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ABSTRACT

Learning effective representations simultaneously from multiple tasks in a uni-
fied network framework is a fundamental paradigm for multi-task dense visual
scene understanding. This requires joint modeling (i) task-generic and (ii) task-
specific representations, and (iii) cross-task representation interactions. Existing
works typically model these three perspectives with separately designed struc-
tures, using shared network modules for task-generic learning, different modules
for task-specific learning, and establishing connections among these components
for cross-task interactions. It is barely explored in the literature to model these
three perspectives in each network layer in an end-to-end manner, which can not
only minimize the effort of carefully designing empirical structures for the three
multi-task representation learning objectives, but also greatly improve the repre-
sentation learning capability of the multi-task network since all the model capacity
will be used to optimize the three objectives together. In this paper, we propose
TaskPrompter, a novel spatial-channel multi-task prompting transformer frame-
work to achieve this target. Specifically, we design a set of spatial-channel task
prompts and learn their spatial- and channel interactions with the shared image
tokens in each transformer layer with attention mechanism, as aggregating spatial
and channel information is critical for dense prediction tasks. Each task prompt
learns task-specific representation for one task, while all the prompts can jointly
contribute to the learning of the shared image token representations, and the in-
teractions between different task prompts model the cross-task relationship. To
decode dense predictions for multiple tasks with the learned spatial-channel task
prompts from transformer, we accordingly design a dense task prompt decoding
mechanism, which queries the shared image tokens using task prompts to obtain
spatial- and channel-wise task-specific representations. Extensive experiments on
two challenging multi-task dense scene understanding benchmarks (i.e. NYUD-
V2 and PASCAL-Context) show the superiority of the proposed framework
and TaskPrompter establishes significant state-of-the-art performances on multi-
task dense predictions. Codes and models are publicly available at https:
//github.com/prismformore/Multi-Task-Transformer.

1 INTRODUCTION

Dense visual scene understanding is a fundamental research topic in computer vision that involves
many dense prediction tasks, including semantic segmentation, depth estimation, surface normal
estimation, boundary detection, etc. These distinct tasks share a fundamental understanding of the
scene, which motivates researchers to design learning systems that model and predict multiple tasks
in a unified framework, which is called “multi-task learning” (MTL). MTL mainly has two strengths:
on one hand, learning a unified multi-task model for multiple tasks is typically more parameter-
efficient than training several single-task models; on the other hand, different tasks can facilitate
each other with a good design in MTL (Vandenhende et al., 2021).

With the powerful boost of deep learning, researchers have successfully designed highly promising
multi-task learning models by exploiting the commonality and individuality of the tasks (Mani-
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Figure 1: Illustration of our Spatial-Channel Multi-task Prompting framework (TaskPrompter).
TaskPrompter unifies the learning of task-specific and task-generic representations as well as cross-
task interactions in each layer throughout the whole transformer architecture, with the embedding
of task prompts and and patch tokens. The task prompts are projected to spatial task prompts and
channel task prompts to learn spatial- and channel-wise interactions, which are critical for dense
predictions. The spatial and channel task prompts as well as patch tokens are further used in the pro-
posed Dense Spatial-Channel Task Prompt Decoding module to prompt dense task-specific features
and the final multi-task predictions.

nis et al., 2019; Xu et al., 2018; Kendall et al., 2018; Kokkinos, 2017). Traditionally, researchers
manually design different types of modules in the multi-task network architecture to learn useful
information for multi-task predictions on three aspects: task-generic representations, task-specific
representations, and cross-task interactions. For instance, earlier works (Liu et al., 2019; Gao et al.,
2019; Misra et al., 2016) design dedicated modules to learn task-specific representations and embed
cross-task information interactions through hand-crafted structures deployed in the encoder, while
several recent works (Ye & Xu, 2022; Li et al., 2022b; Vandenhende et al., 2020) choose to de-
velop task-specific and cross-task modules in the decoder, and share encoder among different tasks.
However, all of these methods decouple the learning of task-generic representations, task-specific
representations, and cross-task interactions, into different network modules, which not only makes
the architecture design more challenging as each module needs to be configured with a specific
structure and capacity, but also suboptimal as learning effective communication among these three
important perspectives of information is critical for multi-task dense prediction.

To tackle the above-mentioned issue, we believe a better MTL framework should be capable of
learning task-generic and task-specific representations as well as their interactions jointly in each
layer across the whole network architecture. In this paper, we achieve this goal by proposing a
novel Spatial-Channel Multi-task Prompting framework, coined as TaskPrompter. The core idea of
TaskPrompter is to design “spatial-channel task prompts” which are task-specific learnable tokens
to learn spatial- and channel-wise task-specific information for each task. More specifically, the
task prompts are embedded together with the task-generic patch tokens computed from the input
image as input of a transformer with a specially designed Spatial-Channel Task Prompt Learning
module. The task prompts and patch tokens interact with each other and refine themselves by means
of attention mechanism in each transformer layer. In this way, TaskPrompter manages to learn task-
generic and task-specific representation as well as cross-task interaction simultaneously and does
not require the design of different types of network modules.

With the learned spatial-channel task prompts and image patch tokens, it is a non-trivial problem how
to effectively decode multi-task dense features and predictions from them. To meet this challenge,
we further propose a novel Dense Spatial-Channel Task Prompt Decoding method, which leverages
both the spatial-wise and channel-wise affinities calculated between the task prompts and the patch
tokens in attention modules to extract dense task features. The features are further refined by the
cross-task affinity obtained from the self-attention weights among task prompts. The final multi-task
dense predictions are produced based on the dense task features.

In summary, the contribution of this work consists of three parts:

• We propose a novel Spatial-Channel Multi-task Prompting framework (TaskPrompter) for multi-
task dense scene understanding. Our method essentially combines the learning of task-generic
and task-specific representations, as well as cross-task interactions in each layer across the whole
network architecture by introducing task prompts in our transformer.
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• A Spatial-Channel Task Prompt Learning module is designed. It can be flexibly deployed in each
transformer layer for learning and refining task prompts and patch tokens along both spatial and
channel dimensions.

• We further design a novel Dense Spatial-Channel Task Prompt Decoding method based on the
learned task-specific task prompts and task-generic patch tokens to generate pixel-wise predictions
for multiple tasks simultaneously.

