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ABSTRACT

Machine learning classifiers with high test accuracy often perform poorly under ad-
versarial perturbations. It is commonly believed that adversarial training alleviates
this issue. In this paper, we demonstrate that, surprisingly, the opposite can be true
for a natural class of perceptible perturbations — even though adversarial training
helps when enough data is available, it may in fact hurt robust generalization in the
small sample size regime. We first prove this phenomenon for a high-dimensional
linear classification setting with noiseless observations. Using intuitive insights
from the proof, we could find perturbations on standard image datasets for which
this behavior persists. Specifically, it occurs for perceptible perturbations that
effectively reduce class information such as object occlusions or corruptions.

1 INTRODUCTION

Figure 1: On the Waterbirds dataset attacked
by the adversarial illumination attack, adver-
sarial training (yellow) yields higher robust
error than standard training (blue) when the
sample size is small, even though it helps for
large sample sizes and in a setting where the
standard error of standard training is small.
(see App. D for details).

Today’s best-performing classifiers are vulnerable to ad-
versarial attacks Goodfellow et al. (2015); Szegedy et al.
(2014) and exhibit high robust error: for many inputs,
their predictions change under adversarial perturbations,
even though the true class stays the same. Such content-
preserving (Gilmer et al., 2018), consistent (Raghunathan
et al., 2020) attacks can be either perceptible or imper-
ceptible. For image datasets, most work to date studies
imperceptible attacks that are based on perturbations with
limited strength or attack budget. These include bounded
`p-norm perturbations (Goodfellow et al., 2015; Madry
et al., 2018; Moosavi-Dezfooli et al., 2016), small transfor-
mations using image processing techniques (Ghiasi et al.,
2019; Zhao et al., 2020; Laidlaw et al., 2021; Luo et al.,
2018) or nearby samples on the data manifold (Lin et al.,
2020; Zhou et al., 2020). Even though they do not visibly
change the image by definition, imperceptible attacks can
often successfully fool a learned classifier.

On the other hand, perturbations that naturally occur and are physically realizable are commonly
perceptible. Some perceptible perturbations specifically target the object to be recognized: these
include occlusions (e.g. stickers placed on traffic signs (Eykholt et al., 2018) or masks of different
sizes that cover important features of human faces (Wu et al., 2020)) or corruptions that are caused
by the image capturing process (animals that move faster than the shutter speed or objects that are not
well-lit, see Figure 2). Others transform the whole image and are not confined to the object itself,
such as rotations, translations or corruptions Engstrom et al. (2019); Kang et al. (2019). In this paper,
we refer to such perceptible attacks as directed attacks. In contrast to other attacks, they effectively
reduce useful class information in the input for any model, without necessarily changing the true label
— we say that they are directed and consistent, more formally defined in Section 2. For example,
a stop sign with a small sticker could partially cover the text without losing its semantic meaning.
Similarly, a flying bird captured with a long exposure time can induce motion blur in the final image
without becoming unrecognizable to the observer.
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(a) Masks (b) Original (c) Lighting (d) Blur (e) Classification of perturbations

Figure 2: Examples of directed attacks on CIFAR10 and the Waterbirds dataset. In Figure 2a, we corrupt the
image with a black mask of size 2× 2 and in Figure 2c and 2d we change the lighting conditions (darkening)
and apply motion blur on the bird in the image respectively. All perturbations reduce the information about the
class in the images: they are the result of directed attacks. (e) Directed attacks are a subset of perceptible attacks.

In the literature so far, it is widely acknowledged that adversarial training with the same perturbation
type and budget as during test time often achieves significantly lower robust error than standard
training (Madry et al., 2018; Zhang et al., 2019; Bai et al., 2021).

In contrast, we show that adversarial training not only increases standard error (Zhang et al., 2019;
Tsipras et al., 2019; Stutz et al., 2019; Raghunathan et al., 2020), but surprisingly, in the low sample
regime,

adversarial training may even increase the robust error compared to standard training!

Figure 1 illustrates the main message of our paper on the Waterbirds dataset: Although adversarial
training with directed attacks outperforms standard training when enough training samples are
available, it is inferior when the sample size is small (but still large enough to obtain a small standard
test error).

Our contributions are as follows:

• We prove that, almost surely, adversarially training a linear classifier on separable data
yields a monotonically increasing robust error as the perturbation budget grows. We further
establish high-probability non-asymptotic lower bounds on the robust error gap between
adversarial and standard training.

• Our proof provides intuition for why this lower bound on the gap is particularly large for
directed attacks in the low sample regime.

• We observe empirically for different directed attacks on real-world image datasets that this
behavior persists: adversarial training for directed attacks hurts robust accuracy when the
sample size is small.

2 ROBUST CLASSIFICATION

We first introduce our robust classification setting more formally by defining the notions of adversarial
robustness, directed attacks and adversarial training used throughout the paper.

Adversarially robust classifiers For inputs x ∈ Rd, we consider multi-class classifiers associated
with parameterized functions fθ : Rd → RK if K > 2 and fθ : Rd → R if K = 2, where K is the
number of labels. For example, fθ(x) could be a linear model (as in Section 3) or a neural network
(as in Section 4). The output label predictions are obtained by h(fθ(x)) = sign(fθ(x)) for K = 2
and h(fθ(x)) = arg maxk∈{1,..,K} fθ(x)k for K > 2.

In order to convince practitioners to use machine learning models in the wild, it is key to demonstrate
that they exhibit robustness. One kind of robustness is that they do not change prediction when
the input is subject to consistent perturbations, which are small class-preserving perturbations.
Mathematically speaking, for the underlying joint data distribution P, the model should have a small
εte-robust error, defined as

Err(θ; εte) := E(x,y)∼P max
x′∈T (x;εte)

`(fθ(x
′), y), (1)

where ` is 0 if the class determined by h(fθ(x)) is equal to y and 1 otherwise. Further, T (x; εte)
indicates a perturbation set around x of a certain transformation type with size εtest. Note that
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the (standard) error E(x,y)∼P`(fθ(x), y) of a classifier corresponds to Err(θ; 0) – the robust error
evaluated at εte = 0.

Directed attacks The inner maximization in Equation 1 is often called the adversarial attack of the
input x for the model fθ and the corresponding solution is referred to as the adversarial example. In
this paper, we consider directed attacks that effectively reduce the information about the true classes,
with image-based examples depicted in Figure 2. For linear classification, we analyze directed attacks
in the form of additive perturbations that are constrained to the direction of the optimal decision
boundary (see details in Section 3.1). In particular, note that the set of directed perturbations is
restricted to directions attacking the Bayes optimal classifier.

Adversarial training A common approach to obtain classifiers with a good robust accuracy is to
minimize the training objective Lεtr with a surrogate robust classification loss L

Lεtr(θ) :=
1

n

n∑
i=1

max
x′i∈T (xi;εtr)

L(fθ(x
′
i)yi), (2)

also called adversarial training. In practice, we often use the cross entropy loss L(z) = log(1 + e−z)
and minimize the robust objective by using first order optimization methods such as (stochastic)
gradient descent. SGD is also the algorithm that we focus on in both the theoretical and experimental
sections. When the desired type of robustness is known in advance, it is standard practice to use the
same perturbation set for training as for testing, i.e. T (x; εtr) = T (x; εte). For example, Madry et al.
(2018) show that the robust error sharply increases for εtr < εte. In this paper, we demonstrate that for
directed attacks in the small sample size regime, in fact, the opposite is true.

3 THEORETICAL RESULTS

In this section, we prove for linear functions fθ(x) = θ>x that in the case of directed attacks,
robust generalization deteriorates with increasing εtr. The proof, albeit in a simple setting, provides
explanations for why adversarial training fails in the high-dimensional regime for such attacks.

3.1 SETTING

We now introduce the precise linear setting used in our theoretical results.

Data model We assume that the ground truth and hypothesis class are given by linear functions
fθ(x) = θ>x and the sample size n is lower than the ambient dimension d minus one. The generative
distribution Pr is similar to (Tsipras et al., 2019; Nagarajan & Kolter, 2019): The label y ∈ {+1,−1}
is drawn with equal probability and the covariate vector is sampled as x = [y r2 , x̃] with the random
vector x̃ ∈ Rd−1 drawn from a standard normal distribution, i.e. x̃ ∼ N (0, σ2Id−1). We would like
to learn a classifier that has low robust error by using a dataset D = (xi, yi)

n
i=1 with n i.i.d. samples

from Pr. Intuitively, the separation distance r reflects the signal strength of the data distribution.

Notice that the distribution Pr is noiseless: for a given input x, the label y = sign(x[1]) is determinis-
tic. Further, the Bayes optimal linear classifier (also referred to as the ground truth) is parameterized
by the first standard coordinate vector, θ? = e1.1 By definition, the ground truth is robust against
all perturbations that do not change the sign in the first coordinate of the sample, i.e. consistent
perturbations, and hence so is the optimal robust classifier.

Directed attacks In this paper, we focus on consistent directed attacks that by definition efficiently
concentrate their attack budget to reduce the class information. For our linear setting this information
lies in the first entry. Hence, we can model such attacks by additive perturbations in the first dimension

T (x; ε) = {x′ = x+ δ | δ = βe1 and − ε ≤ β ≤ ε}. (3)
Note that this attack is always in the direction of the signal dimension, i.e. the Bayes optimal classifier
or equivalently the ground truth. Furthermore, when ε < r

2 , it is a consistent directed attack. Observe
how this is different from `p-attacks — an `p attack, depending on the model, may add a perturbation
that only has a very small component in the signal direction.

