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ABSTRACT

It is an important problem in trustworthy machine learning to recognize out-
of-distribution (OOD) inputs which are inputs unrelated to the in-distribution
task. Many out-of-distribution detection methods have been suggested in recent
years. The goal of this paper is to recognize common objectives as well as to
identify the implicit scoring functions of different OOD detection methods. In
particular, we show that binary discrimination between in- and (different) out-
distributions is equivalent to several different formulations of the OOD detection
problem. When trained in a shared fashion with a standard classifier, this binary
discriminator reaches an OOD detection performance similar to that of Outlier
Exposure. Moreover, we show that the confidence loss which is used by Outlier
Exposure has an implicit scoring function which differs in a non-trivial fashion
from the theoretically optimal scoring function in the case where training and test
out-distribution are the same, but is similar to the one used when training with an
extra background class. In practice, when trained in exactly the same way, all these
methods perform similarly and reach state-of-the-art OOD detection performance.

1 INTRODUCTION

While deep learning has significantly improved performance in many application domains, there
are serious concerns for using deep neural networks in applications which are of safety-critical
nature. With one major problem being adversarial samples (Szegedy et al., 2014; Madry et al.,
2018), which are small imperceptible modifications of the image that change the decision of the
classifier, another major problem are overconfident predictions (Nguyen et al., 2015; Hendrycks &
Gimpel, 2017; Hein et al., 2019) for images not belonging to the classes of the actual task. Here,
one distinguishes between far out-of-distribution data, e.g. different forms of noise or completely
unrelated tasks like CIFAR-10 vs. SVHN, and close out-of-distribution data which can for example
occur in related image classification tasks where the semantic structure is very similar e.g. CIFAR-10
vs. CIFAR-100. Both are important to be distinguished from the in-distribution, but it is conceivable
that close out-of-distribution data is the more difficult problem with potentially fatal consequences:
in an automated diagnosis system we want that the system recognizes that it “does not know” when a
new unseen disease comes in rather than assigning high confidence into a known class leading to fatal
treatment decisions. Thus out-of-distribution awareness is a key property of trustworthy AI systems.

In this paper, we focus on the setting of OOD detection where during training time, there is no
information available on the distribution of OOD inputs that might appear when the model is used for
inference. A large number of different approaches to OOD detection based on combinations of density
estimation, classifier confidence, logit space energy, feature space geometry, behaviour on auxiliary
tasks, and other principles has been proposed to tackle this problem. We give a detailed overview of
existing OOD detection methods in Appendix D. However, most OOD detection papers are focused
on establishing superior empirical detection performance and provide little theoretical background on
differences but also similarities to existing methods. In this paper we want to take a different path as
we believe that a solid theoretical basis is needed to make further progress in this field. Our goal is
to identify, at least for a particular subclass of techniques, whether the differences are indeed due
to a different underlying theoretical principle or whether they are due to the efficiency of different
estimation techniques for the same underlying detection criterion, called “scoring function”. In some
cases, we will see that one can even disentangle the estimation procedure from the scoring function,
so that one can simulate several different scoring functions from one model’s estimated quantities.
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A simple approach to OOD detection is to treat it as a binary discrimination problem between in-
and out-of-distribution, or more generally predicting a score how likely the input is OOD. In this
paper, we show that from the perspective of Bayesian decision theory, several established methods
are indeed equivalent to this binary discriminator. Differences arise mainly from i) the choice of the
training out-distribution, e.g. the popular Outlier Exposure of Hendrycks et al. (2019a) has advocated
the use of a rich and large set of natural images as a proxy for the distribution of natural images, and
ii) differences in the estimation procedure. Concretely, the main contributions of this paper are:

• We show that several OOD detection approaches are equivalent to the binary discriminator
between in- and out-distribution when analyzing the rankings induced by the Bayes optimal
classifier/density.

• We derive the implicit scoring functions for the confidence loss (Lee et al., 2018a) used by
Outlier Exposure (Hendrycks et al., 2019a) and for using an additional background class
for the out-distribution (Thulasidasan et al., 2021). The confidence scoring function turns
out not to be equivalent to the “optimal” scoring function of the binary discriminator when
training and test out-distributions are the same.

• We show that when training the binary discriminator between in- and out-distribution
together with a standard classifier on the in-distribution in a shared fashion, the binary
discriminator reaches state-of-the-art OOD detection performance.

• We show that density estimation is equivalent to discrimination between the in-distribution
and uniform noise which explains the frequent observation that standard density estimates
are not suitable for OOD detection.

Even though we identify that a simple baseline is competitive with the state-of-the-art, the main aim
of this paper is a better understanding of the key components of different OOD detection methods and
to identify the key properties which lead to SOTA OOD detection performance. All of our findings
are supported by extensive experiments on CIFAR-10 and CIFAR-100 with evaluation on various
challenging out-of-distribution test datasets.

2 MODELS FOR OOD DATA AND EQUIVALENCE OF OOD DETECTION
SCORES

As most work in the literature we consider OOD detection on a compact input domain X where
the most important example is image classification where X = [0, 1]D. The most popular approach
to OOD detection is the construction of an in-distribution-scoring function f : X → R ∪ {±∞}
such that f(x) tends to be smaller if x is drawn from an out-distribution than if it is drawn from the
in-distribution. There is a variety of different performance metrics for this task, with a very common
one being the area under the receiver-operator characteristic curve (AUC). The AUC for a scoring
function f distinguishing between an in-distribution p(x|i) and an out-distribution p(x|o) is given by

AUCf

(
p(x|i), p(x|o)

)
= E

x∼p(x|i)
y∼p(y|o)

[
1f(x)>f(y) +

1

2
1f(x)=f(y)

]
. (1)

We define an equivalence of scoring functions based on their AUCs and will show that this equivalence
implies equality of other employed performance metrics as well.

Definition 1. Two scoring functions f and g are equivalent and we write f ∼= g if

AUCf

(
p(x|i), p(x|o)

)
= AUCg

(
p(x|i), p(x|o)

)
(2)

for all potential distributions p(x|i) and p(x|o).

As the AUC is not dependent on the actual values of f but just on the ranking induced by f one
obtains the following characterization of the equivalence of two scoring functions.

Theorem 1. Two scoring functions f, g are equivalent f ∼= g if and only if there exists a strictly
monotonously increasing function ϕ : range(g) → range(f), such that f = ϕ(g).

Corollary 1. The equivalence between scoring functions in Def. 1 is an equivalence relation.
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Another metric is the false positive rate at a fixed true positive rate q, denoted as FPR@qTPR.
A commonly used value for the TPR is 95%. The smaller the FPR@qTPR, the better the OOD
discrimination performance.
Lemma 1. Two equivalent scoring functions f ∼= g have the same FPR@qTPR for any pair of in-
and out-distributions p(x|i), p(x|o) and for any chosen TPR q.

In the next section, we use the previous results to show that the Bayes optimal scoring functions of,
several proposed methods for out-of-distribution detection are equivalent to the scoring functions of
simple binary discriminators.

3 BAYES-OPTIMAL BEHAVIOUR OF BINARY DISCRIMINATORS AND COMMON
OOD DETECTION METHODS

In the following we will show that the Bayes optimal function of several existing approaches to OOD
detection for unlabeled data are equivalent to a binary discriminator between in- and a (training) out-
distribution whereas differences arise when one has labeled data. As the equivalences are based on the
Bayes optimal solution, these are asymptotic statements and thus it has to be noted that convergence
to the Bayes optimal solution can be infinitely slow and that the methods can have implicit inductive
biases. This is why we additionally support our findings with extensive experiments.

3.1 OOD DETECTION FOR METHODS USING UNLABELED DATA ONLY

We first provide a formal definition of OOD detection before we show the equivalence of density
estimators resp. likelihood to a binary discriminator.

The OOD problem In order to make rigorous statements about the OOD detection problem we first
have to provide the mathematical basis for doing so. We assume that we are given an in-distribution
p(x|i) and potentially also a training out-distribution p(x|o). At this particular point no labeled data
is involved, so both of them are just distributions over X . For simplicity we assume in the following
that they both have a density wrt. the Lebesgue measure on X = [0, 1]d. We assume that in practice
we get samples from the mixture distribution

p(x) = p(x|i)p(i) + p(x|o)p(o) = p(x|i)p(i) + p(x|o)(1− p(i)) (3)
where p(i) is the probability that we expect to see in-distribution samples in total. In order to make
the decision between in-and out-distribution for a given point x it is then optimal to consider

p(i|x) = p(x|i)p(i)
p(x)

=
p(x|i)p(i)

p(x|i)p(i) + p(x|o)p(o)
, (4)

which is defined for all x ∈ [0, 1]d with p(x) > 0 (assuming p(x|i) and p(x|o) can be written as
densities). If the training out-distribution is also the test out-distribution then this is already optimal
but we would like that the approach generalizes to other unseen test out-distributions and thus an
important choice is the training out-distribution p(x|o). Note that as p(i|x) is only well-defined for
all x with p(x) > 0, it is thus reasonable to choose for p(x|o) a distribution with support in [0, 1]d,
that is p(x|o) > 0 for all x ∈ [0, 1]d. In this case we ensure that the criterion with which we perform
OOD detection is defined for any possible input x. This is desirable as OOD detection should work
for any possible input x ∈ X .

Optimal prediction of a binary discriminator between in- and out-distribution We consider
a binary discriminator with model parameters θ between in- and (training) out-distribution, where
p̂θ(i|x) is the predicted probability for the in-distribution. Under the assumption that p(i) is the
probability for in-distribution samples and using cross-entropy (which in this case is the logistic loss
up to a constant global factor of log(2)) the expected loss becomes:

min
θ

p(i) E
x∼p(x|i)

[− log p̂θ(i|x)] + p(o) E
x∼p(x|o)

[− log(1− p̂θ(i|x))] . (5)

One can derive that the Bayes optimal classifier minimizing the expected loss has the predictive
distribution:

p̂θ∗(i|x) = p(x|i)p(i)
p(x|i)p(i) + p(x|o)p(o)

= p(i|x). (6)
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Thus at least for the training out-distribution a binary classifier based on samples from in- and
(training) out-distribution would suffice to solve the OOD detection problem perfectly.

Equivalence of density estimation and binary discrimination for OOD detection In this section
we further analyze the relationship of common OOD detection approaches with the binary discrimina-
tor between in-and out-distribution. We start with density estimators sourced from generative models.
A basic approach that is known to yield relatively weak OOD performance (Nalisnick et al., 2019;
Ren et al., 2019; Xiao et al., 2020) is directly utilizing a model’s estimate for the density p(x|i) at a
sample input x. An improved density based approach which uses perturbed in-distribution samples
as a surrogate training out-distribution is the Likelihood Ratios method (Ren et al., 2019), which
proposes to fit a generative model for both the in- and out-distribution and to use the ratio between
the likelihoods output by the two models as a discriminative feature.

We show that with respect to the scoring function, the correct density p(x|i) is equivalent to the
Bayes optimal prediction of a binary discriminator between the in-distribution and uniform noise.
Furthermore, the density ratio p(x|i)

p(x|o) is equivalent to the prediction of a binary discriminator between
the two distributions on which the respective models used for density estimation have been trained.
Because of this equivalence, we argue that the use of binary discriminators is a simple alternative
to these methods because of its easier training procedure. While this equivalence is an asymptotic
statement, the experimental comparisons in the appendix show that the methods perform similarly
poorly compared to the methods using labeled data.

We first prove the more general case of arbitrary likelihood ratios. In the following we use the
abbreviation λ = p(o)

p(i) to save space and make the statements more concise.

Lemma 2. Assume that p(x|i) and p(x|o) can be represented by densities and the support of p(x|o)
covers the whole input domain X . Then p(x|i)

p(x|o)
∼= p(x|i)

p(x|i)+λp(x|o) for any λ > 0.

This means that the likelihood ratio score of two optimal density estimators is equivalent to the in-
distribution probability p̂θ∗(i|x) predicted by a binary discriminator and this is true for any possible
ratio of p(i) to p(o). In the experiments below, we show that using such a discriminator has similar
performance as the likelihood ratios of the different trained generative models.

For the approaches that try to directly use the likelihood of a generative model as a discriminative
feature, this means that their objective is equivalent to training a binary discriminator against uniform
noise, whose density is pUniform(x) = p(x|o) = 1 at any x.

Lemma 3. Assume that p(x|i) can be represented by a density. Then p(x|i) ∼= p(x|i)
p(x|i)+λ for any

λ > 0.

This provides additional evidence why a purely density based approach for many applications proves
to be insufficient as an OOD detection score on the complex image domain: it is not reasonable to
assume that a binary discriminator between certain classes of natural images on the one hand and
uniform noise on the other hand provides much useful information about images from other classes
or even about other nonsensical inputs.

3.2 OOD DETECTION FOR METHODS USING LABELED DATA

We first discuss how one can formulate the OOD problem when one has access to labeled data for the
in-distribution and we identify the target distribution of OOD detection using a background/reject
class. Then we derive the Bayes optimal classifier of the confidence loss (Lee et al., 2018a) as used
by the most successful variant of Outlier Exposure (Hendrycks et al., 2019a) and discuss the implicit
scoring function. In most cases the scoring functions turn out not to be non-equivalent to p(i|x)
(which is optimal if training and test out-distribution agree) as they integrate additional information
from the classification task.

Bayes optimal solutions for OOD Detection with Background class and confidence loss Outlier
Exposure Given a joint in-distribution p(y, x|i) (where y ∈ {1, . . . ,K} given that we have K
labels) for the labeled in-distribution, there are different ways how to come up with a joint distribution
for in- and out-distribution. Interestingly, the different encodings used e.g. in training with a
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background class (Thulasidasan et al., 2021) vs. training a classifier with confidence loss (Lee et al.,
2018a) together with variants of the employed scoring function lead to methods which unexpectedly
can have quite different behavior.