Extensive experiments on two challenging multi-task dense prediction benchmarks (i.e. PASCAL-
Context and NYUD-v2) clearly verify the effectiveness of the proposed method, which demonstrates
superior performance compared with the previous state-of-the-art methods.

2 RELATED WORK

Multi-task Dense Scene Understanding with Deep Learning Several works have verified that
scene understanding tasks can benefit from each other via multi-task learning (MTL) in deep learn-
ing era (Li et al., 2022a; Maninis et al., 2019; Kokkinos, 2017; Misra et al., 2016). MTL can also
improve the computation efficiency of both training and inference compared with those with single-
task models (Vandenhende et al., 2020). On the one hand, some researchers work on improving
the optimization process of MTL, including loss design (Yang et al., 2023; Liu et al., 2022; Zamir
et al., 2020; Kendall et al., 2018) and gradient manipulation (Chen et al., 2020; 2018). On the other
hand, the architecture design of multi-task deep models is also widely explored (Vandenhende et al.,
2021). We can divide most existing works on multi-task architecture design into two categories:
encoder-based and decoder-based methods. Encoder-based methods (Gao et al., 2019; Liu et al.,
2019; Misra et al., 2016) focus on designing cross-task interaction modules in the encoder, while
the decoder-based methods embed these modules in the decoder stage. As the decoder-based meth-
ods can readily leverage the weights of backbone models pre-trained on large-scale image dataset
(e.g. ImageNet), they generally yield stronger performance than encoder-based methods and have
become mainstream pipelines for multi-task scene understanding (Bruggemann et al., 2021; Xu
et al., 2018; Zhang et al., 2019; Zhou et al., 2020; Zhang et al., 2021). Recently, transformer models
have been widely explored for multi-task learning (Ye & Xu, 2022; Bhattacharjee et al., 2022; Xu
et al., 2022b; Liang et al., 2022; Xu et al., 2022a). Specifically, Ye & Xu (2022) propose a strong
multi-task transformer “InvPT”, which uses self-attention (Vaswani et al., 2017) to simultaneously
learn spatial and cross-task relationships in a global context, establishing a strong multi-task perfor-
mance. However, these existing methods decouple the learning of three important perspectives in
multi-task learning, i.e. task-generic, task-specific representations, and cross-task interactions, into
separate modules, which requires a careful design for each module, making the construction of the
overall multi-task architecture challenging and suboptimal. To address this issue, this paper pro-
poses a novel and effective multi-task prompting framework based on transformer to simultaneously
learn these perspectives in each network layer in an end-to-end manner.

Prompting Prompting is a burgeoning paradigm designed for transformer. It is originally proposed
to adapt pre-trained transformer models to downstream tasks by modifying the input of transformer
layers without fine-tuning all the model parameters (Schick & Schütze, 2021; Gao et al., 2021;
Lester et al., 2021; Brown et al., 2020; Shin et al., 2020). While some works try to explicitly design
prompts (Shin et al., 2020; Petroni et al., 2019), more and more researchers turn to back-propagation
for learning prompts (Lester et al., 2021; Li & Liang, 2021), which is termed as “Prompt Tuning”.
It typically embeds learnable prompts in the input token sequence of transformer and automatically
tunes the prompts in training (Liu et al., 2021a; Hambardzumyan et al., 2021). Recently, the idea
of prompting is introduced in Vision-language tasks (Zhou et al., 2022b; Ju et al., 2022; Yao et al.,
2021; Ge et al., 2022; Zhou et al., 2022c; Radford et al., 2021), and further explored in visual tasks,
such as image classification (Jia et al., 2022; Sandler et al., 2022; Bahng et al., 2022; Wang et al.,
2022), open-vocabulary semantic segmentation (Rao et al., 2022; Zhou et al., 2022a), and object
detection (Du et al., 2022; Feng et al., 2022). More related to our work, HyperPrompt (He et al.,
2022) addresses multiple NLP tasks with prompts generated from task-specific hyper-networks. It
is different from our proposal in three major ways: First, HyperPrompt needs to perform separate
inferences for different tasks with different prompts; Second, because of the first limit, it has no
cross-task interaction mechanism. Third, our special spatial-channel task prompting and decoding
mechanisms are designed for dense predictions, which is totally different from NLP tasks. More-
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over, our end-to-end multi-task prompting framework enables cross-task interactions throughout the
whole network and generates pixel-wise predictions for all tasks with only one inference.

3 TASKPROMPTER: SPATIAL-CHANNEL MULTI-TASK PROMPTING

The proposed TaskPrompter framework (see Fig. 1) can be divided into three parts, i.e. Prompt
Embedding, Spatial-Channel Task Prompt Learning, and Dense Spatial-Channel Task Prompt De-
coding. We now introduce the details of these components one by one in this section.

3.1 PROMPT EMBEDDING

We adopt a classic transformer pipeline to embed an input image into a sequence of patch to-
kens (Dosovitskiy et al., 2021). It should be noted that our method is independent of the selection of
different transformer architectures. The input image is first processed by a patch embedding layer,
which is a convolutional layer with feature resolution downsampling. After the patch embedding
layer, suppose the output feature map has a shape (H,W,C) where H and W are the height and
width, and C is the number of channels of the feature map. The feature map is first reshaped into
N = H ×W patch tokens in a C-dimensional latent space and then added by positional encod-
ings. To enable multi-task prompting, we propose to embed T learnable task-specific tokens as task
prompts in the same C-dimensional latent space as that of patch tokens, where T is the number
of tasks in multi-task learning. Each task prompt corresponds to a task. Next, the task prompts are
concatenated with the patch tokens and form a token sequence matrix Z0:

Z0 = [p1;p2; . . . ;pT ;x1;x2; . . . ;xN ] ∈ R(T+N)×C , N = H ×W, (1)
where [·] indicates concatenation, {pi}Ti=1 denotes the sequence of task prompts, and {xi}Ni=1 de-
notes the sequence of patch tokens. In this way, the input image and task prompts are encoded and
aggregated into a joint token sequence, which is refined through the proposed spatial-channel task
prompt learning process.

