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Abstract

Consistently scaling pre-trained language001
models (PLMs) imposes substantial burdens on002
model adaptation, necessitating more efficient003
alternatives to conventional fine-tuning. Given004
the advantage of prompting in the zero-shot005
setting and the observed performance fluctu-006
ation among different prompts, we explore007
the instance-level prompt and the achievable008
upper-bound performance. We first validate009
the assumption that for every instance, there010
is almost always a lottery prompt that induces011
the correct prediction from the given PLM012
without tuning a single parameter. Meanwhile,013
it is shown that some strong prompts have high014
performance over the whole training set. Then,015
we attempt to generalize the strong prompts016
from the training set to the test set with ensem-017
bling methods. Experiments are conducted018
on various types of NLP classification tasks019
and demonstrate that the proposed method can020
achieve considerably better performance than021
strong optimization-based baselines by at least022
3% (up to 17%) in average metric.023

1 Introduction024

Since pre-trained language models (PLMs)025

became the de-facto standard in modern NLP re-026

searches (Devlin et al., 2019; Liu et al., 2019; Han027

et al., 2021a), the pretraining-finetuning paradigm028

has been prevailing until recent years when models029

keep scaling (Radford et al., 2019; Brown et al.,030

2020; Rae et al., 2021) and become too expensive031

to be optimized. To this end, researchers are ac-032

tively seeking more effective strategies that require033

little or even no optimization to harness PLMs.034

Among these exploratory studies of advanced035

model adaptation, prompting (Brown et al.,036

2020; Schick et al., 2020; Schick and Schütze,037

2021a; Gao et al., 2021) is gaining popularity038

in the community, which uses additional context039

(prompts1) to wrap input instances and trigger040

1In this paper, the term “prompt” technically refers to the

desired output tokens. In classification tasks, these 041

tokens are further mapped to particular labels by a 042

verbalizer. Such a paradigm is verified to be effec- 043

tive in a variety of downstream tasks, even when 044

annotations are insufficient. Particularly, empirical 045

evidence shows that coincidental prompts could 046

achieve extraordinary performance in the zero-shot 047

setting, i.e., no training examples are presented. 048

For example, simple manual prompt can achieve 049

an f1 score of over 60 on 46-class entity typing 050

dataset (Ding et al., 2021a), and reaches 73% 051

accuracy on DBpedia with 14 classes (Hu et al., 052

2021) in zero-shot setting. 053

Although such effectiveness is often accompa- 054

nied by drastic fluctuations with prompt selec- 055

tion (Zhao et al., 2021), it still implies that prompt- 056

ing PLMs may implicitly have an exceedingly high 057

upper capability even without model tuning. And it 058

may be possible to tap into the potential by assign- 059

ing different prompts for distinct data points. In- 060

trigued by this intuition, we explore a bold hypoth- 061

esis: Is it possible to find at least one instance-level 062

prompts (lottery prompts) that induce correct out- 063

put for every data point in classification tasks with- 064

out any optimization? Surprisingly, after building 065

an automatic searching procedure with reasonable 066

searching space on 13 representative classification 067

datasets, we validate the existence of such lottery 068

prompts (§ 2). That is, the combination of just a 069

few discrete tokens can make a PLM output cor- 070

rect labels for almost any classification data. This 071

finding refreshes our recognition of the limit of 072

prompted knowledge in PLMs and demonstrates a 073

promising upper capability of the PLMs’ inference. 074

Then, we further analyze the lottery prompts 075

and find there are a considerable number of “strong 076

prompts” among them (§ 2.3), i.e., prompts that 077

could perform well on the whole training data, not 078

just the individual data point. This offers a natural 079

opportunity to generalize such strong prompts to 080

template that wraps the original input.
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unseen (test) data (§ 3). We develop both straight-081