Background class: In this case we just put all out-of-distribution samples into a K + 1-class which
is typically called background/reject class (Thulasidasan et al., 2021). The joint distribution then
becomes

p(y, x) =

{
p(y, x|i)p(i) if y ∈ {1, . . . ,K},
p(x|o)p(o) if y = K + 1.

We denote by p(x|i) =
∑K

y=1 p(y, x|i) the marginal in-distribution and note that the marginal
distribution of the joint distribution of in- and out-distribution is again given by

p(x) = p(x|i)p(i) + p(x|o)p(o).
Then we get the conditional distribution

p(y|x) =
{
p(y|x, i)p(i|x) if y ∈ {1, . . . ,K},
p(o|x) = 1− p(i|x) if y = K + 1.

The Bayes optimal solution of training with a background class using any calibrated loss function
L(y, f(x)), e.g. the cross-entropy loss (Laptev et al., 2016), then yields a Bayes optimal classifier f∗

which has a predictive distribution pf∗(y|x) = p(y|x). There are two potential scoring function that
come to mind:

s1(x) = 1− pf∗(K + 1|x) and s2(x) = max
k=1,...,K

pf∗(k|x)

The first one, used in Chen et al. (2021); Thulasidasan et al. (2021), is motivated by the fact that
pf∗(K +1|x) is directly the predicted probability that the point is from the out-distribution as indeed
it holds: s1(x) = p(i|x) which is the optimal scoring function if training and test out-distribution
are equal. On the other hand the maximal predicted probability maxk=1,...,K pf∗(k|x), which is
often employed as a scoring function Hendrycks & Gimpel (2017), becomes for the Bayes optimal
classifier

s2(x) = p(i|x) max
k=1,...,K

p(k|x, i),

which is a product of p(i|x) and the maximal conditional probability of some class of the in-
distribution (note that s2 is well defined as p(i|x) is defined if p(x|o) has support everywhere in
X and if p(i|x) > 0 then also p(x|i) > 0). Thus the scoring function s2(x) integrates additionally
to p(i|x) also class-specific information and is thus less dependent on the chosen training out-
distribution. In fact, one can see that s2 only ranks points high if both the binary discriminator and
the classifier rank the corresponding point high. On the other hand in the case where training and test
out-distribution are identical, this scoring function is not equivalent to p(i|x) and thus introduces a
bias in the estimation.

Outlier Exposure Hendrycks et al. (2019a) with confidence loss (Lee et al., 2018a): we analyze
the Bayes optimal solution for the confidence loss (Lee et al., 2018a) that is used by Outlier Exposure
(OE) and show that the associated scoring function can be written, similarly to the scoring function
s2(x) for training with a background class, as a function of p(i|x) and p(y|x, i).
The training objective with the confidence loss is in expectation given by

min
θ

E
(x,y)∼p(x,y|i)

[LCE(fθ(x), y)] + λ E
x∼p(x|o)

[
LCE(fθ(x), u

K)
]
, (7)

where θ are the model parameters and fθ(x) ∈ RK is the model output as logits, and uK =
( 1
K , . . . , 1

K )T is the uniform distribution over the K classes of the in-distribution classification task.

In the following theorem we derive the Bayes optimal predictive distribution for this training objective.

Theorem 2. The predictive distribution pf∗(y|x) of the Bayes optimal classifier f∗ minimizing the
expected confidence loss is given for y ∈ {1, . . . ,K} as

pf∗(y|x) = p(i|x)p(y|x, i) + 1

K

(
1− p(i|x)

)
. (8)
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Thus the effective scoring function of using the probability of the predicted class as suggested in
Hendrycks & Gimpel (2017); Lee et al. (2018a); Hendrycks et al. (2019a) is given by

s3(x) = p(i|x) max
y=1,...,K

p(y|x, i) + 1

K

(
1− p(i|x)

)
= p(i|x)

[
max

y=1,...,K
p(y|x, i)− 1

K

]
+

1

K
.

Please note that the term inside the brackets is positive as maxk=1,...,K p(k|x, i) ≥ 1
K . Interestingly,

the scoring functions s2 and s3 are not equivalent even though they look quite similar. In particular,
due to the subtraction of 1

K the scoring function s3 puts more emphasis on the classifier than s2. In
Appendix F we additionally analyze Energy Based OOD Detection (Liu et al., 2020), and show that
the Bayes optimal decision is equivalent to using the scoring function s1 = p(i|x).

3.3 SEPARATE VERSUS SHARED ESTIMATION OF p(i|x) AND p(y|x, i)

So far we have derived that at least from the point of view of the ranking induced by the Bayes
optimal solution, OOD detection based on generative methods, likelihood ratios and the background
class formulation with the scoring function s1 is equivalent to a binary classification problem between
in- and out-distribution in order to estimate p(i|x). The differences arise mainly in the choice of the
training out-distribution p(x|o): i) uniform for generative resp. density based methods, ii) a quite
specific out-distribution for likelihood ratios (Ren et al., 2019) and iii) a proxy of the distribution of
all natural images (Hendrycks et al., 2019a; Thulasidasan et al., 2021).

On the other hand when labeled data is involved we can additionally train a classifier on the in-
distribution in order to estimate p(y|x, i). We will then combine the estimates of p(i|x) and p(y|x, i)
according to the three scoring functions derived in the previous section and check if the novel OOD
detection methods constructed in this way perform similar to the OOD methods from which we
derived the corresponding scoring function i) OOD detection with a background class (Thulasidasan
et al., 2021) or ii) using Outlier Exposure Hendrycks et al. (2019a). This will allow us to differentiate
between differences of the employed scoring functions for OOD detection and the estimators for the
involved quantities. In this way we foster a more systematic approach to OOD detection.

In the unlabeled case we train simply the binary classifier pθ : [0, 1]d → R using logistic/cross
entropy loss in a class balanced fashion

min
θ

− 1

N

N∑
i=1

log
(
p̂θ(i|xIN

i )
)
− λ

M

M∑
j=1

log
(
1− p̂θ(i|xOUT

j )
)
, (9)

where (xIN
i )Ni=1 and (xOUT

j )Mj=1 are samples from the in-distribution and the out-distribution.

In the case where we have labeled data we can additionally solve the classification problem. The
obvious approach is to train the binary classifier for estimating p(i|x) and the classifier to estimate
p(y|x, i) completely independently. Not surprisingly, we show in Section 4 that this approach works
less well. In fact both tasks benefit from each other. Moreover, in training a neural network using a
background class or with Outlier Exposure (Hendrycks et al., 2019a) we are implicitly using a shared
representation for both tasks which improves the results.

Thus we propose to train the binary discriminator of in-versus out-distribution together with the
classifier on the in-distribution jointly. Concretely, we use a neural network with K+1 outputs where
the first K outputs represent the classifier and the last output is the logit of the binary discriminator.
The resulting shared problem can then be written as

min
θ

− 1

Nb

Nb∑
r=1

log
(
p̂θ(i|xIN

r )
)
− λ

M

M∑
s=1

log
(
1− p̂θ(i|xOUT

s )
)
− 1

Nc

Nc∑
t=1

log
(
p̂θ(y

IN
t |xIN

t )
)
, (10)

where λ = p(o)
p(i) which is typically set to 1 during training in order to get a class-balanced problem.

Note that the in-distribution samples (xIN
r )Nb

r=1 used to estimate p(i|x) can be a super-set of the labeled
examples (xIN

t , yIN
t )Nc

t=1 used to train the classifier so that one can potentially integrate unlabeled data
- this is an advantage compared to OOD detection with a background class or Outlier Exposure where
this is not directly possible. We stress that the loss functions of the classifier and the discriminator
act on independent outputs; the functions modelling the two tasks only interact with each other due
to the shared network weights up to the final layer. Nevertheless, we see in the next Section 4 that
training with a shared representation boosts both the classifier and the binary discriminator.
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Table 1: Accuracy on the in-distribution (CIFAR-10/CIFAR-100) and FPR@95%TPR for various
test out-distributions of different OOD methods with OpenImages as training out-distribution (results
for the test set of OpenImages are not used in the mean FPR). Lower false positive rate is better.
All methods except Mahalanobis have been trained using the same architecture, training parameters,
schedule and augmentation. s1, s2, s3 are the scoring functions introduced in Section 3.2. Our binary
discriminator (BINDISC) resp. the combination with the shared classifier (SHARED COMBI) and the
models with background class (BGC) with scoring functions s2 or s3 outperform the Mahalanobis
detector (Lee et al., 2018b) and are similar to Outlier Exposure (Hendrycks et al., 2019a). CelebA
makes no sense as test out-distribution for CIFAR-100 as man/woman are classes in CIFAR-100.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTH C-100 80M CELA OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 95.16 53.01 47.87 50.00 17.51 65.81 60.43 53.44 76.00 63.71

MAHALANOBIS 36.68 20.97 49.00 0.00 0.00 57.21 48.85 80.71 55.13

OE 95.06 15.20 9.58 0.00 0.00 0.00 54.05 42.33 0.45 3.46

BGC s1 18.83 2.36 0.00 0.00 0.00 72.00 56.41 1.04 0.05
BGC s2 95.21 16.52 7.51 0.00 0.05 2.10 55.16 44.57 6.26 1.65

BGC s3 95.21 16.63 7.69 0.00 0.07 2.36 55.19 44.67 6.41 1.74

SHARED BINDISC 19.56 4.65 0.00 0.00 0.00 77.50 53.93 0.87 0.04
SHARED CLASSI 95.28 29.34 28.00 7.00 2.33 33.04 58.61 47.90 28.54 35.94

SHARED COMBI s2 95.28 16.00 8.56 0.00 0.00 0.00 58.80 42.79 1.83 0.61
SHARED COMBI s3 95.28 16.06 9.00 0.00 0.00 0.00 58.68 42.85 1.91 0.66

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 77.16 67.57 75.50 78.33 22.60 70.98 80.55 77.43 80.80

MAHALANOBIS 53.88 54.36 66.00 46.43 0.06 85.39 71.01 74.69

OE 77.19 35.03 47.36 0.00 0.67 0.08 84.64 77.42 1.28

BGC s1 31.14 11.58 0.00 0.00 0.00 93.94 81.29 0.07
BGC s2 77.61 33.32 37.06 0.00 0.00 0.20 84.50 78.17 1.26

BGC s3 77.61 33.36 37.27 0.00 0.00 0.20 84.51 78.19 1.27

SHARED BINDISC 31.86 10.77 0.00 0.00 0.00 95.25 85.11 0.08
SHARED CLASSI 77.35 67.23 71.05 5.00 97.70 69.68 82.05 77.89 28.38

SHARED COMBI s2 77.35 33.01 37.30 0.00 0.00 1.06 82.71 77.01 1.80
SHARED COMBI s3 77.35 33.06 37.57 0.00 0.00 1.13 82.68 77.01 1.85

4 EXPERIMENTS

We use CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets as in-distribution and
OpenImages dataset (Krasin et al., 2017) as training out-distribution. The 80 Million Tiny Images
(80M) dataset (Torralba et al., 2008) is the de facto standard for training out-distribution aware
models that has been adopted by most prior works, but this dataset has been withdrawn by the authors
as Birhane & Prabhu (2021) pointed out the presence of offensive images. To be able to compare
with other state-of-the-art methods without introducing a potential bias due to dataset selection, we
include the evaluation with 80M as training out-distribution in Appendix H. Moreover, we show in
the appendix results for the binary discriminator trained with different training out-distributions vs.
likelihoods resp. likelihood ratios (Ren et al., 2019) as OOD method.

We use as OOD detection metric the false positive rate at 95% true positive rate, FPR@95%TPR;
evaluations with AUC are in Appendix G. We evaluate the OOD detection performance on the
following datasets: SVHN (Netzer et al., 2011), resized LSUN Classroom (Yu et al., 2015), Uniform
Noise, Smooth Noise generated as described by (Hein et al., 2019), the respective other CIFAR
dataset, 80M, and CelebA (Liu et al., 2015). We highlight that none of the listed methods has access
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to those test distributions during training or for fine-tuning as we try to assess the ability of an
out-distribution aware model to generalize to unseen distributions. The FPR for the OpenImages test
set is not included in the Mean AUC, since this distribution has been used during training.

The binary discriminators (BINDISC) as well as the classifiers with background class (BGC) and the
shared binary discriminator+classifier (SHARED) of p(i|x) and p(y|x, i) are trained on the 40-2 Wide
Residual Network (Zagoruyko & Komodakis, 2016) architecture with the same training schedule
as used in Hendrycks et al. (2019a) for training their Outlier Exposure(OE) models. This includes
averaging the loss over batches that are twice as large for the out-distribution. This way we ensure
that the differences do not arise due to differences in the training schedules or other important details
but only on the employed objectives. In addition to their standard augmentation and normalization,
we apply AutoAugment (Cubuk et al., 2019) without Cutout, and we use λ = 1 where applicable,
which is a sound choice as we observe in an ablation on λ in Appendix K. For the Mahalanobis
OOD detector (Lee et al., 2018b), we use the models and code published by the authors and use
OpenImages for the fine tuning of input noise and layer weighting regression. We describe the exact
details of the training settings and the used dataset splits in Appendix C.