3.2 SPATIAL-CHANNEL TASK PROMPT LEARNING

We design a spatial-channel task prompt learning module for concurrently learning and refining
task prompts and patch tokens along both spatial and channel feature dimensions, as the spatial and
channel information are both critical for various dense prediction tasks (Fu et al., 2019). The module
details are depicted in Fig. 2. The goal of our design is to learn task-generic and task-specific visual
representations, as well as cross-task interactions simultaneously, by taking full advantage of the
structure of transformer with the embedded task prompts. Specifically, for each transformer layer,
we adopt the basic layer structure of the classic ViT (Dosovitskiy et al., 2021) including MLPs,
layer normalization layers (LayerNorm), and skip connections, while the core multi-head attention
module is replaced by the proposed Spatial-Channel Task Prompt Learning module, in which, we
design two types of task prompt learning paradigms: (i) Spatial Task Prompt Learning and (ii)
Channel Task Prompt Learning.

Without loss of generality, we use the first transformer layer for illustration. After the first Lay-
erNorm, we obtain a token sequence Z = LayerNorm(Z0) ∈ R(T+N)×C , which consists of task
prompts P ∈ RT×C and patch tokens X ∈ RN×C . Then, P is projected into spatial task prompts
Ps and channel task prompts Pc where the superscript s denotes ‘spatial’ and c denotes ‘channel’,
and the projection can be formulated as:

Ps = fC→C(P) ∈ RT×C , Pc = fC→N (P) ∈ RT×N , (2)
where fC→C denotes an identity mapping with the feature dimension unchanged;
fC→N : RT×C → RT×N is a 2-layer MLP that projects the input task prompts P from C-
dimensional latent space to N -dimensional latent space (N = H ×W ). In this way, each channel
task prompt aligns the feature dimension to the number of patch tokens for performing channel
interactions. Then, Ps and X are fed into the proposed spatial task prompt learning module, and
concurrently Pc and X are fed into the channel task prompt learning module.

Spatial Task Prompt Learning This module simultaneously learns spatial task prompts Ps and
patch tokens X, where each spatial task prompt interacts with patch tokens along the spatial dimen-
sion to model the spatial-wise relationships between task prompts and patch tokens. The spatial
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Figure 2: An illustration of the proposed Spatial-Channel Task Prompt Learning module in a trans-
former layer. This module learns the T task prompts by interacting with patch tokens along both the
spatial and channel dimensions. The task prompts are projected into T spatial task prompts (each
with C-dimensional) for Spatial Task Prompt Learning and into T channel task prompts (each with
N -dimensional) for Channel Task Prompt Learning.

task prompts Ps and patch tokens X are stacked as a token sequence [Ps;X] ∈ R(T+N)×C , which
is linearly projected by learnable parameters Ws

q,W
s
k,W

s
v ∈ RC×C , to respectively produce the

query Qs, the key Ks, and the value Vs as follows:

Qs = [Ps;X]×Ws
q, Ks = [Ps;X]×Ws

k, Vs = [Ps;X]×Ws
v. (3)

As a standard procedure, before we compute the multi-head self-attention (MSA), we need to
partition Qs,Ks,Vs evenly along the last dimension into different groups as input of different
heads. Suppose that we utilize Ns

head heads in MSA, after head partition we have Qs,Ks,Vs ∈
RNs

head×(T+N)× C
Ns

head and spatial self-attention map is computed by As = Qs ×Ks⊤, where the
symbol ‘⊤’ denotes a transposing operation that transposes the last two dimensions of a tensor. As

is then scaled and normalized by a softmax function, and multiplied by Vs to obtain a new token
sequence. The token sequence merges different heads and is projected by a linear layer as in a stan-
dard MSA, which provides us an output token sequence, consisting of updated spatial task prompts
Ps′ and patch tokens X′.

Channel Task Prompt Learning This module is proposed to model the channel-wise relationships
between the channel task prompts Pc and the patch tokens X along the channel dimension. We
perform cross-attention to model the channel-wise relationships. The channel task prompts Pc are
projected by a learnable parameter Wc

q ∈ RN×N to produce the query Qc ∈ RT×N , and the
patch tokens X are separately projected by two learnable parameter matrices Wc

k ∈ RC×C and
Wc

v ∈ RC×C , and transposed to produce the key Kc and the value Vc:

Qc = Pc ×Wc
q, Kc = (X×Wc

k)
⊤, Vc = (X×Wc

v)
⊤. (4)

Before computing the multi-head cross-attention, we need to partition Qc,Kc,Vc along the last
dimension into different groups as the input of different heads in multi-head channel-wise cross at-
tention. Suppose the number of heads used in Channel Task Prompt Learning is N c

head, the most
straightforward way is evenly partitioning the matrices along their last dimension into N c

head groups.
However, as Kc and Vc are computed from patch tokens X, the last dimension of them contains
the spatial relationship of pixels, while a standard partition method disrupts this spatial relationship
which is critical for learning features for dense predictions. A more reasonable strategy is reorga-
nizing Qc,Kc,Vc based on the spatial adjacency. Specifically, we first reshape these matrices to a
spatial shape RC×H×W as H×W = N , and then partition the spatial planes formed by the last 2 di-
mensions evenly into N c

head local windows, as shown in Fig. 6. Notably, N c
head needs to be properly

set so that the number of windows along the height dimension Nh
win and the width dimension Nw

win

satisfies Nh
win × Nw

win = N c
head. This process is the proposed “window partition” to maintain the

spatial relationship for multi-head channel cross-attention calculation. After the window partition,
we have Qc ∈ RNc

head×T×N/Nc
head ,Kc,Vc ∈ RNc

head×C×N/Nc
head . Then, channel attention maps

are calculated by Ac = Qc ×Kc⊤. Ac is scaled and normalized by a softmax function and multi-
plied by Vc to obtain the updated channel task prompts Pc′ after being processed by a linear layer.
To update the overall task prompts P with information learned from both the spatial and channel
task prompts, as shown in Fig. 2, Pc′ is projected back to the C-dimensional latent space with a
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2-layer MLP fN→C : RT×N→T×C , and then added by Ps′ to obtain a combined task prompts P′

as an update of P as follows:
P′ = Ps′ + fN→C(P

c′). (5)
P′ and X′ are refined by the typical LayerNorm and MLP, and then stacked as a new token sequence
Z′, which is fed into the next transformer layer following the same procedure for further learning.