1Note that the result more generally holds for non-sparse models that are not axis aligned by way of a simple
rotation z = Ux. In that case the distribution is characterized by θ? = u1, where u1 is the first column vector of
U , and a rotated Gaussian in the d− 1 dimensions orthogonal to θ?.
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(a) Robust error increase with εtr (b) Standard-adversarial training (c) Effect of overparameterization

Figure 3: Experimental verification of Theorem 3.1. (a) We set d = 1000, r = 12 and n = 50. The robust
error gap between standard and adversarial training as a function of the adversarial budget εtr = 5 independent
experiments (blue) and the lower bound given in Theorem 3.1 (gray). In (b) and (c), we set d = 10000 and vary
the number of samples n. (b) The robust error of standard and adversarial training with εtr = 4.5. (c) The error
gap and the lower bound of Theorem 3.1. For more experimental details see Appendix C.

Robust max-`2-margin classifier We study a classifier that is the solution of running gradient
descent on the adversarial logistic loss. A long line of work (Soudry et al., 2018; Ji & Telgarsky,
2019; Chizat & Bach, 2020; Nacson et al., 2019; Liu et al., 2020) studies the implicit bias of (S)GD
on the (standard) logistic loss and separable data. In particular, they show directional convergence
to the max-margin solution. For the adversarial logistic loss and linear models in particular, (S)GD
converges to the robust max-`2-margin solution (Li et al., 2020),

θ̂εtr := arg max
‖θ‖2≤1

min
i∈[n],x′i∈T (xi;εtr)

yiθ
>x′i. (4)

Even though our result is proven for the max-`2-margin classifier, it can easily be extended to other
interpolators.

3.2 MAIN RESULTS

We are now ready to characterize the εte-robust error as a function of εtr, the separation r, the
dimension d and sample size n of the data. In the theorem statement we use the following quantities

ϕmin =
σ

r/2− εte

(√
d− 1

n
−

(
1 +

√
2 log(2/δ)

n

))

ϕmax =
σ

r/2− εte

(√
d− 1

n
+

(
1 +

√
2 log(2/δ)

n

))
that arise from concentration bounds for the singular values of the random data matrix. Further, let
ε̃ := r

2 −
ϕmax√

2
and denote by Φ the cumulative distribution function of a standard normal.

Theorem 3.1. Assume d− 1 > n. For test samples from Pr, perturbation set type T as in Equation 3
and any 0 ≤ εte <

r
2 , the following holds for the εte-robust error of the classifier (Equation 1)

resulting from εtr-adversarial training:

1. The εte-robust error of the εtr-robust max-margin estimator reads

Err(θ̂εtr ; εte) = Φ

(
−
(
r
2 − εtr

)
ϕ̃

)
(5)

for a random quantity ϕ̃ > 0 depending on σ, r, εte and is hence strictly increasing in the
adversarial training budget εtr.

2. With probability at least 1− δ, we further have ϕmin ≤ ϕ̃ ≤ ϕmax and the following lower
bound on the robust error increase by adversarially training with size εtr

Err(θ̂εtr ; εte)− Err(θ̂0; εte) ≥ Φ

(
r/2

ϕmin

)
− Φ

(
r/2−min{εtr, ε̃}

ϕmin

)
. (6)

The proof can be found in Appendix A and primarily relies on estimation of singular values of
high-dimensional matrices. Note that the theorem holds for any 0 ≤ εte <

r
2 and hence also directly
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(a) Robust error vs εtr (b) Robust error decomposition (c) Intuition in 2D

Figure 4: (a) We set d = 1000 and r = 12. The robust error as a function of the adversarial training budget εtr
for different d/n. (b) The robust error decomposition into susceptibility and standard error as a function of the
adversarial budget εtr. Full experimental details can be found in Section C. (c) 2D illustration providing intuition
for the linear setting. The effect of adversarial training with directed attacks is captured in the yellow dotted
lines: adversarially perturbed training points move closer to the true boundary which in turn tilts the decision
boundary more heavily in the wrong direction.

applies to the standard error by setting εte = 0. In Figure 3, we empirically confirm the statements of
Theorem 3.1 by performing multiple experiments on synthetic datasets as described in Subsection
3.1 with different choices of d/n and εtr. In the first statement, we prove that for small sample-size
(n < d− 1) noiseless data, almost surely, the robust error increases monotonically with adversarial
training budget εtr > 0. In Figure 3a, we plot the robust error gap between standard and adversarial
logistic regression as a function of the adversarial training budget εtr for 5 runs.

The second statement establishes a simplified lower bound on the robust error increase for adversarial
training (for a fixed εtr = εte) compared to standard training. In Figures 3a and 3c, we show how
the lower bound closely predicts the robust error gap in our synthetic experiments. Furthermore, by
the dependence of ϕmin on the overparameterization ratio d/n, the lower bound on the robust error
gap is amplified for large d/n. Indeed, Figure 3c shows how the error gap increases with d/n both
theoretically and experimentally. However, when d/n increases above a certain threshold, the gap
decreases again, as standard training fails to learn the signal and yields a high error (see Figure 3b).

3.3 PROOF INTUITION

The reason that adversarial training hurts robust generalization is based on an extreme robust vs.
standard error trade-off. We now provide intuition for the effect of directed attacks and the low
sample regime on the εtr-robust max-`2-margin solution by decomposing the robust error Err(θ; εte).
Notice that εte-robust error Err(θ; εte) can be written as the probability of the union of two events: the
event that the classifier based on θ is wrong and the event that the classifier is susceptible to attacks:

Err(θ; εte) = Ex,y∼P
[
I{yfθ(x) < 0} ∨ max

x′∈T (x;εte)
I{fθ(x)fθ(x

′) < 0}
]
≤ Err(θ; 0) + Susc(θ; εte)

(7)
where Susc(θ; εte) is the expectation of the maximization term in Equation 7. Susc(θ; εte) represents
the εte-attack-susceptibility of a classifier induced by θ and Err(θ; 0) its standard error. In our linear
setting, we can lower bound Equation 7 by Err(θ; 0) + 1

2Susc(θ; εte). Hence, Equation 7 suggests that
the robust error can only be small if both the standard error and susceptibility are small. In Figure 4b,
we plot the decomposition of the robust error in standard error and susceptibility for adversarial
logistic regression with increasing εtr. We observe that increasing εtr increases the standard error
too drastically compared to the decrease in susceptibility, leading to a drop in robust accuracy. For
completeness, in Appendix B, we provide upper and lower bounds for the susceptibility score. We
now explain why, in the small-sample size regime, adversarial training with directed attacks 3 may
increase standard error to the extent that it dominates the decrease in susceptibility.

A key observation is that the robust max-`2-margin solution of a datasetD = {(xi, yi)}ni=1 maximizes
the minimum margin that reads mini∈[n] yiθ

>(xi − yiεtr|θ[1]|e1), where θ[i] refers to the i-th entry of
vector θ. Therefore, it simply corresponds to the max-`2-margin solution of the dataset shifted towards
the decision boundary Dεtr = {(xi − yiεtr|θ̂εtr

[1]|e1, yi)}
n
i=1. Using this fact, we obtain a closed-form

expression of the (normalized) max-margin solution 4 as a function of εtr that reads

θ̂εtr =
1

(r − 2εtr)2 + 4γ̃2

[
r − 2εtr, 2γ̃θ̃

]
, (8)
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where ‖θ̃‖2 = 1 and γ̃ > 0 is a random quantity associated with the max-`2-margin solution of the
d− 1 dimensional Gaussian inputs orthogonal to the signal direction (see Lemma A.1 in Section A).

In high dimensions, with high probability any two Gaussian random vectors are far apart – in our
distributional setting, this corresponds to the vectors being far apart in the non-signal directions. In
Figure 4c, we illustrate the phenomenon using a 2D cartoon, where the few samples in the dataset are
all far apart in the non-signal direction. We see how shifting the dataset closer to the true decision
boundary, may result in a max-margin solution (yellow) that aligns much worse with the ground
truth (gray), compared to the estimator learned from the original points (blue). Even though the new
(robust max-margin) classifier (yellow) is less susceptible to attacks in the signal dimension, it also
uses the signal dimension less. Mathematically, this is reflected in the expression of the max-margin
solution in Equation 8: We see that the first (signal) dimension is used less as εtr increases.

3.4 GENERALITY OF THE RESULTS

In this section we discuss how Theorem 3.1 might generalize to other perturbation sets and models.

Signal direction is known The type of additive perturbations used in Theorem 3.1, defined in
Equation 3, is explicitly constrained to the direction of the true signal. This choice is reminiscent
of corruptions where every possible perturbation in the set is directly targeted at the object to be
recognized, such as motion blur of moving objects. Such corruptions are also studied in the context
of domain generalization and adaptation (Schneider et al., 2020).

Directed attacks in general, however, may also consist of perturbation sets that are only strongly
biased towards the true signal direction. They may find the true signal direction only when the inner
maximization is exact. The following corollary extends Theorem 3.1 to small `1-perturbations

T (x; ε) = {x′ = x+ δ | ‖δ‖1 ≤ ε}, (9)

for 0 < ε < r
2 that reflect such attacks. We state the corollary here and give the proof in Appendix A.

Corollary 3.2. Theorem 3.1 also holds for 4 with perturbation sets defined in 9.

The proof uses the fact that the inner maximization effectively results in a sparse perturbation
equivalent to the attack resulting from the perturbation set defined in Equation 3.

Other models Motivated by the implicit bias results of (stochastic) gradient descent on the logistic
loss, Theorem 3.1 is proven for the max-`2-margin solution. We would like to conjecture that for
the data distribution in Section 3, adversarial training can hurt robust generalization also for other
models with zero training error (interpolators in short). For example, Adaboost is a widely used
algorithm that converges to the max-`1-margin classifier (Telgarsky, 2013). One might argue that
for a sparse ground truth, the max-`1-margin classifier should (at least in the noiseless case) have
the right inductive bias to alleviate large bias in high dimensions. Hence, in many cases the (sparse)
max-`1-margin solution might align with the ground truth for a given dataset. However, we conjecture
that even in this case, the robust max-`1-margin solution would be misled to choose a wrong sparse
solution. This can be seen with the help of the cartoon illustration in Figure 4c.