4.1 OUT-DISTRIBUTION AWARE TRAINING WITH LABELED IN-DISTRIBUTION DATA

In Table 1 we compare multiple OOD methods trained with training out-distribution OpenImages and
CIFAR-10/100 as in-distribution: confidence of standard training (PLAIN) and OE, MAHALANOBIS
detection, classifier with background class (BGC) and the combination of a plain classifier and a
binary in-vs-out-distribution classifier with shared representation (SHARED COMBI). As described
in Section 2, both BGC and SHARED COMBI can be used in combination with different scoring
functions. For BGC, we evaluate all three scoring functions s1, s2 and s3 and for SHARED COMBI
we only use s2 and s3 as s1 is equivalent to p(i|x) which is the output of SHARED BINDISC.
Additionally, we evaluate OOD detection based on the confidence of the shared classifier (SHARED
CLASSI) trained together with SHARED BINDISC.

For CIFAR-10, a first interesting observation is that SHARED CLASSI has remarkably good OOD
performance; significantly better than a normal classifier (plain) even though it is just trained using
normal cross-entropy loss and so the OOD performance is only due to the regularization enforced
by the shared representation with SHARED BINDISC. In fact SHARED BINDISC has already good
OOD performance with a mean FPR@95%TPR of 19.56, which is improved by considering scoring
function s2/s3 in the combination of SHARED BINDISC and SHARED CLASSI which yields very
good classification accuracy and mean FPR/AUC. Moreover, interesting are the results of the classifier
with background class (BGC) which is the method recently advocated in Thulasidasan et al. (2021).
It works very well but the performance depends on the chosen scoring function. Whereas s1 (output
of the background class) is a usable scoring function (mean FPR: 18.83), the maximum probability
over the other classes s2 (mean FPR: 16.52) or the combination in terms of s3 (mean FPR: 16.63)
performs better. In total with the scoring function s2/s3 integrating classifier and discriminative
information, BGC reaches similar performance to OE (which implicitly also uses s3 as scoring
function). In general, the differences of the methods are relatively minor both in terms of OOD
detection and classification accuracy, where the latter is better for all OOD methods compared to the
plain classifier; this is most likely explained by better learned representations, see also Hendrycks
et al. (2019a); Augustin et al. (2020) for similar observations. The results for CIFAR-100 are similar
to CIFAR-10, with some reversals of the overall rankings of the compared methods. OE achieves
comparable OOD results to BGC s2/s3 and SHARED COMBI s2/s3. For this in-distribution our
BGC s1 and SHARED BINDISC perform best in terms of OOD performance. Classification test
accuracy is slightly higher for BGC and SHARED, but the differences are minor. The experiments
with 80M as training out-distribution (Table 7 in Appendix H) confirm these observations.

Overall, as suggested by the theoretical results on the equivalence of the Bayes optimal classifier
of OE with the s3 scoring function of BGC and SHARED COMBI, we observe that even though
these methods are derived and in particular trained with quite different objectives, they behave
very similar in our experiments. In total we think that this provides a much better understanding
where differences of OOD methods are coming from. Regarding the question of which method and
scoring function should be used for a given application, the experimental results across datasets and
different out-distributions, see Appendix H, suggest that their difference is minor and there is no clear
best choice. However, in Appendix B, we describe a potential situation where the s3 score and in
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consequence OE is not powerful enough to distinguish in- and out-of-distribution inputs. On the other
hand, in cases where the s1 score is not very informative as training and test out-distributions largely
differ, combining it with the classifier confidences is beneficial; this can be observed in experiments
with SVHN as training out-distribution which we show in Appendix I. This is why for an unknown
situation, we recommend BGC or SHARED COMBI with the s2 scoring function as the safest option.
However, it is an open question if there are also situations where s2 is fundamentally inferior to s3.

4.2 SHARED REPRESENTATION LEARNING FOR THE BINARY DISCRIMINATOR

As highlighted above the shared training of SHARED CLASSI and SHARED BINDISC and their
combination SHARED COMBI with s2/s3 as scoring functions yields strong OOD detection and test
accuracy among all methods. Here, we evaluate the importance of training the binary discriminator
and the plain classifier with a shared representation in comparison to training two entirely separate
models PLAIN CLASSI and SEPARATE BINDISC and their combination SEPARATE COMBI with
scoring function s3. The results for CIFAR-10 and CIFAR-100 can be found in Table 2. In total, we see
that separate training in particular for CIFAR-100 leads to worse results compared to shared training as
expected as the binary discriminator and the classifier cannot benefit from each other. An interesting
curiosity is that the combination of the separate classifier with the binary discriminator trained in a
shared fashion (PLAIN ⊗ SHA DISC) yields almost the same OOD results as SHARED COMBI even
though the classifier is significantly worse. Overall, SHARED COMBI performs significantly better
when also considering the better classification accuracy which it inherits from SHARED CLASSI.

Table 2: Evaluation (same metrics as in Table 1) of models trained with shared and separate
representations. Shared training benefits both the classifier and the binary discriminators.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTHC-100 80M CELA OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR FPR

SEPARATE BINDISC 23.49 6.21 0.00 0.00 0.00 83.79 65.77 8.68 0.00
PLAIN CLASSI 95.16 53.01 47.87 50.00 17.51 65.81 60.43 53.44 76.00 63.71

SEPARATE COMBI s3 95.16 21.40 13.15 0.00 0.00 0.00 59.96 49.78 26.93 0.45

SHARED BINDISC 19.56 4.65 0.00 0.00 0.00 77.50 53.93 0.87 0.04
SHARED CLASSI 95.28 29.34 28.00 7.00 2.33 33.04 58.61 47.90 28.54 35.94

SHARED COMBI s3 95.28 16.06 9.00 0.00 0.00 0.00 58.68 42.85 1.91 0.66

PLAIN ⊗ SHA DISC s3 95.16 15.96 8.10 0.00 0.00 0.00 58.48 42.60 2.53 0.70

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR

SEPARATE BINDISC 32.50 14.28 0.00 0.00 0.00 96.50 84.22 0.02
PLAIN CLASSI 77.16 67.57 75.50 78.33 22.60 70.98 80.55 77.43 80.80

SEPARATE COMBI s3 77.16 41.94 69.44 0.00 0.00 24.39 81.15 76.67 0.89

SHARED BINDISC 31.86 10.77 0.00 0.00 0.00 95.25 85.11 0.08
SHARED CLASSI 77.35 67.23 71.05 5.00 97.70 69.68 82.05 77.89 28.38

SHARED COMBI s3 77.35 33.06 37.57 0.00 0.00 1.13 82.68 77.01 1.85

PLAIN ⊗ SHA DISC s3 77.16 33.38 37.00 0.00 0.00 5.42 81.33 76.50 2.23

5 CONCLUSION

In this paper we have analyzed different OOD detection methods and have shown that the simple
baseline of a binary discriminator between in-and out-distribution is a powerful OOD detection
method if trained in a shared fashion with a classifier. Moreover, we have revealed the inner
mechanism of Outlier Exposure and training with a background class which unexpectedly use a
scoring function which integrates information from p(i|x) and p(y|x, i). We think that these findings
will allow to build novel OOD methods in a more principled fashion.

9



Under review as a conference paper at ICLR 2022

6 ETHICS AND REPRODUCIBILITY STATEMENT

In this paper we provide an explanation for the inner workings of established OOD detection methods
and propose a novel OOD detection method based on these considerations which outperforms OE in
terms of OOD performance and test accuracy. The final goal is to have more trustworthy classifiers.
One could criticize that the focus on OOD FPR/AUC performance and test accuracy covers just
certain aspects and other aspects like calibration of the classifiers, fairness, robustness to corruptions
or adversarial attacks play an important role, too. However, apart from the usual dual use problem we
see only positive societal aspects of our paper, as it leads to more trustworthy ML methods.

We discuss the problematic situation with the retracted 80 Million Tiny Images (Torralba et al., 2008)
dataset – which is used by many previous works in the field – in Appendix H and replace the it with
OpenImages (Krasin et al., 2017) for training the models in the main paper. For comparability with
previous methods, we include evaluations of models trained on 80M in the appendix. We hope that
introducing an alternative dataset for natural surrogate OOD training helps the community towards
avoiding the retracted dataset in the future, both from an ethical and also a practical perspective, in
case 80M becomes fully unavailable.

All experimental details including used hardware are given in Appendix C, and code for training
and evaluating out methods as well as weights of the evaluated neural networks are available at
https://anonymous.4open.science/r/OOD_BGC_BinDisc-D7FB.
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A PROOFS

Theorem 1. Two scoring functions f, g are equivalent f ∼= g if and only if there exists a strictly
monotonously increasing function ϕ : range(g) → range(f), such that f = ϕ(g).

Proof. Assume that such a function ϕ exists. Then for any pair x, y we have the logical equivalences
g(x) > g(y) ⇔ f(x) = ϕ(g(x)) > ϕ(g(y)) = f(y) and g(x) = g(y) ⇔ f(x) = ϕ(g(x)) =
ϕ(g(y)) = f(y). This directly implies that the AUCs are the same, regardless of the distributions.

Assume f ∼= g. For each a ∈ range(g), choose some â ∈ g−1(a). For any pair x, y ∈ X , by
regarding the Dirac distributions p(x|i) = δx and p(x|o) = δy that are each concentrated on one of the
points, we can infer that f(x) > f(y) ⇔ AUCf (p(x|i), p(x|o)) = 1 ⇔ AUCg(p(x|i), p(x|o)) =
1 ⇔ g(x) > g(y) and similarly f(x) = f(y) ⇔ g(x) = g(y). The latter ensures that the function
defined as

ϕ : range(g) → range(f)

a 7→ f(â)
(11)

is independent of the choice of â and that f = ϕ ◦ g, and the former confirms that ϕ is strictly
monotonously increasing.

Lemma 1. Two equivalent scoring functions f ∼= g have the same FPR@qTPR for any pair of in-
and out-distributions p(x|i), p(x|o) and for any chosen TPR q.

Proof. We know that a function ϕ as in Theorem 1 exists. Then for any pair x, y, we have the logical
equivalences

g(x) > g(y) ⇔ f(x) = ϕ(g(x)) > ϕ(g(y)) = f(y) (12)

and

g(x) = g(y) ⇔ f(x) = ϕ(g(x)) = ϕ(g(y)) = f(y) . (13)

This directly implies that the FPR@qTPR-values are the same, for any p(x|i), p(x|o) and q.

Lemma 2. Assume that p(x|i) and p(x|o) can be represented by densities and the support of p(x|o)
covers the whole input domain X . Then p(x|i)

p(x|o)
∼= p(x|i)

p(x|i)+λp(x|o) for any λ > 0.

Proof. The function ϕ : [0,∞] → [0, 1] defined by ϕ(x) = x
x+λ (setting ϕ(∞) = 1) fulfills the

criterion from Theorem 1 of being strictly monotonously increasing. With

ϕ

(
p(x|i)
p(x|o)

)
=

p(x|i)
p(x|o)

p(x|i)
p(x|o) + λp(x|o)

p(x|o)

=
p(x|i)

p(x|i) + λp(x|o)
(14)

for p(x|o) ̸= 0 and ϕ
(

p(x|i)
0

)
= ϕ(∞) = 1 = p(x|i)

p(x|i)+λ·0 , the equivalence follows.

Lemma 3. Assume that p(x|i) can be represented by a density. Then p(x|i) ∼= p(x|i)
p(x|i)+λ for any

λ > 0.

Proof. This is a special case of Lemma 2, by setting p(x|o) = 1 = pUniform(x).

Theorem 2. The predictive distribution pf∗(y|x) of the Bayes optimal classifier f∗ minimizing the
expected confidence loss is given for y ∈ {1, . . . ,K} as

pf∗(y|x) = p(i|x)p(y|x, i) + 1

K

(
1− p(i|x)

)
. (8)
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Proof. Minimizing the loss of Outlier Exposure given in Eq. (7) means solving the optimization
problem

min
pf (·|x)

− p(i|x) ·
K∑

k=1

p(k|x, i) · log pf (k|x)− (1− p(i|x)) ·
K∑

k=1

1

K
· log pf (k|x)

subject to pf (k|x) ≥ 0 for each k ∈ {1, . . . ,K}
K∑

k=1

pf (k|x) = 1 ,

(15)

where pf (·|x) is the model’s K-dimensional prediction. For p(i|x) = 0 or p(k|x, i) = 0, the
optimalities of the respective terms are easy to show (applying the common conventions for 0 log 0),
so we assume that tose are non-zero. The Lagrange function of the optimization problem is

L(pf (·|x), α, β) = −p(i|x) ·
K∑

k=1

p(k|x, i) · log pf (k|x)− (1− p(i|x)) ·
K∑

k=1

1

K
· log pf (k|x)

−
K∑

k=1

αkpf (k|x) + β

(
−1 +

K∑
k=1

pf (k|x)

)
,

(16)

with β ∈ R and α ∈ RK
+ . Its first derivative with respect to pf (k|x) for any k is

∂L

pf (k|x)
= −p(i|x) · p(k|x, i) 1

pf (k|x)
− (1− p(i|x)) · 1

K

1

pf (k|x)
− αk + β

= −sK(k|x)
pf (k|x)

− αk + β ,

(17)

where we set sK(k|x) := p(i|x)p(k|x, i) + 1
K

(
1 − p(i|x)

)
. The second derivative is a positive

diagonal matrix for any point of its domain, therefore we find the unique minimum by setting (17) to
zero, i.e. at

pf (k|x) =
sK(k|x)
β − αk

. (18)

The dual problem is hence the maximization (with αk ≥ 0) of

q(α, β) = −p(i|x) ·
K∑

k=1

p(k|x, i) · log sK(k|x)
β − αk

− (1− p(i|x)) ·
K∑

k=1

1

K
· log sK(k|x)

β − αk

−
K∑

k=1

αk
sK(k|x)
β − αk

+ β

(
−1 +

K∑
k=1

sK(k|x)
β − αk

)

=

K∑
k=1

sK(k|x)
(
− log sK(k|x) + log(β − αk) +

β

β − αk
− αk

β − αk

)
− β ;

here, α only appears in log(β − αk) which has a positive factor sK(k|x), so α = 0 maxi-
mizes the expression. Noting

∑K
k=1 s

K(k|x) = 1, what remains is q0(β) = 1 + log(β) −∑K
k=1 s

K(k|x) log sK(k|x) − β, which is maximized by β = 1. This means that the dual opti-
mal pair is pf (k|x) = sK(k|x), (β = 1, α = 0). Slater’s condition (Boyd et al., 2004) holds since
the feasible set of the original problem is the probability simplex. Thus, pf∗(·|x) = sK(x) is indeed
primal optimal.