3.3 DENSE SPATIAL-CHANNEL TASK PROMPT DECODING

To decode multiple dense predictions for distinct tasks from the task-specific task prompts and task-
generic patch tokens, we need to design an effective decoding method for TaskPrompter. Since
the task prompts including the spatial and channel task prompts are task-discriminative, then the
affinities calculated between the spatial/channel task prompts and the shared patch tokens are also
distinct. The different task prompts localize different spatial regions or channels on the patch tokens.
This can also be confirmed from our visualization of the learned spatial and channel affinities, as
shown in Fig. 4. Based on the learned spatial and channel task prompts, we propose a Dense Spatial-
Channel Task Prompt Decoding method, which consists of Spatial Task Prompting and Channel Task
Prompting strategies, to respectively compute spatial-wise and channel-wise task-specific features,
for the final multi-task predictions, as shown in Fig. 3.

Spatial Task Prompting Each spatial task prompt corresponds to a spatial affinity map by com-
puting the affinity between the spatial task prompt and all the patch tokens. We denote this spatial
affinity map as Spatial-Task-Prompt Affinity, as shown in Fig. 3. It can be extracted directly from
the learned spatial attention maps, i.e. As ∈ RNs

head×(T+N)×(T+N) with N = H ×W as the num-
ber of patch tokens and T as the number of tasks, in the task-prompt learning stage. For the spatial
task prompt of task t, we can extract an attention tensor in space RNs

head×N from As, and then we
reshape it to be a new tensor in space RNs

head×1×H×W , which is the Spatial-Task-Prompt Affin-
ity and we denote it as Ap→s

t . On the other hand, given an updated token sequence X′ ∈ RN×C

produced from a transformer layer, we transpose and reshape X′ into space RNs
head×C/Ns

head×H×W ,
and denote it as X′s. The spatial-wise task-specific features Fs

t for task t can be decoded by:

Fs
t = fsr(A

p→s
t ⊙X′s), (6)

where the symbol ⊙ indicates the operation of a Hadamard product and fsr(·) represents the opera-
tion of reshaping the tensor into space RC×H×W .

Channel Task Prompting Each channel task prompt corresponds to a channel affinity vector, which
can be computed by measuring the affinity between the channel task prompt and all the channels of
the patch tokens. We name it Channel-Task-Prompt Affinity, denoted as Ap→c

t with t indicating
the task t, which can be used to decode the channel-wise task-specific representation for task t. We
obtain the channel-task-prompt affinity Ap→c

t of task t from Ac ∈ RNc
head×T×C by slicing one

along the second dimension and reshaping it into space RC×Nh
win×1×Nw

win×1. We also reshape X′

as X′c ∈ RC×Nh
win×hwin×Nw

win×wwin , where hwin = H/Nh
win and wwin = W/Nw

win. Then, we can
compute the channel-wise task-specific features Fc

t for task t as follows:

Fc
t = fcr(A

p→c
t ⊙X′c), (7)
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Figure 4: Visualization examples of the spatial-task-prompt affinity (the first three rows) and the
channel-task-prompt affinity (the last row). It can be observed that different spatial and channel task
prompts can both attend to distinct spatial or channel locations of the patch tokens, which indicates
that the task prompts can effectively learn task-specific representations from the interaction with the
image patch tokens.

where fcr(·) denotes the operation of reshaping the tensor into the space RC×H×W .

Spatial-Channel Fusion To fuse the task-specific features Fs
t and Fc

t from the spatial and channel
task prompting, we concatenate them along the channel dimension and reduce the channel number
by half via using a 3 × 3 convolution (CONV3×3) with batch normalization (BN) and GELU to
obtain a fused task-specific feature Ft for task t as follows:

Ft = GELU ◦ BN ◦ CONV3×3([F
s
t ;F

c
t ]). (8)

Then, we stack the prompted task-specific features of all the T tasks along the first dimension and
obtain an overall task feature map F ∈ RT×C×H×W .

Cross-task Reweighting The spatial and channel task prompting decode the relationship between
task prompts and patch tokens. The cross-task relationship is not involved, while the cross-task
relationship is also modeled in the task-prompt learning stage in the encoder. To encourage cross-
task information exchange in our decoding stage, we further put forward Cross-task Reweighting as
also shown in Fig. 3. First, we extract the affinity tensor among T task prompts from the attention
map As. The affinity tensor is in space RNs

head×T×T . Then, we project the first dimension to
1 using a 2-layer MLP, and obtain the Cross Task Affinity Ap→p. The prompted task features
F ∈ RT×C×H×W are updated by F← Ap→p × F. The prompted task features F contain features
for all the T tasks. They are split and separately fed into T task-specific prediction heads for dense
predictions. Each prediction head is composed of a simple 3 × 3 convolutional block with BN and
GELU, and a linear projection layer.

Hierarchical Prompting As discussed by previous multi-task transformer for dense scene under-
standing (Ye & Xu, 2022), different levels of transformer features help improve the multi-task per-
formance. Therefore, we deploy our prompt decoding method to multiple levels of the transformer,
and name it “Hierarchical Prompting (HP)”. Specifically, we conduct Dense Spatial-Channel Task
Prompt Decoding at multiple levels of transformer for prompting the task features, instead of only
the last layer. The multi-level task features are later fused as one by addition to obtain the final
prompted task features, which are fed into the prediction heads as described above.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate the proposed TaskPrompter mainly on two mostly used multi-task dense visual
scene understanding datasets, i.e. NYUD-v2 (Silberman et al., 2012) and PASCAL-Context (Chen
et al., 2014). Details of the datasets are presented in Appendix A.3.
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Table 1: Effectiveness of different components of TaskPrompter. The performance gains compared
against the baseline are shown in brackets. ‘↓’ means lower better and ‘↑’ means higher better.

Model Semseg Parsing Saliency Normal Boundary MTL Gain
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑ ∆m ↑

STL Model 78.42 68.36 85.34 13.87 73.90 -

TaskPrompter Baseline 75.04 64.82 84.59 14.17 68.00 -4.11
+SPrompt 75.95 (↑ 0.91) 65.60 (↑ 0.78) 84.91 (↑ 0.31) 13.97 (↓ 0.20) 70.50 (↑ 2.50) -2.59 (↑ 1.52)
+SPrompt + CPrompt 76.46 (↑ 1.41) 66.25 (↑ 1.43) 85.00 (↑ 0.41) 13.97 (↓ 0.20) 71.10 (↑ 3.10) -2.11 (↑ 2.00)
+SPrompt + CPrompt + RW 76.83 (↑ 1.79) 66.31 (↑ 1.49) 85.00 (↑ 0.41) 13.94 (↓ 0.23) 71.30 (↑ 3.30) -1.90 (↑ 2.21)
+SPrompt + CPrompt + RW + HP 79.00 (↑ 3.96) 67.00 (↑ 2.18) 85.05 (↑ 0.46) 13.47 (↓ 0.70) 73.50 (↑ 5.50) 0.15 (↑ 4.26)

Table 2: Comparison between TaskPrompter-Base and TaskPrompter-Large.