4 REAL-WORLD EXPERIMENTS

In this section, we demonstrate that the proof intuition of the linear case may generalize to more
complex models. Specifically, the insights from Section 3 helped us to identify realistic directed
attacks on standard image datasets for which adversarial training hurts robust accuracy in the low
sample regime. In what follows, we present experimental results for corruption attacks on the
Waterbirds dataset. Due to space constraints, results on the mask attacks on CIFAR-10 can be found
in Appendix E. The corresponding experimental details and more results on other additional image
datasets (such as the hand gestures dataset) can be found in Appendices D, E and F.

4.1 DATASETS AND MODELS

We consider three datasets: the Waterbirds dataset, CIFAR-10 and a hand gesture datasets. Due to
space constraints, we describe CIFAR-10 and the hand gesture dataset in Appendix E and F. Apart
from CIFAR-10 and the hand gesture dataset, we build a new version of the Waterbirds dataset,
consisting of images of water- and landbirds of size 256× 256 and labels that distinguish the two
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(a) Robust error with increasing εtr (b) Robust error decomposition (c) Robust error vs. #samples

Figure 5: Experiments on the Waterbirds dataset considering the adversarial illumination attack with εte = 0.3.
We plot the mean and standard deviation of the mean of several independent experiments. (a) The robust error
increases with larger εtr in the low sample size regime. (b) We set n = 20 and plot the robust error decomposition
as in Equation 7 with increasing εtr. While the susceptibility decreases slightly, the increase in standard error
is much more severe, resulting in an increase in robust error. (c) The robust error of standard training and
adversarial training as a function of the number of samples, where the smallest sample size still yields small
(< 10%) standard test error for standard training. While adversarial training hurts for small sample sizes, it
helps for larger sample sizes. For more experimental details see App. D.

types of birds. Using code provided by Sagawa et al. (2020), we construct the dataset as follows:
First, we sample equally many water- and landbirds from the CUB-200 dataset (Welinder et al., 2010).
Then, we segment the birds and paste them onto a background image that is randomly sampled
(without replacement) from the Places-256 dataset (Zhou et al., 2017). Also, following the choice of
Sagawa et al. (2020), we use as models a ResNet50 and a ResNet18 that were both pretrained on
ImageNet and achieve near perfect standard accuracy. In Appendix D, we complement the results of
this section by reporting the results of similar experiments with different architectures.

4.2 IMPLEMENTATION OF THE DIRECTED ATTACKS

In this section, we consider two attacks on the Waterbirds dataset: motion blur and adversarial
illumination as depicted in Figure 2. In Appendix E, we also discuss the mask attack, which should
mimic occlusions of objects in images that are physically realizable (Eykholt et al., 2018; Wu et al.,
2020). On the other hand, motion blur may arise naturally when photographing fast moving objects
with a slow shutter speed. Lastly, adversarial illumination may result from adversarial lighting
conditions. Next, we describe the motion blur and adversarial illumination attacks in more detail.

Motion blur For the Waterbirds dataset we can implement motion blur attacks on the object (the
bird) specifically, a natural corruption that could occur if birds move at speeds that are faster than the
shutter speed. The aim is to be robust against all motion blur severity levels up to Mmax = 15. To
simulate motion blur, we apply a motion blur filter with a kernel of size M on the segmented bird
before we paste it onto the background image. We can change the severity level of the motion blur by
increasing the kernel size of the filter. See Appendix D for concrete expressions of the motion blur
kernel. Intuitively the worst attack should be the most severe blur, rendering a search over a range of
severity superfluous. However, similar to rotations, this is not necessarily true in practice since the
training loss on neural networks is generally nonconvex. Therefore, for an exact evaluation of the
robust error at test time, we perform a full grid search over all kernel sizes in [1, 2, . . . ,Mmax]. We
refer to Figure 2d and Section D for an illustration of our motion blur attack. During training time,
we perform an approximate search over kernels with sizes 2i for i = 1, . . . ,Mmax/2.

Adversarial illumination As a second attack on the Waterbirds dataset, we consider adversarial
illumination. The adversary can darken or brighten the bird without corrupting the background of the
image. The attack aims to model images where the object at interest is hidden in shadows or placed
against bright light. To compute the adversarial illumination attack, we modify the brightness of the
segmented bird by adding a constant a ∈ [−εte, εte] to all pixel values, before pasting the bird onto
the background image. With an analogous argument as for the adversarial search for motion blur, the
exact evaluation requires an actual search over the interval [−εte, εte]. We find the most adversarial
lighting level, i.e. the value of a, by equidistantly partitioning the interval [−εte, εte] in K steps and
performing a full list-search over all steps. See Figure 2c and Appendix D for an illustration of the
adversarial illumination attack. We choose K = 65, 33 during test and training time respectively.

Adversarial training For all datasets and attacks, we run SGD until convergence on the robust
cross-entropy loss 2. In each iteration, we search for an adversarial example as described above and
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(a) Robust error with increasing εtr (b) Robust error decomposition (c) Robust error vs. #samples

Figure 6: Experiments on the (subsampled) Waterbirds dataset using the motion blur attack. (a) Even though
adversarial training hurts robust generalization for low sample size (n = 20), it helps for n = 50. (b) For
n = 20, the decomposition of the robust error in standard error and susceptibility as a function of adversarial
budget εtr. The increase in standard error is more severe than the drop in susceptibility, leading to a slight
increase in robust error. (c) The robust error of standard and adversarial training on settings where the test error
after standard training is small as a function of the number of samples. While adversarial training hurts for small
sample sizes, it helps for larger sample sizes. For each experiment we plot the mean and standard deviation of
the mean of independent experiments. For more experimental details see App. D.

update the weights using a gradient with respect to the resulting perturbed example (Goodfellow
et al., 2015; Madry et al., 2018). For every experiment, we choose the learning rate and weight decay
parameters that minimize the robust error on a hold-out dataset.

4.3 ADVERSARIAL TRAINING CAN HURT ROBUST GENERALIZATION

We now present our experimental results on the Waterbirds dataset for both motion blur and adversarial
illumination attacks. First of all, Figure 5a and 6a show that the phenomenon characterized in the
linear setting by Theorem 3.1 also occurs for directed attacks on the Waterbirds dataset: as we
increase the adversarial training budget εtr starting from zero (standard training), the robust error
monotonically increases.

Furthermore, to gain intuition as described in Section 3.3, we also plot the robust error decomposition
(Equation 7) consisting of the standard error and susceptibility in Figure 5b and 6b. Recall that we
measure susceptibility as the fraction of data points in the test set for which the classifier predicts a
different class under an adversarial attack. As in our linear example, we observe an increase in robust
error despite a slight drop in susceptibility, because of the more severe increase in standard error.
Moreover, Figures 1 and 6c show that analogous to our linear example, this phenomenon is specific
to the low sample regime: for large sample size adversarial training outperforms standard training
as expected. Note again that even the smallest sample size is large enough to yield a standard test
error < 10% for standard training. Similar experiments for CIFAR-10 can be found in Appendix E.
Finally, we empirically confirm in Appendix D.8 that our phenomenon is specific to directed attacks:
for undirected attacks such as bounded `∞−and `2−ball perturbations, adversarial training helps
robust generalization also in the low sample size regime.

4.4 DISCUSSION

We now discuss how different algorithmic choices, motivated by related work, might affect how
adversarial training hurts robust generalization.

Catastrophic overfitting Often the worst-case perturbation during adversarial training is found
using an approximate algorithm such as SGD. It is common belief that using the strongest attack
(in the motion blur case, full grid search) during training also results in better robust generalization.
In particular, the literature on catastrophic overfitting shows that weaker attacks during training
lead to bad performance on stronger attacks during testing (Wong et al., 2020; Andriushchenko &
Flammarion, 2020; Li et al., 2021). Our results suggests the opposite in the low sample size regime
for directed attacks: the weaker the attack during training, the better adversarial training performs.

Robust overfitting Recent work observes empirically (Rice et al., 2020) and theoretically (Sanyal
et al., 2020; Donhauser et al., 2021), that perfectly minimizing the adversarial loss during training
might in fact be suboptimal for robust generalization; that is, classical regularization techniques might
lead to higher robust accuracy. This phenomenon is often referred to as robust overfitting. May the
phenomenon be mitigated using standard regularization techniques? In Appendix D we shed light
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on this question and show that adversarial training hurts robust generalization even when standard
regularization methods such as early stopping are used.

5 RELATED WORK

Robust and non-robust useful features In the words of Ilyas et al. (2019) and Springer et al.
(2021) we can describe the intuition behind ”our phenomenon” as follows: for directed attacks, all
robust features become less useful, but adversarial training uses robust features more. In the small
sample-size regime, n < d− 1 in particular, robust learning assigns too much weight on the robust
(possibly non-useful) features that then dominate the non-robust (but useful)features. Even though
they define these concepts, they don’t make our statement, but show that adversarial training reduces
the reliance on non-robust but possibly useful features.

Small sample size and robustness A direct consequence of Theorem 3.1 is that in order to achieve
the same robust error as standard training, adversarial training requires more samples. This statement
might remind the reader of sample complexity results for robust generalization in Schmidt et al.
(2018); Yin et al. (2019); Khim & Loh (2018). While those results compare sample complexity
bounds for standard vs. robust error, our theorem statement compares two algorithms, standard vs.
adversarial training, with respect to the robust error.

Trade-off between standard and robust error Many papers observed that even though adversarial
training decreases robust error compared to standard training, it may lead to an increase in standard
test error Madry et al. (2018); Zhang et al. (2019). For example, Tsipras et al. (2019); Zhang et al.
(2019); Javanmard et al. (2020); Dobriban et al. (2020); Chen et al. (2020) study settings where
the Bayes optimal robust classifier is not equal to the Bayes optimal (standard) classifier (i.e. the
perturbations are inconsistent or the dataset is non-separable). Raghunathan et al. (2020) study
consistent perturbations, as in our paper, and prove that for small sample size, fitting adversarial
examples can increase standard error even in the absence of noise. Empirically, Dong et al. (2021);
Mendonça et al. (2022) show that for `p-attacks low-quality data might be the main cause of the
trade-off. While aforementioned works focus on the decrease in standard error, we prove that for
directed attacks, in the small sample regime adversarial training may in fact increase robust error.

