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ABSTRACT

1-bit gradient compression and local steps are two representative techniques that
enable drastic communication reduction in distributed SGD. Their benefits, however,
remain an open question on Adam-based large model pre-training (e.g. BERT
and GPT). In this paper, we demonstrate the non-linearity in Adam causes slow
convergence even when 1-bit compression or local steps are individually applied.
To alleviate this limitation, we propose 0/1 Adam that linearizes each Adam step via
approximating its optimizer states using their stale estimates and linear correlation.
0/1 Adam performs an Adam-like step to preserve the adaptivity, while its linearity
allows utilizing 1-bit compression and local steps simultaneously for wall-clock
time speed up. We provide convergence guarantee for 0/1 Adam on smooth
non-convex objectives. On various large-scale benchmarks such as BERT-Base,
BERT-Large, GPT-2 pre-training and ImageNet, we demonstrate on up to 128 GPUs
that 0/1 Adam is able to reduce up to 87% of data volume, 54% of communication
rounds, and achieve up to 2× higher training throughput and end-to-end training
time reduction compared to the state-of-the-art baseline 1-bit Adam; while enjoying
the same statistical convergence speed and end task model accuracy on GLUE
dataset and ImageNet validation set.

1 INTRODUCTION

Over the past few years, we have witnessed outstanding performance of foundation models on many ap-
plications. However, these models, including BERT Devlin et al. (2018) and GPT Radford et al. (2019a);
Brown et al. (2020), usually have hundreds of millions or even billions of parameters and require to be
trained on massive GPUs. For example, the largest dense transformer model, 530B MT-NLG Smith et al.
(2022), was trained over 4000 GPUs in more than a month. At this scale, the expensive communication
overhead across computing processors and servers hinders the scalability (Alistarh et al., 2017).

1-bit gradient compression and local steps are two representative methods to mitigate the commu-
nication bottleneck. 1-bit compression drastically reduces the communication volume by quantizing
each value in gradients with ultra-low bits (i.e., as low as 1 bit) Seide et al. (2014); Bernstein et al.
(2018a); and local steps alternatively saves the bandwidth by periodically skipping communication
rounds(Stich, 2018). While these techniques demonstrate tremendous success on distributed SGD,
their benefits over large-scale Adam-based model training, such as for BERT and GPT pre-training,
remains an open question (Kingma and Ba, 2014; Wang et al., 2019a). Comparing to SGD where the
model parameters are linearly dependent on the gradients, the non-linearity in Adam updates (Kingma
and Ba, 2014) limits the direct usage of compression or local steps. In particular, this non-linearity
incurs two challenges: 1) when aggressively compressing the gradient such as with 1-bit quantizer,
all the coordinate-wise effect learning rate will become the same value, so that Adam no longer enjoys
adaptive and fast convergence; 2) to ensure all parallel workers reach consensus on the optimizer
states, which is critical for convergence, the existence of non-linearity incurs the overhead of iteratively
synchronizing the states when using local steps.

Tang et al. (2021) undertook the first investigation of fixing this non-linearity towards compression
and proposed 1-bit Adam. The algorithm follows a two-stage training paradigm: first run Adam
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with full-precision communication (full-precision stage1); and then switch to 1 bit when the variance
becomes stable (compression stage). While this paradigm avoids compressing non-linear information
with a one-time frozen variance, the experimental results from (Tang et al., 2021) indicate the full-
precision stage still incurs non-trivial overhead. Furthermore, 1-bit Adam is restricted in the scope of
gradient compression, and cannot be trivially adapted when other techniques are used, such as local
steps. Besides, the empirical success of (Tang et al., 2021) was not substantiated on GPT-style models,
for instance, 175B GPT-3 Brown et al. (2020), 530B MT-NLG Smith et al. (2022), etc.

In this paper, we address this gap by proposing 0/1 Adam. 0/1 Adam breaks the barrier of non-linearity
from two aspects: first it adaptively freezes variance, so that given agreement on a stale variance
state, the parallel workers only need to communicate momentum that is linearly dependent on the
model update; This technique allows reducing the previous two-stage compression scheme to a unified
single stage; 2) it leverages the insight that in adjacent Adam steps, the changes to optimizer states are
generally bounded, so that with frozen variance, parallel workers can linearly approximate momentum
and parameter updates locally without additional synchronization. This further pushes the limit of
communication reduction towards its extreme, achieving the state-of-the-art speed up for large-scale
model training. To summarize, our contributions are as follows:

• We propose 0/1 Adam, which addresses the limitations of previously proposed 1-bit Adam when
applying aggressive 1-bit quantization and local steps (Section 4).

• We provide convergence guarantee of 0/1 Adam on smooth and non-convex objectives (Section 5).
• We conduct experiments on a wide range of large-scale model training tasks, including BERT-Base,

BERT-Large, GPT-2 pre-training and ImageNet. We demonstrate on up to 128 GPUs that 0/1 Adam
is able to reduce up to 87% of data volume, 54% of communication rounds, and achieve up to 2×
higher throughput and training time reduction compared to the state-of-the-art 1-bit Adam without
compromising end-to-end model accuracy (Section 6).

• The 0/1 Adam optimizer and corresponding experimental scripts (e.g. BERT pre-training and GLUE
finetuning) have been open sourced in a deep learning optimization library called DeepSpeed2.

2 RELATED WORK

Communication-efficient training. There has been various lines of research focusing on improving
communication efficiency in large-scale training, such as using asynchrony (Niu et al., 2011; Lian et al.,
2015; Xie et al., 2020), decentralization (Lian et al., 2017; Lu and De Sa, 2021), gradient quantization
(Alistarh et al., 2017; Wen et al., 2017), gradient sparsification (Wangni et al., 2017; Wang et al., 2018a),
local steps (Stich, 2018; Lin et al., 2018), etc. In this paper we study the aggressive 1-bit compression,
which was first introduced in (Seide et al., 2014) to speed up speech model training, where an algorithm
called 1-bit SGD is proposed. After that, Wen et al. (2017) proposes adding 0 as an additional numerical
level and Liu et al. (2018) discusses the use of zero-th order oracle in 1-bit SGD. Chen et al. (2019a);
Balles and Hennig (2018); Xu and Kamilov (2019) study the correlation and combination between
1-bit SGD and other techniques. Convergence analysis on 1-bit SGD is given in (Bernstein et al., 2018a;
Karimireddy et al., 2019; Safaryan and Richtárik, 2021). Bernstein et al. (2018b); Sohn et al. (2019);
Le Phong and Phuong (2020); Lyu (2021) investigate the robustness of 1-bit SGD. Among all the
variants of 1-bit communication, the design with error feedback mechanism has shown to work best
both empirically (Seide et al., 2014) and theoretically (Karimireddy et al., 2019). Other lines of research
applies 1-bit communication to various scenarios such as federated learning (Jin et al., 2020; Yue et al.,
2021), decentralized learning (Lu and De Sa, 2020; Koloskova et al., 2019), meta learning (Fan et al.,
2021), etc. Perhaps the closest works to this paper are (Tang et al., 2021; Li et al., 2021a), which propose
using two-stage training to enable 1-bit Adam and 1-bit Lamb, respectively. Different from those
two work, 0/1 Adam addresses non-linearity challenges in adaptive optimizers by considering both
extreme quantization and local steps. Furthermore, we also study how to apply extreme communication
compression on GPT-style models, which to the best our knowledge is still under-explored.

Adaptive learning rate optimizers. One of the most popular adaptive optimizers is Adam, which
was first introduced in (Kingma and Ba, 2014). It uses both first and second moment information of
stochastic gradient to perform optimizer steps and has shown significant benefits on training deep

1In the original 1-bit Adam paper, this stage is referred to as warmup stage. We use a slightly different term
to avoid confusion with learning rate warmup.

2https://github.com/microsoft/DeepSpeed
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(a) ∥vt−vt−1∥ (b) ∥v(0)
t −vt∥ (c) ∥mt−mt−1∥ (d) ∥m(0)

t −mt∥

Figure 1: Momentum and variance Profiling for BERT-Large sequence 128 pretraining with original
Adam using 64 GPUs. For variance, we profile two types of metrics: the first is the difference between
local and global variance: ∥v(0)

t −vt∥, where v(0)
t and vt denotes the variance term computed via local

gradient on worker-0 and the gradient from full-precision AllReduce, respectively. We also profile
the variance difference in adjacent step ∥vt−vt−1∥. Similarly, we profile the same two metrics for
the momentum.

learning models. Reddi et al. (2019) spots the issue of Adam convergence and provides a variant
called AMSGrad while Zaheer et al. (2018) argues the Adam only converges with large batch sizes.
Multiple lines of theoretical study on Adam are given in (Fang and Klabjan, 2019; Alacaoglu et al.,
2020; Défossez et al., 2020). Additionally, Chen et al. (2018); Zhou et al. (2018a); Lu et al. (2020);
Danilova et al. (2020); Zou et al. (2019) provide more general analysis on Adam-type optimizers.
Subsequently, other variants of Adam are proposed in (Luo et al., 2019; Chen et al., 2019b; Huang
et al., 2018; Wang et al., 2019b; Zhou et al., 2018b; Zhuang et al., 2021; 2020). Unlike these methods,
which focus on improving the convergence of generic optimizations for DNN models, our work studies
how to maximize the communication efficiency of Adam in large-scale distributed training settings.

3 A CLOSER LOOK AT NON-LINEARITY IN ADAM

In this section, we provide a more formal description on the problem setting and illustrate the
limitations from the original Adam and the state-of-the-art 1-bit Adam (Tang et al., 2021).

Problem Formulation. In this paper, we consider the following optimization problem:
min
x∈Rd

f(x)=Eζ∼Df(x;ζ). (1)

where x denotes the d-dimensional model. D denotes the training set and f(x;ζ) is the loss incurred
over sample ζ given model parameters x. The structure of the problem naturally captures many of
the model training problems.

The non-linearity in Adam. At step t≥0, denote xt and gt as the model parameters and stochastic
gradient computed at step t, respectively. The update formula of SGD and Adam3 can be summarized as:

SGD update: xt+1←xt−γgt. (2)
Adam update: mt+1←β1mt+(1−β1)gt,

vt+1←β2vt+(1−β2)(gt)
2,

xt+1←xt−
γ√
vt+ϵ︸ ︷︷ ︸

effective learning rate

·mt, (3)

where γ is the learning rate, ϵ is a small constant to prevent zero division, β1 and β2 are tunable
decaying factors. The linearity in SGD update implies when using compression or local steps, the
potential noise from (accumulated) gradients is in the order of O(γ), which approaches zero when
learning rate is decaying or set to be small. By comparison, the two auxiliary optimizer states in Adam,
momentum (m) and variance (v), introduce non-linearity in the model update.

Equation (3) gives the formula of Adam when running it sequentially. In a distributed setting with
n workers, gt in Equation (3) is often computed in parallel on different workers. Mathematically, if
we denote g(i)

t as the stochastic gradient computed on the i-th worker at step t, then distributed Adam

3Note that in Adam, operations like division should act element-wise.
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can be written as replacing gt with 1/n
∑n

i=1g
(i)
t in Equation (3) as follows:

mt+1←β1mt+(1−β1)
(
1/n

∑n

i=1
g
(i)
t

)
, vt+1←β2vt+(1−β2)

(
1/n

∑n

i=1
g
(i)
t

)2
.