B CONFIDENCE LOSS MODELS AND MODELS WITH A BACKGROUND CLASS OR
A BINARY DISCRIMINATOR ARE ONLY EQUIVALENT AFTER s3 IS APPLIED

Seeing that for both in-distribution accuracy and OOD detection, OE models trained with confidence
loss, models with background class and shared classifier/discriminator combinations behave very
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similarly, the question arises if the training methods themselves lead to equivalent models. One
idea might be that and effect of the confidence loss on the degree of freedom from logit translation
invariance could be unfolded to obtain a K+1-dimensional output that contains the same information
as a classifier with background class or with and additional binary discriminator output (the latter two
are indeed equivalent). This is not the case, as the following example that in certain situations, the
s1 and s2 scores of background class models and classifier/discriminator combinations are able to
separate in- and out-distribution, while the s3 score and the equivalent confidence loss/OE models
cannot.

B.1 EURO COIN CLASSIFIER

As an example where the mentioned non-equivalence would occur, we hypothetically regard the task
of classifying photos of 1-Euro coins by the issuing country. Each C1 coin features a common side
that is the same for each country and a national side that pictures a unique motive per country. We
assume that one side is visible on each photo, and that the training dataset of size 2mK is balanced,
consisting of 2m coin photos with label c for each country c ∈ {1, . . . ,K}, where m photos show
the common side and the other m photos show the informative national side for each country c.

It is easy to see that the Bayes optimal classifier trained with cross-entropy loss on this dataset predicts
100% for the respective country c when shown a photo of the national side of a C1 coin, and predicts
1/K for each country when shown the common side of a C1 coin.

Now we compare the behaviour of the different methods given a training out-distribution of poker
chips images which are clearly recognizable as not being C1 coins.

A K-class model trained with confidence loss (Lee et al., 2018a) will not make a difference between
common side coin images and poker chip images, and in the Bayes optimal case, it will predict the
uniform class distribution in both cases. This does not only hold for the prediction of a hypothetical
Bayes optimal model: assuming full batch gradient descent and identical sets of m common side
training photos for each class, the loss for a common side input is the same as the loss for a poker
chip.

On the other hand, a binary discriminator will easily distinguish between poker chips and C1 coins,
no matter which side of the coin is shown. The same holds for a model with background class: the
score of the class K + 1 will be close to 1 for chips and close to 0 for C1 coins.

We conclude that in the described situation, models trained with confidence loss/outlier exposure
are not able to sufficiently distinguish in- and out-distribution, while the s1 scoring function of a
classifier with background class or a binary discriminator is suitable for this task.

With the s2 scoring function, the background class model gives us s2(x) = maxk=1,...,K pf (k|x),
and thus (1−pf (K+1|x))

K ≤ s2(x) ≤ 1−pf (K+1|x), which means that if pf (K+1|x) is sufficiently
large for in-distribution inputs and sufficiently small for out-of-distribution inputs, s2 is able to
distinguish them independent of inconclusiveness in the first K classes. Similarly, s2 applied to a
binary discriminator with a classifier (shared trained or not) will be able to distinguish common sides
of coins and poker chips.

With s3, on the other hand, common sides of coins and poker chips can no longer be separated. For

a classifier/discriminator pair, as defined above, s3(x) = pd(i|x)
[

max
y=1,...,K

pc(y|x, i) −
1

K

]
+

1

K
.

If on the common side of a coin the classifier predicts uniform 1
K , we have s3(x) =

1
K no matter

what the discriminator pd(i|x) predicts. On poker chips with discriminator prediction pd(i|x) = 1,

we also get s3(x) = 1. For background class models, s3(x) = max
k=1,...,K

pf (k|x) +
1

K
pf (K + 1|x)

also yields 1
K for a common side where the prediction over the K in-distribution classes is uniform

and for a poker chips, where pf (K + 1|x) = 1. The fact that in this coin scenario when scored with
s3, background class and classifier/discriminator combinations have the same problem as confidence
loss/OE is not surprising considering their equivalence shown in Theorem 2.
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C EXPERIMENTAL DETAILS

C.1 TRAINING

For training our models, we build upon the code of Hendrycks et al. (2019a) which they have avail-
able at https://github.com/hendrycks/outlier-exposure and borrow their general
architecture and training settings. Concretely, we use 40-2 Wide Residual Network (Zagoruyko
& Komodakis, 2016) models with normalization based on the CIFAR datasets and a dropout rate
of 0.3. They are trained for 100 epochs with an initial learning rate of 0.1 that decreases follow-
ing a cosine annealing schedule. Unless mentioned otherwise, each training step uses a batch of
size 128 for the in-distribution and a batch of size 256 for the training out-distribution. The opti-
mizer uses stochastic gradient descent with a Nesterov momentum of 0.9. Weight decay is set to
5 · 10−4. The deep learning framework we use is PyTorch (Paszke et al., 2019), and for evaluating
we use the scikit-learn (Pedregosa et al., 2011) implementation of the AUC. Our code is available at
https://anonymous.4open.science/r/OOD_BGC_BinDisc-D7FB.

For evaluating the Mahalanobis detector, we use the code by the authors of Lee et al. (2018b)
provided at https://github.com/pokaxpoka/deep_Mahalanobis_detector. The
input noise levels and regression parameters are chosen on the available out-distribution OpenImages
and are 0.0014 for CIFAR-10 and 0.002 for CIFAR-100.

All experiments were run on Nvidia V100 GPUs of an internal cluster of our institution, using up to 4
GB GPU memory (batch sizes in:128/out:256), with no noticeable difference between ours and the
compared OE Hendrycks et al. (2019a) runs.

C.2 DATASETS

We train our models with the train splits of CIFAR-10 and CIFAR-100 Krizhevsky & Hinton (2009)
(MIT license) which each consist of 50,000 labeled images, and evaluate on their test splits of 10,000
samples. As training out-distribution we use OpenImages v4 (Krasin et al., 2017) (images have a
CC BY 2.0 license); the training split that we employ here consists of 8,945,291 images of different
sizes, which get resized to 32× 32 pixels, and we test on 10,000 from the official validation split. For
training with 80 Million Tiny Images (80M) (Torralba et al., 2008) in Appendix H (no license, see
links in Appendix H), we use data from the beginning of the sequentialized dataset, and evaluate on a
test set of 30,080 images starting at index 50,000,000. A subset of CIFAR images contained in 80M
is excluded for training and evaluation. Further image datasets used for evaluation are SVHN (Netzer
et al., 2011) (free for non-commercial use) with 26,032 samples, LSUN (Yu et al., 2015) Classroom
(no license) with 300 samples, and CelebA (Liu et al., 2015) (available for non-commercial research
purposes only) with 19,962 test samples. Uniform and Smooth Noise (Hein et al., 2019) are sampled,
the latter by generating uniform noise and smoothing it using a Gaussian filter with a width that is
drawn uniformly at random in [1, 2.5]. Each datapoint is then shifted and scaled linearly such that
the minimal and maximal pixel values are 0 and 1, respectively. For both noises, we evaluate 30,080
inputs.

D RELATED WORK ON OOD DETECTION

Out-of-distribution detection has been an important research area in recent years, and several ap-
proaches that are fitted towards different training and inference scenarios have been proposed.

One seemingly obvious line of thought is to use generative models for density estimation to differenti-
ate between in- and out-distribution (Bishop, 1994; Nalisnick et al., 2019; Ren et al., 2019; Nalisnick
et al., 2019; Xiao et al., 2020). Recent methods to a certain extent overcome the problem mentioned
in Nalisnick et al. (2019) that generative models can assign higher likelihood to distributions on
which they have not been trained. Another line of work are score-based methods using an underlying
classifier or the internal features of such a classifier, potentially combined with a generative model
(Hendrycks & Gimpel, 2017; Liang et al., 2018; Lee et al., 2018c; Hendrycks et al., 2019a; Hein et al.,
2019). One of the most effective methods up to now is Outlier Exposure (Hendrycks et al., 2019a)
and work building upon it (Chen et al., 2021; Meinke & Hein, 2020; Mohseni et al., 2020; Augustin
et al., 2020; Papadopoulos et al., 2021; Thulasidasan et al., 2021) where a classifier is trained on
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the in-distribution task and one enforces low confidence as proposed by Lee et al. (2018a) during
training on a large and diverse set of out-of-distribution images (Hendrycks et al., 2019a) which can
be seen as a proxy of all natural images. This approach generalizes well to other out-distributions.
Recently, NTOM (Chen et al., 2021) has achieved excellent results for detecting far out-of-distribution
data by adding a background class to the classifier which is trained on samples from the surrogate
out-distribution that are mined such that they show a desired hardness for the model. At test time,
the output probability for that class is used to decide if an input is to be flagged as OOD. Their
ATOM method does the same while also adding adversarial perturbations to the OOD inputs during
training. Even though it has been claimed that new approaches outperform Hendrycks et al. (2019a),
up to our knowledge this has not been shown consistently across different and challenging test
out-of-distribution datasets (including close and far out-of-distribution datasets). Below, we discuss
some other recently proposed approaches that build upon different premises on the data available
during training.

Hendrycks et al. (2019b) do not use any OOD data during training and instead teach the model to
predict whether an input has been rotated by 0°, 90°, 180° or 270°. For inference, they use the loss of
this predictor as an OOD score, and add this score to classifier output entropy, which behaves very
similar to classifier confidence. Similar to our methods, they also use shared representations and the
combination of the in-distribution classifier with a dedicated OOD detection score. If one interprets
their rotation predictor loss as being an estimator of log p(o|x) for some implicit out-distribution,
their scoring function coincides with our s2 scores.

Golan & El-Yaniv (2018) learn a similar transformation detector (with Dirichlet statistics collected on
the in-distribution replacing ground truth labels) and use it directly to detect OOD samples without
using in-distribution class information.

Winkens et al. (2020) fit for each class a normalized Mahalanobis detector on the activations of a
model trained with SimCLR ands a classification head on only the in-distribution with smoothed
labels. They describe their method as applying class-wise density estimation in the feature space,
where the normalized Mahalanobis distance is equivalent to a Gaussian density for each class.

Roy et al. (2021) treat an interesting application of flagging unseen skin diseases, making use of
class labels that are also available for their training OOD data, which contains diseases that are
different from both the in-distribution diseases and the unseen diseases. This allows them to do
fine-grained OOD detection by regarding the sum over all OOD classes which for their dataset shows
large improvement over methods that treat the training out-distributuion as one class. They gain
additional slight improvements by combining this with a coarse grained binary loss that treats the
sum over all in-distribution class probabilities as p(i|x) and the sum over all OOD classes as p(o|x).
They show that this method can be combined with various representation learning approaches in
order to improve their detection of unknown diseases.

Tack et al. (2020) introduce distribution shifting transformations into SimCLR training. Those are
transformations that are so strong that the resulting samples can be considered as OOD and as
negatives w.r.t. the original in the SimCLR loss. Similarly to Hendrycks et al. (2019b) and Golan
& El-Yaniv (2018), they also train a head that classifies the applied transformation. In a version
extended to using in-distribution labels, they consider samples from the same class and with the same
transformation as positives, and samples where either is different as negatives. With this method, they
obtain OOD detection results that significantly improve over standard classifier confidence, without
using any training OOD dataset.

Liu & Abbeel (2020) derive a contrastive loss from Joint Energy Based Model training (Grathwohl
et al., 2020) and train it together with cross-entropy on the in-distribution in order to obtain classifiers
whose logit values can be transformed into energies that are equivalent as OOD scoring functions to
in-distribution density. They show that using these energies yields some improvements over previous
density estimation approaches, and that also the classifier confidences show moderately improved
OOD detection when compared to standard training.

Liu et al. (2020) propose another energy based method which incorporates surrogate OOD data
during training. We analyse this method in detail in Appendix F, where we show that their Bayes
optimal OOD detector is equivalent to the binary discriminator between in- and out-distribution.
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Li & Vasconcelos (2020) use the same training method as OE and show that careful resampling of
the training out-distribution resembling hard negative mining can reduce its size and therefore lead
to a more resource effective training OOD dataset, while the resulting models reach similarly good
OOD detection performance.
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E EXPERIMENTS COMPARING DENSITY ESTIMATION AND BINARY
DISCRIMINATORS

E.1 UNLABELED IN-DISTRIBUTION DATA AVAILABLE FOR TRAINING

We want to answer the following questions: How does estimating the in-distribution density compare
to simply employing a binary discriminator between the in-distribution and uniform noise with
respect to the task of out-of-distribution detection? Can other density based models be substituted for
potentially easier to handle binary discriminators against a suitable (semi-)synthetic out-distribution?
As generative models, we use a standard likelihood VAE, a likelihood PixelCNN++ and additionally
compare with a Likelihood Regret VAE (Xiao et al., 2020). The binary classifier is trained to separate
real data from uniform noise, thus none of the methods presented in this section make use of 80M or
any other surrogate distribution. The results for OOD detection in terms of AUC for all methods are
presented in Table 3.