Mitigation of the trade-off A long line of work has proposed procedures to mitigate the trade-off
between robust and standard accuracy. For example Alayrac et al. (2019); Carmon et al. (2019); Zhai
et al. (2019); Raghunathan et al. (2020) study robust self training, which leverages a large set of
unlabelled data, while Lee et al. (2020); Lamb et al. (2019); Xu et al. (2020) use data augmentation
by interpolation. Ding et al. (2020); Balaji et al. (2019); Cheng et al. (2020) on the other hand
propose to use adaptive perturbation budgets εtr that vary across inputs. The intuition behind our
theoretical analysis suggests that the standard mitigation procedures for imperceptible perturbations
may not work for perceptible directed attacks, because all relevant features are non-robust. We leave
a thorough empirical study as interesting future work.

6 SUMMARY AND FUTURE WORK

This paper aims to caution the practitioner against blindly following current widespread practices
to increase the robust performance of machine learning models. Specifically, adversarial training
is currently recognized to be one of the most effective defense mechanisms for `p-perturbations,
significantly outperforming robust performance of standard training. However, we prove that in the
low sample size regime this common wisdom is not applicable for consistent directed attacks, which
efficiently focus their attack budget to target the ground truth class information. In terms of follow-up
work on directed attacks in the low sample regime, there are some concrete questions that would be
interesting to explore. For example, as discussed in Section 5, it would be useful to test whether some
methods to mitigate the standard accuracy vs. robustness trade-off would also relieve the perils of
adversarial training for directed attacks. Further, we hypothesize that when few samples are available,
one should avoid training with attacks that may heavily reduce class information, independently of
the attacks at test time. If this hypothesis were confirmed, it would break with yet another general
rule that the best defense perturbation type should always match the attack during evaluation.
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A THEORETICAL STATEMENTS FOR THE LINEAR MODEL

Before we present the proof of the theorem, we introduce two lemmas are of separate interest that
are used throughout the proof of Theorem 1. Recall that the definition of the (standard normal-
ized) maximum-`2-margin solution (max-margin solution in short) of a dataset D = {(xi, yi)}ni=1
corresponds to

θ̂ := arg max
‖θ‖2≤1

min
i∈[n]

yiθ
>xi, (10)

by simply setting εtr = 0 in Equation 4. The `2-margin of θ̂ then reads mini∈[n] yiθ̂
>xi. Furthermore

for a datasetD = {(xi, yi)}ni=1 we refer to the induced dataset D̃ as the dataset with covariate vectors
stripped of the first element, i.e.

D̃ = {(x̃i, yi)}ni=1 := {((xi)[2:d], yi)}ni=1, (11)
where (xi)[2:d] refers to the last d− 1 elements of the vector xi. Furthermore, remember that for any
vector z, z[j] refers to the j-th element of z and ej denotes the j-th canonical basis vector. Further,
recall the distribution Pr as defined in Section 3.1: the label y ∈ {+1,−1} is drawn with equal
probability and the covariate vector is sampled as x = [y r2 , x̃] where x̃ ∈ Rd−1 is a random vector
drawn from a standard normal distribution, i.e. x̃ ∼ N (0, σ2Id−1). We generally allow r, used to
sample the training data, to differ from rtest, which is used during test time.

The following lemma derives a closed-form expression for the normalized max-margin solution for
any dataset with fixed separation r in the signal component, and that is linearly separable in the last
d− 1 coordinates with margin γ̃.
Lemma A.1. Let D = {(xi, yi)}ni=1 be a dataset that consists of points (x, y) ∈ Rd × {±1} and
x[1] = y r2 , i.e. the covariates xi are deterministic in their first coordinate given yi with separation
distance r. Furthermore, let the induced dataset D̃ also be linearly separable by the normalized
max-`2-margin solution θ̃ with an `2-margin γ̃. Then, the normalized max-margin solution of the
original dataset D is given by

θ̂ =
1√

r2 + 4γ̃2

[
r, 2γ̃θ̃

]
. (12)

Further, the standard accuracy of θ̂ for data drawn from Prtest reads

Prtest(Y θ̂
>X > 0) = Φ

(
r rtest

4σ γ̃

)
. (13)

The proof can be found in Section A.3. The next lemma provides high probability upper and lower
bounds for the margin γ̃ of D̃ when x̃i are drawn from the normal distribution.
Lemma A.2. Let D̃ = {(x̃i, yi)}ni=1 be a random dataset where yi ∈ {±1} are equally distributed
and x̃i ∼ N (0, σId−1) for all i, and γ̃ is the maximum `2 margin that can be written as

γ̃ = max
‖θ̃‖2≤1

min
i∈[n]

yiθ̃
>x̃i.

Then, for any t ≥ 0, with probability greater than 1− 2e−
t2

2 , we have γ̃min(t) ≤ γ̃ ≤ γ̃max(t) where

γ̃max(t) = σ

(√
d− 1

n
+ 1 +

t√
n

)
, γ̃min(t) = σ

(√
d− 1

n
− 1− t√

n

)
.

A.1 PROOF OF THEOREM 3.1

Given a dataset D = {(xi, yi)} drawn from Pr, it is easy to see that the (normalized) εtr-robust
max-margin solution 4 of D with respect to signal-attacking perturbations T (εtr;xi) as defined in
Equation 3, can be written as

θ̂εtr = arg max
‖θ‖2≤1

min
i∈[n],x′i∈T (xi;εtr)

yiθ
>x′i

= arg max
‖θ‖2≤1

min
i∈[n],|β|≤εtr

yiθ
>(xi + βe1)

= arg max
‖θ‖2≤1

min
i∈[n]

yiθ
>(xi − yiεtr sign(θ[1])e1).
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Note that by definition, it is equivalent to the (standard normalized) max-margin solution θ̂ of
the shifted dataset Dεtr = {(xi − yiεtr sign(θ[1])e1, yi)}ni=1. Since Dεtr satisfies the assumptions of
Lemma A.1, it then follows directly that the normalized εtr-robust max-margin solution reads

θ̂εtr =
1√

(r − 2εtr)2 + 4γ̃2

[
r − 2εtr, 2γ̃θ̃

]
, (14)

by replacing r by r − 2εtr in Equation 12. Similar to above, θ̃ ∈ Rd−1 is the (standard normalized)
max-margin solution of {(x̃i, yi)}ni=1 and γ̃ the corresponding margin.

Proof of 1. We can now compute the εte-robust accuracy of the εtr-robust max-margin estimator θ̂εtr

for a given dataset D as a function of γ̃. Note that in the expression of θ̂εtr , all values are fixed for
a fixed dataset, while 0 ≤ εtr ≤ r − 2γ̃max can be chosen. First note that for a test distribution Pr,
the εte-robust accuracy, defined as one minus the robust error (Equation 1), for a classifier associated
with a vector θ, can be written as

Acc(θ; εte) = EX,Y∼Pr
[
I{ min
x′∈T (X;εte)

Y θ>x′ > 0}
]

(15)

= EX,Y∼Pr
[
I{Y θ>X − εteθ[1] > 0}

]
= EX,Y∼Pr

[
I{Y θ>(X − Y εte sign(θ[1])e1) > 0}

]
Now, recall that by Equation 14 and the assumption in the theorem, we have r − 2εtr > 0, so that
sign(θ̂εtr) = 1. Further, using the definition of the T (εtr;x) in Equation 3 and by definition of the
distribution Pr, we have X[1] = Y r

2 . Plugging into Equation 15 then yields

Acc(θ̂εtr ; εte) = EX,Y∼Pr
[
I{Y θ̂εtr>(X − Y εtee1) > 0}

]
= EX,Y∼Pr

[
I{Y θ̂εtr>(X−1 + Y

(r
2
− εte

)
e1) > 0}

]
= Pr−2εte(Y θ̂

εtr>X > 0)

where X−1 is a shorthand for the random vector X−1 = (0;X[2], . . . , X[d]). The assumptions in
Lemma A.1 (Dεtr is linearly separable) are satisfied whenever the n < d− 1 samples are distinct, i.e.
with probability one. Hence applying Lemma A.1 with rtest = r − 2εte and r = r − 2εtr yields

Acc(θ̂εtr ; εte) = Φ

(
r(r − 2εte)

4σγ̃
− εtr

r − 2εte

2σγ̃

)
. (16)

Theorem statement a) then follows by noting that Φ is a monotically decreasing function in εtr. The
expression for the robust error then follows by noting that 1 − Φ(−z) = Φ(z) for any z ∈ R and
defining

ϕ̃ =
σγ̃

r/2− εte
. (17)

Proof of 2. First define ϕmin, ϕmax using γ̃min, γ̃max as in Equation 17. Then we have by Equa-
tion 16

Err(θ̂εtr ; εte)− Err(θ̂0; εte) = Acc(θ̂0; εte)− Acc(θ̂εtr ; εte)

= Φ

(
r/2

ϕ̃

)
− Φ

(
r/2− εtr

ϕ̃

)
=

∫ r/2

r/2−εtr

1√
2πϕ̃

E−
x2

ϕ̃2 dx

By plugging in t =
√

2 log 2/δ
n in Lemma A.2, we obtain that with probability at least 1− δ we have

γ̃min := σ

[√
d− 1

n
−

(
1 +

√
2 log(2/δ)

n

)]
≤ γ̃ ≤ σ

[√
d− 1

n
+

(
1 +

√
2 log(2/δ)

n

)]
=: γ̃max

and equivalently ϕmin ≤ ϕ̃ ≤ ϕmax.
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Now note the general fact that for all ϕ̃ ≤
√

2x the density function f(ϕ̃;x) = 1√
2πϕ̃

E−
x2

ϕ̃2 is
monotonically increasing in ϕ̃.