Model
PASCAL-Context NYUD-v2

Semseg Parsing Saliency Normal Boundary Semseg Depth Normal Boundary
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑ mIoU ↑ RMSE ↓ mErr ↓ odsF ↑

TaskPrompter-Base 79.00 67.00 85.05 13.47 73.50 50.40 0.5402 18.91 77.60
TaskPrompter-Large 80.89 68.89 84.83 13.72 73.50 55.30 0.5152 18.47 78.20

Evaluation Metrics Semantic segmentation (Semseg) and human parsing (Parsing) use the mean
Intersection over Union (mIoU) metric for evaluation. Monocular depth estimation (Depth) uses
Root Mean Square Error (RMSE). Surface normal estimation (Normal) uses mean error (mErr) of
predicted angles. Saliency detection (Saliency) adopts maximal F-measure (maxF) for evaluation.
Object boundary detection (Boundary) is evaluated with the optimal-dataset-scale F-measure (odsF).
Multi-task gain (MTL Gain) is evaluated by metric ∆m introduced in (Maninis et al., 2019).

Models Declaration To verify the model effectiveness, we consider the following model variants in
Table 1: (i) “TaskPrompter Baseline” is a very strong baseline with comparable performance to the-
state-of-the-arts for multi-task dense predictions. It is built upon ViT-Base with 12 transformer lay-
ers pre-trained on ImageNet-22K, and uses task-specific Conv(3x3)-BN-ReLU-Conv(1x1) blocks
as heads for final multi-task predictions. (ii) “STL Model” is a counterpart of (i) under single-
task setting with the same network structure. It is used to train a set of single-task models, and
each model is only trained for one task at a time. (iii) “TaskPrompter +SPrompt +CPrompt +RW
+HP” denotes a full version of TaskPrompter using all the proposed modules. It is built on (i) with
the same transformer architecture and parameter initialization. It uses 16 heads for Channel Task
Prompt Learning. In Hierarchical Prompting (HP), it selects every third layer, in total 4 layers, to
conduct Dense Spatial-Channel Task Prompt Decoding. (iv) “TaskPrompter +SPrompt +CPrompt
+RW” removes Hierarchical Prompting from (iii). (v) “TaskPrompter +SPrompt +CPrompt” re-
moves cross-task reweighting from (iv). (vi) “TaskPrompter +SPrompt” further disables Channel
Task Prompt Learning from (v).

4.2 EXPERIMENTAL RESULTS

Effectiveness of Spatial and Channel Task Prompt Learning and Decoding We evaluate the pro-
posed methods on the PASCAL-Context dataset and report the results in Table 1. Using Spatial Task
Prompt Learning can already bring a clear performance improvement on all the tasks, particularly,
with a boost of 0.91, 0.78, and 2.50 points for Semseg, Parsing, and Boundary respectively, com-
pared against the baseline. By adding the Channel Task Prompt Learning, the performance gains are
further increased to 1.41, 1.48, and 3.10 points for the three tasks, respectively. These experimental
results clearly demonstrate the effectiveness of the core design of TaskPrompter.

Effectiveness of Cross-Task Reweighting and Hierarchical Prompting Furthermore, as shown in
Table 1, cross-task reweighting can improve the performance of most of the tasks, with a multi-task
gain (i.e. ∆m) of 0.21 points. Hierarchical Prompting helps increase the performance largely on all
the tasks, by deploying task-prompt decoding on multiple levels of the transformer. Hierarchical
Prompting is designed to facilitate the decoding of task-specific features with the learned spatial-
channel task prompts at each layer of the transformer encoder. With the embedding and learning of
the global task prompts from the beginning of the transformer encoder, our model can naturally per-
form spatial-channel hierarchical prompting at different layers for decoding task-specific features,
which is very beneficial for producing more effective multi-task representations.

Scaling TaskPrompter We follow ViT (Dosovitskiy et al., 2021) and build the proposed
Spatial-Channel Multi-task Prompting framework on a transformer with 24 layers, denoted as
TaskPrompter-Large. We also denote the one with 12 layers as TaskPrompter-Base, and compare
their performances on both PASCAL-Context and NYUD-v2 datasets. The results are reported in
Table 2. We can observe that models with bigger capacity generally bring better performance for
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Figure 5: Influence of the number of heads (windows) in Channel Task Prompt Learning.

Table 3: Comparison with state-of-the-arts on NYUD-v2 (left) and PASCAL-Context (right). Our
TaskPrompter clearly outperforms the previous state-of-the-arts.

Model Semseg Depth Normal Boundary
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑

Cross-Stitch (Misra et al., 2016) 36.34 0.6290 20.88 76.38
PAP (Zhang et al., 2019) 36.72 0.6178 20.82 76.42
PSD (Zhou et al., 2020) 36.69 0.6246 20.87 76.42
PAD-Net (Xu et al., 2018) 36.61 0.6270 20.85 76.38
MTI-Net (Vandenhende et al., 2020) 45.97 0.5365 20.27 77.86
ATRC (Bruggemann et al., 2021) 46.33 0.5363 20.18 77.94
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
TaskPrompter (ours) 55.30 0.5152 18.47 78.20

Model Semseg Parsing Saliency Normal Boundary
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

ASTMT (Maninis et al., 2019) 68.00 61.10 65.70 14.70 72.40
PAD-Net (Xu et al., 2018) 53.60 59.60 65.80 15.30 72.50
MTI-Net (Vandenhende et al., 2020) 61.70 60.18 84.78 14.23 70.80
ATRC (Bruggemann et al., 2021) 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP (Bruggemann et al., 2021) 63.60 60.23 83.91 14.30 70.86
ATRC-BMTAS (Bruggemann et al., 2021) 67.67 62.93 82.29 14.24 72.42
InvPT (Ye & Xu, 2022) 79.03 67.61 84.81 14.15 73.00
TaskPrompter (ours) 80.89 68.89 84.83 13.72 73.50

most of the tasks, but as discussed by Ye & Xu (2022); Kendall et al. (2018), the performances of
some tasks may be worse because of the multi-task competition issue.