forward and sophisticated strategies to establish082

a group of strong prompts (§ 3.2) for each dataset083

and to ensemble the predictions (§ 3.3) within the084

group. Among them, the mutual information-based085

strategy we developed is verified to be consis-086

tently effective, indicating unique correlations087

between prompts and instances in terms of shared088

information. Although we did not introduce089

any optimization in this study, our method090

remarkably outperforms strong gradient-based and091

gradient-free (optimization still needed) baselines092

by at least 3% (up to 17%) in average metric on all093

the evaluation datasets (§ 4). We also analyze the094

effect of ensembling strategy and training data size095

on the test set performance (§ 4.3) to explore the096

conditions for better generalizability of the lottery097

prompts. For simple tasks, the strong prompts are098

shown to be transferable (§ 4.3). All the codes will099

be publicly available for reproducibility.100

2 The Existence of Lottery Prompts for101

Every Data Point102

Considering the extraordinary performance ob-103

served on zero-shot classification and the large vari-104

ance brought by the prompt selection, we make an105

assumption as follows: Given a pre-trained lan-106

guage model and a classification dataset, for each107

instance, at least one lottery prompt exists that can108

induce the desired label from the PLM, without the109

need to update the PLM parameters.110

To validate the assumption, we conduct pilot ex-111

periments that attempt to find the lottery prompt112

for every data point on 13 classification tasks. Note113

that for different instances, the prompt may be dif-114

ferent, and our goal is to verify the existence of115

such prompts in this pilot experiment.116

2.1 Overview and Setup117

Particularly, for every input instance in a classifica-118

tion task, we attempt to search and combine textual119

tokens from a discrete search space into a prompt.120

And the model is expected to produce desired label121

words for correct classification of the wrapped in-122

stance. We choose 13 datasets of various NLP tasks123

for assumption validation. Most of them come124

from GLUE benchmark (Wang et al., 2018), and125

others include Yelp Polarity (Zhang et al., 2015),126

SNLI (Bowman et al., 2015), AG’s News (Zhang127

et al., 2015), DBpedia (Zhang et al., 2015), and128

Few-NERD (Ding et al., 2021b). SST-2 (Socher129

et al., 2013) and Yelp Polarity are datasets for130

binary sentiment classification. CoLA (Warstadt 131

et al., 2019) is for acceptibility judgment of 132

single sentence. SNLI, RTE (Wang et al., 2018), 133

QNLI (Wang et al., 2018), WNLI (Levesque, 134

2011) and MNLI (Williams et al., 2018) target at 135

language inference detection given a sentence pair. 136

QQP (Iyer et al., 2017) and MRPC (Schick et al., 137

2020) are for paraphrase judgment. AG’s News 138

and DBpedia are used for text theme classification. 139

Few-NERD is an entity typing dataset. As for 140

prompt search space, 200 words with top frequency 141

in English2 are gathered and grouped according 142

to part-of-speech tag with NLTK package (Loper 143

and Bird, 2002) into nouns, verbs, prepositions, 144

adjectives and adverbs. The designed prompt 145

search space is the Cartesian product of three 146

word sets T = NOUNS × VERBS × (PREP ∪ 147

ADJ ∪ ADV) × {<MASK>}, and |T | = 76725. 148

We use RoBERTa-large (Liu et al., 2019) and 149

GPT-2 (Radford et al., 2019) as the backbones. 150

2.2 The Searching Process 151

For each dataset, we randomly sample 1000 in- 152

stances from the training set as Xtrain = {(xi, yi)} 153

and apply each prompt T ∈ T to each instance and 154

use the PLMM to produce the prediction. Specif- 155

ically, a prompt T composed of a noun, a verb and 156

an adjective may be “it was really”. Applying it to 157

an instance x:“A fun movie.” will yeild the input 158

text T (x):“A fun movie. it was really <MASK>”. 159

For each of such pair T (x) ∈ Xtrain × T , the score 160

for each class can be obtained as 161

o(x;T,M) = Softmax(V(M(T (x)))), (1) 162

where V denotes the projection from output 163

logits over PLM vocabulary to the class label set. 164

Specifically, to reduce the impact from the prompt, 165

we use calibration (Zhao et al., 2021) to rescale 166

the scores before making the final prediction. 167

q(T ;M) = Softmax(V(M(T (·)))),

p(x;T,M) = Normalize(
o(x;T,M)

q(T ;M)
).

(2) 168

T (·) means a pure prompt without input x is fed 169

into the PLM and q is the output probability over 170

the label set. p is the final calibrated probability 171

over the class labels. For every (x, y) ∈ Xtrain, we 172

enumerate over each T ∈ T and see if the output 173

ŷ = argmax p will give the correct prediction y. 174

The specific prompt format and label words used 175

are shown in Appendix C. 176

2https://sketchengine.co.uk
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Datasets #Classes RoBERTa-large GPT-2

SST-2 2 100.00 100.00
Yelp P. 2 100.00 100.00
SNLI 3 100.00 99.90
RTE 2 100.00 100.00
MRPC 2 100.00 100.00
CoLA 2 100.00 100.00
MNLI 3 99.90 99.90
QNLI 2 100.00 100.00
QQP 2 100.00 100.00
WNLI 2 100.00 100.00
AG’s News 4 100.00 100.00
DBpedia 14 100.00 100.00
Few-NERD 66 100.00 99.70

Table 1: The percentage of instances with lottery
prompts for each dataset’s 1000 randomly sampled data.
WNLI uses the whole training set with 635 instances.

2.3 Results and Analyses177

Verification of the Assumption. Table 1 reports178

the basic searching results. Each instance x is179

considered correctly predicted if there exists180

T ∈ T such that y = argmax p. It is shown that181

for all datasets, a lottery prompt that induces the182

correct prediction from M exists for almost all183

1000 instances. The assumption is thus validated,184

that is, in a finite search space composed of textual185

tokens, we can almost always find at least one186

combination of common words as a prompt to187

make the prediction correct. While it may not be188

surprising to see a success on binary classification189

tasks, achieving 100% coverage on Few-NERD,190

a 66-class dataset for entity typing, is worth noting.191

It indicates that the particular semantics distributed192

in PLM can be triggered by certain contexts even193

without any further fine-tuning.194

Naturally, the phenomenon is not observed195

when the model is not pre-trained. We conduct196

the same searching process for Few-NERD on197

a randomly initialized RoBERTa-large, and only198

33.1% instances could find the corresponding lot-199

tery prompts. This further shows that the existence200

of lottery prompts for each instance is not merely201

a stroke of luck, but also a unique and consequent202

effect along with language model pre-training.203

The Cost of the Searching Process. As aforemen-204

tioned, the searching space in our pilot experiment205

is |T | = 76725, however, the practical cost to get206

a lottery prompt for one data point is significantly207

lower than the budget. As shown in Figure 1, the208

average number of searches for each instance does209

not exceed 30 on most datasets for both PLMs. Nat-210
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Figure 1: The average search number of each dataset.