By assumption of the theorem, ϕ̃ ≤
√

2(r/2 − εtr)(r/2 − εte) so that f(ϕ̃;x) ≥ f(ϕmin;x) for all
x ∈ [r/2− εtr, r/2] and therefore∫ r/2

r/2−εtr

1√
2πϕ̃

E−
x2

ϕ̃2 dx ≥
∫ r/2

r/2−εtr

1√
2πϕmin

E−
x2

ϕ̃2 dx = Φ

(
r/2

ϕmin

)
− Φ

(
r/2− εtr

ϕmin

)
.

and the statement is proved.

A.2 PROOF OF COROLLARY 3.2

We now show that Theorem 3.1 also holds for `1-ball perturbations with at most radius ε. Following
similar steps as in Equation 14, the εtr-robust max-margin solution for `1-perturbations can be written
as

θ̂εtr := arg max
‖θ‖2≤1

min
i∈[n]

yiθ
>(xi − yiεtr sign(θ[j?(θ)])ej?(θ)) (18)

where j?(θ) := arg maxj |θj | is the index of the maximum absolute value of θ. We now prove
by contradiction that the robust max-margin solution for this perturbation set 9 is equivalent to the
solution 14 for the perturbation set 3. We start by assuming that θ̂εtr does not solve Equation 14,
which is equivalent to assuming 1 6∈ j?(θ̂εtr) by definition. We now show how this assumption leads
to a contradiction.

Define the shorthand j? := j?(θ̂εtr)− 1. Since θ̂εtr is the solution of 18, by definition, we have that
θ̂εtr is also the max-margin solution of the shifted dataset Dεtr := (xi − yiεtr sign(θ[j?+1])ej?+1, yi).
Further, note that by the assumption that 1 6∈ j?(θ̂εtr), this dataset Dεtr consists of input vectors
xi = (yi

r
2 , x̃i − yiεtr sign(θ[j?+1])ej?+1). Hence via Lemma A.1, θ̂εtr can be written as

θ̂εtr =
1√

r2 − 4(γ̃εtr)2
[r, 2γ̃εtr θ̃εtr ], (19)

where θ̃εtr is the normalized max-margin solution of D̃ := (x̃i − yiεtr sign(θ̃[j?])ej? , yi).

We now characterize θ̃εtr . Note that by assumption, j? = j?(θ̃εtr) = arg maxj |θ̃
εtr
[j]|. Hence, the

normalized max-margin solution θ̃εtr is the solution of

θ̃εtr := arg max
‖θ̃‖2≤1

min
i∈[n]

yiθ̃
>x̃i − εtr|θ̃[j?]| (20)

Observe that the minimum margin of this estimator γ̃εtr = mini∈[n] yi(θ̃
εtr)>x̃i − εtr|θ̃εtr

[j?]| decreases

with εtr as the problem becomes harder γ̃εtr ≤ γ̃, where the latter is equivalent to the margin of θ̃εtr

for εtr = 0. Since r > 2γ̃max by assumption in the Theorem, by Lemma A.2 with probability at least

1− 2E−
α2(d−1)

n , we then have that r > 2γ̃ ≥ 2γ̃εtr . Given the closed form of θ̂εtr in Equation 19, it
directly follows that θ̂εtr

[1] = r > 2γ̃εtr‖θ̃εtr‖2 = ‖θ̂εtr
[2:d]‖2 and hence 1 ∈ j?(θ̂εtr). This contradicts the

original assumption 1 6∈ j?(θ̂εtr) and hence we established that θ̂εtr for the `1-perturbation set 9 has
the same closed form 14 as for the perturbation set 3.

The final statement is proved by using the analogous steps as in the proof of 1. and 2. to obtain the
closed form of the robust accuracy of θ̂εtr .

A.3 PROOF OF LEMMA A.1

We start by proving that θ̂ is of the form

θ̂ =
[
a1, a2θ̃

]
, (21)

for a1, a2 > 0. Denote byH(θ) the plane through the origin with normal θ. We define d ((x, y),H(θ))
as the signed euclidean distance from the point (x, y) ∈ D ∼ Pr to the plane H(θ). The signed
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euclidean distance is the defined as the euclidean distance from x to the plane if the point (x, y) is
correctly predicted by θ, and the negative euclidean distance from x to the plane otherwise. We
rewrite the definition of the max l2-margin classifier. It is the classifier induced by the normalized
vector θ̂ , such that

max
θ∈Rd

min
(x,y)∈D

d ((x, y) ,H(θ)) = min
(x,y)∈D

d
(

(x, y) ,H(θ̂)
)
.

We use that D is deterministic in its first coordinate and get

max
θ

min
(x,y)∈D

d ((x, y) ,H(θ)) = max
θ

min
(x,y)∈D

y(θ[1]x[1] + θ̃>x̃)

= max
θ
θ1
r

2
+ min

(x,y)∈D
yθ̃>x̃.

Because r > 0, the maximum over all θ has θ̂[1] ≥ 0. Take any a > 0 such that ‖θ̃‖2 = a. By

definition the max l2-margin classifier, θ̃, maximizes min(x,y)∈D d ((x, y) ,H(θ)). Therefore, θ̂ is of
the form of Equation 21.

Note that all classifiers induced by vectors of the form of Equation 21 classify D correctly. Next,
we aim to find expressions for a1 and a2 such that Equation 21 is the normalized max l2-margin
classifier. The distance from any x ∈ D toH(θ̂) is

d
(
x,H(θ̂)

)
=
∣∣∣a1x[1] + a2θ̃

>x̃
∣∣∣ .

Using that x[1] = y r2 and that the second term equals a2d
(
x,H(θ̃)

)
, we get

d
(
x,H(θ̂)

)
=
∣∣∣a1 r

2
+ a2d

(
x,H(θ̃)

)∣∣∣ = a1
r

2
+
√

1− a21d
(
x,H(θ̃)

)
. (22)

Let (x̃, y) ∈ D̃ be the point closest in Euclidean distance to θ̃. This point is also the closest point in
Euclidean distance toH(θ̂), because by Equation 22 d

(
x,H(θ̂)

)
is strictly decreasing for decreasing

d
(
x,H(θ̃)

)
. We maximize the minimum margin d

(
x,H(θ̂)

)
with respect to a1. Define the vectors

a = [a1, a2] and v =
[
r
2 , d

(
x,H(θ̃)

)]
. We find using the dual norm that

a =
v

‖v‖2
.

Plugging the expression of a into Equation 21 yields that θ̂ is given by

θ̂ =
1√

r2 + 4γ̃2

[
r, 2γ̃θ̃

]
.

For the second part of the lemma we first decompose

Prtest(Y θ̂
>X > 0) =

1

2
Prtest

[
θ̂>X > 0 | Y = 1

]
+

1

2
Prtest

[
θ̂>X < 0 | Y = −1

]
We can further write

Prtest

[
θ̂>X > 0 | Y = 1

]
= Prtest

[
d∑
i=2

θ̂[i]X[i] > −θ̂[1] X[1] | Y = 1

]
(23)

= Prtest

[
2γ̃

d−1∑
i=1

θ̃[i]X[i] > −r
rtest

2
| Y = 1

]

= 1− Φ

(
−r rtest

4σγ̃

)
= Φ

(
r rtest

4σγ̃

)
where Φ is the cumulative distribution function. The second equality follows by multiplying by the
normalization constant on both sides and the third equality is due to the fact that

∑d−1
i=1 θ̃[i]X[i] is
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a zero-mean Gaussian with variance σ2‖θ̃‖22 = σ2 since θ̃ is normalized. Correspondingly we can
write

Prtest

[
θ̂>X < 0 | Y = −1

]
= Prtest

[
2γ̃

d−1∑
i=1

θ̃[i]X[i] < −r
(
−rtest

2

)
| Y = −1

]
= Φ

(
r rtest

4σγ̃

)
(24)

so that we can combine 23 and 23 and 24 to obtain Prtest(Y θ̂
>X > 0) = Φ

(
r rtest
4σγ̃

)
. This concludes

the proof of the lemma.

A.4 PROOF OF LEMMA A.2

The proof plan is as follows. We start from the definition of the max `2-margin of a dataset. Then,
we rewrite the max `2-margin as an expression that includes a random matrix with independent
standard normal entries. This allows us to prove the upper and lower bounds for the max-`2-margin
in Sections A.4.1 and A.4.2 respectively, using non-asymptotic estimates on the singular values of
Gaussian random matrices.

Given the dataset D̃ = {(x̃i, yi)}ni=1, we define the random matrix

X =

x̃
>
1

x̃>2
...
x̃>n

 . (25)

where x̃i ∼ N (0, σId−1). Let V be the class of all perfect predictors of D̃. For a matrix A and vector
b we also denote by |Ab| the vector whose entries correspond to the absolute values of the entries of
Ab. Then, by definition

γ̃ = max
v∈V,‖v‖2=1

min
j∈[n]

|Xv|[j] = max
v∈V,‖v‖2=1

min
j∈[n]

σ|Qv|[j], (26)

where Q = 1
σX is the scaled data matrix.

In the sequel we will use the operator norm of a matrix A ∈ Rn×d−1.

‖A‖2 = sup
v∈Rd−1|‖v‖2=1

‖Av‖2

and denote the maximum singular value of a matrix A as smax(A) and the minimum singular value as
smin(A).

A.4.1 UPPER BOUND

Given the maximality of the operator norm and since the minimum entry of the vector |Qv| must be
smaller than ‖Q‖2√

n
, we can upper bound γ̃ by

γ̃ ≤ σ 1√
n
‖Q‖2.

Taking the expectation on both sides with respect to the draw of D̃ and noting ‖Q‖2 ≤ smax (Q), it
follows from Corollary 5.35 of Vershynin (2010) that for all t ≥ 0:

P
[√

d− 1 +
√
n+ t ≥ smax (Q)

]
≥ 1− 2e−

t2

2 .