Qualitative Visualization of Spatial-Channel Task Prompt Affinity To investigate whether the
task prompts learn task-specific affinity on patch tokens, we visualize the affinity values between task
prompts and patch tokens in the Dense Spatial-Channel Task Prompt Decoding module as shown
in Fig. 4 and Fig. 8. We can clearly observe that the activated spatial-task-prompt affinity values
are highly related to the particularity of each task, which indicates that the spatial task prompts can
effectively encode task-specific representations, and attend to different semantic regions of patch
tokens that are more beneficial for the prediction of a specific task when performing the decoding.
On the other hand, we calculate the average of channel-task-prompt affinity maps from all the test
images of PASCAL-Context dataset and randomly select 60 channels for visualization. We can ob-
serve that the different channel task prompts have distinct attention responses to different channels,
which verifies that channel-task-prompt affinity encodes task-specific relationships between channel
task prompts and patch tokens along the channel dimension.

Study of Number of Heads in Channel Task Prompt Learning As introduced in Section 3.2, we
partition query and key tensors in Channel Task Prompt Learning into different groups as input of
different heads in cross-attention. We report the performance comparison of using different numbers
of heads in Fig. 5. We observe that using more heads brings better performance for most tasks.

Comparison with Previous SOTA on NYUD-v2 and PASCAL-Context Table 3 reports a compar-
ison of the proposed TaskPrompter against previous state-of-the-art methods, including InvPT (Ye
& Xu, 2022), ATRC (Bruggemann et al., 2021), MTI-Net (Vandenhende et al., 2020) and PAD-
Net (Xu et al., 2018), on both NYUD-v2 and PASCAL-Context datasets. Notably, the previous best
method (i.e. InvPT) and our TaskPrompter are built upon the transformer architecture with the same
backbone. Our TaskPrompter establishes new state-of-the-art performances on all 9 metrics on these
two datasets. On NYUD-v2, the performance of Semseg is clearly boosted from the previous best,
i.e. 53.56 to 55.30 (+1.74). On PASCAL-Context dataset, Semseg is improved from the previous
best 79.03 to 80.89 (+1.86) and Parsing is improved from 67.61 to 68.89 (+1.28).

5 CONCLUSION

We have presented a Spatial-Channel Multi-task Prompting (TaskPrompter) framework for simul-
taneously learning task-generic and task-specific representations as well as cross-task interaction in
each layer throughout the whole transformer architecture. We first propose to learn task prompts to
encode task-specific information, and design a dedicated module to learn the relationship between
task prompts and patch tokens along both spatial and channel dimensions. Furthermore, we propose
a novel spatial-channel task prompt decoding method to generate dense task-specific features for
prediction. The effectiveness of our method is validated by both quantitative and qualitative ex-
periments, showing superior performances on different task sets. The performances of our method
clearly surpass the existing multi-task dense scene understanding models.
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A APPENDIX

A.1 PRELIMINARIES: MULTI-HEAD SELF-ATTENTION AND MULTI-HEAD
CROSS-ATTENTION

Multi-head self-attention and multi-head cross-attention are both widely used variants of the atten-
tion mechanism proposed by Vaswani et al. (2017). As the input of the attention module, the token
sequences are projected by individual learnable weights to query Q, key K, and value V matrices.
Essentially, attention mechanism is a weighted addition operation on the value guided by the affinity
between query and key values. The output of attention module is calculated by:

Attention(Q,X) = softmax

(
QK⊤
√
C

)
×V, (9)

where C is the embedding dimension. If the input token sequences are projected into Nhead set of
query, key, and value tensors and compute attention separately, it is called “multi-head attention”.
The difference between multi-head self-attention (MHSA) and multi-head attention cross-attention
(MHCA) is that the query, key, and value input of MHSA are projected from the same token se-
quence, while the query and key matrices of MHCA are projected from different token sequences.

A.2 WINDOW PARTITION IN CHANNEL TASK PROMPT LEARNING

We show a visual illustration of the window partition technique used in Channel Task Prompt Learn-
ing in Fig. 6.

Window
Partition

Figure 6: We partition the spatial planes formed by the last 2 dimensions of Kc and Vc evenly
into local windows to maintain the spatial relationship when fed into different attention heads for
cross-attention calculation in the Channel Task Prompt Learning.

A.3 IMPLEMENTATION DETAILS

Datasets We evaluate the proposed TaskPrompter mainly on two mostly used multi-task dense visual
scene understanding datasets, i.e. NYUD-v2 (Silberman et al., 2012) and PASCAL-Context (Chen
et al., 2014). Specifically, PASCAL-Context provides 4,998 images in the training set and 5,105
images in the testing set. This dataset offers dense labels for multiple tasks including semantic
segmentation, human parsing, and object boundary detection. Additionally, Maninis et al. (2019)
provide pseudo ground truth labels for surface normals estimation and saliency detection. On the
other hand, NYUD-v2 totally provides 1,449 images, in which 795 are used for training and the rest
654 for testing. It includes dense labels for tasks including semantic segmentation, monocular depth
estimation, surface normal estimation, and object boundary detection. In our experimental setup, we
include all the tasks in these datasets for a comprehensive performance study.

Model Training The models for different experiments are trained for 40,000 iterations on all
datasets, with a batch size of 4 if not otherwise specified. Adam optimizer is adopted with a learn-
ing rate of 2 × 10−5, and a weight decay rate of 1 × 10−6. A polynomial learning rate scheduler
is used during optimization. For the continuous regression tasks (i.e. Depth and Normal) we use
L1 Losses. For the discrete classification tasks (i.e. Semseg, Parsing, Saliency, and Boundary) we
use cross-entropy losses for them. The learnable task prompts are randomly initialized with normal
distribution (mean=1, std=1).