urally, searching for a lottery prompt for a multi- 211

class classification problem is more costly. The 212

66-class typing dataset Few-NERD requires a sig- 213

nificantly larger search number than the rest of the 214

datasets, most of which only contain 2 or 3 classes. 215

Another reasonable observation is that single sen- 216

tence classification tasks are generally easier than 217

tasks involving sentence pairs. Meanwhile, NLI 218

tasks with mixed domains are probably the most 219

difficult sentence-pair tasks, given that MNLI, RTE, 220

and SNLI are more costly than paraphrase tasks 221

and other domain-specific NLI datasets. In terms 222

of the genre of models, the auto-regressive model 223

(GPT-2) generally takes more searches than the 224

auto-encoding model (RoBERTa-large). Despite 225

the differences in individual datasets, they show 226

similar trends, which can roughly reflect how diffi- 227

cult the dataset is for PLMs. 228

The Strong Prompts. After searching for lot- 229

tery prompts for all instances, we are interested 230

in if there are “strong prompts” among them, i.e., 231

prompts that win on the whole Xtrain. We measure 232

the performance of each prompt over Xtrain with 233

standard metrics on some representative datasets 234

from each task category. The metric statistics and 235

variation of all prompts are shown in Figure 2. Dif- 236

ferent tasks show distinct patterns. Text classifica- 237
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Figure 2: Prompt performance and variation on each
dataset using RoBERTa-large. The vertical axis repre-
sents the metric of each prompt over Xtrain. MRPC uses
f1 metric, and others use accuracy.

tion tasks with single sentence are more sensitive238

to prompt choice and often observe larger perfor-239

mance variation over the prompt space. For SST-2,240

while the best-performing prompt reaches an ac-241

curacy of 0.8, the worst prompts can barely get to242

0.3. For NLI tasks, prompt performance is more243

stable however mediocre. It should be noted that,244

despite having altogether 66 classes, the average245

accuracy on Few-NERD is still over 0.1. Many of246

the top-performing prompts fit with our language247

intuition, both syntactically and semantically. For248

example, the top prompts for sentiment analysis249

task are compatible with chosen label words. Ad-250

verbs that enhance the statement (e.g. just, really,251

very) appear frequently in sentiment analysis tasks.252

For entity typing, the words like "other" and "such"253

naturally lead to noun-like words or category words.254

A detailed case study of strong prompts and diffi-255

cult instances can be found in Appendix D and E.256

The most important indication from the results is257

that some strong prompts could yield significant258

performance on Xtrain, and such prompts could be259

obtained without any optimization process. At this260

point, a natural question arises: How to generalize261

these strong prompts to unseen (test) data?262

3 Generalize Strong Prompts to Test263

Dataset264

In Section 2, we have empirically verified that con-265

ditioned on a pre-trained model and a classification266

task, it is possible to find a lottery prompt for al-267

most every data point. We also find that a few268

strong prompts could perform non-trivially on the269

whole dataset Xtrain. In this section, we attempt270

to generalize the strong prompts to unseen (test)271

dataset Xtest. Our considerations are: 272

• A strong prompt that performs well on the 273

training set can naturally be assumed to perform 274

relatively well on the test set. 275

• It is empirically difficult to estimate which 276

prompt will perform well on which instance 277

for test data. Therefore, we attempt to combine 278

the predictions of selected strong prompts 279

T ∗ = {T1, T2, ..., Tt} ∈ T . Under this circum- 280

stance, we investigate strategies to select T ∗ 281

and ensemble the predictions of prompts in T ∗. 282

3.1 Overview 283

The objective is to identify a set of feasible prompts 284

that can perform well on Xtest. We divide the pro- 285

cedure into two stages, where we first find a group 286

of strong prompts (denoted as T ∗), then use ensem- 287

bling methods to get the final prediction for Xtest. 288

Since the choice of T ∗ is solely based on inference 289

results on Xtrain, the process uses no validation set. 290

Formally, given the chosen group of strong prompts 291

T ∗ = {T1, T2, ..., Tt} ⊂ T , the prediction for each 292

data point x ∈ Xtest is obtained by 293

p(x; T ∗,M) = Φ(p1, p2, ..., pt), (3) 294

where pk = p(x;Tk,M) and is calculated as equa- 295

tion 2, and Φ is the ensembling method used. Both 296

the prompt group T ∗ and the ensembling strategy 297

Φ would have considerable impact on final predic- 298

tions on the test dataset Xtest. 299

3.2 The Choice of T ∗ 300

As for the choice of T ∗, two main strategies are 301

developed: (1) Top-k. With the assumption that 302

strong prompts over Xtrain are also expected to per- 303

form well on Xtest, these best-performing prompts 304

are regarded as the most reliable for predicting the 305

unseen data. So we naively take the top-k best per- 306

forming prompts over the training set as T ∗. In the 307

experiments, we use k=5, 10, and 20. (2) Greedy 308

best. Since our final objective is to maximize the 309

metrics on Xtest, it is natural that we should at- 310

tempt to find a T ∗ that achieves the highest ensem- 311

bling results on Xtrain. While the combinatorial 312

optimization problem of evaluating each T ′ ∈ T 313

is intractable, the greedy algorithm is adopted to 314

approximate the solution. As shown in Algo. 1, at 315

each iteration the prompt that will boost the perfor- 316

mance most will be added into T ∗, which is mea- 317

sured by the average of predicted probability, until 318

no improvement can be made by any new prompt. 319
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Figure 3: The complete searching process of T ∗ and ensembling for final prediction.

Algorithm 1 The greedy algorithm for choosing
the best performing prompt group on Xtrain. P (k)

is the set of scores for each instance (x, y) ∈ Xtrain

given Tk ∈ T , where P
(k)
i = p(xi;Tk,M).