Issue with non-linearity on 1-bit compression. The main bottleneck in running distributed Adam
is the accumulation of 1/n

∑n
i=1g

(i)
t since the gradients are usually high-dimensional. Based on the

profiling results from (Tang et al., 2021; Li et al., 2021a), the communication of gradients could take
up to 94% of the total training time on modern clusters. Gradient compression mitigates this issue by
sending and averaging gradients with fewer bits. However, in Adam this causes the loss on the learning
rate adaptivity. Consider using the aggressive 1-bit compression (Liu et al., 2018), which sends each
gradient with only signs and a shared, usually the average over all the coordinates, magnitude. More
specifically, denote C[·] as the 1-bit compression, then

C[a]= ∥a∥1
d
·sign(a),∀a∈Rd. (4)

It is straightforward to observe that naively applying 1 bit to compress gradients in the original Adam
loses coordinate-wise adaptivity since sharing magnitude makes all the coordinates-wise learning
rate γ/

√
vt+ϵ the same value. This makes Adam no difference than momentum SGD.

Issue with non-linearity on local steps. In SGD (Equation (2)), the model updates are linearly
dependent on the gradients and has zero additional states. It implies with local steps, the parallel
workers can entirely reach consensus after a single round of synchronization, even with compression
(Basu et al., 2020). However, in Adam simply synchronizing the model can still leave the momentum
and variance out-of-sync. This makes parallel workers fail to capture the global adaptivity when the
system scales up. To give a more concrete example, we profile a full run of BERT-Large pre-training
with original Adam, and summarize different metrics of momentum and variance in Figure 1. As
shown in Figure 1(d) and 1(b), the difference between local and global optimizer states, momentum
and variance, remain constants and do not decrease to zero.

1-bit Adam and its limitations. 1-bit Adam (Tang et al., 2021) is a state-of-the-art solution that
addresses non-linearity in 1-bit compression. 1-bit Adam adopts a pre-conditioned variance state from
running original Adam for T0 steps first. The intuition there is that at later stage of training, the variance
state becomes stable so that vT0

can be a good approximation of variance state for the remaining steps.
As paritally illustrated in Section 1, the full-precision stage of 1-bit Adam still presents non-trivial
overhead. For instance: as illustrated in (Tang et al., 2021), when training BERT-Large on 64 GPUs
using Ethernet, while the full-precision stage contains 15% of the total steps, it can take more than
50% of the entire training in terms of the wall-clock time4. Additionally, 1-bit Adam is restricted in
the scope of compression, how it handles other techniques such as local steps remains open question.

4 0/1 ADAM

In this section, we give the full description of 0/1 Adam. To maximize the communication efficiency,
ideally we want an algorithm that enables adaptive convergence like Adam, while allowing aggressive
compression (e.g. 1 bit) and requires no additional synchronization on the optimizer states when using
local steps. 0/1 Adam solves this problem from two aspects.

Adaptive Variance Freezing. To begin with, 0/1 Adam creates a linear environment that freezes
the variance adaptively. The intuition is leveraged from the observation in Figure 1(a): the change of
variance over steps in Adam is generally smooth. While 1-bit Adam captures a reasonable variance
estimate via one-time freezing, it is reasonable to also presume that before its freezing point, the variance
within several adjacent steps will stay close due to its smoothness. This motivates us to extend the
one-time freezing policy in 1-bit Adam into an adaptive one, by letting workers agree upon the freezing
points from a given step index set Tv⊆{0,···,T−1}. The frozen variance creates multiple intervals
over training, during which the workers have agreement on the denominator (Equation (3)) and the only
uncertainty is then left in the nominator that is linearly dependent on the model update, just like SGD.

4Concretely, it shows in (Tang et al., 2021) Section 7.1 that to train BERT-Large on 64 GPUs using Ethernet,
the full-precision Adam takes 174.3 hours in total while 1-bit Adam takes 51.5 hours. By a simple calculation,
we know that full-precision stage of 1-bit Adam takes approximately 26.37 hours while the compression stage
takes 25.13 hours.
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Algorithm 1 Proposed 0/1 Adam Algorithm

Require: local model on the i-th node x
(i)
0 , learning rate {γt}Tt=1, m0 = 0, v0 = 0, auxiliary buffer u0 = 0,

total number of iterations T , decaying factor β1, β2 from Adam, numerical constant ϵ, variance update step
index set Tv , synchronization step index set Tu, the most recent step with synchronization t′=0.

1: for t=0,···,T−1 do
2: Compute local stochastic gradient g(i)

t .
3: Update momentum: m(i)

t+ 1
2

=β1m
(i)
t +(1−β1)g

(i)
t .

4: Update model: x(i)

t+ 1
2

=x
(i)
t −γtm

(i)
t /

√
vt+ϵ.

5: Update buffer: u(i)

t+ 1
2

=u
(i)
t +γtm

(i)
t .

6: if t∈Tu then
7: Perform 1-bit AllReduce: ut+ 1

2
= 1bit-AllReduce

(
u

(i)

t+ 1
2

)
.

8: Approximate momentum with compressed buffer: m(i)
t+1=ut+ 1

2
/
∑t

h=t′γh.

9: Update model with compressed buffer: x(i)
t+1=x

(i)

t′ −ut+ 1
2
/
√
vt+ϵ.

10: Reset the auxiliary buffer: u(i)
t+1=0.

11: Update the synchronization step: t′= t.
12: else
13: x

(i)
t+1=x

(i)

t+ 1
2

; m(i)
t+1=m

(i)

t+ 1
2

; u(i)
t+1=u

(i)

t+ 1
2

.

14: end if
15: if t∈Tv then
16: Perform full-precision AllReduce: gt = AllReduce

(
g
(i)
t

)
.

17: Update the variance: vt+1=β2vt+(1−β2)(gt)
2.

18: else
19: Use the stale variance for the next iteration: vt+1=vt.
20: end if
21: end for
22: return xT .

Including 1-bit Compression and Local Steps. With frozen variance, we make another observation
based on Equation (3) that the model difference on workers will be linearly dependent to the momentum.
So that, the momentum can be approximated locally rather than synchronized additionally based on
the communicated model difference, given the premise that the change of momentum is not abrupt
within close steps. Formally, denote x(i)

t , m(i)
t , v(i)

t as the model, momentum, variance on worker
i at step t, respectively. Suppose all the workers are synchronized at step t′, then with frozen variance
v over all the workers,

u
(i)
t =

∑t

k=t′
γkm

(i)
k Actual sent tensors in the communication.

x
(i)
t+1=x

(i)
t′ −

1/n
∑n

i=1u
(i)
t√

v+ϵ
Sync model parameters with the sent tensors.

m
(i)
t+1≈

1/n
∑n

i=1u
(i)
t∑t

k=t′γk
Approximate momentum via linear estimates via sent tensor.

where we omit the compression part for brevity. Combined with compression, we provide the full
description of 0/1 Adam5 in Algorithm 1. Note that here we defer the details of 1-bit compression
to Appendix A and treat it as a black-box procedure named 1bit-AllReduce while the original
full-precision AllReduce is referred to as AllReduce.

We also remark that although both techniques appear to be natural, to the best of our knowledge, we
are the first to apply them to addressing the non-linearity challenges in 1-bit compression and local
steps for maximizing the communication efficiency of Adam optimizer.

5The name comes from the fact that the algorithm can potentially reduce the per-parameter volume to some
number between 0 and 1 bit on average.
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5 CONVERGENCE ANALYSIS

In this section, we provide the convergence guarantee for 0/1 Adam (Algorithm 1) under arbitrary
freezing policy Tv and local steps policy Tu. In the main paper, we provides the convergence rate
in the general case. However, different Tv or Tu gives us the opportunity to obtain tighter bounds.
We leave these discussion in the appendix. We start by making the following assumptions.
Assumption 1. Lipschitzian gradient: f(·) is assumed to be with L-Lipschitzian gradients, which
means ∥∇f(x)−∇f(y)∥≤L∥x−y∥,∀x,∀y.

Assumption 2. Bounded variance: The stochastic gradient computed on each worker is unbiased
and has bounded variance:Eζ∼D∥∇f(x;ζ)−∇f(x)∥2≤σ2, ∀x.

Assumption 3. Bounded gradient: The infinity norm of stochastic gradient is bounded by a constant
G∞>0 such that ∥gt∥∞≤G∞,∀t.
Assumption 4. Compression error in Algorithm 1: For arbitrary x∈Rd, there exists a constant
∆, such that the output of compressor C[·] has the following error bound: E∥C[x]−x∥2≤∆2.

Assumption 5. Given ordered set Tu, denote tj as the j-th element in Tu, we assume there exists
a constant H≥0, it holds that max1≤j<|Tu|(tj+1−tj)≤H .

Remarks on the assumptions. Assumption 1, 2 and 3 are standard in the domain of non-convex
optimization. Comparing with the 1-bit Adam paper (Tang et al., 2021), we do not explicitly assume
the uniform lower bound on the variance coordinate, i.e., e⊤j v>vmin>0,∀j for some constant vmin.
Instead we assume an infinity-norm bound on the gradient as in Assumption 3 which is more realistic.
Assumption 4 is also assumed in (Tang et al., 2021), in the appendix we discuss the variant of 0/1
Adam that converges with weaker condition on the C.

The convergence for Algorithm 1 is then given in the follow theorem.
Theorem 1. Under Assumption 1 to 5, let m = |Tv|, select β1, β2 ∈ [0, 1) that fulfills
m≤ log(1−β1)/log(β2), if we run Algorithm 1 with a constant learning rate: for all t≥0

γt=min

{√
n

σ2T
,

1

4L
√
G2

∞+ϵ
,
2
√
G2

∞+ϵ

L
,
1

6

}
,

then it holds that
1

T

T−1∑
t=0

E∥∇f(x̃t)∥2≤O

(
σ√
nT

+
H2∆2(m+n)

T
+

1

T

)
,

where x̃t=1/n
∑n

i=1x
(i)
t and we omit f(0)−infx∈Rdf(x), G∞, d, ϵ, β1, β2 and L as constants.

Theorem 1 shows that 0/1 Adam Algorithm 1 essentially admits the same convergence rate as
distributed SGD in the sense that it achieves linear speed up, at rate 1/O(

√
nT ). The effect of

compression (∆) and local steps (H) only appears on a non-dominating term.

6 EXPERIMENTS

In this section we evaluate the performance of 0/1 Adam over several large-scale model training tasks
comparing with baselines (1-bit Adam (Tang et al., 2021) and original Adam (Kingma and Ba, 2014)).
Since Tang et al. (2021) already demonstrated that 1-bit Adam has similar statistical results to Adam, we
omit the comparison of end-to-end model accuracy to Adam for brevity. Throughout the experiments,
we enable FP16 training for all the tasks following (Tang et al., 2021). That makes the full-precision
communication (including Adam, full-precision stage in 1-bit Adam and full-precision AllReduce
in 0/1 Adam) use 16-bit per number. We use the 1-bit compressor (Equation (4)) in 0/1 Adam.