Data Processing. For a fair comparison with Invpt (Ye & Xu, 2022), we follow its data processing
pipeline. On PASCAL-Context, we pad the image to the size of 512 × 512, while on NYUD-v2,
we randomly crop the input image to the size of 448 × 576. We use the same data augmentation
including random color jittering, random cropping, random scaling, and random horizontal flipping.
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Figure 7: Influence of using different numbers of levels in Hierarchical Prompting (HP). The levels
are chosen evenly based on network depth. “1” means not using HP. Using only two levels in HP
can already bring large performance gain.

A.4 ABLATION STUDY OF USING DIFFERENT NUMBERS OF LEVELS IN HIERARCHICAL
PROMPTING

We investigate how the number of levels used by Hierarchical Prompting (HP) influences the over-
all performance of TaskPrompter. The experimental results with the varying number of levels are
presented in Fig. 7. It can be observed that using only two levels in HP can already largely boost
the performances on all the five tasks, demonstrating the effectiveness of the hierarchical prompting
scheme. Further increasing the number of levels, it helps further improve some tasks (e.g., Sem-
seg, Normal, and Boundary), while for some others (e.g., Parsing and Saliency), it shows saturated
performances with small variances.

A.5 QUALITATIVE STUDY

More Qualitative Visualization of Learned Spatial-Task-Prompt Affinity Maps We provide
more qualitative results by visualizing the learned Spatial-Task-Prompt Affinity maps on the
PASCAL-Context dataset, as shown in Fig. 8. We can observe that the task prompts has very diverse
affinities to different positions of the image patch tokens, demonstrating task-discriminative charac-
teristics of the learned task prompts, and also verifying our motivation that the learned task prompts
can directly query the task-generic image patch tokens to decode task-specific representations.

Image Semseg Parsing Saliency Normal Boundary

Figure 8: More visualization results of the spatial-task-prompt affinity maps on the PASCAL-
Context dataset. We can observe that the task prompts attend to different areas of the images based
on the characteristics of the tasks.

Qualitative Comparison with the Best Performing Transformer-based Method. We qualita-
tively compare the produced predictions of the proposed TaskPrompter with the best performing
transformer-based method in the literature, i.e. InvPT (Ye & Xu, 2022). As shown in Fig. 9 and
Fig. 10, our TaskPrompter model generates dense predictions of multiple distinct tasks with clearly
better details than the InvPT as marked in circles.
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Figure 9: Qualitative comparison with the best performing transformer-based method (i.e. InvPT)
on PASCAL-Context. TaskPrompter generates predictions with better details.
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Figure 10: Qualitative comparison with the best performing transformer-based method (i.e. InvPT)
on NYUD-v2. TaskPrompter generates better multi-task predictions.

A.6 JOINT 2D-3D MULTI-TASK SCENE UNDERSTANDING ON CITYSCAPES-3D

To further examine the proposed TaskPrompter, we adapt it to tackle a joint 2D-3D multi-task scene
understanding problem involving three challenging tasks, i.e. 3D object detection (3Ddet), semantic
segmentation (Semseg), and monocular depth estimation (Depth), on Cityscapes-3D dataset (Gählert
et al., 2020).

Dataset Cityscapes-3D (Gählert et al., 2020) is an extension of Cityscapes dataset (Cordts et al.,
2016) via providing additional 3D bounding box annotations. Cityscapes-3D dataset consists of
2,975 training images and 500 validation images with fine annotations. The image resolution is
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Figure 11: Prediction visualization on Cityscapes-3D. TaskPrompter can generate competitive re-
sults for multiple 2D and 3D scene understanding tasks including 3d detection, semantic segmenta-
tion, and depth estimation simultaneously.

1024×2048. For the evaluation of semantic segmentation, we use the more challenging 19-class
labels. The models are evaluated on the validation set for all the tasks. 3D detection (3Ddet) uses
mean detection score (mDS) as metric, which is the official evaluation index provided by Cityscapes-
3D.
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Implementation of TaskPrompter on Cityscapes-3D Since the images in Cityscapes-3D have a
larger spatial resolution and 3Ddet is sensitive to object sizes, we build our multi-task prompting
method on Swin-Base model (Liu et al., 2021b), which maintains high-resolution features in the
backbone. Notably, as the transformer block in Swin-Base uses local window attention instead of
global attention as ViT, we clone the spatial task prompts and embed them into each local window to
model the interaction with all patch tokens. After computing the window attention, the spatial task
prompts of different windows are merged into one by taking their average. In the decoding stage, we
stitch the Spatial-Task-Prompt affinity tensors from all windows as a global affinity tensor to query
the patch tokens. The channel task prompt learning and decoding are not affected by the Swin-Base
architecture, which can be performed in the same way as in ViT backbone. The channel number
of task prompts is doubled at each Patch Merging layer of Swin-Base to maintain the same channel
number as patch tokens. The same as those used in experiments on PASCAL-Context and NYUD-
v2, we use task-specific 3x3Conv-BN-ReLU blocks as prediction heads for generating final task
features for all 3 tasks, and a linear layer for generating the final predictions for Semseg and Depth.
As for 3Ddet, we adopt the final prediction heads of FCOS-3D (Wang et al., 2021) to predict the
location coordinates, rotation angles, sizes, object classes, center-ness, and direction classification.
To reduce computation cost, we reduce the resolution of images from 1024×2048 to 768×1536.
The batch size is set to 2 and the model is trained for 40k iterations. We also use Adam optimizer
with a learning rate 2 × 10−5 without weight decay. For the 3D detection task, Non-maximum
Suppression is used with a threshold of 0.3.

Loss Functions For 3D detection, similar to FCOS3D (Wang et al., 2021), we use focal loss (Lin
et al., 2017) for object classification, smooth L1 loss for location coordinates and size regression,
and cross-entropy loss for direction classification and center-ness regression.

Table 4: Performance of joint 2D-3D multi-task scene understanding on Cityscapes-3D dataset.
TaskPrompter achieves better or comparable results against SOTA methods of multiple tasks. Bold
denotes the best.