Eval(·, ·) calculates the metric for specific dataset.
Input: Xtrain,M, T ; Output: T ∗

T ∗ ← ∅,P ← ∅, k∗ ← None, s∗ ← 0
while |T ∗| is 0 or k∗ is not None do

if k∗ is not None then
Add(T ∗, Tk∗); Add(P, P (k∗))

end
k∗ ← None; s′ ← s∗;
for k = 1 to |T | do

if Tk ∈ T ∗ then continue ;
Add(P, P (k)) Ŷ = argmax(average(P))
if Eval(Ŷ ,Xtrain) > s′ then

s′ ← Eval(Ŷ ,Xtrain); k∗ ← k;
end
Delete(P, P (k)); s∗ ← s′;

end
end
return T ∗

3.3 Ensembling Method Φ320

The most naive way of ensembling is simple voting321

by predictions of individual prompts in T ∗,322

Φ(p1, p2, ..., pt) =
1

t

t∑
k=1

pk. (4)323

However, it is not always true that each prompt324

should weigh equally with respect to each instance.325

For some data, some prompts may be more reliable,326

while for the others the effect may be different.327

It will be ideal if we can further select the most328

suitable prompt out of T ∗ for each instance. 329

Therefore, we devise a more sophisticated method 330

termed as mutual-information-based choice. In- 331

tuitively, the more reliable a prompt T is, the more 332

confident the modelM will be about instance x. 333

Inspired by Sorensen et al. (2022), we measure the 334

confidence with the mutual information between 335

x and y, T , which is defined by the reduction in 336

entropy of predicted probability brought by x, 337

I(x;Tk,M) = H(q|Tk(·))−H(p|Tk(x))

=−
∑
i

qi(Tk;M) log qi(Tk;M)+∑
i

pi(x;Tk,M) log pi(x;Tk,M),

(5) 338

where q and p are the predicted probability vectors 339

as in Equation 2, and the subscript i is the class 340

index. It is expected that if a prompt is reliable for 341

x, the uncertainty in prediction should be greatly 342

reduced compared with making a prediction based 343

on the prompt solely. Specifically, it entails that a 344

good prompt itself should contain no bias towards 345

the label set, so q should be a uniform distribution. 346

On the other hand, a suitable prompt for a specific 347

instance should induce an almost certain prediction 348

on the desired class, corresponding to a near 349

one-hot vector p. So the objective is to find the 350

most confident prompt T ∗ ∈ T ∗ for each instance 351

in Xtest, and produce the prediction p with T ∗. 352

T ∗ = arg max
T∈T ∗

I(x;T,M),

Φ(p1,p2, ..., pt) = p(x;T ∗,M).
(6) 353

4 Experiments 354

In this section, we comprehensively evaluate the 355

generalization of the selected prompts on 7 rep- 356
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resentative datasets. By comparing with other357