Experimental details. We adopt the following tasks for the evaluation: BERT-Base (L=12, H=768,
A=12, 110M params) and BERT-Large (L=24, H =1024, A=16, 340M params) pre-training,
training Resnet18 (12M params) on ImageNet (He et al., 2016) and GPT-2 pre-training. For BERT
model, we use the same dataset as (Devlin et al., 2018), which is a concatenation of Wikipedia and
BooksCorpus with 2.5B and 800M words respectively. We use the GLUE fine-tuning benchmark (Wang
et al., 2018b) to evaluate the convergence of the BERT models trained by different algorithms. For
ImageNet, we adopt ImageNet-1k dataset, which contains 1.28M images for training and 50K images

6
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(a) BERT-Base pretraining seq128

(b) BERT-Large pretraining seq128

(c) Resnet18 on ImageNet

Figure 2: Sample-wise and time-wise convergence for BERT-Base/Large pre-training sequence length
128 and Resnet18 pretraining on ImageNet using 128 GPUs on the Ethernet cluster. Note that the
time on the right side is measured on both algorithms processing the same number of samples.

(a) BERT-Base (Ethernet)
batch size=4096

(b) BERT-Large (Ether-
net) batch size=4096

(c) BERT-Large (Infini-
Band) batch size=4096

(d) ImageNet (Ethernet)
batch size=256

Figure 3: End-to-end average throughput for BERT-Base/Large pre-training sequence length 128
and Resnet18 pretraining on ImageNet using 128 V100 GPUs on the Ethernet/InfiniBand cluster. Note
that since for ImageNet, both batch size (256) and model (Resnet18) are small compared to BERT,
and its parallelism speed up will be limited if applied to the same large system on BERT (128 GPUs).
And so we test it for 4 to 32 GPUs in Figure (d).

for validation (Deng et al., 2009). For GPT-2 we adopt the model from its original paper (Radford et al.,
2019b), which contains 117M parameters (48 layers, 1600 hidden size, 25 attention heads). For training
data, we adopt the same dataset blend as in (Shoeybi et al., 2019): Wikipedia (Devlin et al., 2018),
CC-Stories (Trinh and Le, 2018), RealNews (Zellers et al., 2019), and OpenWebtext (Radford et al.,
2019b). Other details including learning rate schedules, hyperparameters can be found in Appendix C.

Hardware. We evaluate two clusters: one with 4 NVIDIA V100 GPUs per node and 40 Gigabit
Ethernet inter-node network (2.7 Gbps effective bandwidth); the other one with 8 V100 GPUs per node
and 100 Gigabit InfiniBand EDR inter-node network (close to theoretical peak effective bandwidth).
We use 4 to 128 GPUs for BERT and ImageNet pretraining tasks to measure 0/1 Adam’s performance
gain. We use 64 GPUs for GPT-2 pre-training. Additionally, for ImageNet training we apply the
accelerated data loading technique from lmdb6.

Policy for Tv and Tu in 0/1 Adam. We first illustrate our policy on Tv . Observing from our motivation
study (Figure 1) that the variance difference in adjacent steps decreases roughly exponentially. Denote
kj as the step where j-th variance update takes place, we select Tv such that, kj+1−kj=2⌊j/κ⌋,∀κ>0.
We adopt κ=16 for all the three tasks.

6https://github.com/xunge/pytorch_lmdb_imagenet
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Table 1: GLUE development set results. BERT-Base/Large(original) results are from (Devlin et al.,
2018). BERT-Base/Large(Adam and 1-bit Adam) results are from (Tang et al., 2021). The scores
are the median scores over 10 runs with different seeds, and are obtained on the checkpoints trained
by both sequence 128 and sequence 512 datasets.

RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI-(m/mm) Avg
BERT-Base(Original) 66.4 84.8 85.8 52.1 93.5 90.5 89.2 84.6/83.4 81.1
BERT-Base(Adam) 68.2 84.8 85.1 56.8 91.8 90.9 90.9 83.6/83.5 81.8
BERT-Base(1-bit Adam) 69.0 84.8 83.6 55.6 91.6 90.8 90.9 83.6/83.9 81.5
BERT-Base(0/1 Adam) 69.7 85.1 84.9 54.4 91.9 90.3 90.7 83.7/83.7 81.6
BERT-Large(Original) 70.1 85.4 86.5 60.5 94.9 92.7 89.3 86.7/85.9 83.6
BERT-Large(Adam) 70.3 86.0 86.9 60.3 93.1 92.2 91.4 86.1/86.2 83.6
BERT-Large(1-bit Adam) 70.4 86.1 86.1 62.0 93.8 91.9 91.5 85.7/85.4 83.7
BERT-Large(0/1 Adam) 71.7 86.2 86.9 59.9 93.2 91.6 91.4 85.6/85.6 83.6

Table 2: The first column shows Top1 accuracy on ImageNet of Resnet at the end of epoch 90 from differ-
ent algorithms. The original accuracy is provided by Pytorch pretrained model library (Pytorch, 2014).
For the other two algorithms, the accuracy is the highest score over 3 runs. The other two columns shows
zero-shot evaluation of the trained GPT-2 on WikiText-103 and LAMBADA datasets, the evaluation
methodology follows (Shoeybi et al., 2019). The number for Adam is obtained from (Li et al., 2021b).

ImageNet Top1 Acc. ↑ WikiText Perplexity ↓ LAMBADA Acc. ↑
Original Adam 69.76 27.78 33.19
1-bit Adam 69.93 28.37 33.21
0/1 Adam 69.88 28.07 33.51

Then we move on to discuss the policy for Tu. Based on the derivation in Section 4, the approximation
noise from local step is proportional to the learning rate. And so if we denote tj as the step where j-th
synchronization takes place, then our intuition is to increase tj+1−tj roughly inversely proportional to
the learning rate at tj so as to make the approximation noise bounded. For BERT-Base/Large pretraining,
as illustrated before, the learning rate exponentially decreases by 0.99 every 520 steps after 12.5K linear
increase warmup steps. So that we set tj+1−tj=1 for the first 12.5K steps and after that let it multiply
by 2 every 32678 steps based on the calculation that the learning rate will decrease by half. Similarly,
for ImageNet we set tj+1−tj=1 for the first 50050 steps (10 epochs) and after that let it multiply by 2
every 50050 steps (10 epochs). We clip the interval at 16 in all the tasks. This corresponds to H=16 in
Assumption 5.Finally, since our theory in Section 5 indicates that approximation will be more accurate
when the variance is frozen. So that we additionally stop updating variance when tj+1−tj>1.

Remarks on the selected policy. As described, the policies for Tv and Tu generally follow the
learning rate schedule adopted. This is favored in practice for three reasons: (1) It does not require too
much hyperparameter tuning. Consider adopting a constant or decaying policy based on some utility
function, capturing the dynamics of the training to reach a useful interval would require tedious search-
ing on the hyperparameters and retraining; (2) Learning rate policy is well-motivated. As naturally,
communication is a way of eliminating the difference among workers. If workers adopt a larger learning
rate, more frequent communication will be needed since the workers are taking large steps in the weight
space and so we require higher-frequent communication for them to reach consensus; (3) Learning rate
schedule is universally used in all the ML/DL applications, and thus the method can be easily adapted
to other applications. In fact, if we consider the scope of large model training, a typical learning rate
schedule is a linear warm-up followed by a decaying phase, which is very similar to our test cases here.

6.1 CONVERGENCE SPEED AND QUALITY ANALYSIS

Figure 2 presents the sample-wise and time-wise convergence results for different algorithms with
128 GPUs on the Ethernet cluster. We find that 0/1 Adam provides the same sample-wise convergence
speed compared to the baseline, with up to 2× time-wise speed up. Table 1 summarizes the GLUE
results using the checkpoints from our BERT pretraining experiments. 0/1 Adam achieves similar
end task accuracy compared to the numbers reported in previous work. 0/1 Adamachieves faster
training time than prior work because it reduces the communication overhead in distributed training

8
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Figure 4: Reduction on number of bits per parameter used and number of communication rounds in
different tasks. Note that the communication round numbers are normalized due to scale difference
in different tasks. Note that original Adam uses 16bits per parameter and communicate at evert step.

Figure 5: Evaluation BERT-Base/Large pretraining throughput using 0/1 Adam without communica-
tion rounds skipping. Comparing with Figure 4 and 2, local steps breaks the barrier on the performance
gain.

by using both 1-bit quantizer to compress the communication volume (up to 32× reduction) and
1-bit AllReduce to reduce the expensive synchronization overhead for local steps in both warmup
and non-warmup phases. Table 2 provides the ImageNet validation accuracy of trained models from
different algorithms, and we find the final accuracy can achieve the reported accuracy from Pytorch
library (Pytorch, 2014). For brevity, convergence comparison on GPT-2 is given in the Appendix C.

6.2 TRAINING THROUGHPUT ANALYSIS

Figure 3 summarizes the throughput results on different tasks and different clusters. We observe that
0/1 Adam can consistently outperform baselines in all settings. It is also worth mentioning that 0/1
Adam on Ethernet (2.7 Gbps effective bandwidth, 4 GPUs per node) is able to achieve comparable
throughput as 1-bit Adam on InfiniBand (near 100 Gbps effective bandwidth, 8 GPUs per node), as
shown in the red line in Figure 3(b) and the blue line in Figure 3(c), which demonstrates 0/1 Adam
further removes the redundancy in communication effectively that exceeds the hardware barrier.

Communication reduction and the role of local steps. To better understand the importance and effect
of local steps, we additionally run a special case of 0/1 Adam where we keep the same policy of Tv but
useTu={0,···,T−1}. This special version of 0/1 Adam does not skip rounds but use the same variance
freezing policy. We plot the data volume usage and throughput results in Figure 4 and 5, respectively.
We see that although no local steps suffice to reduce the data volume overhead from 1-bit Adam towards
1-bit-per-parameter in general, the throughput improvement is limited compared to Figure 2.

7 CONCLUSION

In this paper, we study the challenges of using 1-bit communication on Adam, and limitations of
the state-of-the-art 1-bit Adam algorithm. We propose an algorithm named 0/1 Adam that adopts
two novel design: adaptive variance state freezing and 1-bit sync. We provide convergence proof for
0/1 Adam and measure its effectiveness over baseline Adam and 1-bit Adam on various benchmarks,
including BERT-Base/Large, GPT-2 pretraining and ImageNet.
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A FULL DESCRIPTION TO ALLREDUCE

As introduced in Section 2, the error feedback based 1bit-AllReduce works best both in theory and
in practice. In fact, the original 1-bit Adam also adopts the error-feedback design (Tang et al., 2021).
We give the full description of this 1bit-AllReduce in Algorithm 2, to replace the 1bit-AllReduce
in Algorithm 1. In the theoretical analysis, our proofs will also rely on this algorithm. Note that
this algorithm does not require any additional assumptions for our theory to hold, since this fits the
black-box procedure in Algorithm 4 and Algorithm 1.

Algorithm 2 The full description of Error Feedback 1 bit Communication (1bit-AllReduce)

Require: communication buffer z(i)
t , worker error δ(i)t , server error δt, 1-bit compressor C[·]. Both

worker and server errors will be initialized at 0 at t=0.
1: (On i-th node)
2: Compress z

(i)
t into ẑ

(i)
t = C[z(i)

t + δ
(i)
t ], and update the compression error by

δ
(i)
t+1=z

(i)
t +δ

(i)
t −ẑ

(i)
t .