Comparing the OOD detection performance of the binary discriminator trained against uniform noise
with both VAE models, we asses that neither model is suitable for reliably detecting inputs from
unknown out-distributions.

Following the theoretical analysis from the previous sections, the likelihood models and our binary
classifier are able to perfectly separate the in-distribution data from uniform noise. This is expected as
those methods are trained on that particular task of separating CIFAR-10 from uniform noise, whereas
the LH Regret VAE with modified train objective has worse performance on uniform noise. It appears
as if the training objective of the binary classifier seems to be too easy as the training and validation
loss converge to almost zero in the first few epochs of training. However, the ability to separate
uniform noise from real images does not generalize to other test distributions as both methods fail
to achieve good out-of-distribution detection performance on the other test distributions. We note
that while the score features from the likelihood models and the binary classifier are in expectation
equivalent, both methods behave quite different on the test datasets (except for uniform noise). This
is not surprising, as the probability of drawing real images from the uniform distribution is so small
that neither training method properly regularizes the model’s behaviour on those particular image
manifolds. Thus the results are artifacts of random fluctuation and no method clearly outperforms the
other one, for example the binary classifier is better at separating CIFAR-10 from SVHN whereas the
likelihood VAE significantly outperforms the binary classifier on LSUN. Similar fluctuations also
exist between the two variational auto encoders and PixelCNN++, but in conclusion none of those
methods is able to generalize to more specialized unseen distributions.

Table 3: AUC for CIFAR-10 vs. various out-distributions of different methods that have access to
only unlabelled CIFAR-10 data during training. Shown are the scores obtained from the likelihoods
of the PixelCNN++ from Ren et al. (2019),

MEAN SVHN LSUN CELEBA SMOOTH C-100 OPEN 80M UNI
MODEL AUC AUC AUC AUC AUC AUC AUC AUC AUC

LH PIXELCNN++ 57.05 07.14 89.02 57.77 77.93 52.96 70.52 43.99 100.00
LH VAE 57.97 20.98 83.03 48.05 91.67 51.32 55.62 55.09 100.00
LH REGRET VAE 52.24 87.36 35.73 70.69 14.84 53.03 50.81 53.21 94.11
BINDISC UNIFORM 45.90 71.22 34.67 35.07 47.13 47.32 44.70 41.17 100.00

E.2 LIKELIHOOD RATIOS AS A BINARY DISCRIMINATOR

In Section 3.1, we discussed that for the Bayes optimal solutions of their training objectives, the ratio
of the likelihoods of two density estimators for different distributions is as an OOD detection scoring
function equivalent to the prediction of a binary discriminator between the two distributions. In order
to find out which role this equivalence plays in practise, we train a binary discriminator between
CIFAR-10 as in-distribution and the background distribution obtained by mutating 10% of the pixles
of in-distribution images as described in Ren et al. (2019). In Table 4, we compare the OOD detection
performance of this discriminator with likelihood ratios estimated with PixelCNN++ (Salimans et al.,
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2017) as trained with the code of Ren et al. (2019) setting L2 regularization as 10, and with the
numbers taken from Xiao et al. (2020) given for their VAE models. Even though we use the code and
hyperparameter settings of Ren et al. (2019), the AUC we obtain for SVHN as out-distribution differs
significantly from their reported 93.1%. We observe that all three methods struggle with detecting
inputs from several out-distributions and thus we do not consider them as reliable out-of-distribution
detection methods.

Table 4: AUROC for CIFAR-10 vs. various out-distributions. The Likelihood Ratio Ren et al.
(2019) PixelCNN++ models were trained with their code. For the VAE, we cite the numbers of Xiao
et al. (2020), as indicated by *. We also show a binary discriminator between CIFAR-10 and the
background distribution of Ren et al. (2019).

MODEL MEAN SVHN LSUN UNI SMOOTH C-100 OPEN CELEBA 80M

LHRATIO PIXELCNN++ 64.77 12.57 88.85 100.00 89.55 53.60 74.50 58.26 40.87
LHRATIO VAE* 26.5* 63.2* 100.0* 44.7*
BINDISC 58.81 55.07 66.10 100.00 44.43 47.05 57.20 48.48 52.16
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F ENERGY BASED OOD DETECTION IN TERMS OF BINARY DISCRIMINATORS

With Energy Based OOD Detection (Liu et al., 2020), we exhibit another surprising case of the
equivalence to Binary Discriminators to an OOD detection method which is based on ideas that are
quite different from those of the other extensively discussed methods. This method is based on the
premise that the logits fθ(x) of a classifier can be used to define an energy (here we ignore a potential
temperature factor which as Liu et al. (2020) find can in good conscience be set to one)

Eθ(x) = − log

K∑
l=1

efθ(l|x) (19)

that the model assigns to the input, which has been proposed by LeCun et al. (2006); Grathwohl et al.
(2020). Ideally, this energy would be equivalent to the probability density of the in-distribution via

log p(x|in) = −Eθ(x)− Z where Z =

∫
z∈[0,1]D

e−Eθ(z)dz . (20)

However, since the integral over the whole image domain is intractible, it is not possible to effectively
decrease −Eθ on the in-distribution directly while also controlling Z. Naively training the classifier
to have high energy on random inputs which would mean uniform noise is of course not a solution,
since the model easily distinguishes the noise, and it is very unlikely to encounter any at least vaguely
real images within finite time. Thus, Liu et al. (2020) rather use a surrogate training out-distribution of
natural images which they increase the energy on during training; for their experiments, they take 80
Million Tiny Images, for which we compare their models with several other methods in Appendix H.
Simultaneously, they minimize the standard classifier cross-entropy on the in-distribution. In order
to avoid infinitely small potential losses, their training objective uses two margin hyper-parameters
min < mout and reads

E
(x,y)∼p(x,y|i)

− log pθ(y|x)

+ λ ·
(

E
(x)∼p(x|i)

max {0, Eθ(x)−min}2 + E
w∼p(w|o)

max {0,mout − Eθ(w)}2
) (21)

with

log pθ(y|x) = log
efθ(y|x)∑K
l=1 e

fθ(l|x)
= fθ(y|x) + Eθ(x) . (22)

Note that their λ does not balance between in and out by depending on a prior on p(i), but it balances
the energy regularization compared to the classifier cross-entropy loss.
Theorem 3. The Bayes optimal logit output f∗

θ (x) of the energy based OOD detection model
minimizing the expected loss on an input x yields class probabilities p∗θ(k|x) = p(k|x, i) that are
optimal for a standard classifier with cross-entropy loss and simultaneously fulfills

−E∗
θ (x) = p(i|x) · (mout −min)−mout . (23)

Proof. Our goal is to find for a given input x the model output fθ(x) that minimizes the expected
loss, assuming that we know the probabilities p(y|x, i) and p(i|x). This expected loss is

−p(i|x) ·
K∑

k=1

p(k|x, i) log pθ(k|x) (24)

+ λ ·
(
p(i|x)max {0, Eθ(x)−min}2 + (1− p(i|x))max {0,mout − Eθ(x)}2

)
. (25)

First, we note that if a certain E∗
θ (x) minimizes the expected energy loss to

λ ·
(
p(i|x)max {0, E∗

θ (x)−min}2 + (1− p(i|x))max {0,mout − E∗
θ (x)}

2
)

, (26)
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and if some f ♯
θ(x) minimizes the expected CE loss (note that its minimization is independent of the

positive factor p(i|x)) to

−
K∑

k=1

p(k|x, i) log ef
♯
θ(k|x)∑K

l=1 e
f♯
θ(l|x)

, (27)

with corresponding E♯
θ(x) = − log

∑K
i=1 e

f♯
θ(x)[i], then the logit output with −E∗

θ (x)+E♯
θ(x) added

to each component has the energy

Eθ(x) = − log

K∑
i=1

ef
♯
θ(x)[i]−E∗

θ (x)+E♯
θ(x) = − log

(
e−E∗

θ (x)+E♯
θ(x) ·

K∑
i=1

ef
♯
θ(x)[i]

)
(28)

= E∗
θ (x)− E♯

θ(x)− log

K∑
i=1

ef
♯
θ(x)[i] = E∗

θ (x) , (29)

which means that this f∗(x) minimizes the expected energy loss, and also fulfills

pθ(x)[y] =
ef

♯
θ(x)[y]−E∗

θ (x)+E♯
θ(x)∑K

l=1 e
f♯
θ(x)[l]−E∗

θ (x)+E♯
θ(x)

=
ef

♯
θ(x)[y]∑K

l=1 e
f♯
θ(x)[l]

, (30)

i.e. has the same probability predictions as f ♯ and thus also minimizes the expected CE loss. This
means that both can be optimized independently.

As we’ve seen before, the optimal pθ(k|x) for the expected CE loss is pθ(k|x) = p(k|x, i).
Thus we independently minimize the expected energy loss

p(i|x)max {0, Eθ(x)−min}2 + (1− p(i|x))max {0,mout − Eθ(x)}2 . (31)

The first derivative with respect to Eθ(x) is
2 · (1− p(i|x)) · (Eθ(x)−mout) for Eθ(x) < min ,

2 · (p(i|x) · (Eθ(x)−min) + (1− p(i|x)) · (Eθ(x)−mout)) for min < Eθ(x) < mout ,

2 · p(i|x) · (Eθ(x)−min) for mout < Eθ(x) .

(32)

which simplified is
< 0 for Eθ(x) < min ,

2 · (Eθ(x) + p(i|x) · (mout −min)−mout) for min < Eθ(x) < mout ,

> 0 for mout < Eθ(x) .

(33)

Here, for simplicity we again make the reasonable assumption that in- and out-distribution have full
support, i.e. 0 < p(i|x) < 1. (If we do not want to make the full support assumptions, for p(i|x) = 0,
any energy ≥ mout would be optimal, and for p(i|x) = 1, any energy ≤ min would be optimal.)

A the margin Eθ(x) = min, the derivatives for Eθ(x) < min and min < Eθ(x) < mout coincide as
2 · (1− p(i|x)) · (min −mout) < 0, which means that the minimizer is > min. Similarly, we see that
the minimizer is < mout.

As the second derivative is positive, by solving where the derivative is zero, we find that the optimal
negative energy (which is the score which they use for OOD detection) is

−E∗
θ (x) = p(i|x) · (mout −min)−mout . (34)

This is a strictly monotonously increasing function in p(i|x). By our Theorem 1, we conclude that the
negative energy score they obtain from their method is (for the Bayes optimal model that minimizes
the loss on the training distributions) equivalent to p(i|x).
Corollary 2. At their Bayes optima, the Energy Based OOD Detection criterion is equivalent to that
of a binary discriminator between the training in- and out-distributions.
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Note that while the classifier and energy loss terms can be optimized independently, the model is
trained for both tasks simultaneously, which means that similar synergies to those we observe in 2
might contribute to the good performance of this method. Our empirical evaluation of energy based
models in Appendix H confirms that their similar behaviour to the binary discriminator between in-
and training-out-distribution indeed holds in practice.

23



Under review as a conference paper at ICLR 2022

G EVALUATIONS WITH THE AUC DETECTION METRIC

Complementing the evaluations of the FPR@95TPR metric presented in the main paper, Tables 5
and 6 show the AUC (AUROC) values of the same models as in Tables 1 and 2, respectively. The
observations on the strngths of the different methods and scoring functions discussed in Section 4
also hold for the AUC evaluations, which is not surprising since the AUC and FPR@95TPR metrics
are closely related.

Table 5: Accuracy on the in-distribution (CIFAR-10/CIFAR-100) and AUC for various test out-
distributions of the different OOD methods with OpenImages as training out-distribution for which
the FPRs are shown in Table 1.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTH C-100 80M CELA OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 95.16 91.85 93.52 92.94 97.04 92.84 89.61 91.30 85.70 84.81

MAHALANOBIS 91.63 96.34 92.39 100.00 99.82 86.78 89.41 76.67 84.81

OE 95.06 97.28 98.49 99.99 99.99 99.99 90.03 92.53 99.91 99.43

BGC s1 95.02 99.48 100.00 99.99 99.95 79.64 86.37 99.74 99.97
BGC s2 95.21 97.22 98.90 100.00 99.99 99.67 90.47 92.41 99.11 99.73

BGC s3 95.21 97.21 98.87 100.00 99.98 99.62 90.47 92.41 99.08 99.71

SHARED BINDISC 92.51 98.77 100.00 99.89 99.93 68.34 80.81 99.80 99.95
SHARED CLASSI 95.28 95.49 96.10 98.60 99.06 96.09 90.09 92.35 96.18 93.57

SHARED COMBI s2 95.28 97.26 98.66 100.00 99.93 99.94 89.71 92.84 99.72 99.88
SHARED COMBI s3 95.28 97.26 98.62 100.00 99.93 99.94 89.75 92.85 99.71 99.88

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 77.16 82.13 82.33 79.13 96.03 81.36 76.14 77.80 75.80

MAHALANOBIS 85.88 88.69 87.56 90.08 99.91 70.78 78.26 77.51

OE 77.19 90.37 89.54 99.98 99.03 99.68 75.95 78.03 99.67

BGC s1 88.41 97.38 99.99 99.70 99.79 60.51 73.11 99.93
BGC s2 77.61 90.47 90.50 99.99 99.87 99.75 74.88 77.82 99.64

BGC s3 77.61 90.46 90.46 99.99 99.88 99.74 74.88 77.82 99.64

SHARED BINDISC 84.62 97.44 99.99 99.70 99.68 47.82 63.13 99.93
SHARED CLASSI 77.35 82.06 82.72 99.05 72.73 84.14 75.76 77.99 93.54