gradient-based or gradient-free baselines, we find358

that our optimization-free method could yield sur-359

prising superiority. Further, we investigate the ef-360

fect of T ∗, Φ, and the size of training data.361

4.1 Baselines362

Given that our method optimizes zero parameters,363

few existing methods are directly comparable. We364

choose some of the optimization-based methods365

that optimize only a small number of parameters366

instead. Prompt Tuning (Lester et al., 2021)367

optimizes the continuous prompt at the input368

level. P-Tuning v2 (Liu et al., 2021a) is a369

variant of prompt tuning that pre-pends trainable370

parameters to each layer of the PLM and optimizes371

them in a multi-task setting. Feature-MLP and372

Feature-BiLSTM (Peters et al., 2019) both use373

pre-trained features output by PLMs and train374

a lightweight classifier offline. Black-Box Tun-375

ing (Sun et al., 2022) is a gradient-free method that376

optimizes the projected extra 500 parameters at377

the input layer with Covariance Matrix Adaptation378

Evolution Strategy. Manual Prompt is a zero-shot379

method that directly uses a hand-crafted textual380

prompt for each dataset. Best Prompt uses the381

searched Top-1 prompt on training data directly.382

In-Context Learning (Brown et al., 2020) is an383

optimization-free method that uses a few samples384

as demonstrations prepended to the test sample.385

4.2 Experimental Settings386

We conduct experiments under few-shot settings on387

7 datasets: SST-2, Yelp P., AG’s News, DBpedia,388

MRPC, SNLI, and RTE. While Sun et al. (2022)389

adopts a 16-shot setting and uses the same number390

of instances as the validation set, we directly use391

32-shot data as the training set as our method392

requires no validation set. The total seen labeled393

data number is the same across all methods. Specif-394

ically, we randomly select 32 instances for each395

class from the training set and obtain the predicted396

scores combined with each T ∈ T ∗. Then different397

strategies are applied to choose T ∗ and obtain the398

final prediction and evaluation metrics with specific399

Φ on the test set. The original validation set is used400

as the test set following (Sun et al., 2022). For each401

dataset, the experiments are run with 5 different402

random seeds, and the mean metrics and standard403

deviations are reported. The baseline results are404

taken from Sun et al. (2022). All methods use405

RoBERTa-large (Liu et al., 2019) as the PLM406

backbone. The label words used follow (Sun et al., 407

2022) and are the same across all methods. 408

4.3 Results and Analysis 409

Overall Results Table 2 shows the main results 410

on each dataset. The reported results use Top- 411

10 prompts as T ∗ and mutual-information-based 412

choice as Φ. Overall the proposed method performs 413

the best among all methods. It points to the fact 414

that with a reasonable prompt search space and a 415

few training instances, strong prompts can be iden- 416

tified and generalized effectively to unseen data. 417

Best prompt on 32-shot data surprisingly overtakes 418

other baselines. This, jointly with the mediocre 419

performance of manual prompts, indicate that a 420

human-comprehensible prompt may not always be 421

the best choice for PLMs and may fail to probe 422

a considerable amount of intrinsic knowledge in 423

PLMs. Meanwhile, the success of our method over 424

best prompt (where a single prompt is used) shows 425

that ensembling a set of strong prompts is bene- 426

ficial. Comparing across datasets, our method is 427

more advantageous over black-box tuning in harder 428

tasks, including natural language inference (SNLI 429

and RTE) and paraphrasing (MRPC). For single- 430

sentence classification tasks, the improvement is 431

minor. This finding fits with our intuition, as tasks 432

involving two sentences often require more abstract 433

abilities like reasoning and the contexts are more di- 434

verse across instances. Designing or optimizing for 435

one unified prompt for such datasets is admittedly 436

harder. Above all, it is exciting that ensembling a 437

proper set of prompts composed of textual tokens 438

may surpass network optimization on a dataset in 439

an era of pre-trained language models and points 440

to the values of mining and tapping into an optimal 441

usage of plain textual prompt. 442

Comparison of T ∗ and Φ To compare different 443

strategies in choosing T ∗ and ensembling meth- 444

ods Φ, we run experiments with 1000 instances as 445

the training set on each of the 7 datasets. The full 446

training set is used to ensure stability. Figure 4 447

shows metrics for each combination of T ∗ and Φ. 448

In terms of T ∗, generally, a larger k will produce 449

better performance for the top-k strategy. For most 450

datasets, k = 10 is already good enough. The 451

magnitude of increase brought by larger k is also 452

closely related to the distribution of strong prompts. 453

In reference to Figure 2, datasets with a large num- 454

ber of strong prompts (Yelp P. and MRPC) observe 455

little impact from the strategies chosen. While for 456
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Method #Tunable
Param.

SST-2
Acc.

Yelp P.
Acc.

AG’s News
Acc.

DBpedia
Acc.

MRPC
F1

SNLI
Acc.

RTE
Acc.

Avg.

Gradient-based Methods

Prompt Tuning 50K 68.23 ± 3.78 61.02 ± 6.65 84.81 ± 0.66 87.75 ± 1.48 51.61 ± 8.67 36.13 ± 1.51 54.69 ± 3.79 63.46
P-Tuning v2 1.2M 64.33 ± 3.05 92.63 ± 1.39 83.46 ± 1.01 97.05 ± 0.41 68.14 ± 3.89 36.89 ± 0.79 50.78 ± 2.28 70.47

Gradient-free Methods

Feature-MLP 1M 64.80 ± 1.78 79.20 ± 2.26 70.77 ± 0.67 87.78 ± 0.61 68.40 ± 0.86 42.01 ± 0.33 53.43 ± 1.57 66.63
Feature-BiLSTM 17M 65.95 ± 0.99 74.68 ± 0.10 77.28 ± 2.83 90.37 ± 3.10 71.55 ± 7.10 46.02 ± 0.38 52.17 ± 0.25 68.29
Black-Box Tuning 500 89.56 ± 0.25 91.50 ± 0.16 81.51 ± 0.79 87.80 ± 1.53 61.56 ± 4.34 46.58 ± 1.33 52.59 ± 2.21 73.01

Optimization-free Methods

Manual Prompt‡ 0 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56
In-Context Learning† 0 79.79 ± 3.06 85.38 ± 3.92 62.21 ± 13.46 34.83 ± 7.59 45.81 ± 6.67 47.11 ± 0.63 60.36 ± 1.56 59.36
Best Prompt† 0 86.40 ± 4.28 88.5 ± 1.65 77.06 ± 0.19 82.70 ± 0.00 73.63 ± 3.53 51.26 ± 1.75 64.64 ± 0.00 74.88
Ours† 0 89.52 ± 1.73 91.85 ± 0.42 79.67 ± 1.73 89.26 ± 0.77 73.97 ± 3.75 50.61 ± 0.98 58.70 ± 1.32 76.23

Table 2: Performance on datasets under few-shot setting. † means using 32-shot data as training set and no extra
data as validation set. ‡ means no labeled data are used for training or validation. Other methods use 16-shot data as
training and validation set. The baseline results follow Sun et al. (2022).
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Figure 4: Performance of different choices of T ∗ and Φ. 1000 training instances are used for each dataset.

datasets like RTE, where most prompts perform457

badly, ensembling with larger k will greatly boost458

the prediction accuracy. It is surprising that despite459

having a higher performance on training sets, the460

greedy strategy performs even worse on most test461

sets. It indicates that the boost in training sets is462

often linked to some corner cases, which is hard to463

generalize to test set. As for Φ, distinct patterns are464

observed for different datasets. Measuring predic-465

tion confidence with mutual information tends to466

be more reliable for single-sentence classification467

tasks. This also reflects the difficulty of the tasks468

to some extent.469

Impact of Training Data Size To further explore470

the property of our method, experiments are con-471

ducted under few-shot settings ranging from 8 shots472

to 256 shots. Each is run 5 times, and metrics on the473

test sets are reported in Figure 5. We can see that474

performance varies a lot when different instances475

are sampled as the training set under low-shot set-476

tings. It suggests the importance of choosing the477

proper training data for our method. When more478

shots are provided, metrics get higher and variance479

gets smaller. As the volume climbs up to 128 shots480

and 256 shots, the increase in metrics becomes mi-481

nor for most datasets. It can also be concluded that482

for low-shot settings, mutual information can yield483

higher results on the test set. But as more training 484

data are available, the gap is narrowed and the two 485

ensembling strategies converge to similar levels. 486

Task Setting Metrics

Sentiment
Analysis

SST-2→ Yelp P. 90.27 ( 1.58 ↓)
Yelp P.→ SST-2 84.15 ( 5.37 ↓)

Language
Inference

RTE→ SNLI 40.48 ( 10.13 ↓)
SNLI→ RTE 54.51 (4.19 ↓)
MNLI→ SNLI 47.96 (2.65 ↓)
MNLI→ RTE 55.81 (2.89 ↓)

Table 3: Transferability test of T ∗ across datasets with
similar tasks. Prompts are searched on 32-shot training
data from source dataset and evaluated on test set of
target dataset. Top-10 prompts are used as T ∗ and
mutual-information-based choice is used as Φ.