3: Send ẑ
(i)
t to the server.

4: (On server)
5: Take the average over all the ẑ(i)

t and compress it into zt=C[ 1n
∑n

i=1ẑ
(i)
t+1+δt], and update the

compression error by δt+1=
1
n

∑n
i=1ẑ

(i)
t +δt−zt.

6: Send zt to all the workers.
7: (On i-th node)
8: return zt, δ

(i)
t+1, δt+1.
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Algorithm 3 The full description of AllReduce

Require: communication buffer z(i)
t .

1: (On i-th node)
2: Send z

(i)
t to the server.

3: (On server)
4: Take the average over all the z(i)

t into zt=
1
n

∑n
i=1z

(i)
t .

5: Send zt to all the workers.
6: (On i-th node)
7: return zt.

B PROFILING RESULTS FOR FIXED COST OF COMMUNICATION

We profile the time taken in computation and others (including initialization of a communication round
and compression) during one 1-bit AllReduce round at different scales on Ethernet cluster in Table 3.

Table 3: Profiling on Ethernet cluster the time taken in computation and others (including initialization
of a communication round and compression) during one 1-bit AllReduce round at different scales.

ImageNet 4 node (16 GPUs) 8 node (32 GPUs) 16 node (64 GPUs) 32 node (128 GPUs)
Computation 73ms 68ms 44ms 51ms
Others 8ms 6ms 21ms 19ms
BERT-Base 4 node (16 GPUs) 8 node (32 GPUs) 16 node (64 GPUs) 32 node (128 GPUs)
Computation 941ms 490ms 263ms 162ms
Others 153ms 250ms 397ms 658ms
BERT-Large 4 node (16 GPUs) 8 node (32 GPUs) 16 node (64 GPUs) 32 node (128 GPUs)
Computation 1840ms 970ms 640ms 332ms
Others 340ms 510ms 590ms 931ms

C ADDITIONAL EXPERIMENTAL DETAILS

Training Parameters. For BERT pretraining, we follow the settings from (Devlin et al., 2018) and
let the learning rate linearly increases to 4×10−4 as a warmup in the first 12.5K steps, then decays
into 0.99 of the original after every 520 steps. We set β1=0.9 and β2=0.999 for all the algorithms.
We adopt the batch size of 4096. For 1-bit Adam, we follow the hyperparameters given in (Tang et al.,
2021) and set the full-precision stage for 1-bit Adam as 16K and 23K on BERT-Base and BERT-Large,
respectively. All the hyperparameters used here (e.g. learning rate) strictly follow (Tang et al., 2021)
for fair comparison. For ImageNet, we follow the example script from Pytorch7 and use batch size
of 256 and a milestone decay learning rate schedule: starting at 1e-4 and decay by a factor of 10 at
epoch 30 and 60, with 90 epochs in total. We set 10 epochs (50050 steps) as the full-precision stage
for 1-bit Adam. For GPT-2 we set batch size to be 512, and use 300K training steps (158B tokens). The
learning rate schedule follows a linear warmup of 3K steps and a single cycle consine decay over the
remaining 297K steps (1×10−5min). For 1-bit Adam, we set its full-precision stage length to be 80K
steps, and for the 0/1 Adam, we follow the same learning rate based policy from BERT on Tv and Tu.

For GLUE benchmarks we use Adam optimizer and perform single-task training on the dev set.
Following the setup in the BERT paper (Devlin et al., 2018) and 1-bit Adam paper (Tang et al.,
2021), we search over the hyperparameter space with batch sizes ∈ {8,16,32} and learning rates
{1×10−5,3×10−5,5×10−5,8×10−5}.
The convergence plots for GPT-2 pre-training are given in Figure 6.

7https://github.com/pytorch/examples/blob/master/imagenet/main.py
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Figure 6: Training loss (left) and validation perplexity (right) with respect to Tokens for 1-bit Adam
and 0/1 Adam.

Figure 7: Training loss and Validation error of ResNet18-CIFAR10 task. Hyperparameters that are
not related to 0/1 Adam is set to be {learning rate: 1e−4, weight decay: 5e−4}. For hyperparameters
associated with 0/1 Adam, we use the same ones as used in ImageNet with no additional tuning.

D THEORETICAL ANALYSIS

D.1 ANALYSIS TO AN INTERMEDIATE VERSION OF 0/1 ADAM

Algorithm 4 Generic framework of applying 1-bit communication to Adam with frozen variance state.
1-bit Adam can be viewed as a special case of setting Tv = {0,···,T0−1} where T0 denotes its total
number of steps in the full-precision stage.

Require: initialized model on worker i: x(i)
0 , learning rate {γt}Tt=1, m0=0, v0=0, total number of iterations

T , decaying factor β1, β2 from Adam, numerical constant ϵ, variance update step index set Tv .
1: for t=0,···,T−1 do
2: Locally compute stochastic gradient g(i)

t over x(i)
t .

3: if t∈Tv then
4: gt = AllReduce

(
g
(i)
t

)
.

5: Set vt+1=β2vt+(1−β2)(gt)
2.

6: else
7: gt = Compressed-AllReduce

(
g
(i)
t

)
.

8: Set vt+1=vt.
9: end if

10: Update momentum: mt+1=β1mt+(1−β1)gt.
11: Update model: x(i)

t+1=x
(i)
t −γtmt/

√
vt+ϵ.

12: end for
13: return x

(i)
T ,∀i.

We start from a special case of 0/1 Adam that compresses gradients without local steps. This is given
in Algorithm 4. Note that the following proof will use Algorithm 2 to replace Compressed-AllReduce
in Algorithm 4, as introduced in Section A.

Algorithm 4 allows us to work with weaker assumption as given in the following

Assumption 6. Compression error in Algorithm 4: For arbitrary x∈Rd, there exists a constant
0≤ω<1, such that the output of compressor C[·] has the following error bound:

E∥C[x]−x∥2≤ω∥x∥2.
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Theorem 2. Under Assumption 1, 2, 3, and 6, let m = |Tv|, and select β1,β2 ∈ [0,1) such that
m≤ log(1−β1)/log(β2). If we run Algorithm 4 with a constant learning rate: for all t≥0

γt=min

{√
n

σ2T
,

1

2L
√

G2
∞+ϵ

,
1

125

}
,

then it holds that
1

T

T−1∑
t=0

E∥∇f(xt)∥2≤O

(
σ√
nT

+
m+n

(1−ω)4T
+

1

T

)
,

where we omit f(0)−infx∈Rdf(x), G∞, d, ϵ, β1, β2 and L as constants.

Proof. The main update of Algorithm 4 (with constant learning rate) can be summarized as: for every
t=0,···,T−1,

mt+1=β1mt+(1−β1)gt

vt+1=


β2vt+(1−β2)

(
1
n

∑n
i=1g

(i)
t

)2
t∈Tv,

vt t ̸∈Tv.

xt+1=xt−γ
mt√
vt+ϵ

,

where the gt is the output of the 1-bit AllReduce algorithm8. Note that based on Algorithm 2, the
gradient approximation term follows:

gt=
1

n

n∑
i=1

ĝ
(i)
t +δt−δt+1

=
1

n

n∑
i=1

(
g
(i)
t +δ

(i)
t −δ

(i)
t+1

)
+δt−δt+1

=
1

n

n∑
i=1

g
(i)
t +

(
1

n

n∑
i=1

δ
(i)
t −δt

)
−

(
1

n

n∑
i=1

δ
(i)
t+1−δt+1

)
=gt+δt−δt+1,

where we denote

gt=
1

n

n∑
i=1

g
(i)
t

δt=
1

n

n∑
i=1

δ
(i)
t −δt.

To prove the convergence, we now define the following auxiliary sequence: for any t≥0,

yt=xt−
γmt

(1−β1)
√
vt+ϵ

− γδt√
vt+ϵ

.

The rest of the proof is to use this auxiliary sequence to bound two types of steps separately. We call a
step t as reuse step if t ̸∈Tv and update step otherwise. We see for all the update steps, vt ̸=vt+1 while
for all the reuse steps vt=vt+1. The bounds on two different types of steps are provides by Lemma 5
and Lemma 6. Specifically, denoting V1=

∥∥∥ 1√
v1+ϵ

∥∥∥
1
, from Lemma 5 we obtain for all the reuse steps,∑

t ̸∈Tv

γ

4
√
G2

∞+ϵ
E∥∇f(xt)∥2

≤
∑
t ̸∈Tv

E[f(yt)−f(yt+1)]+
227γ3L2V 2

1 (1+ω)3G2
∞d
√

G2
∞+ϵ(T−m)

β2m
2 (1−β1)2(1−ω)4

+
Lγ2σ2V1(T−m)

2nβm
2

.

8In the original Algorithm 4, the gt is the output of the AllReduce when t∈Tv . This, however, does not affect
our analysis, since our proof holds for a noisier case. The original Algorithm 4 is mainly for practical concern
– we avoid redundant AllReduce rounds when 1-bit AllReduce is performed.
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while from Lemma 6 we obtain for all the update steps,∑
t∈Tv

γ

4
√
G2

∞+ϵ
E∥∇f(xt)∥2≤

∑
t∈Tv

E[f(yt)−f(yt+1)]+

(
34γ

L
+

γ

4
√
G2

∞+ϵ

)
·
(
σ2

n
+G2

∞d

)
m

+
32γ(1+β1)

2(1+ω)3V1G
2
∞dmL

βm
2 (1−β1)2(1−ω)4

.

Note that the two inequalities above hold when the learning rate fulfills

γ≤min

{
βm
2

2V1L
√
G2

∞+ϵ
,
1

125

}
.

Combine them together,

1

T

T−1∑
t=0

E∥∇f(xt)∥2

4
√
G2

∞+ϵ
≤f(0)−f∗

γT
+
227γ2L2V 2

1 (1+ω)3G2
∞d
√
G2

∞+ϵ(T−m)

β2m
2 (1−β1)2(1−ω)4T

+
Lγσ2V1(T−m)

2nβm
2 T

+

(
34

L
+

1

4
√
G2

∞+ϵ

)
·
(
σ2

n
+G2

∞d

)
m

T
+
32(1+β1)

2(1+ω)3V1G
2
∞dmL

βm
2 (1−β1)2(1−ω)4T

Dropping the constants, we finally obtain

1

T

T−1∑
t=0

E∥∇f(xt)∥2≤O
(
f(0)−f∗

γT
+

γ2

β2m
2 (1−β1)2(1−ω)4

+
γσ2

nβm
2

+
ωm

βm
2 (1−β1)2(1−ω)4T

+
σ2m

nT

)
≤O
(
f(0)−f∗

γT
+

γ2

(1−β1)4(1−ω)4
+

γσ2

n(1−β1)
+

ωm

(1−β1)3(1−ω)4T
+
σ2m

nT

)
,

where in the last step we use the condition in the theorem that βm
2 ≥1−β1. To meet the requirement

of learning rate we set

γt=min

{√
n

σ2T
,

1

2L
√

G2
∞+ϵ

,
1

125

}
,

then it holds that
1

T

T−1∑
t=0

E∥∇f(xt)∥2≤O

(
σ√
nT

+
m+n

(1−ω)4T
+

1

T

)
.

That completes the proof.

D.2 PROOF TO THEOREM 1

Note that the following proof will use Algorithm 2 to replace 1bit-AllReduce in Algorithm 1, as
introduced in Section A.