SHARED COMBI s2 77.35 90.74 91.74 99.99 99.59 99.54 75.50 78.10 99.57
SHARED COMBI s3 77.35 90.73 91.69 99.99 99.57 99.53 75.50 78.10 99.57
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Table 6: AUC evaluation of the models trained with shared and separate representations from Table 2.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTHC-100 80M CELA OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 95.16 91.85 93.52 92.94 97.04 92.84 89.61 91.30 85.70 84.81
SEPARATE BINDISC 89.03 96.42 100.00 99.97 99.99 58.60 72.36 95.87 99.99

SEPARATE COMBI s3 95.16 96.40 98.16 100.00 99.98 99.99 89.64 91.35 95.70 99.94

SHARED BINDISC 92.51 98.77 100.00 99.89 99.93 68.34 80.81 99.80 99.95
SHARED CLASSI 95.28 95.49 96.10 98.60 99.06 96.09 90.09 92.35 96.18 93.57

SHARED COMBI s3 95.28 97.26 98.62 100.00 99.93 99.94 89.75 92.85 99.71 99.88

PLAIN ⊗ SHA DISC s3 95.16 97.26 98.67 100.00 99.91 99.93 89.78 92.95 99.58 99.87

IN-DISTRIBUTION: CIFAR-100

MODEL ACC. MEAN SVHN LSUN UNI SMOOTH C-10 OPENIM CELA 80M

PLAIN CLASSI 77.16 82.13 82.33 79.13 96.03 81.36 76.14 77.80 75.80
SEPARATE BINDISC 84.30 94.68 100.00 99.81 99.64 50.06 61.62 99.98

SEPARATE COMBI s3 77.16 88.95 84.49 99.99 99.88 96.06 75.83 77.45 99.82

SHARED BINDISC 84.62 97.44 99.99 99.70 99.68 47.82 63.13 99.93
SHARED CLASSI 77.35 82.06 82.72 99.05 72.73 84.14 75.76 77.99 93.54

SHARED COMBI s3 77.35 90.73 91.69 99.99 99.57 99.53 75.50 78.10 99.57

PLAIN ⊗ SHA DISC s3 77.16 90.79 91.99 99.99 99.80 98.85 75.87 78.23 99.50
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H DISCUSSION OF THE CHOICE OF OPENIMAGES AND EXPERIMENTAL
RESULTS WITH 80 MILLION TINY IMAGES AS TRAINING
OUT-DISTRIBUTION

Since the 80 Million Tiny Images (Torralba et al., 2008) dataset was retracted by the authors – their
statement can be read at http://groups.csail.mit.edu/vision/TinyImages/1 – as
a reaction to Birhane & Prabhu (2021) exposing the presence of offensive and prejudicial images
in the dataset, a good "surrogate surrogate" training out-distribution for the CIFAR-10/CIFAR-100
in-distribution has to our knowledge not yet been established.

Our experience confirms the assessment which the authors of Hendrycks et al. (2019a) make in
their discussion section 5: the surrogate training out-distribution should consist mainly of natural
images, should have a high semantic diversity, and the number of samples in the dataset should
be large. We also observe that it is vital that there are no easy to detect details that separate
the training in- and out-distributions from each other, as for example using a different resizing
interpolation method would lead to ’overfitting’ on such features with 100% train accuracy of the
Binary Discriminator and near zero loss (apart from that of the in-distribution classifier) for OE
and BGC, with no generalization to the test OOD datasets. OpenImages fulfills the mentioned
criteria, and in our judgement does not contain ethically problematic images. It is, however, to be
noted that CIFAR was sourced as a subset of 80M Tiny Images, see Krizhevsky & Hinton (2009)
and https://www.cs.toronto.edu/~kriz/cifar.html, which explains the somewhat
better results with 80M as training OOD dataset that we observe below in this section. Our results on
the theoretical relations between the different methods and scoring functions do not depend on the
choice of the training OOD dataset , and give reason to expect that our experimental confirmations
of these relations will also hold for even better suited surrogate OOD datasets that we hope will be
found in future works.

In the main paper, we employ OpenImages (Krasin et al., 2017) as a replacement, and for completeness
and comparison to the originals of OE, Energy Based OOD detection and NTOM/ATOM, below we
show and discuss the results obtained with the retracted 80M dataset which is commonly used in
OOD detection literature.

The training procedure of our methods again follows that of OE, and for the 80M experiments we
do not add AutoAugment, in order to stay as close as possible to the original. For the established
methods we compare to, we use the original weights of their published models; the Plain and Outlier
Exposure (OE) models were retrieved from the repository of the authors of OE (https://github.
com/hendrycks/outlier-exposure), and for NTOM and ATOM (Chen et al., 2021) we use
their code https://github.com/jfc43/informative-outlier-mining to evaluate
their DenseNet models (their best models). We finetune the Mahalanobis detector on 80M with the
same procedure as described above; the optimal input noise level for 80M is 0.0005 for both CIFAR
in-distributions. We evaluate the Energy Based models fine-tuned on 80M which the authors of Liu
et al. (2020) provide at https://github.com/wetliu/energy_ood with their evaluation
code.

For CIFAR-10, as already seen with OpenImages as training out-distribution, the OOD detection
performance of SHARED CLASSI is much better than that of the plain classifier. .In fact SHARED
BINDISC has already very good OOD performance with a mean FPR of 7.56 and mean AUC of
97.90 which is only improved by considering scoring function s2/s3 in the combination of SHARED
BINDISC and SHARED CLASSI which yields the best performance in classification accuracy and
mean AUC.

The classifier with 80M as background class (BGC) works very well for all scoring functions and
reaches SOTA performance similar to/better than OE. Both BGC/SHARED COMBI with s2/s3
perform particularly well on the challenging close out-distributions CIFAR-100 and OpenImages
(which are the data sets where NTOM/ATOM perform significantly worse). However, as already
observed with OpenImages as training out-distribution the differences of the methods are minor both
in terms of classification accuracy.

1Archived statement: https://web.archive.org/web/20210415160225/http://groups.
csail.mit.edu/vision/TinyImages/
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The results for CIFAR-100 are again qualitatively similar to those for CIFAR-10. NTOM/ATOM now
show worse mean AUC results which are mainly due to worse results for the close out-distributions
CIFAR-10 and OpenImages, but better mean FPR@95%TPR, which is explained by their excellent
detection of LSUN Classroom, where the other methods work quite well in terms of AUC but still
make quite many errors at the 95%TPR threshold. OE again achieves comparable OOD results to the
other evaluated methods. As the theoretical considerations we presented in Appendix F suggest, the
energy based OOD detector achieves good performance that is comparable that to the other methods.
Our SHARED COMBI s2/s3 performs best in terms of OOD performance and test accuracy but again
differences are minor.

The conclusions are similar to those drawn for OpenImages in the main paper. Comparing the results,
it is clear that 80M still works somewhat better than OpenImages, so for the CIFAR in-distributions,
the search for an ethically acceptable replacement of 80M that allows for equal or improved results
continues. The consistent similarities between the examined methods over the different datasets
suggest that the methods and scoring functions would be similarly viable with such an alternative
training OOD dataset.
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Table 7: Accuracy on the in-distribution (CIFAR-10/CIFAR-100) and FPR@95%TPR for various
test out-distributions of different OOD methods with 80 Million Tiny Images as training out-
distribution (shown results for test set of 80M are not used for computing the mean FPR). Lower false
positive rate is better. CelebA makes no sense as test out-distribution for CIFAR-100 as it contains
man/woman as classes. PLAIN, OE, BGC and SHARED have been trained using the same architecture
and training parameters/schedule. s1, s2, s3 are the scoring functions introduced in Section 3.2. Our
binary discriminator (BINDISC) resp. the combination with the shared classifier (SHARED COMBI)
performs similar/better than Outlier Exposure (Hendrycks et al., 2019a).

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTH C-100 OPENIM CELA 80M
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 94.84 64.62 48.33 52.67 75.69 62.58 62.91 66.38 83.79 60.53

MAHALANOBIS 41.15 40.19 50.00 0.00 0.17 58.66 58.36 80.69 53.42

ENERGY 95.22 9.01 1.58 2.00 0.00 0.00 30.03 28.26 1.19 8.21

NTOM 95.42 8.21 1.06 0.33 0.00 0.00 29.61 26.15 0.30 4.90
ATOM 95.20 7.76 0.69 0.33 0.00 0.00 27.80 25.26 0.25 4.44

OE 95.74 8.27 1.96 2.00 0.00 0.06 26.12 27.07 0.71 5.96

BGC s1 7.47 0.83 1.33 0.00 0.00 24.75 25.19 0.19 4.43
BGC s2 95.63 7.42 0.98 1.33 0.00 0.00 24.13 25.33 0.20 4.95

BGC s3 95.63 7.49 1.05 1.33 0.00 0.00 24.26 25.57 0.21 4.82

SHARED BINDISC 7.56 0.67 1.67 0.00 0.00 24.70 25.58 0.31 4.57
SHARED CLASSI 96.08 15.71 6.29 13.00 0.07 0.13 37.07 40.48 12.95 19.47

SHARED COMBI s2 96.08 7.47 0.71 1.33 0.00 0.00 24.15 25.72 0.35 4.79
SHARED COMBI s3 96.08 7.44 0.73 1.33 0.00 0.00 23.95 25.70 0.35 4.84

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 OPENIM 80M
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 75.96 82.26 84.33 80.00 98.99 65.81 81.97 82.47 80.17

MAHALANOBIS 47.89 64.58 63.67 0.00 2.77 81.39 74.93 69.79

ENERGY 75.70 32.95 20.61 16.67 4.23 2.90 84.27 69.00 42.18

NTOM 74.88 32.63 24.67 10.00 0.00 0.00 90.58 70.52 40.78
ATOM 75.06 34.60 37.78 8.67 0.00 0.30 89.80 71.02 40.29

OE 76.73 34.89 34.41 24.00 1.10 4.96 79.77 65.09 45.59

BGC s1 34.79 35.73 23.00 0.00 0.07 81.61 68.31 45.76
BGC s2 75.82 35.86 40.36 26.67 0.00 0.45 79.50 68.21 47.72

BGC s3 75.82 35.91 40.53 26.67 0.00 0.42 79.54 68.28 47.46

SHARED BINDISC 32.74 25.16 22.00 0.00 0.00 82.47 66.83 44.50
SHARED CLASSI 76.52 44.86 56.96 57.00 0.06 0.22 79.55 75.37 65.50

SHARED COMBI s2 76.52 32.71 25.70 23.67 0.00 0.00 80.95 65.93 44.87
SHARED COMBI s3 76.52 32.72 25.79 23.67 0.00 0.00 80.90 65.98 44.96
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Table 8: Accuracy on the in-distribution (CIFAR-10/CIFAR-100) and AUC (AUROC) for various
test out-distributions of different OOD methods with 80 Million Tiny Images as training out-
distribution (shown results for test set of 80M are not used for computing the mean AUC). The
relative performance of the different methods measured in AUC is similar to what we observed with
the FPR@95%TPR measure in Table 7.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTH C-100 OPENIM CELA 80M
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 94.84 85.75 91.91 91.63 87.69 78.27 87.83 83.23 79.43 88.01

MAHALANOBIS 91.12 94.34 91.98 100.00 99.51 88.08 84.92 79.17 89.65

ENERGY 95.22 97.32 99.26 99.49 99.00 99.40 93.81 90.73 99.57 97.71

NTOM 95.42 97.32 99.59 99.79 99.97 99.84 92.19 89.96 99.89 98.72
ATOM 95.20 97.42 99.63 99.76 99.93 99.60 92.89 90.30 99.85 98.55

OE 95.74 97.64 99.48 99.48 99.46 99.64 94.80 90.91 99.71 98.50

BGC s1 97.94 99.64 99.58 99.96 99.98 94.84 91.65 99.92 98.78
BGC s2 95.63 97.95 99.60 99.52 99.97 99.98 95.03 91.65 99.92 98.65

BGC s3 95.63 97.95 99.58 99.52 99.97 99.98 95.04 91.64 99.92 98.70

SHARED BINDISC 97.90 99.74 99.60 99.94 99.96 94.75 91.42 99.87 98.77
SHARED CLASSI 96.08 96.57 98.77 97.78 99.87 99.68 93.40 88.70 97.80 96.42

SHARED COMBI s2 96.08 97.96 99.73 99.58 99.95 99.96 95.13 91.48 99.85 98.73
SHARED COMBI s3 96.08 97.96 99.73 99.58 99.95 99.96 95.14 91.48 99.85 98.73

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 OPENIM 80M
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 75.96 77.48 71.38 76.89 78.14 88.36 75.33 74.60 65.86 75.92

MAHALANOBIS 87.75 85.96 87.20 100.00 99.16 75.45 78.74 79.76

ENERGY 75.70 91.67 96.54 96.69 97.91 98.92 77.39 82.57 91.16

NTOM 74.88 88.49 96.20 97.31 99.79 99.94 62.44 75.24 57.64 88.41
ATOM 75.06 88.02 93.68 97.51 99.98 98.46 63.47 75.02 58.83 88.44

OE 76.73 91.72 94.06 95.58 99.06 98.84 79.53 83.31 71.45 88.43

BGC s1 92.04 94.42 95.47 99.99 99.73 79.15 83.46 89.19
BGC s2 75.82 91.54 93.32 94.64 99.95 99.63 79.29 82.41 88.11

BGC s3 75.82 91.53 93.30 94.62 99.94 99.62 79.29 82.40 88.23

SHARED BINDISC 91.84 95.90 95.69 99.79 99.94 76.56 83.19 89.25
SHARED CLASSI 76.52 88.16 86.28 87.61 99.97 99.90 77.00 78.23 81.72

SHARED COMBI s2 76.52 92.03 95.50 95.43 99.96 99.98 78.46 82.86 88.69
SHARED COMBI s3 76.52 92.03 95.49 95.42 99.97 99.98 78.46 82.85 88.67
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I EXPERIMENTS WITH SVHN AS TRAINING OUT-DISTRIBUTION

In order to examine the effect of a training out-distribution that relatively far away from the in-
distribution, we show experiments with SVHN as out-distribution in Tables 9 and 10. The OOD
detection performance of these methods is much worse than with the closer OpenImages and 80M
training out-distributions. In most cases, combinations s2 and s3/OE which implicitly or explicitly
use the classifier confidence lead to better OOD detection than using the binary discriminator/s1.
The inconsistent behaviour over the different test out.distributions of the methods that use SVHN as
training out-distribution can be explained by the easiness of the discrimination task, which manifests
itself in the fact that BGCs1 and SHARED BINDISC reach perfect FPR and AUC metrics. This
indicates a form of overfitting to this specific out-distribution, without consistent generalization to
unseen distributions which do not have characteristic features that are similar to those appearing in
SVHN images.