Transferability Test We test the prompt transferbil- 487

ity across datasets with similar tasks under 32-shot 488

setting. Experiments are conducted on sentiment 489

analysis and language inference tasks. We also 490

use MNLI as the source dataset as many previ- 491

ous works do. Table 3 shows that prompts chosen 492

by our method can be transferable. While SST-2 493

and Yelp observe mutual transferability, transfering 494

RTE to SNLI is relatively hard. MNLI is shown to 495

be a robust dataset for NLI task and the searched 496
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Figure 5: Average performance and standard deviation of the simple vote and mutual information under few-shot
settings. We use 8, 16, 32, 64, 128, and 256-shot settings for training data. Top-10 prompts over each training set
are adopted as T ∗. For each setting, the experiments are run with 5 random seeds.

prompts perform satisfyingly on both RTE and497

SNLI even with only a few training instances. It498

is also in line with previous research findings that499

using prompts pretrained on MNLI could greatly500

boost performance on other NLI datasets. Above501

all, the results demonstrate that our proposed strat-502

egy for choosing and ensembling prompts can ef-503

fectively extract representative prompts for a spe-504

cific kind of task, which can be further utilized to505

reduce search cost.506

5 Related Work507

Prompting, as an alternative to standard finetuning,508

is originally inspired by GPT-3 (Brown et al., 2020)509

and knowledge probing (Petroni et al., 2019; Jiang510

et al., 2020). With a similar form to pre-training511

tasks, it stimulates the intrinsic knowledge in PLMs512

more efficiently. Following several of the earliest513

works (Schick and Schütze, 2021a,b), promoting514

has been applied in various NLP tasks (Han et al.,515

2021b; Li and Liang, 2021; Sainz et al., 2021;516

Ding et al., 2021a). It is also discovered that the517

specific prompt used has a great impact on task518

performance. Therefore, efforts have been devoted519

to prompt engineering and automatic prompt520

generation. Optimizing for a good prompt has been521

conducted at both discrete token level (Shin et al.,522

2020; Gao et al., 2021) and continuous embedding523

level (Li and Liang, 2021; Zhang et al., 2021; Liu524

et al., 2021b). Some also focus on the choice and525

representation of label words (Schick et al., 2020;526

Hu et al., 2021; Zhang et al., 2021). Experiments527

show that a well-optimized or pre-trained (Gu528

et al., 2022) prompt can be beneficial.529

Given the striking performance of prompting530

under few-shot settings especially, recently, more531

works are focusing on more efficient tuning of532

PLMs based on prompts. Prompt tuning (Lester533

et al., 2021) tunes the pre-pended token embedding534

only. Other works enhance PLMs’ zero-shot learn-535

ing ability with prompts. Studies show that large 536

PLMs with proper prompts (Wei et al., 2021) and 537

training with diverse prompts (Sanh et al., 2021) 538

can advance zero-shot performance. This line of 539

works emphasizes the efficient tuning and steering 540

process of large PLMs. Black-box tuning (Sun 541

et al., 2022) optimizes the pre-pended continuous 542

prompt in a projected low-dimensional space with- 543

out PLM gradient information. 544

This work is among the first few efforts (Jin 545

et al., 2022; Wu et al., 2022) in mining instance- 546

level prompts, and is the first to propose and prove 547

the existence of a lottery prompt composed of a few 548

textual tokens for each instance. In contrast to tun- 549

ing a small number of parameters or tuning without 550

gradients, an optimization-free method is proposed 551

to generalize the searched prompts to the test sets. 552

6 Conclusion 553

In this work, we emphasize on the existence of 554

a lottery prompt for every single instance and the 555

adaptation of them in various classification tasks in 556

an optimization-free manner. We propose a large 557

prompt space composed of common words as the 558

search space, devise multiple strategies to choose 559

a set of prompts based on the training set, and 560

demonstrate the effectiveness of ensembling the 561

set of chosen prompts on the test set. Our proposed 562

optimization-free method achieves satisfactory 563

results on various NLP tasks under few-shot 564

settings. It is also found that the specific training 565

instances used and the ensembling strategy adopted 566

is crucial to the generalization effect. Above 567

all, this work illuminates the fact that the great 568

potential of PLMs can be successfully harnessed 569

and prompted by plain textual prompts mined from 570

PLM vocabulary without parameter optimization 571

and thus points to the need for future efforts in 572

more efficient ways in mining lottery prompts. 573
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Ethical Considerations574

This work shows that with proper plain textual575

prompts, instance-level desired results can be576

prompted from PLMs. This inherent feature of577

PLMs means attacks can be launched to produce578

rude or discriminated words. On the other hand,579

however, we believe it can also be a technique used580

for debiasing a PLM. Overall, this effect depends581

on the intention of the users and the pre-training582

corpus of the corresponding PLMs. The analysis of583

this study can be used to facilitate the community to584

develop more specifications for the rational use of585

PLMs (especially the super-large ones), and more586

approaches to effectively prevent potential ethical587

issues. For example, we can use this technique to588

analyze which outputs that may have ethical issues589

are easily triggered by which contexts (prompts),590

and develop a set of intervention methods to make591

these592
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A Experimental Details807

RoBERTa-large contains 354 million parameters808

and GPT-2 has 1.5 billion parameters. There is809

no extra parameter added in our method. All ex-810

periments are conducted on NVIDIA A100 and811

GeForce RTX 3090 GPUs with CUDA. The search812

process in § 4 with 32-shot data takes about 2813

hours with 40 GB maximum memory. The test814

process takes 5∼30 minutes depending on the size815

of T ∗ and Xtest. The detailed training and test816

set statistics for experiments in Table 2 are shown817

in Table 4. Our method is developed by Open-818

Prompt (Ding et al., 2022), an open-source prompt-819

learning framework based on PyTorch (Paszke820

et al., 2019). The models are obtained from the821

Huggingface Transformers library (Wolf et al.,822

2020).823

Datasets |Xtrain| |Xtest|
SST-2 64 872
Yelp P. 64 38000
AG’s News 128 7600
DBpedia 448 70000
MRPC 64 1725
SNLI 96 10000
RTE 64 277

Table 4: Statistics of the training and test set for experi-
ments in Table 2.