Theorem 1. Under Assumption 1 to 5, let m = |Tv|, select β1, β2 ∈ [0, 1) that fulfills
m≤ log(1−β1)/log(β2), if we run Algorithm 1 with a constant learning rate: for all t≥0

γt=min

{√
n

σ2T
,

1

4L
√
G2

∞+ϵ
,
2
√
G2

∞+ϵ

L
,
1

6

}
,

then it holds that
1

T

T−1∑
t=0

E∥∇f(x̃t)∥2≤O

(
σ√
nT

+
H2∆2(m+n)

T
+

1

T

)
,

where x̃t=1/n
∑n

i=1x
(i)
t and we omit f(0)−infx∈Rdf(x), G∞, d, ϵ, β1, β2 and L as constants.

Proof. We now prove Theorem 1. Similar to the proof to Theorem 2, in this proof we discuss the case
of t∈Tv and t ̸∈Tv separately. Following the proof of Theorem 2, we define the following auxiliary
sequence

ỹt= x̃t−
γm̃t

(1−β1)
√
vt+ϵ

− γδt√
vt+ϵ

,

where

x̃t=
1

n

n∑
i=1

x
(i)
t
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m̃t=
1

n

n∑
i=1

m
(i)
t .

And we additionally define that

ũt=
1

n

n∑
i=1

u
(i)
t

g̃t=
1

n

n∑
i=1

g
(i)
t .

Note that the definition of g̃t is different from the gt in Theorem 2 since the former is computed on
local models which potentially can be different before the sync step.

To expect a compression error bound to scale in the order of O(γ2), we slightly modify the update
of line 5, 8, 9 of Algorithm 1 into

u
(i)

t+ 1
2

=u
(i)
t +m

(i)
t

m
(i)
t+1=ut+ 1

2
/

t∑
k=t′

x
(i)
t+1=x

(i)
t′ −γut+ 1

2
/
√
vt+ϵ.

Note that since Theorem 1 states the convergence results for constant learning rate, such modification
does not change the semantics of the original Algorithm 1. Based on Algorithm 2, we know that

ut+ 1
2
=
1

n

n∑
i=1

û
(i)

t+ 1
2

+δt−δt+1

=
1

n

n∑
i=1

(
u
(i)

t+ 1
2

+δ
(i)
t −δ

(i)
t+1

)
+δt−δt+1

=
1

n

n∑
i=1

u
(i)

t+ 1
2

+

(
1

n

n∑
i=1

δ
(i)
t −δt

)
−

(
1

n

n∑
i=1

δ
(i)
t+1−δt+1

)
=ũt+ 1

2
+δt−δt+1.

Based on Lemma 10, we know that for all the t∈Tv , we have the following bound,∑
t∈Tv

γE∥∇f(x̃t)∥2

4
√
G2

∞+ϵ
≤
∑
t∈Tv

Ef(ỹt)−Ef(ỹt+1)+
2γσ2m

nL
+
106γH2V1(M+∆2)mL

βm
2 (1−β1)2

+
γσ2m

4n
√
G2

∞+ϵ
+

γG2
∞dm

4
√

G2
∞+ϵ

.

On the other hand, for all the t ̸∈Tv , we have the following bound,∑
t ̸∈Tv

γE∥∇f(x̃t)∥2

4
√
G2

∞+ϵ

≤
∑
t ̸∈Tv

Ef(ỹt)−Ef(ỹt+1)+
36γ3H2V1(3G

2
∞d+25∆2)L2(1+L)(G2

∞+ϵ+1)(T−m)

βm
2 (1−β1)4

√
G2

∞+ϵ

+
Lγ2V1σ

2(T−m)

nβm
2

+
48γ3V1(H+1)2(3G2

∞d+24∆2)
√
G2

∞+ϵ(T−m)

βm
2 (1−β1)4

.

Note that they hold if learning rate is set to be

γ≤min

{
βm
2

4V1L
√
G2

∞+ϵ
,
2
√
G2

∞+ϵ

L
,
1

6

}
.

Combine them together, we obtain

1

T

T−1∑
t=0

E∥∇f(xt)∥2

4
√
G2

∞+ϵ

≤f(0)−f∗

γT
+
2σ2m

nLT
+
106H2V1(M+∆2)mL

βm
2 (1−β1)2T

+
σ2m

4n
√
G2

∞+ϵT
+

G2
∞dm

4
√

G2
∞+ϵT

+
LγV1σ

2

nβm
2
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+
36γ2H2V1(3G

2
∞d+25∆2)L2(1+L)(G2

∞+ϵ+1)

βm
2 (1−β1)4

√
G2

∞+ϵ

+
48γ2V1(H+1)2(3G2

∞d+24∆2)
√

G2
∞+ϵ

βm
2 (1−β1)4

.

Omitting constants:

1

T

T−1∑
t=0

E∥∇f(x̃t)∥2≤O
(
f(0)−f∗

γT
+
γ2H2∆2

βm
2

+
γσ2

nβm
2

+
σ2m

nT
+
H2∆2m

βm
2 T

+
m

T

)
≤O
(
f(0)−f∗

γT
+
γ2H2∆2

1−β1
+

γσ2

n(1−β1)
+
σ2m

nT
+

H2∆2m

(1−β1)T
+
m

T

)
,

where in the last step we use the condition in the theorem that βm
2 ≥1−β1. To meet the requirement

of learning rate we set

γt=min

{√
n

σ2T
,

1

4L
√
G2

∞+ϵ
,
2
√
G2

∞+ϵ

L
,
1

6

}
,

then it holds that
1

T

T−1∑
t=0

E∥∇f(x̃t)∥2≤O

(
σ√
nT

+
H2∆2(m+n)

T
+

1

T

)
.

And that completes the proof.

D.3 TECHNICAL LEMMA

Lemma 1. Consider running Algorithm 2 over a communication buffer z (same notation in
Algorithm 2) under Assumption 6, let δt denote:

δt=
1

n

n∑
i=1

δ
(i)
t −δt

then based on Assumption 6 and 3, it holds that t≥0, if E∥z(i)
t ∥2≤C for some constant C>0,

E∥δt∥2≤
32ω(1+ω)3C

(1−ω)4
.

Proof. Note that the error is initialized by 0, so that when t=0 the bound trivially holds. We next
prove the case for t≥1.

For any i∈{1,···,n} and t≥1, by the definition of the sequence δ(i)t ,

E
∥∥∥δ(i)t

∥∥∥2=E
∥∥∥z(i)

t−1+δ
(i)
t−1−ẑ

(i)
t−1

∥∥∥2
=E
∥∥∥z(i)

t−1+δ
(i)
t−1−C

[
z
(i)
t−1+δ

(i)
t−1

]∥∥∥2
Assumption 6

≤ ωE
∥∥∥z(i)

t−1+δ
(i)
t−1

∥∥∥2
∀η>0
= ω(1+η)E

∥∥∥δ(i)t−1

∥∥∥2+ω(1+1/η)E
∥∥∥z(i)

t−1

∥∥∥2
Assumption 3

≤
∞∑
j=0

[ω(1+η)]
j
ω(1+1/η)C

≤ ω(1+1/η)

1−ω(1+η)
C.

Selecting η= 1−ω
2ω , we obtain

E
∥∥∥δ(i)t

∥∥∥2≤ 2ω(1+ω)

(1−ω)2
C.

Similarly, we can show that for any t≥1,

E
∥∥δt∥∥2=E

∥∥∥∥∥ 1n
n∑

i=1

ẑ
(i)
t−1+δt−1−zt−1

∥∥∥∥∥
2
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=E

∥∥∥∥∥ 1n
n∑

i=1

ẑ
(i)
t−1+δt−1−C

[
1

n

n∑
i=1

ẑ
(i)
t−1+δt−1

]∥∥∥∥∥
2

≤ωE

∥∥∥∥∥ 1n
n∑

i=1

ẑ
(i)
t−1+δt−1

∥∥∥∥∥
2

≤ω(1+η)E
∥∥δt−1

∥∥2+ω(1+1/η)E

∥∥∥∥∥ 1n
n∑

i=1

ẑ
(i)
t−1

∥∥∥∥∥
2

≤ω(1+η)E
∥∥δt−1

∥∥2+ω(1+1/η)· 1
n

n∑
i=1

E
∥∥∥ẑ(i)

t−1

∥∥∥2,
where in the last step we apply the Jensen Inequality. Since we do not assume a bound on the

∥∥∥ẑ(i)
t−1

∥∥∥2,
we need to bound it in terms of

E
∥∥∥ẑ(i)

t−1

∥∥∥2=E
∥∥∥z(i)

t−1+δ
(i)
t−1−δ

(i)
t

∥∥∥2
≤2E

∥∥∥z(i)
t−1+δ

(i)
t−1

∥∥∥2+2E
∥∥∥δ(i)t

∥∥∥2
≤4(1+ω)

(1−ω)2
C+

4ω(1+ω)

(1−ω)2
C

≤4(1+ω)2

(1−ω)2
C,

where we apply the results from the bound on E
∥∥∥δ(i)t

∥∥∥2. Given this bound, and following the analysis

for E
∥∥∥δ(i)t

∥∥∥2, we can now bound the E
∥∥δt∥∥2 as follows

E
∥∥δt∥∥2≤2ω(1+ω)

(1−ω)2
· 4(1+ω)2

(1−ω)2
C

=
8ω(1+ω)3

(1−ω)4
C.

Finally, we obtain t≥1,

E∥δt∥2=E

∥∥∥∥∥ 1n
n∑

i=1

δ
(i)
t −δt

∥∥∥∥∥
2

≤2E
∥∥δt∥∥2+2E

∥∥∥∥∥ 1n
n∑

i=1

δ
(i)
t

∥∥∥∥∥
2

≤2E
∥∥δt∥∥2+2

1

n

n∑
i=1

E
∥∥∥δ(i)t

∥∥∥2
≤32ω(1+ω)3C

(1−ω)4
.

That completes the proof.

Lemma 2. For the variance term, we have the following upper and lower bound: for any t≥1,

β
m/2
2

√
v1+ϵ≤

√
vt+ϵ≤

√
G2

∞+ϵ,

where the inequality holds element-wise.

Proof. On one hand, for any tj≤ t<tj+1, where tj denotes an update step, we obtain element-wise:
vt≥β2vtj ≥···≥βj

2v1≥βm
2 v1,

so that
√
vt+ϵ≥

√
βm
2 v1+ϵ≥

√
βm
2 (v1+ϵ)=β

m/2
2

√
v1+ϵ.
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On the other hand, for any t≥1 and j∈{1,···,d},

[vt]j=

t∑
k=1

(1−β2)β
t−k
2

(
1

n

n∑
i=1

[g
(i)
k ]j

)2

≤G2
∞(1−β2)

∞∑
k=1

βk
2 ≤G2

∞,

so that √
vt+ϵ≤

√
G2

∞+ϵ.
That completes the proof.

Lemma 3. In Algorithm 4, for any t≥0,

E∥mt∥2≤
195(1+ω)3G2

∞d

(1−ω)4
.