Therefore, with a probability greater than 1− 2e−
t2

2 ,

γ̃ ≤ σ
(

1 +
t+
√
d− 1√
n

)
.
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A.4.2 LOWER BOUND

By the definition in Equation 26, if we find a vector v ∈ V with ‖v‖2 = 1 such that for an a > 0, it
holds that minj∈n σ|Xv|[j] > a, then γ̃ > a.

Recall the definition of the max-`2-margin as in Equation 25. As n < d− 1, the random matrix Q is
a wide matrix, i.e. there are more columns than rows and therefore the minimal singular value is 0.
Furthermore, Q has rank n almost surely and hence for all c > 0, there exists a v ∈ Rd−1 such that

σQv = 1{n}c > 0, (27)

where 1{n} denotes the all ones vector of dimension n. The smallest non-zero singular value of Q,
smin, nonzero(Q), equals the smallest non-zero singular value of its transpose Q>. Therefore, there also
exists a v ∈ V with ‖v‖2 = 1 such that

γ̃ ≥ min
j∈[n]

σ|Qv|[j] ≥ σsmin,nonzeros
(
Q>
) 1√

n
, (28)

where we used the fact that any vector v in the span of non-zero eigenvectors satisfies ‖Qv‖2 ≥
smin, nonzeros(Q) and the existence of a solution v for any right-hand side as in Equation 27. Taking the
expectation on both sides, Corollary 5.35 of Vershynin (2010) yields that with a probability greater
than 1− 2e−

t2

2 , t ≥ 0 we have

γ̃ ≥ σ
(√

d− 1− t√
n

− 1

)
. (29)

B BOUNDS ON THE SUSCEPTIBILITY SCORE

In Theorem 3.1, we give non-asymptotic bounds on the robust and standard error of a linear classifier
trained with adversarial logistic regression. Moreover, we use the robust error decomposition in
susceptibility and standard error to gain intuition about how adversarial training may hurt robust
generalization. In this section, we complete the result of Theorem 3.1 by also deriving non-asymptotic
bounds on the susceptibility score of the max `2-margin classifier.

Using the results in Appendix A, we can prove following Corollary B.1, which gives non asymptotic
bounds on the susceptibility score.
Corollary B.1. Assume d− 1 > n. For the εte-susceptibility on test samples from Pr with 2εte < r
and perturbation sets in Equation equation 3 and equation 9 the following holds:

For εtr <
r
2 − γ̃max, with probability at least 1− 2E−

α2(d−1)
2 for any 0 < α < 1, over the draw of a

dataset D with n samples from Pr, the εte-susceptibility is upper and lower bounded by

Susc(θ̂εtr ; εte) ≤ Φ

(
(r − 2εtr)(εte − r

2 )

2γ̃maxσ

)
− Φ

(
(r − 2εtr)(−εte − r

2 )

2γ̃minσ

)
Susc(θ̂εtr ; εte) ≥ Φ

(
(r − 2εtr)(εte − r

2 )

2γ̃minσ

)
− Φ

(
(r − 2εtr)(−εte − r

2 )

2γ̃maxσ

) (30)

We give the proof in Subsection B.1. Observe that the bounds on the susceptibility score in Corollary
B.1 consist of two terms each, where the second term decreases with εtr, but the first term increases.
We recognise following two regimes: the max `2-margin classifier is close to the ground truth e1
or not. Clearly, the ground truth classifier has zero susceptibility and hence classifiers close to the
ground truth also have low susceptibility. On the other hand, if the max l2-margin classifier is not
close to the ground truth, then putting less weight on the first coordinate increases invariance to the
perturbations along the first direction. Recall that by Lemma A.1, increasing εtr, decreases the weight
on the first coordinate of the max `2-margin classifier. Furthermore, in the low sample size regime,
we are likely not close to the ground truth. Therefore, the regime where the susceptibility decreases
with increasing εtr dominates in the low sample size regime.

To confirm the result of Corollary B.1, we plot the mean and standard deviation of the susceptibility
score of 5 independent experiments. The results are depicted in Figure 7. We see that for low standard
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error, when the classifier is reasonably close to the optimal classifier, the susceptibility increases
slightly with increasing adversarial budget. However, increasing the adversarial training budget, εtr,
further, causes the susceptibility score to drop greatly. Hence, we can recognize both regimes and
validate that, indeed, the second regime dominates in the low sample size setting.

B.1 PROOF OF COROLLARY B.1

We proof the statement by bounding the robustness of a linear classifier. Recall that the robustness
of a classifier is the probability that a classifier does not change its prediction under an adversarial
attack. The susceptibility score is then given by

Susc(θ̂εtr ; εte) = 1− Rob(θ̂εtr ; εte). (31)

The proof idea is as follows: since the perturbations are along the first basis direction, e1, we compute
the distance from the robust l2-max margin θ̂εtr to a point (X,Y ) ∼ P. Then, we note that the
robustness of θ̂εtr is given by the probability that the distance along e1, from X to the decision plane
induced by θ̂εtr is greater then εte. Lastly, we use the non-asymptotic bounds of Lemma A.2.

Recall, by Lemma A.1, the max l2-margin classifier is of the form of

θ̂εtr =
1√

(r − 2εtr)2 + 4γ̃2

[
r − 2εtr, 2γ̃θ̃

]
. (32)

Let (X,Y ) ∼ P. The distance along e1 from X to the decision plane induced by θ̂εtr , H(θ̂εtr), is
given by

de1(X,H(θ̂εtr)) =

∣∣∣∣∣X[1] +
1

θ̂εtr
[0]

d∑
i=2

θ̂εtr
[i]X[i]

∣∣∣∣∣ .
Substituting the expression of θ̂εtr in Equation 32 yields

de1(X,H(θ̂εtr)) =

∣∣∣∣∣X[1] + 2γ̃
1

(r − εtr)

d∑
i=2

θ̃[i]X[i]

∣∣∣∣∣ .
Let N be a standard normal distributed random variable. By definition ‖θ̃‖22 = 1 and using that a
sum of Gaussian random variables is again a Gaussian random variable, we can write

de1(X,H(θ̂εtr)) =

∣∣∣∣X[1] + 2γ̃
σ

(r − εtr)
N

∣∣∣∣ .
The robustness of θ̂εtr is given by the probability that de1(X,H(θ̂εtr)) > εte. Hence, using that
X1 = ± r2 with probability 1

2 , we get

Rob(θ̂εtr ; εte) = P

[
r

2
+ 2γ̃

σ

(r − 2εtr)
N > εte

]
+ P

[
r

2
+ 2γ̃

σ

(r − εtr)
N < −εte

]
. (33)

(a) Susceptibility score decreases with εtr (b) Robust error decomposition

Figure 7: We set r = 6, d = 1000, n = 50 and εte = 2.5. (a) The average susceptibility score and the standard
deviation over 5 independent experiments. Note how the bounds closely predict the susceptibility score. (b) For
comparison, we also plot the robust error decomposition in susceptibility and standard error. Even though the
susceptibility decreases, the robust error increases with increasing adversarial budget εtr.
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We can rewrite Equation 33 in the form

Rob(θ̂εtr ; εte) = P

[
N >

(r − 2εtr)(εte − r
2 )

2γ̃σ

]
+ P

[
N <

(r − 2εtr)(−εte − r
2 )

2γ̃σ

]
.

Recall, that N is a standard normal distributed random variable and denote by Φ the cumulative
standard normal density. By definition of the cumulative denisity function, we find that

Rob(θ̂εtr ; εte) = 1− Φ

(
(r − 2εtr)(εte − r

2 )

2γ̃σ

)
+ Φ

(
(r − 2εtr)(−εte − r

2 )

2γ̃σ

)
.

Substituting the bounds on γ̃ of Lemma A.2 gives us the non-asymptotic bounds on the robustness
score and by Equation 31 also on the susceptibility score.

C EXPERIMENTAL DETAILS ON THE LINEAR MODEL

In this section, we provide detailed experimental details to Figures 3 and 4.

We implement adversarial logistic regression using stochastic gradient descent with a learning rate of
0.01. Note that logistic regression converges logarithmically to the robust max l2-margin solution.
As a consequence of the slow convergence, we train for up to 107 epochs. Both during training and
test time we solve maxx′i∈T (xi;εtr) L(fθ(x

′
i)yi) exactly. Hence, we exactly measure the robust error.

Unless specified otherwise, we set σ = 1, r = 12 and εte = 4.

Experimental details on Figure 3 (a) We draw 5 datasets with n = 50 samples and input dimen-
sion d = 1000 from the distribution P. We then run adversarial logistic regression on all 5 datasets
with adversarial training budgets, εtr = 1 to 5. To compute the resulting robust error gap of all the
obtained classifiers, we use a test set of size 106. Lastly, we compute the lower bound given in part
2. of Theorem 3.1. (b) We draw 5 datasets with different sizes n between 50 and 104. We take
an input dimension of d = 104 and plot the mean and standard deviation of the robust error after
adversarial and standard logistic regression over the 5 samples.(c) We again draw 5 datasets for each
d/n constellation and compute the robust error gap for each dataset.

Experimental details on Figure 4 For both (a) and (b) we set d = 1000, εte = 4, and vary the
adversarial training budget (εtr) from 1 to 5. For every constellation of n and εtr, we draw 10 datasets
and show the average and standard deviation of the resulting robust errors. In (b), we set n = 50.

D EXPERIMENTAL DETAILS ON THE WATERBIRDS DATASET

In this section, we discuss the experimental details and construction of the Waterbirds dataset in
more detail. We also provide ablation studies of attack parameters such as the size of the motion blur
kernel, plots of the robust error decomposition with increasing n, and some experiments using early
stopping.