We also do not observe a beneficial effect on test accuracy for the methods that use SVHN compared
to plain, which is to be expected as the representations learned from SVHN are hardly useful for the
in-distribution task.

Table 9: FPR@95%TPR for CIFAR-10/CIFAR-100 as in-distribution with SVHN as training
out-distribution.

IN-DISTRIBUTION: CIFAR-10

MEAN LSUN UNI SMOOTH C-100 80M OPENIM CELA SVHN
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 94.84 64.62 48.33 52.67 75.69 62.58 62.91 66.38 83.79 60.53

OE 94.80 63.73 54.33 92.01 41.27 60.55 55.91 65.52 76.51 0.03

BGC s1 54.31 53.00 100.00 0.51 55.16 39.28 64.36 67.87 0.00
BGC s2 94.51 62.98 58.33 98.53 18.73 62.27 57.47 67.35 78.16 0.02

BGC s3 94.51 63.08 58.33 98.52 19.18 62.34 57.63 67.39 78.16 0.02

SHARED BINDISC 72.95 95.67 100.00 5.81 77.04 66.75 85.17 80.22 0.00
SHARED CLASSI 94.71 48.39 54.33 0.00 17.99 62.34 57.37 67.05 79.64 0.57

SHARED COMBI s2 94.71 46.27 55.00 0.00 6.74 60.84 55.15 66.50 79.65 0.02
SHARED COMBI s3 94.71 46.31 55.00 0.00 6.84 60.90 55.26 66.53 79.65 0.02

IN-DISTRIBUTION: CIFAR-100

MEAN LSUN UNI SMOOTH C-10 80M OPENIM SVHN
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 75.96 82.26 84.33 80.00 98.99 65.81 81.97 82.47 80.17

OE 75.78 73.89 81.33 99.47 15.93 83.32 80.30 83.01 0.04

BGC s1 77.16 96.33 100.00 3.35 91.05 80.55 91.68 0.00
BGC s2 75.21 74.53 80.00 98.49 21.49 83.14 80.52 83.54 0.07

BGC s3 75.21 74.53 80.00 98.49 21.50 83.14 80.53 83.54 0.07

SHARED BINDISC 82.08 99.33 100.00 10.04 95.00 91.21 96.89 0.00
SHARED CLASSI 75.97 83.46 78.67 100.00 76.67 82.36 79.99 83.08 0.44

SHARED COMBI s2 75.97 78.66 78.67 100.00 47.73 82.44 79.93 83.20 0.07
SHARED COMBI s3 75.97 78.66 78.67 100.00 47.78 82.43 79.92 83.17 0.07
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Table 10: AUC for CIFAR-10/CIFAR-100 as in-distribution with SVHN as training out-distribution.

IN-DISTRIBUTION: CIFAR-10

MEAN LSUN UNI SMOOTH C-100 80M OPENIM CELA SVHN
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 94.84 85.75 91.91 91.63 87.69 78.27 87.83 83.23 79.43 88.01

OE 94.80 88.37 91.72 91.33 91.20 88.26 89.55 82.97 83.59 100.00

BGC s1 83.58 89.43 58.34 99.80 85.44 90.28 78.01 83.76 100.00
BGC s2 94.51 89.62 91.50 91.14 97.60 88.72 89.98 82.96 85.40 100.00

BGC s3 94.51 89.60 91.50 91.14 97.54 88.71 89.96 82.96 85.40 100.00

SHARED BINDISC 58.47 37.27 38.61 98.85 55.19 65.66 48.61 65.12 100.00
SHARED CLASSI 94.71 90.14 90.20 99.70 97.44 88.50 89.68 82.97 82.51 99.80

SHARED COMBI s2 94.71 90.18 89.74 99.67 99.00 88.49 89.87 82.43 82.09 100.00
SHARED COMBI s3 94.71 90.19 89.76 99.68 98.97 88.50 89.87 82.46 82.12 100.00

IN-DISTRIBUTION: CIFAR-100

MEAN LSUN UNI SMOOTH C-10 80M OPENIM SVHN
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 75.96 77.48 71.38 76.89 78.14 88.36 75.33 74.60 65.86 75.92

OE 75.78 78.86 75.93 73.53 97.02 75.37 76.57 74.74 99.99

BGC s1 66.60 67.45 24.51 99.37 68.50 73.82 65.97 100.00
BGC s2 75.21 77.38 76.04 67.25 96.28 74.83 75.86 74.01 99.98

BGC s3 75.21 77.38 76.04 67.25 96.27 74.83 75.86 74.01 99.98

SHARED BINDISC 55.60 34.81 53.23 98.03 49.00 54.57 43.93 100.00
SHARED CLASSI 75.97 72.04 80.31 41.57 83.32 75.64 76.58 74.81 99.90

SHARED COMBI s2 75.97 72.95 80.23 41.34 89.21 75.59 76.57 74.75 99.99
SHARED COMBI s3 75.97 72.94 80.23 41.34 89.18 75.59 76.57 74.75 99.99
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J EXPERIMENTS WITH RESTRICTED IMAGENET AS IN-DISTRIBUTION

In addition to the results for CIFAR-10 and CIFAR-100 shown in the main paper, here we provide
results for Restricted ImageNet. Restricted ImageNet, introduced by Tsipras et al. (2019), consists of
9 classes, where each individual class is a union of multiple ImageNet (Deng et al., 2009) classes, for
example the Restricted ImageNet class ’dog’ contains all dog breeds from ImageNet. As Restricted
ImageNet only contains animal classes, the union over all its classes does not cover the entire
ILSVRC2012 dataset (Russakovsky et al., 2015), which allows us to use the remaining ILSVRC2012
classes as training out-distribution. Like we did for the CIFAR experiments, we train a plain classifier,
an Outlier Exposure model, a background class model and a shared discriminator/classifier and
evaluate them with the different scoring functions. The model is a ResNet50 and we use random
cropping and flipping as data augmentation during training. The results in terms of FPR@95%TPR
and AUC can be found in Table 11.

Once again, we see that SHARED CLASSI has relatively good OOD detection performance and clearly
beats the plain classifier from standard training. Again, we see that Outlier Exposure Hendrycks et al.
(2019a), training with background class and shared training of classifier and binary discriminator
perform similarly. In terms of accuracy, the shared model benefits most from the added unlabelled
data compared to plain training. At 95% TPR, the sharedly trained binary discriminator and its
combinations SHARED COMBI s2 and SHARED COMBI s2 detect flower images significantly better
than the other approaches which results in the best mean FPR@95%TPR compared to the other
methods, while in terms of AUC, OE has a slight advantage.
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Table 11: Out-of-distribution detection evaluation for various ResNet50 models trained on Restricted
ImageNet in terms of AUC and FPR@95%TPR. The last column (NOTRIN) refers to the remaining
classes from the ILSVRC2012 validation split that are not part of Restricted ImageNet and that were
used as the training out-distribution;it does not contribute to the mean test FPR/AUC. As all models
use the train split of NotRIN as training-out distribution.

IN-DISTRIBUTION: RESTRICTED IMAGENET

FPR@95%TPR

MEAN FLOWERS FGVC CARS SMOOTH UNIFORM NOTRIN
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR

PLAIN CLASSI 96.34 36.71 60.11 50.23 73.20 0.00 0.00 50.37

OE 97.10 4.26 21.06 0.18 0.04 0.00 0.00 6.91

BGC s1 4.22 20.74 0.33 0.01 0.00 0.00 6.46
BGC s2 97.50 4.77 23.43 0.39 0.02 0.00 0.00 6.02

BGC s3 97.50 4.73 23.26 0.36 0.01 0.00 0.00 6.13

SHARED BINDISC 2.73 10.10 0.24 0.04 3.26 0.00 5.93
SHARED CLASSI 97.59 17.51 50.54 17.79 19.21 0.00 0.00 21.99

SHARED COMBI s2 97.59 2.55 12.28 0.45 0.04 0.00 0.00 5.58
SHARED COMBI s3 97.59 2.62 12.60 0.45 0.04 0.00 0.00 5.63

AUC

MEAN FLOWERS FGVC CARS SMOOTH UNIFORM NOTRIN
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC

PLAIN CLASSI 96.34 94.96 91.65 92.67 92.46 98.74 99.26 92.38

OE 97.10 98.76 96.65 99.75 99.85 97.95 99.58 98.46

BGC s1 98.61 96.64 99.86 99.97 97.77 98.80 98.67
BGC s2 97.50 98.66 96.39 99.83 99.96 98.18 98.94 98.69

BGC s3 97.50 98.66 96.43 99.83 99.96 98.14 98.93 98.68

SHARED BINDISC 98.26 97.62 99.83 99.94 96.13 97.78 98.71
SHARED CLASSI 97.59 96.93 93.40 96.58 96.53 99.48 98.66 96.10

SHARED COMBI s2 97.59 98.54 97.41 99.80 99.93 97.37 98.18 98.72
SHARED COMBI s3 97.59 98.58 97.36 99.79 99.92 97.61 98.22 98.71
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K THE EFFECT OF VARYING λ

We investigate the effect of choosing the training hyperparameter λ, which is the factor of the
respective loss on the out-of-distribution samples and represents p(o)

p(i) during training. We evaluate
models trained with Outlier Exposure Hendrycks et al. (2019a), background class and shared training
of binary discriminator and classifier, all scored with s3 (the implicit scoring function of OE). Note
that in Section 4, the OE, BGC and SHARED models trained with λ = 1.0.

In Tables 12 and 13 we see that for CIFAR-10 the differences between different choices of λ are
minor with no clear favorite, but setting λ = 2.0 tends to be too high. For CIFAR-100, the differences
are much larger. Here, choosing λ too small can have a severe negative effect on the detection of
the otherwise relatively to detect far out-distributions SVHN, Uniform Noise and Smooth Noise.
Regarding the numbers for both in-distribution datasets, using λ = 1 is a considerate default choice.

Table 12: Effect of varying λ during training for OE (Hendrycks et al., 2019a), the s3 scoring
function for models with background class and SHARED COMBI s3. Shown are test accuracy and
FPR@95%TPR with OpenImages as training out-distribution.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTH C-100 80M CELA OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR FPR

OE λ=0.1 95.36 14.34 13.31 0.00 0.25 0.03 48.37 36.65 1.77 12.60
OE λ=0.25 95.31 16.17 19.64 0.00 0.00 0.05 51.77 40.21 1.55 7.74
OE λ=0.5 95.27 15.98 16.23 0.00 0.07 0.01 53.06 41.72 0.79 4.85
OE λ=1.0 95.06 15.20 9.58 0.00 0.00 0.00 54.05 42.33 0.45 3.46
OE λ=2.0 95.19 15.98 12.93 0.00 0.00 0.00 55.99 42.68 0.26 1.67

BGC s3 λ=0.1 95.38 16.21 18.93 0.00 0.12 1.05 52.43 39.42 1.53 9.56
BGC s3 λ=0.25 95.27 15.83 12.76 0.00 0.04 0.03 54.06 43.26 0.66 5.43
BGC s3 λ=0.5 95.23 15.14 9.33 0.00 0.09 0.04 52.97 42.79 0.74 3.19
BGC s3λ=1.0 95.21 16.63 7.69 0.00 0.07 2.36 55.19 44.67 6.41 1.74
BGC s3 λ=2.0 95.28 17.45 8.72 0.00 0.00 0.00 59.02 48.09 6.31 0.71

SC s3 λ=0.1 95.20 16.49 15.22 0.00 0.27 0.00 54.30 43.97 1.69 10.46
SC s3 λ=0.25 95.21 16.17 15.32 0.00 0.15 0.04 54.60 42.59 0.53 5.19
SC s3 λ=0.5 95.25 16.02 9.21 0.00 0.09 0.00 55.72 45.55 1.56 2.75
SC s3 λ=1.0 95.28 16.06 9.00 0.00 0.00 0.00 58.68 42.85 1.91 0.66
SC s3 λ=2.0 95.26 17.04 9.33 0.00 0.00 0.00 58.20 45.81 5.92 0.68

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR

OE λ=0.1 77.28 52.35 70.29 1.00 28.58 56.15 82.44 75.64 17.94
OE λ=0.25 76.96 46.40 60.70 0.00 9.24 48.89 83.01 76.59 6.01
OE λ=0.5 77.22 36.43 53.12 0.00 0.15 4.62 82.86 77.84 4.23
OE λ=1.0 77.19 35.03 47.36 0.00 0.67 0.08 84.64 77.42 1.28
OE λ=2.0 76.95 33.25 37.04 0.00 0.00 1.70 83.28 77.48 0.86