Proof. For any t≥0,

E∥mt∥2=E

∥∥∥∥∥(1−β1)

t∑
k=0

βt−k
1 gk

∥∥∥∥∥
2

≤(1−β1)

t∑
k=0

βt−k
1 E∥gk∥

2

≤(1−β1)

t∑
k=0

βt−k
1 E∥gk+δk−δk+1∥2

≤(1−β1)

t∑
k=0

βt−k
1

(
3E∥gk∥2+3E∥δk∥2+3E∥δk+1∥2

)

≤(1−β1)

t∑
k=0

βt−k
1

3E

∥∥∥∥∥ 1n
n∑

i=1

g
(i)
k

∥∥∥∥∥
2

+3E∥δk∥2+3E∥δk+1∥2


≤(1−β1)

t∑
k=0

βt−k
1

(
3

n

n∑
i=1

E
∥∥∥g(i)

k

∥∥∥2+3E∥δk∥2+3E∥δk+1∥2
)

(i)

≤(1−β1)

t∑
k=0

βt−k
1

(
3G2

∞d+
192ω(1+ω)3G2

∞d

(1−ω)4

)

≤
(
3(1+ω)3G2

∞d

(1−ω)4
+
192(1+ω)3G2

∞d

(1−ω)4

)
·(1−β1)

∞∑
k=0

βk
1

≤195(1+ω)3G2
∞d

(1−ω)4
,

where in the step (i) we use Lemma 1. That completes the proof.

Lemma 4. For any a, b∈Rd, the following bound holds:∥∥∥∥ a√
b

∥∥∥∥2≤∥a∥2∥∥∥∥1b
∥∥∥∥
1

.

Proof. Denote the subscript j as the index of the coordinate.∥∥∥∥ a√
b

∥∥∥∥2= d∑
j=1

(
aj

[
√
b]j

)2

≤

 d∑
j=1

a2
j

 d∑
j=1

1

bj

=

 d∑
j=1

a2
j

 d∑
j=1

∣∣∣∣ 1bj
∣∣∣∣
=∥a∥2

∥∥∥∥1b
∥∥∥∥
1

.

Note that the second step holds not because Cauchy-Schwarz Inequality but due to the fact that a2
j ,

bj>0 (since
√
b would implicitly assume so).

Lemma 5. In Algorithm 4, for all the t≥1 that fulfills vt=vt+1, i.e., ∀t such that t ̸∈Tv , if we let

γ≤ βm
2

2V1L
√
G2

∞+ϵ
,
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the following bound holds,∑
t ̸∈Tv

γ

4
√
G2

∞+ϵ
E∥∇f(xt)∥2

≤
∑
t ̸∈Tv

E[f(yt)−f(yt+1)]+
227γ3L2V 2

1 (1+ω)3G2
∞d
√

G2
∞+ϵ(T−m)

β2m
2 (1−β1)2(1−ω)4

+
Lγ2σ2V1(T−m)

2nβm
2

.

Proof. Recall the auxiliary sequence

yt=xt−
γmt

(1−β1)
√
vt+ϵ

− γδt√
vt+ϵ

,

For all the steps t≥0 that fulfills vt+1=vt, we obtain

yt+1−yt=xt+1−xt−
γ

1−β1

(
mt+1√
vt+1+ϵ

− mt√
vt+ϵ

)
−γ
(

δt+1√
vt+1+ϵ

− δt√
vt+ϵ

)
=−γ mt√

vt+ϵ
− γ

(1−β1)
√
vt+ϵ

(β1mt+(1−β1)gt−mt−(1−β1)(δt−δt+1))

=− γgt√
vt+ϵ

.

From Assumption 1, we have
Ef(yt+1)−Ef(yt)

≤E⟨∇f(yt),yt+1−yt⟩+
L

2
E∥yt+1−yt∥2

=−γE
〈
∇f(yt),

gt√
vt+ϵ

〉
+
Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
=−γE

〈
∇f(yt),

∇f(xt)√
vt+ϵ

〉
+
Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
=−γE

〈
∇f(xt),

∇f(xt)√
vt+ϵ

〉
+γE

〈
∇f(xt)−∇f(yt),

∇f(xt)√
vt+ϵ

〉
+
Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
=−γE

〈
∇f(xt),

∇f(xt)√
vt+ϵ

〉
+γE

〈
∇f(xt)−∇f(yt)√

vt+ϵ
,∇f(xt)

〉
+
Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
≤− γE∥∇f(xt)∥2√

G2
∞+ϵ

+
γ

2η
E
∥∥∥∥∇f(xt)−∇f(yt)√

vt+ϵ

∥∥∥∥2+ γη

2
E∥∇f(xt)∥2+

Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2,
where in the last step we use Lemma 2 and the fact that for any a,b and constant η>0,

⟨a,b⟩≤ η

2
∥a∥2+ 1

2η
∥b∥2.

Set η=(
√
G2

∞+ϵ)−1, with Assumption 1 and Lemma 4,
Ef(yt+1)−Ef(yt)

≤− γE∥∇f(xt)∥2

2
√
G2

∞+ϵ
+
γL2V1

√
G2

∞+ϵ

2βm
2

E∥xt−yt∥2+
Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
=− γE∥∇f(xt)∥2

2
√
G2

∞+ϵ
+
γL2V1

√
G2

∞+ϵ

2βm
2

E
∥∥∥∥ γmt

(1−β1)
√
vt+ϵ

+
γδt√
vt+ϵ

∥∥∥∥2+Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
≤− γE∥∇f(xt)∥2

2
√
G2

∞+ϵ
+
γ3L2V1

√
G2

∞+ϵ

βm
2 (1−β1)2

E
∥∥∥∥ mt√

vt+ϵ

∥∥∥∥2+ γ3L2V1

√
G2

∞+ϵ

βm
2

E
∥∥∥∥ δt√

vt+ϵ

∥∥∥∥2
+
Lγ2

2
E
∥∥∥∥ gt√

vt+ϵ

∥∥∥∥2
≤− γE∥∇f(xt)∥2

2
√
G2

∞+ϵ
+
γ3L2V 2

1

√
G2

∞+ϵ

β2m
2 (1−β1)2

E∥mt∥2+
γ3L2V 2

1

√
G2

∞+ϵ

β2m
2

E∥δt∥2+
Lγ2V1

2βm
2

E∥gt∥2,
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where in the last step we apply Lemma 2 and 4. Using the bound on the error from Lemma 1, Lemma 3
and the assumption on the stochastic gradient, we obtain(

γ

2
√

G2
∞+ϵ

−Lγ2V1

2βm
2

)
E∥∇f(xt)∥2

≤E[f(yt)−f(yt+1)]+
γ3L2V 2

1

√
G2

∞+ϵ

β2m
2 (1−β1)2

E∥mt∥2+
γ3L2V 2

1

√
G2

∞+ϵ

β2m
2

E∥δt∥2+
Lγ2σ2V1

2nβm
2

≤E[f(yt)−f(yt+1)]+
195γ3L2V 2

1 (1+ω)3G2
∞d
√

G2
∞+ϵ

β2m
2 (1−β1)2(1−ω)4

+
32γ3L2V 2

1 ω(1+ω)3G2
∞d
√
G2

∞+ϵ

β2m
2 (1−ω)4

+
Lγ2σ2V1

2nβm
2

≤E[f(yt)−f(yt+1)]+
227γ3L2V 2

1 (1+ω)3G2
∞d
√

G2
∞+ϵ

β2m
2 (1−β1)2(1−ω)4

+
Lγ2σ2V1

2nβm
2

.

Based on the learning rate bound

γ≤ βm
2

2V1L
√
G2

∞+ϵ
,

and summing over all the reuse steps, we obtain∑
t ̸∈Tv

γ

4
√
G2

∞+ϵ
E∥∇f(xt)∥2

≤
∑
t ̸∈Tv

E[f(yt)−f(yt+1)]+
227γ3L2V 2

1 (1+ω)3G2
∞d
√

G2
∞+ϵ(T−m)

β2m
2 (1−β1)2(1−ω)4

+
Lγ2σ2V1(T−m)

2nβm
2

.

That completes the proof.

Lemma 6. In Algorithm 4, for all the t≥0 that fulfills vt ̸=vt+1, i.e. t∈Tv , if the learning rate fulfills

γ<
1

125
, the following bound holds∑
t∈Tv

γ

4
√
G2

∞+ϵ
E∥∇f(xt)∥2≤

∑
t∈Tv

E[f(yt)−f(yt+1)]+

(
34γ

L
+

γ

4
√
G2

∞+ϵ

)
·
(
σ2

n
+G2

∞d

)
m

+
32γ(1+β1)

2(1+ω)3V1G
2
∞dmL

βm
2 (1−β1)2(1−ω)4

.

Proof. For all the steps t that fulfills vt ̸=vt+1,

yt+1−yt=xt+1−xt−
γ

1−β1

(
mt+1√
vt+1+ϵ

− mt√
vt+ϵ

)
+γ

(
δt√
vt+ϵ

− δt+1√
vt+1+ϵ

)
=−γ mt√

vt+ϵ
− γ

1−β1

(
mt+1√
vt+1+ϵ

− mt√
vt+ϵ

)
+γ

(
δt√
vt+ϵ

− δt+1√
vt+1+ϵ

)
=− γβ1

1−β1

mt√
vt+ϵ

− γ

1−β1

mt+1√
vt+1+ϵ

+γ

(
δt√
vt+ϵ

− δt+1√
vt+1+ϵ

)
.

Based on the smoothness assumption, for constant η>0 that will be assigned later,
Ef(yt+1)−Ef(yt)

≤E⟨∇f(yt),yt+1−yt⟩+
L

2
E∥yt+1−yt∥2

γη<1

≤ ηγ

2L
E∥∇f(yt)∥2+

L

ηγ
E∥yt+1−yt∥2

≤ηγ

L
E∥∇f(xt)∥2+ηγLE∥yt−xt∥2+

L

ηγ
E∥yt+1−yt∥2

≤ηγ

L
E∥∇f(xt)−gt∥2+

ηγ

L
E∥gt∥2+ηγLE∥yt−xt∥2+

L

ηγ
E∥yt+1−yt∥2
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≤ ηγ

n2L

n∑
i=1

E
∥∥∥∇f(xt)−g(i)

t

∥∥∥2+ ηγ

nL

n∑
i=1

E
∥∥∥g(i)

t

∥∥∥2+ηγLE∥yt−xt∥2+
L

ηγ
E∥yt+1−yt∥2

≤ηγ

L

(
σ2

n
+G2

∞d

)
+ηγLE∥yt−xt∥2+

L

ηγ
E∥yt+1−yt∥2.