Model 3Ddet Semseg Depth
mDS ↑ mIoU ↑ RMSE ↓

Single-task
Models

3Ddet: One-Stage (Haq et al., 2022) 26.90 - -
Semseg: SETR w/ ViT-B (Zheng et al., 2021) - 78.02
Depth: SDC-Depth (Wang et al., 2020) - - 6.92

Multi-task
Models

Our Baseline 29.69 76.90 7.00
TaskPrompter 32.94 77.72 6.78

Experimental Results on Cityscapes-3D The overall performance comparison with state-of-the-
art methods (single-task models) and multi-task baseline on Cityscapes-3D is shown in Table 4.
The multi-task baseline adopts a similar design as the multi-task baseline on PASCAL-Context
but is built upon Swin-base backbone. It should be noted that we are the first in the literature to
simultaneously perform all three tasks on this dataset. We clearly observe that our TaskPrompter
can significantly improve our baseline on all three tasks, further confirming the effectiveness of the
method. Moreover, TaskPrompter even yields better performance than several SOTA single-task
models, such as on 3Ddet (Haq et al., 2022) and Depth (Wang et al., 2020). It also shows decent
performance on the highly competitive task (e.g. Semseg) compared with the SOTA (Zheng et al.,
2021). We also visualize our prediction results on Cityscapes-3D and compare them with ground
truth labels in Fig. 11. TaskPrompter can generate competitive results for multiple 2D and 3D scene
understanding tasks simultaneously. These experiment results further indicate that the proposed
TaskPrompter can be effectively adapted to other transformer models and task sets.

A.7 COMPARISON WITH SOTA METHODS USING VIT-LARGE BACKBONE

As transformer-based multi-task learning methods only appear recently (Ye & Xu, 2022), we re-
implement several CNN-based SOTA methods, including ATRC (Bruggemann et al., 2021), MTI-
Net (Vandenhende et al., 2020), and PAD-Net (Xu et al., 2018), on ViT-Large backbone. We
compare the performances of TaskPrompter and these methods in Table 5. We observe that our
TaskPrompter outperforms all previous SOTA methods with less computation cost. The reason is
that TaskPrompter avoids using a heavy multi-task decoder as previous decoder-focused methods
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do and propose a novel Dense Spatial-Channel Task Prompt Decoding to decode multi-task dense
predictions with the help of task prompts.

Table 5: Comparison with the state-of-the-art methods on PASCAL-Context. Our TaskPrompter
achieves clearly superior performances on all tasks with the same backbone.

Model FLOPs #Param Semseg Parsing Saliency Normal Boundary
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

PAD-Net (Xu et al., 2018) 124G 81M 53.60 59.60 65.80 15.30 72.50
MTI-Net (Vandenhende et al., 2020) 161G 128M 61.70 60.18 84.78 14.23 70.80
ATRC (Bruggemann et al., 2021) 216G 96M 67.67 62.93 82.29 14.24 72.42

PAD-Net w/ ViT-L (Xu et al., 2018) 773G 330M 78.01 67.12 79.21 14.37 72.60
MTI-Net w/ ViT-L (Vandenhende et al., 2020) 774G 851M 78.31 67.40 84.75 14.67 73.00
ATRC w/ ViT-L (Bruggemann et al., 2021) 871G 340M 77.11 66.84 81.20 14.23 72.10
InvPT (Ye & Xu, 2022) 669G 423M 79.03 67.61 84.81 14.15 73.00
TaskPrompter (ours) 497G 401M 80.89 68.89 84.83 13.72 73.50

A.8 ABLATION STUDY OF USING TASK-SPECIFIC ENCODERS

To verify the importance of the joint learning of task-specific, task-generic, and cross-task interaction
in TaskPrompter, we design a model variant of TaskPrompter that uses task-specific encoder for each
task. We name this variant “TaskPrompter w/ TE”. In each task-specific encoder, we use one task
prompt for the corresponding task, and thus there is no task-generic feature in the encoder stage.
We still use our Dense Spatial-Channel Task Prompt Decoding to generate prediction for each task
from the task-specific feature of the encoder. We adopt ViT-S as model backbone and compare the
model variant to TaskPrompter with also ViT-S backbone in Table 6. We find that when using task-
specific only encoders, the model performance decreases on all tasks, despite the model capacity and
computation cost being much larger as each task has an independent encoder. The results can verify
the importance of jointly modeling both task-specific and task-generic features in TaskPrompter, in
terms of both effectiveness and efficiency.

Table 6: Ablation study of using task-specific encoders (TE) with ViT-S backbone. ‘↓’ means lower
better and ‘↑’ means higher better.

Model FLOPs #Param Semseg Parsing Saliency Normal Boundary
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

TaskPrompter 205G 132M 76.57 63.22 84.54 13.93 70.60
TaskPrompter w/ TE 400G 495M 74.47 61.99 84.33 14.15 70.40

Table 7: More ablation study of the effectiveness of different components of TaskPrompter.

Model Semseg Parsing Saliency Normal Boundary MTL Gain
mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑ ∆m ↑

TaskPrompter 79.00 67.00 85.05 13.47 73.50 0.15
- CPrompt 78.10 65.99 84.88 13.58 72.10 -0.96
- RW 78.55 66.02 84.22 13.60 71.80 -1.10

A.9 MORE ABLATION STUDIES OF DIFFERENT MODULES COMBINATIONS

To further examine the influence of different combinations of modules, we investigate another two
combinations of modules for ablation study. In the first variant, we remove CPrompt, i.e., channel
task prompt learning, from TaskPrompter with ViT-B backbone. In the second variant, we remove
RW, i.e., cross-task reweighting. The results are shown in Table 7. As we can observe from the
results, if we disable CPrompt and RW from the TaskPrompter respectively, the model performance
shows a clear decrease on all five tasks in both cases, further confirming the effectiveness of channel
task prompt learning and the cross-task reweighting strategies.

A.10 MODEL EFFICIENCY WITH DIFFERENT NUMBERS OF TASKS

TaskPrompter is efficient compared with the previous transformer-based method with heavy decoder
design (Ye & Xu, 2022). The reason is that TaskPrompter utilizes task prompts to help decode task-
specific features by querying the image patch-tokens through task-prompt-to-patch affinities without
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Table 8: Study of the efficiency of TaskPrompter with different numbers of tasks. The last column
reports the increases in the computation costs of the model from one task to five tasks.

# Task 1 2 3 4 5 Increase

# Param 364M 373M 383M 392M 401M +10.16%
FLOPs 389G 416G 443G 470G 497G +27.76%

using an additional decoder. We show the number of parameters and FLOPs of TaskPrompter with
different numbers of tasks on PASCAL-Context in Table 8. We observe that from 1 task to 5 tasks we
only increase 10.16% parameters and 27.76% FLOPs, which demonstrates a strong scaling ability
of our multi-task model.
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