D.1 THE WATERBIRDS DATASET

To build the Waterbirds dataset, we use the CUB-200 dataset Welinder et al. (2010), which contains
images and labels of 200 bird species, and 4 background classes (forest, jungle/bamboo, water ocean,
water lake natural) of the Places dataset Zhou et al. (2017).The aim is to recognize whether or not the
bird, in a given image, is a waterbird (e.g. an albatros) or a landbird (e.g. a woodpecker). To create the
dataset, we randomly sample equally many water- as landbirds from the CUB-200 dataset. Thereafter,
we sample for each bird image a random background image. Then, we use the segmentation provided
in the CUB-200 dataset to segment the birds from their original images and paste them onto the
randomly sampled backgrounds. The resulting images have a size of 256× 256. Moreover, we also
resize the segmentations such that we have the correct segmentation profiles of the birds in the new
dataset as well. For the concrete implementation, we use the code provided by Sagawa et al. (2020).
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(a) Original (b) M = 5 (c) M = 10 (d) M = 15 (e) M = 20

Figure 8: An ablation study of the motion blur kernel size, which corresponds to the severity level of the
blur. For increasing M , the severity of the motion blur increases. In particular, note that for M = 15 and even
M = 20, the bird remains recognizable: we do not semantically change the class, i.e. the perturbations are
consistent.

D.2 EXPERIMETAL TRAINING DETAILS

Following the example of Sagawa et al. (2020), we use a ResNet50 or ResNet18 pretrained on the
ImageNet dataset for all experiments in the main text, a weight-decay of 10−4, and train for 300
epochs using the Adam optimizer. Extensive fine-tuning of the learning rate resulted in an optimal
learning rate of 0.006 for all experiments using the adversarial illumination attack and a pretrained
ResNet50. For the experiments considering the adversarial illumnination attack using a pretrained
VGG19 or Densenet121 network, we found optimal learning rates of 0.001 and 0.002 respectively.
Lastly, we found that for all experiments using the motion blur attack a learning rate of 0.0011 was
optimal. Adversarial training is implemented as suggested in Madry et al. (2018): at each iteration
we find the worst case perturbation with an exact or approximate method. In all our experiments,
the resulting classifier interpolates the training set. We plot the mean over all runs and the standard
deviation of the mean.

D.3 SPECIFICS TO THE MOTION BLUR ATTACK

Fast moving objects or animals are hard to photograph due to motion blur. Hence, when trying to
classify or detect moving objects from images, it is imperative that the classifier is robust against
reasonable levels of motion blur. We implement the attack as follows. First, we segment the bird
from the original image, then use a blur filter and lastly, we paste the blurred bird back onto the
background. We are able to apply more severe blur, by enlarging the kernel of the filter. See Figure 8
for an ablation study of the kernel size.

The motion blur filter is implemented as follows. We use a kernel of size M ×M and build the filter
as follows: we fill the row (M − 1)/2 of the kernel with the value 1/M . Thereafter, we use the 2D
convolution implementation of OpenCV (filter2D) Bradski (2000) to convolve the kernel with the
image. Note that applying a rotation before the convolution to the kernel, changes the direction of the
resulting motion blur. Lastly, we find the most detrimental level of motion blur using a list-search
over all levels up to Mmax.

(a) ε = −0.3 (b) ε = −0.2 (c) ε = −0.1 (d) Original (e) ε = 0.1 (f) ε = 0.2 (g) ε = 0.3

Figure 9: An ablation study of the different lighting changes of the adversarial illumination attack. Even though
the directed attack perturbs the signal component in the image, the bird remains recognizable in all cases.
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(a) Robust error (b) Standard error (c) Susceptibility

Figure 10: The robust error decomposition of the experiments depicted in Figure 10a. The plots depict the
mean and standard deviation of the mean over several independent experiments. We see that, in comparison
to standard training, the reduction in susceptibility for adversarial training is minimal in the low sample size
regime. Moreover, the increase in standard error of adversarial training is quite severe, leading to an overall
increase in robust error in the low sample size regime.

D.4 SPECIFICS TO THE ADVERSARIAL ILLUMINATION ATTACK

An adversary can hide objects using poor lightning conditions, which can for example arise from
shadows or bright spots. To model poor lighting conditions on the object only (or targeted to the
object), we use the adversarial illumination attack. The attack is constructed as follows: First, we
segment the bird from their background. Then we apply an additive constant ε to the bird, where the
absolute size of the constant satisfies |ε| < εte = 0.3. Thereafter, we clip the values of the bird images
to [0, 1], and lastly, we paste the bird back onto the background. See Figure 9 for an ablation of the
parameter ε of the attack. It is non-trivial how to (approximately) find the worst perturbation. We find
an approximate solution by searching over all perturbations with increments of size εte/Kmax. Denote
by seg, the segmentation profile of the image x. We consider all perturbed images in the form of

xpert = (1− seg)x+ seg(x+ ε
K

Kmax
1255×255), K ∈ [−Kmax,Kmax].

During training time we set Kmax = 16 and therefore search over 33 possible images. During test
time we search over 65 images (Kmax = 32).

D.5 EARLY STOPPING

In all our experiments on the Waterbirds dataset, a parameter search lead to an optimal weight-decay
and learning rate of 10−4 and 0.006 respectively. Another common regularization technique is early
stopping, where one stops training on the epoch where the classifier achieves minimal robust error
on a hold-out dataset. To understand if early stopping can mitigate the effect of adversarial training
aggregating robust generalization in comparison to standard training, we perform the following
experiment. On the Waterbirds dataset of size n = 20 and considering the adversarial illumination
attack, we compare standard training with early stopping and adversarial training (εtr = εte = 0.3)
with early stopping. Considering several independent experiments, early stopped adversarial training
has an average robust error of 33.5 a early stopped standard training 29.1. Hence, early stopping does
decrease the robust error gap, but does not close it.

D.6 ERROR DECOMPOSITION WITH INCREASING n

In Figure 10a and 11a, we see that adversarial training hurts robust generalization in the small sample
size regime. For completeness, we plot the robust error composition for adversarial and standard
training in Figure 10. We see that in the low sample size regime, the drop in susceptibility that
adversarial training achieves in comparison to standard training, is much lower than the increase in
standard error. Conversely, in the high sample regime, the drop of susceptibility from adversarial
training over standard training is much bigger than the increase in standard error.

D.7 DIFFERENT ARCHITECTURES

For completeness, we also performed similar experiments on the waterbirds dataset using the ad-
versarial illumination attack with different network architectures as with the pretrained ResNet50
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(a) Robust error (b) Standard error (c) Susceptibility

Figure 11: The robust error decomposition of the experiments depicted in Figure 6. The plots depict the
mean and standard deviation of the mean over several independent experiments. We see that, in comparison
to standard training, the reduction in susceptibility for adversarial training is minimal in the low sample size
regime. Moreover, the increase in standard error of adversarial training is quite severe, leading to an overall
increase in robust error in the low sample size regime.

network. In particular, we considered the following pretrained network architectures: VGG19 and
Densenet121. See Figure 12 for the results. We observe that accros models, adversarial training hurts
in the low sample size regime, but helps when enough data is available.

(a) VGG19 (b) Densenet121

Figure 12: The robust error of adversarial training and standard training with increasing sample size using the
adversarial illumination attack with εte = 0.3. We depict the mean and the standard deviation of the mean for
multiple runs. Observe that across models, adversarial training hurts in the low sample size regime, but helps
when enough samples are available.

D.8 UNDIRECTED ATTACKS ON THE WATERBIRDS DATASET

In this section, we analyse adversarial training for `2-and `∞-ball perturbations in the small sample
size regime. We observe that while adversarial training hurts standard generalization, it helps robust
generalization.

Adversarial training with `2-balls We train and test with small `2-balls, εte = 0.2, such that
the networks trained with standard training achieve a non-zero robust accuracy and the networks
trained with adversarial training achieve non-trivial standard accuracy. We see in Figure 13, that
adversarial training with `2-balls hurts standard generalization while increasing robust generalization.
Moreover, in Figure 14, we see that also in the very small sample size regime, adversarial training
with increasing εtr increases the standard error, but reduces the susceptibility.

Adversarial training with `∞-balls We also consider `∞-ball perturbation. We see in Figure 15
that even the smallest perturbation budget εte = 2

255 , standard training has robust error of 100 percent.
On the other hand, adversarial training achieves low, but non-zero robust error.

Experimental details We use an ImageNet pretrained ResNet34 and train for 300 epochs. More-
over, for reliable robust error and susceptibility evaluation of the attacks we use AutoAttack Croce &
Hein (2020). All networks were trained such that the network interpolates the training dataset and has
low robust error with non-trivial standard error. For the networks trained using standard training we
use a learning rate of 0.006 and for the networks trained with adversarial training we used a learning
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(a) Robust error (b) Standard error (c) Susceptibility

Figure 13: The robust error decomposition of adversarial training with `2-balls of size εtr = 0.2 and test
adversaries with `2-balls of size εte = 0.2. The plots depict the mean and standard deviation of the mean over
several independent experiments. We see that even though adversarial training hurts standard generalization, it
increases robust generalization as it decreases the susceptibility of the classifiers.

Figure 14: The robust error decomposition of adversarial training in function of εtr in the small sample size
regime n = 20. We see that even though adversarial training hurts standard generalization, it increases robust
generalization as it decreases the susceptibility of the classifiers with increasing εtr. We take n = 20 and consider
test adversaries with `2-balls of size εte = 0.2. The plots depict the mean and standard deviation of the mean
over several independent experiments.

(a) Robust error (b) Standard error (c) Susceptibility

Figure 15: The robust error decomposition of adversarial training with `∞-balls of size εtr =
2

255
and test

adversaries with `∞-balls of size εte =
2

255
. The plots depict the mean and standard deviation of the mean over

several independent experiments. We see that even though adversarial training hurts standard generalization, it
increases robust generalization as it decreases the susceptibility of the classifiers.

rate of 5 · 10−4. We also trained with a weight decay of 10−4, a batch size of 8 and a momentum of
0.9 for all networks. We train at least 3 networks for all settings and report the mean and standard
deviation of the mean of the standard error, robust error and susceptibility over the three runs.

E EXPERIMENTAL DETAILS ON CIFAR-10

In this section, we give the experimental details on the CIFAR-10-based experiments shown in
Figures 1 and 17.