Now we can bound the last two terms as follows, note that

E∥yt−xt∥2=E
∥∥∥∥ γmt

(1−β1)
√
vt+ϵ

+
γδt√
vt+ϵ

∥∥∥∥2
≤ 2γ2

(1−β1)2
E
∥∥∥∥ mt√

vt+ϵ

∥∥∥∥2+2γ2E
∥∥∥∥ δt√

vt+ϵ

∥∥∥∥2
≤ 2γ2V1

(1−β1)2βm
2

E∥mt∥2+
2γ2V1

βm
2

E∥δt∥2

≤390γ2(1+ω)3V1G
2
∞d

βm
2 (1−β1)2(1−ω)4

+
64γ2ω(1+ω)3V1G

2
∞d

βm
2 (1−ω)4

≤454γ2(1+ω)3V1G
2
∞d

βm
2 (1−β1)2(1−ω)4

,

where in the last step we apply Lemma 1. On the other hand,
E∥yt+1−yt∥2

=E
∥∥∥∥ γβ1

1−β1

mt√
vt+ϵ

+
γ

1−β1

mt+1√
vt+1+ϵ

−γ
(

δt√
vt+ϵ

− δt+1√
vt+1+ϵ

)∥∥∥∥2
≤E
∥∥∥∥ γβ1

1−β1

mt√
vt+ϵ

+
γ

1−β1

mt+1√
vt+1+ϵ

−γ
(

δt√
vt+ϵ

− δt+1√
vt+1+ϵ

)∥∥∥∥2
≤ 4γ2β2

1

(1−β1)2
E
∥∥∥∥ mt√

vt+ϵ

∥∥∥∥2+ 4γ2

(1−β1)2
E
∥∥∥∥ mt+1√

vt+1+ϵ

∥∥∥∥2+4γ2E
∥∥∥∥ δt√

vt+ϵ

∥∥∥∥2+4γ2E
∥∥∥∥ δt+1√

vt+1+ϵ

∥∥∥∥2
≤ 4γ2β2

1V1

(1−β1)2βm
2

E∥mt∥2+
4γ2V1

(1−β1)2βm
2

E∥mt+1∥2+
4γ2V1

βm
2

E∥δt∥2+
4γ2V1

βm
2

E∥δt+1∥2

≤780γ2(1+β2
1)V1(1+ω)3G2

∞d

βm
2 (1−β1)2(1−ω)4

+
256γ2V1ω(1+ω)3G2

∞d

βm
2 (1−ω)4

≤1036γ2(1+β2
1)V1(1+ω)3G2

∞d

βm
2 (1−β1)2(1−ω)4

,

where we again apply Lemma 1 and Lemma 3. Put everything together,
Ef(yt+1)−Ef(yt)

≤ηγ

L

(
σ2

n
+G2

∞d

)
+ηγLE∥yt−xt∥2+

L

ηγ
E∥yt+1−yt∥2

≤ηγ

L

(
σ2

n
+G2

∞d

)
+
454ηγ3(1+ω)3V1G

2
∞dL

βm
2 (1−β1)2(1−ω)4

+
1036γ(1+β2

1)V1(1+ω)3G2
∞dL

ηβm
2 (1−β1)2(1−ω)4

≤ηγ

L

(
σ2

n
+G2

∞d

)
+

(
454ηγ2+

1036

η

)
γ(1+β1)

2(1+ω)3V1G
2
∞dL

βm
2 (1−β1)2(1−ω)4

Set η=34, and considering γ< 1
125 , we get

Ef(yt+1)−Ef(yt)≤
34γ

L

(
σ2

n
+G2

∞d

)
+
32γ(1+β1)

2(1+ω)3V1G
2
∞dL

βm
2 (1−β1)2(1−ω)4

.

Summing over all the update steps, we obtain

0≤
∑
t∈Tv

E[f(yt)−f(yt+1)]+
34γ

L

(
σ2m

n
+G2

∞dm

)
+
32γ(1+β1)

2(1+ω)3V1G
2
∞dmL

βm
2 (1−β1)2(1−ω)4

.

Adding γ

4
√

G2
∞+ϵ

∑
t∈Tv

E∥∇f(xt)∥2 on both sides, and note that∑
t∈Tv

E∥∇f(xt)∥2=
∑
t∈Tv

E∥∇f(xt)−gt∥2+
∑
t∈Tv

E∥gt∥2
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≤σ2m

n
+G2

∞dm,

we finally obtain∑
t∈Tv

γ

4
√
G2

∞+ϵ
E∥∇f(xt)∥2≤

∑
t∈Tv

E[f(yt)−f(yt+1)]+

(
34γ

L
+

γ

4
√
G2

∞+ϵ

)
·
(
σ2

n
+G2

∞d

)
m

+
32γ(1+β1)

2(1+ω)3V1G
2
∞dmL

βm
2 (1−β1)2(1−ω)4

.

That completes the proof.

Lemma 7. Under Assumption 4, for any t≥0, it holds that
E∥δt∥2≤4∆2.

Proof. Based on the definition of the compression error, we obtain

E∥δt∥2=E

∥∥∥∥∥ 1n
n∑

i=1

δ
(i)
t −δt

∥∥∥∥∥
2

≤2E
∥∥δt∥∥2+2E

∥∥∥∥∥ 1n
n∑

i=1

δ
(i)
t

∥∥∥∥∥
2

≤2E
∥∥δt∥∥2+2

1

n

n∑
i=1

E
∥∥∥δ(i)t

∥∥∥2
≤4∆2.

That completes the proof.

Lemma 8. In Algorithm 1, for any t≥0, the momentum term is uniformly bounded by the following:

E
∥∥∥m(i)

t

∥∥∥2≤3G2
∞d+24∆2

(1−β1)2
,

E
∥∥∥m(i)

t+ 1
2

∥∥∥2≤3G2
∞d+24∆2

(1−β1)2
,

E∥m̃t∥2≤
3G2

∞d+24∆2

(1−β1)2
,

E
∥∥∥m̃t+ 1

2

∥∥∥2≤3G2
∞d+24∆2

(1−β1)2
.

Proof. We prove this lemma via induction. Note that when t=0, the inequality trivially holds due to
initialization at0 and Jensen Inequality. Now suppose the inequality holds up to step t≥0, then for t+1,

if t∈Tu, then

E
∥∥∥m(i)

t+1

∥∥∥2
=E
∥∥∥∥ut+ 1

2

t−k

∥∥∥∥2
=E
∥∥∥∥ ũt+ 1

2
+δt−δt+1

t−k

∥∥∥∥2
=E

∥∥∥∥∥
∑t

j=k+1m̃j+δt−δt+1

t−k

∥∥∥∥∥
2

=E

∥∥∥∥∥∥
∑t

j=k+1

(
βj−k
1 m̃k+(1−β1)

∑j−1
h=kβ

j−h−1
1 gh

)
+δt−δt+1

t−k

∥∥∥∥∥∥
2
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=E

∥∥∥∥∥∥ 1

t−k

t∑
j=k+1

βj−k
1 m̃k+

1−β1

t−k

t∑
j=k+1

j−1∑
h=k

βj−h−1
1 gh+(δt−δt+1)

∥∥∥∥∥∥
2

∀η>0

≤ (1+η)E

∥∥∥∥∥∥ 1

t−k

t∑
j=k+1

βj−k
1 m̃k

∥∥∥∥∥∥
2

+(1+1/η)E

∥∥∥∥∥∥1−β1

t−k

t∑
j=k+1

j−1∑
h=k

βj−h−1
1 gh+(δt−δt+1)

∥∥∥∥∥∥
2

≤1+η

t−k

t∑
j=k+1

E
∥∥∥βj−k

1 m̃k

∥∥∥2+3(1+1/η)(1−β1)

t−k

t∑
j=k+1

j−1∑
h=k

βj−h−1
1 ghE∥gh∥2

+3(1+1/η)E∥δt∥2+3(1+1/η)E∥δt+1∥2

η=1/β1−1

≤ (1+η)β2
1 ·

3G2
∞d+24∆2

(1−β1)2
+3(1+1/η)G2

∞d+24(1+1/η)∆2

=β1 ·
3G2

∞d+24∆2

(1−β1)2
+
3G2

∞d+24∆2

(1−β1)2

=
3G2

∞d+24∆2

(1−β1)2
.

On the other hand, if t ̸∈Tu, then

E
∥∥∥m(i)

t+1

∥∥∥2=E
∥∥∥m(i)

t+ 1
2

∥∥∥2=E
∥∥∥β1m

(i)
t +(1−β1)g

(i)
t

∥∥∥2
≤β1E

∥∥∥β1m
(i)
t

∥∥∥2+(1−β1)E
∥∥∥g(i)

t

∥∥∥2≤ 3G2
∞d+24∆2

(1−β1)2
.

For all the t+ 1
2 case, the inequality holds trivially due to Jensen Inequality. Finally, all the ·̃ bound

can also be obtained via Jensen Inequality. And that completes the proof.

Lemma 9. In Algorithm 1, for all the t such that t ̸∈Tv , it holds that if we set learning rate

γ≤min

{
βm
2

4V1L
√

G2
∞+ϵ

,
2
√
G2

∞+ϵ

L

}
,

then, ∑
t ̸∈Tv

γE∥∇f(x̃t)∥2

4
√
G2

∞+ϵ

≤
∑
t ̸∈Tv

Ef(ỹt)−Ef(ỹt+1)+
36γ3H2V1(3G

2
∞d+25∆2)L2(1+L)(G2

∞+ϵ+1)(T−m)

βm
2 (1−β1)4

√
G2

∞+ϵ

+
Lγ2V1σ

2(T−m)

nβm
2

+
48γ3V1(H+1)2(3G2

∞d+24∆2)
√
G2

∞+ϵ(T−m)

βm
2 (1−β1)4

.

Proof. Since when t ̸∈Tv, it can either belongs to Tu or not. We first prove the case for t∈Tu. From
the definition of the auxiliary sequence, we obtain,

ỹt+1−ỹt=x̃t+1−x̃t−
γ

1−β1

(
m̃t+1√
vt+1+ϵ

− m̃t√
vt+ϵ

)
−
(

γδt+1√
vt+1+ϵ

− γδt√
vt+ϵ

)
=x̃t+1−x̃t−

γ

(1−β1)
√
vt+ϵ

(m̃t+1−m̃t)−
1√
vt+ϵ

(γδt+1−γδt)

=x̃t+ 1
2
−x̃t−

γ

(1−β1)
√
vt+ϵ

(
m̃t+ 1

2
−m̃t

)
+x̃t+1−x̃t+ 1

2
− γ

(1−β1)
√
vt+ϵ

(
m̃t+1−m̃t+ 1

2

)
− 1√

vt+ϵ
(γδt+1−γδt)︸ ︷︷ ︸

=qt

=− γm̃t√
vt+ϵ

− γ

(1−β1)
√
vt+ϵ

(β1m̃t+(1−β1)g̃t−m̃t)+qt
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=− γg̃t√
v+ϵ

+qt.

From Assumption 1, we have

Ef(ỹt+1)−Ef(ỹt)≤E⟨∇f(ỹt),ỹt+1−ỹt⟩+
L

2
E∥ỹt+1−ỹt∥2

=−γE
〈
∇f(ỹt),

g̃t√
vt+ϵ

〉
︸ ︷︷ ︸

A1

+Lγ2E
∥∥∥∥ g̃t√

vt+ϵ

∥∥∥∥2︸ ︷︷ ︸
A2

−γE⟨∇f(ỹt),qt⟩︸ ︷︷ ︸
A3

+Lγ2E∥qt∥2︸ ︷︷ ︸
A4

.

We now bound A1 to A4 separately. Note that from Lemma 8, the momentum term can be uniformly
bounded by a constant. For brevity of the derivation, we use M to denote such constant bound, and
fit in its value at the end of the proof.