B Efficiency Analysis824

The results reported in § 4 all search through the825

whole prompt space T ∗, i.e. every combination826

of an instance and a prompt is covered. Since it827

would require up to 4 hours with a single NVIDIA828

A100, we seek to optimize the process by prun-829

ing the search space. Our strategy is as follows:830

(1) randomly sample a batch of valid prompts (in831

our experiments we use batch size 16) from T ∗832

and apply them to the whole training set Xtrain; (2)833

record the performance of each prompt word, i.e.834

if a prompt is “it was really” and achieves 0.8 ac-835

curacy on Xtrain, then for each word in the prompt836

(“it”, “was”, “really”) 0.8 is recorded; (3) update837

the set of valid prompts; (4) repeat until there is838

no remaining valid prompt. A valid prompt means839

the average score of the three words is over a pre-840

defined threshold. In our experiments, the thresh-841

old is set to 0.7 on SST-2 dataset and achieves a842

mean test accuracy of 87.6%.843

As shown in Table 5, with the pruning strategy, 844

the average time cost can be greatly reduced to 10 845

minutes with a still satisfying performance on test 846

data. In our experiments, prompts are randomly 847

sampled and grouped into batches. We believe a 848

better-designed and heuristically informed batch- 849

ing strategy will further boost the searching effi- 850

ciency and test performance. 851

Method Time Cost

Prompt Tuning 15.9 mins
Feature-MLP 7.0 mins
Feature-BiLSTM 9.3 mins
Black-box Tuning 10.1 mins
Ours 10.3 mins

Table 5: Training and searching time cost on SST-2.
Following Table 2, our method searches on 32-shot
training data and other baselines are trained on 16-shot
training data and evaluates on 16-shot validation data.
The max sequence length is set uniformly to 47. Our
method is run for 5 times on a single NVIDIA A100
and the mean time cost is reported.

C Details of Prompts and Label Words 852

Table 6 displays the specific prompt format and la- 853

bel words used for searching for lottery prompt for 854

each dataset. Note that for auto-regressive PLMs 855

like GPT-2, the “<mask>” token should be placed 856

at the end of the input. 857

D Analysis of Strong Prompts 858

Table 7 shows the top-5 prompts for each dataset 859

and their corresponding metrics on the training set 860

of 1000 instances. It can be seen that some words 861

are especially contributive to correct predictions. 862

For example, “just” and “find” for SST-2, “think” 863

and “like” for RTE, “very” and “had” for MRPC, 864

etc. We also get the 100 best prompts out of T 865

for SST-2, and visualize the frequent words at each 866

position, as shown in Figure 6. From the number of 867

unique words at each position, we can conclude that 868

words more adjacent to the “<mask>” token has a 869

larger impact on the prediction. Most of the strong 870

prompts for both PLMs fit with language intuition, 871

as words like “even” and “really” naturally go with 872

adjectives like “good” and “bad”. GPT-2 demon- 873

strates better fluency and interpretability compared 874

to RoBERTa-large, as some high-frequency words 875

found for RoBERTa-large like “without” are hard 876

to comprehend. 877
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RoBERTa-large

GPT-2

Figure 6: Frequent words of 100 top-performing
prompts at each position on SST-2. The 3 positions are
[NOUN], [VERB], [PREP|ADJ|ADV] from left to right.

E A Case Study of Hard Instances878

Though a lottery prompt can be found for most879

instances in § 2, some individual cases still fail to880

match such prompts and some instances require881

a relatively large number of searches. We gather882

the 5 instances that require the most search num-883

bers or observe a failure in searching from both884

PLMs. The examples in 3 datasets are presented in885

Table 8. It can be seen that for SST-2, the presented886

cases are intuitively difficult. Many of them involve887

complex logic, so naively identifying keywords888

will lead to definite failure in prediction. On the889

other hand, the hard cases in MNLI and SNLI seem890

more counter-intuitive. Most “entailment” cases891

have considerable vocabulary overlap between the892

first and the second sentence. The three cases that893

fail to match a lottery prompt among T are short894

sentences with almost identical expressions. We895

believe it is the negative effect from prompt tem-896

plate and label word chosen. For MNLI, both the897

two high-lighted cases contain negation auxiliaries898

that rarely follow a “Yes” statement. This tendency899

drives the PLMs to always favor the choice of “No”,900

which leads to error prediction.901

F Limitations902

The current method works with a large prompt903

search space T , which means a tremendous num-904

ber of inference API calls are required. Though905

Figure 1 shows that the average cost of finding a lot-906

tery prompt for each instance is low, the searching907

process is highly randomized and there is no guar-908

antee of the performance of searched prompts over909

the test dataset. Therefore, finding strong prompts910

over the training set can still be laborious. How911

to use PLM inference calls more efficiently and912

leverage the generalization ability of T ∗ within a913

reasonable cost is of future research interest. Our914

acceleration strategy can be found in Appendix B.915
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Dataset Prompt Label words

