z(zth)

(63)

We bound the total uncertainty in the kernel ridge regression measured by
∑T
t=1 (bth(zth))

2
697

T∑
t=1

(
bth(zth)

)2
=

∑
Z′∈UTh

∑
zth∈Z′

(
bth(zth)

)2
≤

∑
Z′∈UTh

2

log(1 + 1/λ2)
Γk,λ(NT

h,Z′)

≤
∑
Z′∈UTh

2C

log(1 + 1/λ2)
log(T )

≤ 2C|UTh |
log(1 + 1/λ2)

log(T )

≤ CΓk,λ(T ) log(T )

The first inequality is commonly used in kernelized bandits. For example see [16, Lemma 5.4]. The698

second and fourth inequality follow from Equation (59) and Lemma 9, respectively. Also, we have699

T∑
t=1

(εth)2 =

T∑
t=1

H2 log(THδ )

N t
h,Z(zth)

(64)

≤
∑
Z′∈UTh

∑
zth∈Z′

H2 log(THδ )

N t
h,Z′

≤ |UTh |H2 log(
TH

δ
) log(T )

≤ CΓk,λ(T )H2 log(
TH

δ
) log(T ).

We are now ready to bound the700

Term (i) ≤ 2βT (δ)

(
T∑
t=1

H∑
h=1

bth(zth)

)
+ 2

T∑
t=1

H∑
h=1

εth (65)

≤ 2βT (δ)
√
T

H∑
h=1

√√√√ T∑
t=1

(bth(zth))2 + 2
√
T

H∑
h=1

√√√√ T∑
t=1

(εth)2

= O

(
H2

√
log(T )TΓk,λ(T ) log(

TH

δ
)

)
.

The proof is completed.701
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