BGC s3 λ=0.1 76.87 41.23 67.39 1.00 5.97 13.81 82.44 76.76 15.70
BGC s3 λ=0.25 77.05 42.05 49.94 0.00 17.07 25.41 82.34 77.55 7.47
BGC s3 λ=0.5 77.17 36.14 43.90 0.00 10.54 3.70 82.86 75.86 3.76
BGC s3λ=1.0 77.61 33.36 37.27 0.00 0.00 0.20 84.51 78.19 1.27
BGC s3 λ=2.0 77.26 32.60 35.34 0.00 0.00 0.00 82.69 77.57 1.20

SC s3 λ=0.1 77.35 58.54 62.07 0.33 92.62 37.44 82.05 76.74 14.17
SC s3 λ=0.25 76.96 41.34 63.29 0.00 10.24 14.34 82.68 77.50 7.22
SC s3 λ=0.5 76.64 49.63 49.55 0.00 44.78 43.85 82.30 77.31 1.97
SC s3 λ=1.0 77.35 33.06 37.57 0.00 0.00 1.13 82.68 77.01 1.85
SC s3 λ=2.0 76.63 34.09 39.56 0.00 0.00 5.21 82.57 77.18 1.04
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Table 13: Effect of varying λ during training for OE (Hendrycks et al., 2019a), the s3 scoring function
for models with background class and SHARED COMBI s3. Shown are test accuracy and AUC
(AUROC) with OpenImages as training out-distribution.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTH C-100 80M CELA OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC AUC

OE λ=0.1 95.36 97.49 97.96 99.96 99.84 99.93 91.25 93.81 99.70 97.86
OE λ=0.25 95.31 97.15 96.93 99.98 99.98 99.93 90.59 92.91 99.74 98.71
OE λ=0.5 95.27 97.19 97.53 99.99 99.95 99.99 90.29 92.73 99.87 99.20
OE λ=1.0 95.06 97.28 98.49 99.99 99.99 99.99 90.03 92.53 99.91 99.43
OE λ=2.0 95.19 97.19 97.99 99.99 99.99 100.00 89.89 92.56 99.93 99.67

BGC s3 λ=0.1 95.38 97.37 97.32 99.99 99.93 99.63 91.18 93.74 99.78 98.39
BGC s3 λ=0.25 95.27 97.43 98.25 100.00 99.96 99.98 90.85 93.09 99.91 99.13
BGC s3 λ=0.5 95.23 97.44 98.62 100.00 99.93 99.98 90.80 92.84 99.89 99.48
BGC s3 λ=1.0 95.21 97.21 98.87 100.00 99.98 99.62 90.47 92.41 99.08 99.71
BGC s3 λ=2.0 95.28 97.10 98.71 100.00 99.98 100.00 89.93 91.94 99.11 99.86

SC s3 λ=0.1 95.20 97.29 97.87 99.99 99.91 99.98 90.69 92.82 99.77 98.32
SC s3 λ=0.25 95.21 97.33 97.90 99.99 99.91 99.97 90.57 93.08 99.92 99.17
SC s3 λ=0.5 95.25 97.34 98.68 100.00 99.95 100.00 90.39 92.56 99.78 99.57
SC s3 λ=1.0 95.28 97.26 98.62 100.00 99.93 99.94 89.75 92.85 99.71 99.88
SC s3 λ=2.0 95.26 97.13 98.59 100.00 100.00 99.99 89.95 92.25 99.13 99.88

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC

OE λ=0.1 77.28 87.38 83.69 99.79 94.79 91.50 76.08 78.43 95.73
OE λ=0.25 76.96 88.31 86.94 99.98 97.74 90.74 76.11 78.35 98.51
OE λ=0.5 77.22 89.82 87.22 99.98 99.74 98.95 75.39 77.64 98.94
OE λ=1.0 77.19 90.37 89.54 99.98 99.03 99.68 75.95 78.03 99.67
OE λ=2.0 76.95 90.56 91.42 99.99 99.78 99.08 75.51 77.58 99.76

BGC s3 λ=0.1 76.87 88.86 83.41 99.87 98.35 97.37 75.97 78.21 95.99
BGC s3 λ=0.25 77.05 89.29 89.10 99.99 97.13 95.91 75.96 77.68 98.08
BGC s3 λ=0.5 77.17 90.17 90.07 99.99 97.99 99.07 75.49 78.42 99.04
BGC s3 λ=1.0 77.61 90.46 90.46 99.99 99.88 99.74 74.88 77.82 99.64
BGC s3 λ=2.0 77.26 90.83 91.74 99.99 99.72 99.80 75.72 78.02 99.67

SC s3 λ=0.1 77.35 86.08 85.56 99.95 84.55 93.24 75.27 77.89 96.74
SC s3 λ=0.25 76.96 88.76 85.08 99.98 97.73 97.17 75.11 77.51 98.31
SC s3 λ=0.5 76.64 88.42 88.80 99.99 94.61 93.94 75.63 77.52 99.51
SC s3 λ=1.0 77.35 90.73 91.69 99.99 99.57 99.53 75.50 78.10 99.57
SC s3 λ=2.0 76.63 90.54 91.24 99.99 99.86 98.93 75.30 77.91 99.74
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L STATISTICS OVER FIVE RUNS WITH DIFFERENT SEEDS

Table 14: Mean µ and standard deviation σ of the FPR@95%TPR measure for different methods
and scoring functions over five runs each for models with OpenImages as training out-distribution.
The training details are the same as for the results shown in Table 1.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTHC-100 80M CELA OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR FPR

OE µ 95.11 15.49 11.42 0.00 0.00 0.09 54.35 42.14 0.40 2.75
OE σ 0.04 0.32 1.75 0.00 0.00 0.18 0.61 0.55 0.11 0.49

BGC s1 µ 19.18 3.86 0.00 0.00 0.00 73.03 56.76 0.60 0.05
BGC s1 σ 0.32 0.97 0.00 0.00 0.00 1.17 1.19 0.32 0.01

BGC s2 µ 95.29 15.96 8.48 0.00 0.04 0.42 55.41 44.52 2.87 1.09
BGC s2 σ 0.10 0.63 0.88 0.00 0.05 0.84 1.57 1.55 1.94 0.34
BGC s3 µ 95.29 15.99 8.69 0.00 0.04 0.47 55.29 44.49 2.94 1.16
BGC s3 σ 0.10 0.63 0.91 0.00 0.06 0.95 1.53 1.53 1.99 0.35

SHARED BINDISC µ 20.45 5.30 0.00 0.00 0.00 77.19 59.63 1.06 0.05
SHARED BINDISC σ 0.49 1.02 0.00 0.00 0.00 1.09 3.00 0.46 0.02
SHARED CLASSI µ 95.21 33.21 26.37 9.33 49.73 11.31 57.34 48.37 29.98 36.73
SHARED CLASSI σ 0.07 3.81 1.24 1.35 29.63 12.22 1.18 1.19 3.85 1.67

SHARED COMBI s2 µ 95.21 16.28 8.77 0.00 0.20 0.00 57.14 44.92 2.92 0.95
SHARED COMBI s2 σ 0.07 0.39 1.11 0.00 0.38 0.00 1.39 1.37 1.42 0.23
SHARED COMBI s3 µ 95.21 16.35 9.06 0.00 0.24 0.00 57.13 45.02 3.03 1.03
SHARED COMBI s3 σ 0.07 0.41 1.13 0.00 0.46 0.00 1.38 1.38 1.47 0.24

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. FPR FPR FPR FPR FPR FPR FPR FPR

OE µ 77.13 35.16 45.27 0.00 0.13 5.15 83.47 76.93 1.66
OE σ 0.23 0.80 5.35 0.00 0.27 5.35 0.89 0.59 0.54

BGC s1 µ 31.12 11.88 0.00 0.00 0.12 93.85 80.85 0.08
BGC s1 σ 0.41 2.20 0.00 0.00 0.24 0.15 0.98 0.03

BGC s2 µ 77.30 35.54 40.11 0.00 7.58 4.90 83.44 77.20 1.67
BGC s2 σ 0.35 2.12 5.67 0.00 10.26 5.35 0.80 0.73 0.55
BGC s3 µ 77.30 35.64 40.33 0.00 7.89 4.98 83.43 77.21 1.69
BGC s3 σ 0.35 2.16 5.68 0.00 10.68 5.40 0.81 0.73 0.56

SHARED BINDISC µ 32.16 13.43 0.00 0.00 0.00 95.13 84.39 0.05
SHARED BINDISC σ 0.22 2.10 0.00 0.00 0.00 0.19 0.83 0.02
SHARED CLASSI µ 77.11 56.52 64.95 2.73 81.18 31.85 81.61 76.80 22.97
SHARED CLASSI σ 0.19 6.86 5.79 1.24 31.58 20.90 0.53 0.90 2.95

SHARED COMBI s2 µ 77.11 33.13 35.93 0.00 0.00 3.17 83.26 76.43 1.13
SHARED COMBI s2 σ 0.19 0.59 4.68 0.00 0.00 4.35 0.51 0.82 0.36
SHARED COMBI s3 µ 77.11 33.18 36.17 0.00 0.00 3.23 83.24 76.43 1.14
SHARED COMBI s3 σ 0.19 0.59 4.70 0.00 0.00 4.40 0.51 0.81 0.38
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Table 15: Mean µ and standard deviation σ of the AUROC measure for different methods and
scoring functions over five runs each for models with OpenImages as training out-distribution. The
training details are the same as for the results shown in Table 5.

IN-DISTRIBUTION: CIFAR-10

MEAN SVHN LSUN UNI SMOOTHC-100 80M CELA OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC AUC

OE µ 95.11 97.25 98.23 99.99 99.96 99.93 90.13 92.58 99.91 99.52
OE σ 0.04 0.05 0.26 0.01 0.04 0.07 0.08 0.15 0.01 0.06

BGC s1 µ 94.59 99.16 100.00 99.98 99.97 78.02 85.15 99.85 99.96
BGC s1 σ 0.27 0.21 0.00 0.02 0.02 1.02 0.85 0.07 0.01

BGC s2 µ 95.29 97.33 98.74 100.00 99.98 99.92 90.48 92.58 99.59 99.81
BGC s2 σ 0.10 0.08 0.12 0.00 0.03 0.13 0.18 0.22 0.27 0.05
BGC s3 µ 95.29 97.32 98.71 100.00 99.97 99.91 90.49 92.58 99.58 99.80
BGC s3 σ 0.10 0.08 0.12 0.00 0.04 0.15 0.18 0.22 0.28 0.05

SHARED BINDISC µ 92.10 98.68 100.00 99.94 99.98 67.81 78.51 99.75 99.95
SHARED BINDISC σ 0.42 0.23 0.00 0.04 0.02 1.30 1.85 0.10 0.01
SHARED CLASSI µ 95.21 95.10 96.36 98.45 94.26 98.15 90.29 92.18 95.98 93.27
SHARED CLASSI σ 0.07 0.39 0.18 0.15 3.07 1.21 0.18 0.21 0.46 0.34

SHARED COMBI s2 µ 95.21 97.24 98.67 100.00 99.92 99.98 90.07 92.47 99.58 99.84
SHARED COMBI s2 σ 0.07 0.03 0.17 0.00 0.08 0.02 0.23 0.23 0.20 0.03
SHARED COMBI s3 µ 95.21 97.24 98.64 100.00 99.91 99.98 90.09 92.48 99.56 99.83
SHARED COMBI s3 σ 0.07 0.04 0.17 0.00 0.10 0.02 0.22 0.23 0.20 0.03

IN-DISTRIBUTION: CIFAR-100

MEAN SVHN LSUN UNI SMOOTH C-10 80M OPENIM
MODEL ACC. AUC AUC AUC AUC AUC AUC AUC AUC

OE µ 77.13 90.24 89.58 99.98 99.66 98.76 75.50 77.96 99.54
OE σ 0.23 0.16 1.10 0.00 0.32 0.77 0.42 0.28 0.13

BGC s1 µ 88.48 97.17 99.99 99.61 99.57 60.96 73.57 99.92
BGC s1 σ 0.17 0.38 0.00 0.14 0.21 0.51 0.38 0.01

BGC s2 µ 77.30 90.23 90.45 99.99 98.60 98.90 75.34 78.12 99.55
BGC s2 σ 0.35 0.27 1.10 0.00 1.50 1.04 0.32 0.31 0.13
BGC s3 µ 77.30 90.22 90.41 99.99 98.56 98.89 75.34 78.12 99.55
BGC s3 σ 0.35 0.28 1.10 0.00 1.55 1.05 0.32 0.31 0.13

SHARED BINDISC µ 84.80 96.66 99.99 99.64 99.54 48.89 64.09 99.93
SHARED BINDISC σ 0.24 0.55 0.00 0.12 0.13 1.01 1.00 0.01
SHARED CLASSI µ 77.11 84.42 84.18 99.40 75.39 93.54 75.82 78.16 94.82
SHARED CLASSI σ 0.19 2.29 2.09 0.20 12.57 5.07 0.14 0.25 0.68

SHARED COMBI s2 µ 77.11 90.71 91.89 99.99 99.60 99.23 75.31 78.24 99.72
SHARED COMBI s2 σ 0.19 0.10 1.11 0.00 0.07 0.68 0.20 0.23 0.08
SHARED COMBI s3 µ 77.11 90.70 91.85 99.99 99.59 99.22 75.32 78.24 99.72
SHARED COMBI s3 σ 0.19 0.10 1.11 0.00 0.08 0.69 0.20 0.23 0.08
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