SST-2 <Text> [Prompt] <mask> good, bad
Yelp P. <Text> [Prompt] <mask> good, bad

CoLA <Text> [Prompt] <mask> reasonable, unreasonable

SNLI <Text1> [Prompt]? <mask>, <Text2> Yes, Maybe, No
RTE <Text1> [Prompt]? <mask>, <Text2> Yes, No
MNLI <Text1> [Prompt]? <mask>, <Text2> Yes, Maybe, No
QNLI <Text1> [Prompt]? <mask>, <Text2> Yes, No
WNLI <Text1> [Prompt]? <mask>, <Text2> Yes, No

MRPC <Text1> [Prompt]? <mask>, <Text2> Yes, No
QQP <Text1> [Prompt]? <mask>, <Text2> Yes, No

AG’s News <Text> [Prompt] <mask> world, sports, business, technology

DBpedia <Text> [Prompt] <mask>

company, school, artist, athlete,
politics, transportation, building, river,
village, animal, plant, album,
film, book

Few-NERD <Text> <Entity> [Prompt] <mask>

water, law, broadcast/program, media/newspaper,
restaurant, artist/author, film, award, park,
event, government/agency, person, educational/degree,
education, director, game, sports/facility,
protest, car, language, airport, organization,
building, location, athlete, show/organization,
sports/league, geopolitical, scholar/scientist, library,
hotel, road/railway/highway/transit, painting, hospital,
election, written/art, religion, company,
train, ship, attack/battle/war/military/conflict, sports/event,
disaster, currency, weapon, living, sports/team,
politician, god, political/party, music,
art, actor, theater, biology, software, island,
medical, disease, chemical, product,
airplane, food, mountain, astronomy, soldier

Table 6: The prompt format and label words used for each dataset. [Prompt] represents the sequence of “[NOUN]
[VERB] [PREP|ADJ|ADV]”. For GPT-2, “<Text1> [Prompt]? <mask>, <Text2> ” is changed into “<Text1> <Text2>
[Prompt]? <mask>”.

Dataset Top-5 Prompts Metrics

SST-2 he work just, I find very, I find really, help are for, she work just 85.9, 85.6, 85.2, 84.6, 84.0
Yelp P. look place really, you place also, look was also, I were very, they place also 92.0, 91.3, 91.3, 91.2, 91.2

SNLI I get really, I like through, I said always, keep love through, you found that 56.9, 56.0, 55.8, 55.8, 55.7
RTE keep like always, way think such, life think same, end think such, end like always 60.0, 59.7, 59.6, 59.6, 59.4

MRPC money had very, something had very, I been very, help had very, life had very 70.9, 70.5, 70.4, 70.4, 70.2

AG’s News lot say on, I said other, time think other, state say on, you think other 79.7, 78.8, 78.1, 78.0, 77.3
DBpedia you said such, something know then, life make of, home said such, information is that 87.5, 86.6, 86.0, 85.9, 85.8

Table 7: An example of Top-5 prompts over 1000 training instances for each dataset and their individual performance
on training sets.
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Datasets Instance Text Label

SST-2

it falls far short of poetry , but negative

will be best appreciated by those willing to endure its extremely languorous rhythms ,
waiting for happiness

negative

expiration date negative

gut-wrenching , frightening war scenes since “ saving private ryan ” positive

sit through – despite some first-rate performances positive

largely flat and uncreative negative

all of dean ’s mannerisms and self-indulgence , but negative

if oscar had a category called best bad film you thought was going to be really awful but was n’t positive

MNLI

It would be nice if more of the newcomers
were artists, artisans, and producers,
rather than lawyers and lobbyists, but head for head,
I’ll stack up Washington’s intellectual capital
against any competitor’s.

It would be nice if there were
more lawyers instead of artistic people.

contradiction

i just couldn’t watch that much TV I couldn’t watch that much TV entailment

yeah uh well we did well we did you know
we really did i mean i just don’t understand these
people that think taking an RV and parking it
and sitting inside and watching TV and having your
microwave it’s not camping

I don’t think it’s camping
if you hang out in an RV.

entailment

Of course Maybe. contradiction

I think not! I do not think so. entailment

Exhibit 10 Adjustment Factors Used to
Account for Projected Real Income Growth
through 2010 and 2020

See Exhibit 10 for Adjustment Factors Used to
Account for Projected Real Income Growth
through 2010 and 2020

neutral

In the dark of night, their aim must be true.
Their aim must be accurate in the dark,
or else they will not succeed.

neutral

now we quit that about two years ago no three years ago
when we got China mugs for everybody

We stopped doing that three years ago,
after we got everyone China mugs.

entailment

SNLI

Two men are playing a game of chess,
one is standing and the other is sitting.

A crowd watches a concert. contradiction

A green jeep with men who are manning guns,
with a crowd in the background on the street.

Video game fans in cosplay outfits. contradiction

A man has a pink ribbon around his arm. A guy with a strip of cloth around his bicep. entailment

Large amounts of people walk around near
a large, silver, reflective display.

People are singing. contradiction

Man playing the accordion on a sidewalk during the day. The Pope speed dials. contradiction

People walk and bike in front of a box office.
People are carrying about their business
nearby a box office

entailment

Three naked little boys are playing
in a river and are covered in mud;
one is standing up.

the boys had no clothes on in the river entailment

A person wearing a dark blue covered up
attire from head to toe, with a mask and vest,
holding a thin sword.

Someone with a sword entailment

Four children are in an industrial kitchen
looking at a recipe with the ingredients
on the table in front of them.

Four people are in the kitchen entailment

Two guys getting a drink at a store counter. two guys get a drink entailment

Table 8: The most difficult instances for RoBERTa-large and GPT-2, measured by number of searches required
to get the lottery prompt out of T . Instances in purple indicate failure to find a lottery prompt for GPT-2, and

instances in blue are failure instances for RoBERTa-large.
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