Subsampling CIFAR-10 In all our experiments we subsample CIFAR-10 to simulate the low
sample size regime. We ensure that for all subsampled versions the number of samples of each class
are equal. Hence, if we subsample to 500 training images, then each class has exactly 50 images,
which are drawn uniformly from the 5k training images of the respective class.
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Mask perturbation on CIFAR-10 On CIFAR-10, we consider the square black mask attack where
the adversary can mask a square in the image of size εte × εte by setting the pixel values zero. To
ensure that the mask cannot cover all the information about the true class in the image, we restrict
the size of the masks to be at most 2 × 2, while allowing for all possible locations of the mask in
the targeted image. For exact robust error evaluation, we perform a full grid search over all possible
locations during test time. We show an example of a black-mask attack on each of the classes in
CIFAR-10 in Figure 16.

During training, a full grid search is computationally intractable so that we use an approximate attack
similar to Wu et al. (2020) during training time: by identifying the K = 16 most promising mask
locations with a heuristic as follows. First, we identify promising mask locations by analyzing the
gradient, ∇xL(fθ(x), y), of the cross-entropy loss with respect to the input. Masks that cover part
of the image where the gradient is large, are more likely to increase the loss. Hence, we compute
the K mask locations (i, j), where ‖∇xL(fθ(x), y)[i:i+2,j:j+2]‖1 is the largest and take using a full
list-search the mask that incurs the highest loss. Our intuition from the theory predicts that higher K,
and hence a more exact “defense”, only increases the robust error of adversarial training, since the
mask could then more efficiently cover important information about the class.

Figure 16: We show an example of a mask perturbation for all 10 classes of CIFAR-10. Even though the attack
occludes part of the images, a human can still easily classify all images correctly.

Figure 17: The robust error decomposition
in standard error and susceptibility for vary-
ing attack strengthsK. We see that the larger
K, the lower the susceptibility, but the higher
the standard error.

Experimental training details For all our experiments
on CIFAR-10, we adjusted the code provided by Phan
(2021). As typically done for CIFAR-10, we augment the
data with random cropping and horizontal flipping. For
the experiments with results depicted in Figures 1 and
17, we use a ResNet18 network and train for 100 epochs.
We tune the parameters learning rate and weight decay
for low robust error. For standard standard training, we
use a learning rate of 0.01 with equal weight decay. For
adversarial training, we use a learning rate of 0.015 and
a weight decay of 10−4. We run each experiment three
times for every dataset with different initialization seeds,
and plot the average and standard deviation over the runs.

For the experiments in Figure 1 and 18 we use an attack
strength of K = 4. Recall that we perform a full grid
search at test time and hence have a good approximation
of the robust accuracy and susceptibility score.

Increasing training attack strength We investigate the influence of the attack strength K on the
robust error for adversarial training. We take εtr = 2 and n = 500 and vary K. The results are
depicted in Figure 17. We see that for increasing K, the susceptibility decreases, but the standard
error increases more severely, resulting in an increasing robust error.

Robust error decomposition In Figure 1, we see that the robust error increases for adversarial
training compared to standard training in the low sample size regime, but the opposite holds when
enough samples are available. For completeness, we provide a full decomposition of the robust error
in standard error and susceptibility for standard and adversarial training. We plot the decomposition
in Figure 18.

F STATIC HAND GESTURE RECOGNITION

The goal of static hand gesture or posture recognition is to recognize hand gestures such as a pointing
index finger or the okay-sign based on static data such as images Oudah et al. (2020); Yang et al.

26



Published as a conference paper at ICLR 2023

(2013). The current use of hand gesture recognition is primarily in the interaction between computers
and humans Oudah et al. (2020). More specifically, typical practical applications can be found in the
environment of games, assisted living, and virtual reality Mujahid et al. (2021). In the following, we
conduct experiments on a hand gesture recognition dataset constructed by Mantecón et al. (2019),
which consists of near-infrared stereo images obtained using the Leap Motion device. First, we
crop or segment the images after which we use logistic regression for classification. We see that
adversarial logistic regression deteriorates robust generalization with increasing εtr.

Static hand-gesture dataset We use the dataset made available by Mantecón et al. (2019). This
dataset consists of near-infrared stereo images taken with the Leap Motion device and provides
detailed skeleton data. We base our analysis on the images only. The size of the images is 640× 240
pixels. The dataset consists of 16 classes of hand poses taken by 25 different people. We note that
the variety between the different people is relatively wide; there are men and women with different
posture and hand sizes. However, the different samples taken by the same person are alike.

We consider binary classification between the index-pose and L-pose, and take as a training set
30 images of the users 16 to 25. This results in a training dataset of 300 samples. We show two
examples of the training dataset in Figure 19, each corresponding to a different class. Observe that
the near-infrared images darken the background and successfully highlight the hand-pose. As a test
dataset, we take 10 images of each of the two classes from the users 1 to 10 resulting in a test dataset
of size 200.

Cropping the dataset To speed up training and ease the classification problem, we crop the images
from a size of 640×240 to a size of 200×200. We crop the images using a basic image segmentation
technique to stay as close as possible to real-world applications. The aim is to crop the images such
that the hand gesture is centered within the cropped image.

For every user in the training set, we crop an image of the L-pose and the index pose by hand. We call
these images the training masks {masksi}20i=1. We note that the more a particular window of an image
resembles a mask, the more likely that the window captures the hand gesture correctly. Moreover, the
near-infrared images are such that the hands of a person are brighter than the surroundings of the
person itself. Based on these two observations, we define the best segment or window, defined by the
upper left coordinates (i, j), for an image x as the solution to the following optimization problem:

arg min
i∈[440], j∈[40]

20∑
l=1

‖masksl − x{i:i+200,j:j+200}‖22 −
1

2
‖x{i+w,j+h}‖1. (34)

Equation 34 is solved using a full grid search. We use the result to crop both training and test images.
Upon manual inspection of the cropped images, close to all images were perfectly cropped. We
replace the handful poorly cropped training images with hand-cropped counterparts.

Square-mask perturbations Since we use logistic regression, we perform a full grid search to find
the best adversarial perturbation at training and test time. For completeness, the upper left coordinates

(a) Robust error (b) Standard error (c) Susceptibility

Figure 18: The robust error decomposition in standard error and susceptibility of the subsampled datasets of
CIFAR-10 after adversarial and standard training. For small sample size, adversarial training has higher robust
error then standard training.
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(a) L pose (b) Index pose

Figure 19: Examples of the original images of the considered hand-gestures. We recognize the ”L”-sign in
Figure 19a and the index sign in Figure 19b. Observe that the near-infrared images highlight the hand pose well
and blends out much of the non-useful or noisy background.

(a) Cropped L pose (b) Cropped index pose (c) Black-mask perturbation

Figure 20: Examples of the cropped hand-gesture images. We see that the hands are centered and the images
have a size of 200× 200. In Figure 20c we show an example of the square black-mask perturbation.

of the optimal black-mask perturbation of size εtr × εtr can be found as the solution to

arg max
i∈[200−εtr], j∈[200−εtr]

∑
l,m∈[εtr]

θ[i:i+l,j:j+m]. (35)

The algorithm is rather slow as we iterate over all possible windows. We show a black-mask
perturbation on an L-pose image in Figure 20c.

Results We run adversarial logistic regression with square-mask perturbations on the cropped
dataset and vary the adversarial training budget and plot the result in Figure 21. We observe attack
that adversarial logistic regression deteriorates robust generalization.

Because we use adversarial logistic regression, we are able to visualize the classifier. Given the
classifier induced by θ, we can visualize how it classifies the images by plotting θ−mini∈[d] θ[i]

maxi∈[d] θ[i]
∈

[0, 1]d. Recall that the class-prediction of our predictor for a data point (x, y) is given by sign(θ>x) ∈
{±1}. The lighter parts of the resulting image correspond to the class with label 1 and the darker
patches with the class corresponding to label −1.

Figure 21: The standard error and robust
error for varying adversarial training budget
εtr. We see that the larger εtr the higher the
robust error.

We plot the classifiers obtained by standard logistic re-
gression and adversarial logistic regression with training
adversarial budgets εtr of 10 and 25 in Figure 22. The
darker parts in the classifier correspond to patches that
are typically bright for the L-pose. Complementary, the
lighter patches in the classifier correspond to patches that
are typically bright for the index pose. We see that in
the case of adversarial logistic regression, the background
noise is much higher than for standard logistic regression.
In other words, adversarial logistic regression puts more
weight on non-signal parts in the images to classify the
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training dataset and hence exhibits worse performance on
the test dataset.

(a) εtr = 0 (b) εtr = 10 (c) εtr = 25

Figure 22: We visualize the logistic regression solutions. In Figure 22a we plot the vector that induces the
classifier obtained after standard training. In Figure 22b and Figure 22c we plot the vector obtained after training
with square-mask perturbations of size 10 and 25, respectively. We note the non-signal enhanced background
correlations at the parts highlighted with the red circles in the image projection of the adversarially trained
classifiers.

29


	Introduction
	Robust classification
	Theoretical results
	Setting
	Main results
	Proof intuition
	Generality of the results

	Real-world experiments
	Datasets and models
	Implementation of the directed attacks
	Adversarial training can hurt robust generalization
	Discussion

	Related work
	Summary and future work
	Acknowledgements
	Theoretical statements for the linear model
	Proof of Theorem 3.1
	Proof of Corollary 3.2
	Proof of Lemma A.1
	Proof of Lemma A.2
	Upper bound
	Lower bound


	Bounds on the susceptibility score
	Proof of Corollary B.1

	Experimental details on the linear model
	Experimental details on the Waterbirds dataset
	The waterbirds dataset
	Experimetal training details
	Specifics to the motion blur attack
	Specifics to the adversarial illumination attack
	Early stopping
	Error decomposition with increasing n
	Different architectures
	Undirected attacks on the Waterbirds dataset

	Experimental details on CIFAR-10
	Static hand gesture recognition