For A1,

A1

=−γE
〈
∇f(ỹt),

g̃t√
vt+ϵ

〉

=−γE

〈
∇f(ỹt),

1
n

∑n
i=1∇f

(
x
(i)
t

)
√
vt+ϵ

〉

=−γE
〈
∇f(x̃t),

∇f(x̃t)√
vt+ϵ

〉
−γE

〈
∇f(x̃t),

1
n

∑n
i=1∇f

(
x
(i)
t

)
−∇f(x̃t)

√
vt+ϵ

〉

−γE
〈
∇f(ỹt)−∇f(x̃t),

∇f(x̃t)√
vt+ϵ

〉
−γE

〈
∇f(ỹt)−∇f(x̃t),

1
n

∑n
i=1∇f

(
x
(i)
t

)
−∇f(x̃t)

√
vt+ϵ

〉

≤− γE∥∇f(x̃t)∥2√
G2

∞+ϵ
+
γη1
2

E∥∇f(x̃t)∥2+
γ

2η1
E

∥∥∥∥∥∥
1
n

∑n
i=1∇f

(
x
(i)
t

)
−∇f(x̃t)

√
vt+ϵ

∥∥∥∥∥∥
2

+
γη1
2

E∥∇f(x̃t)∥2

+
γ

2η1
E
∥∥∥∥∇f(ỹt)−∇f(x̃t)√

vt+ϵ

∥∥∥∥2+ γη1
2

E∥∇f(ỹt)−∇f(x̃t)∥2+
γ

2η1
E

∥∥∥∥∥∥
1
n

∑n
i=1∇f

(
x
(i)
t

)
−∇f(x̃t)

√
vt+ϵ

∥∥∥∥∥∥
2

≤−

(
γ√

G2
∞+ϵ

−γη1

)
E∥∇f(x̃t)∥2+

γV1L
2

βm
2 η1n

n∑
i=1

E
∥∥∥x(i)

t −x̃t

∥∥∥2+( γV1L
2

2βm
2 η1

+
γη1L

2

2

)
E∥ỹt−x̃t∥2,

where in the last step we use Assumption 1, Lemma 2 and Lemma 4. For the second term, denote
the last sync step before t is k, then we have:

E
∥∥∥x(i)

t −x̃t

∥∥∥2=E
∥∥∥x(i)

t −x
(i)
k −(x̃t−x̃k)

∥∥∥2
≤2E

∥∥∥x(i)
t −x

(i)
k

∥∥∥2+2E∥x̃t−x̃k∥2

≤2γ2E

∥∥∥∥∥∥
t−1∑
j=k

m
(i)
j√

vt+ϵ

∥∥∥∥∥∥
2

+2γ2E

∥∥∥∥∥∥ 1n
n∑

i=1

t−1∑
j=k

m
(i)
j√

vt+ϵ

∥∥∥∥∥∥
2

≤2γ2(t−k)
t−1∑
j=k

E

∥∥∥∥∥ m
(i)
j√

vt+ϵ

∥∥∥∥∥
2

+2γ2(t−k) 1
n

n∑
i=1

t−1∑
j=k

E

∥∥∥∥∥ m
(i)
j√

vt+ϵ

∥∥∥∥∥
2

≤4γ2H2V1M

βm
2

,

(5)
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where the first step holds because Lemma 4, Lemma 2, and the fact that at the sync step k, x̃k=x
(i)
k .

For the third term, we have

E∥ỹt−x̃t∥2=E
∥∥∥∥ γm̃t

(1−β1)
√
vt+ϵ

+
γδt√
vt+ϵ

∥∥∥∥2
≤ 2γ2V1

βm
2 (1−β1)2

E∥m̃t∥2+
2V1

βm
2

E∥γδt∥2

Lemma 7
≤ 2γ2V1M

βm
2 (1−β1)2

+
2γ2V1

βm
2

·4∆2

≤ 2γ2V1M

βm
2 (1−β1)2

+
8γ2V1∆

2

βm
2

,

(6)

where we again apply the Lemma 2 and Lemma 4. Then we can get

A1≤−

(
γ√

G2
∞+ϵ

−γη1

)
E∥∇f(x̃t)∥2+

γV1L
2

βm
2 η1n

n∑
i=1

E
∥∥∥x(i)

t −x̃t

∥∥∥2
+

(
γV1L

2

2βm
2 η1

+
γη1L

2

2

)
E∥ỹt−x̃t∥2

≤−

(
γ√

G2
∞+ϵ

−γη1

)
E∥∇f(x̃t)∥2+

4γ3H2V 2
1 L

2M

βm
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+

(
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2

2βm
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+
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2

2

)
·
(
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βm
2 (1−β1)2

+
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2
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2

)
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(
γ√
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∞+ϵ
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)
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4γ3H2V 2
1 L

2M

βm
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+
γ3V 2

1 ML2

η1β2m
2 (1−β1)2

+
γ3η1V1ML2

βm
2 (1−β1)2

+
4γ3V 2

1 ∆
2L2

η1β2m
2

+
4γ3η1V1∆

2L2

βm
2

.

where in the second step we reuse Equation (5). Next we can bound A2 as follows

A2=Lγ2E
∥∥∥∥ g̃t√

vt+ϵ

∥∥∥∥2
≤Lγ2V1
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2

E

∥∥∥∥∥ 1n
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i=1

g
(i)
t
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2
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2

nβm
2

+
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2

E
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x
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t
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2
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+
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E
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x
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2
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2
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E
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2
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2

+
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1 H
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2

+
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2

E∥∇f(x̃t)∥2,

where in the sixth step we reuse Equation (5). For A3,
A3=−γE⟨∇f(ỹt),qt⟩

=−γE⟨∇f(x̃t),qt⟩−γE⟨∇f(ỹt)−∇f(x̃t),qt⟩
∀η2>0

≤ γη2
2

E∥∇f(x̃t)∥2+
γη2
2

E∥∇f(ỹt)−∇f(x̃t)∥2+
γ

η2
E∥qt∥2
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2
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2

2
·
(
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βm
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+
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2
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2

)
+

γ
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E∥qt∥2
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≤γη2
2
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+
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βm
2

+
γ

η2
E∥qt∥2,

where in the last step we reuse Equation (6). Combine the bound of A1 to A4, we obtain
Ef(ỹt+1)−Ef(ỹt)

≤−

(
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)
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2
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2 (1−β1)2

+
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2L2
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2

+

(
γ

η2
+Lγ2

)
E∥qt∥2.

We set the two constants η1,η2 as

η1=
1

4
√

G2
∞+ϵ

η2=
1

2
√

G2
∞+ϵ

,

then we have,
Ef(ỹt+1)−Ef(ỹt)

≤−

(
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2
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2

nβm
2
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8γ3V 2

1 H
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2
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βm
2

E∥∇f(x̃t)∥2

+
γ3η2V1ML2

βm
2 (1−β1)2
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2L2

βm
2

+

(
γ

η2
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(
γ

2
√
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− 2Lγ2V1

βm
2
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E∥∇f(x̃t)∥2+
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√
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+
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2

nβm
2

+
(
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√
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∞+ϵ+Lγ2
)
E∥qt∥2.

Finally, we need to bound the norm of qt. If we denote the last sync step was k steps before t, then,

qt=x̃t+1−x̃t+ 1
2
− γ

(1−β1)
√
vt+ϵ

(
m̃t+1−m̃t+ 1

2

)
− γδt+1−γδt√

vt+ϵ

=x̃t+1−x̃t−k+1+x̃t−k+1−x̃t+ 1
2
− γ

(1−β1)
√
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(
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2

)
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vt+ϵ

=−
γũt+ 1

2√
vt+ϵ

−

 t∑
j=t−k+1

γm̃j√
vt+ϵ

− γ
(
m̃t+1−m̃t+ 1

2

)
(1−β1)

√
vt+ϵ

=− γ

(1−β1)
√
vt+ϵ

m̃t+1−m̃t+ 1
2
+2(1−β1)

t∑
j=t−k+1

m̃j

,

based on which we obtain

E∥qt∥2=E

∥∥∥∥∥∥ γ

(1−β1)
√
vt+ϵ

m̃t+1−m̃t+ 1
2
+2(1−β1)
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m̃j
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2
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≤ γ2V1

βm
2 (1−β1)2
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2

∥∥∥2+12(1−β1)
2k
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j=t−k+1

E∥m̃j∥2


≤12γ2V1(H+1)2M

βm
2 (1−β1)2

.

Put everything together, and let γ fulfills

γ≤min

{
βm
2

4V1L
√

G2
∞+ϵ

,
2
√
G2

∞+ϵ

L

}
,

we finally obtain
Ef(ỹt+1)−Ef(ỹt)

≤− γE∥∇f(x̃t)∥2
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∞+ϵ
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2

nβm
2

+
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√
G2

∞+ϵ

βm
2 (1−β1)2

.

To this end, we have provided bound to all the sync steps t with (t ̸∈Tv and t∈Tu). For all the t with
(t ̸∈ Tv and t ̸∈ Tu), they can be seen as a special case of qt=0. Since A3+A4> 0, this bound will
continue to hold for them, so that to sum over all the t with t ̸∈Tv , we obtain∑

t ̸∈Tv

γE∥∇f(x̃t)∥2

4
√
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≤
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√
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,

where we replace M with Lemma 8. That completes the proof.

Lemma 10. In Algorithm 1, For all the t≥0 that fulfillsvt ̸=vt+1, i.e. t∈Tv , if the learning rate fulfills

γ<
1

6
, the following bound holds∑

t∈Tv

γE∥∇f(x̃t)∥2

4
√
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∞+ϵ

≤
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√
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4
√
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Proof. From the definition of the auxiliary sequence, we obtain,
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γ
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(
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−
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)
.

Based on Assumption 1,
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E∥ỹt+1−ỹt∥2
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≤2ηγL

n

n∑
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E
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∥∥∥2+2ηγσ2

nL
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L

ηγ
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We now bound the three norm terms separately. From Equation (5), we obtain for the first term,

E
∥∥∥x(i)

t −x̃t

∥∥∥2≤ 4γ2H2V1M

βm
2

,

where we again use M to denote the constant bound from Lemma 8 for brevity. On the other hand,
based on a similar derivation to Equation (6), we obtain

E∥ỹt−x̃t∥2≤
2γ2V1M

βm
2 (1−β1)2

+
8γ2V1∆

2

βm
2

.

Finally, for the last norm, it’s possible that the update towards t+1 step contains synchronization on
the buffer. So that we need to discuss the two cases separately. First, for all the t∈Tu, denote the last
sync step before t is k, then we have
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,

where in the last step we use Lemma 7, 8 and 4. It is straightforward to verify that this bound also
holds for t ̸∈Tu (since there will be no noise from the sync step). Combine the three norm term bounds,
we obtain

Ef(ỹt+1)−Ef(ỹt)
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,

where in the last step we set η=1 and use the requirement that γ<1/6. Summing over all the t∈Tv,
we get

0≤
∑
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.
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Adding γ

4
√

G2
∞+ϵ

∑
t∈Tv

E∥∇f(x̃t)∥2 on both sides, and note that∑
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We finally obtain∑
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γE∥∇f(x̃t)∥2

4
√
G2

∞+ϵ

≤
∑
t∈Tv

Ef(ỹt)−Ef(ỹt+1)+
2γσ2m

nL
+
106γH2V1(M+∆2)mL

βm
2 (1−β1)2

+
γσ2m

4n
√

G2
∞+ϵ

+
γG2

∞dm

4
√

G2
∞+ϵ

.

That completes the proof.
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