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Abstract

Consistently scaling pre-trained language
models (PLMs) imposes substantial burdens on
model adaptation, necessitating more efficient
alternatives to conventional fine-tuning. Given
the advantage of prompting in the zero-shot
setting and the observed performance fluctu-
ation among different prompts, we explore
the instance-level prompt and the achievable
upper-bound performance. We first validate
the assumption that for every instance, there
is almost always a lottery prompt that induces
the correct prediction from the given PLM
without tuning a single parameter. Meanwhile,
it is shown that some strong prompts have high
performance over the whole training set. Then,
we attempt to generalize the strong prompts
from the training set to the test set with ensem-
bling methods. Experiments are conducted
on various types of NLP classification tasks
and demonstrate that the proposed method can
achieve considerably better performance than
strong optimization-based baselines by at least
3% (up to 17%) in average metric.

1 Introduction

Since pre-trained language models (PLMs)
became the de-facto standard in modern NLP re-
searches (Devlin et al., 2019; Liu et al., 2019; Han
et al., 2021a), the pretraining-finetuning paradigm
has been prevailing until recent years when models
keep scaling (Radford et al., 2019; Brown et al.,
2020; Rae et al., 2021) and become too expensive
to be optimized. To this end, researchers are ac-
tively seeking more effective strategies that require
little or even no optimization to harness PLMs.
Among these exploratory studies of advanced
model adaptation, prompting (Brown et al.,
2020; Schick et al., 2020; Schick and Schiitze,
2021a; Gao et al., 2021) is gaining popularity
in the community, which uses additional context
(prompts!) to wrap input instances and trigger

'In this paper, the term “prompt” technically refers to the

desired output tokens. In classification tasks, these
tokens are further mapped to particular labels by a
verbalizer. Such a paradigm is verified to be effec-
tive in a variety of downstream tasks, even when
annotations are insufficient. Particularly, empirical
evidence shows that coincidental prompts could
achieve extraordinary performance in the zero-shot
setting, i.e., no training examples are presented.
For example, simple manual prompt can achieve
an f1 score of over 60 on 46-class entity typing
dataset (Ding et al., 2021a), and reaches 73%
accuracy on DBpedia with 14 classes (Hu et al.,
2021) in zero-shot setting.

Although such effectiveness is often accompa-
nied by drastic fluctuations with prompt selec-
tion (Zhao et al., 2021), it still implies that prompt-
ing PLMs may implicitly have an exceedingly high
upper capability even without model tuning. And it
may be possible to tap into the potential by assign-
ing different prompts for distinct data points. In-
trigued by this intuition, we explore a bold hypoth-
esis: Is it possible to find at least one instance-level
prompts (lottery prompts) that induce correct out-
put for every data point in classification tasks with-
out any optimization? Surprisingly, after building
an automatic searching procedure with reasonable
searching space on 13 representative classification
datasets, we validate the existence of such lottery
prompts (§ 2). That is, the combination of just a
few discrete tokens can make a PLM output cor-
rect labels for almost any classification data. This
finding refreshes our recognition of the limit of
prompted knowledge in PLMs and demonstrates a
promising upper capability of the PLMs’ inference.

Then, we further analyze the lottery prompts
and find there are a considerable number of “strong
prompts” among them (§ 2.3), i.e., prompts that
could perform well on the whole training data, not
just the individual data point. This offers a natural
opportunity to generalize such strong prompts to

template that wraps the original input.



unseen (test) data (§ 3). We develop both straight-
forward and sophisticated strategies to establish
a group of strong prompts (§ 3.2) for each dataset
and to ensemble the predictions (§ 3.3) within the
group. Among them, the mutual information-based
strategy we developed is verified to be consis-
tently effective, indicating unique correlations
between prompts and instances in terms of shared
information.  Although we did not introduce
any optimization in this study, our method
remarkably outperforms strong gradient-based and
gradient-free (optimization still needed) baselines
by at least 3% (up to 17%) in average metric on all
the evaluation datasets (§ 4). We also analyze the
effect of ensembling strategy and training data size
on the test set performance (§ 4.3) to explore the
conditions for better generalizability of the lottery
prompts. For simple tasks, the strong prompts are
shown to be transferable (§ 4.3). All the codes will
be publicly available for reproducibility.

2 The Existence of Lottery Prompts for
Every Data Point

Considering the extraordinary performance ob-
served on zero-shot classification and the large vari-
ance brought by the prompt selection, we make an
assumption as follows: Given a pre-trained lan-
guage model and a classification dataset, for each
instance, at least one lottery prompt exists that can
induce the desired label from the PLM, without the
need to update the PLM parameters.

To validate the assumption, we conduct pilot ex-
periments that attempt to find the lottery prompt
for every data point on 13 classification tasks. Note
that for different instances, the prompt may be dif-
ferent, and our goal is to verify the existence of
such prompts in this pilot experiment.

2.1 Overview and Setup

Particularly, for every input instance in a classifica-
tion task, we attempt to search and combine textual
tokens from a discrete search space into a prompt.
And the model is expected to produce desired label
words for correct classification of the wrapped in-
stance. We choose 13 datasets of various NLP tasks
for assumption validation. Most of them come
from GLUE benchmark (Wang et al., 2018), and
others include Yelp Polarity (Zhang et al., 2015),
SNLI (Bowman et al., 2015), AG’s News (Zhang
et al., 2015), DBpedia (Zhang et al., 2015), and
Few-NERD (Ding et al., 2021b). SST-2 (Socher
et al.,, 2013) and Yelp Polarity are datasets for

binary sentiment classification. CoLA (Warstadt
et al., 2019) is for acceptibility judgment of
single sentence. SNLI, RTE (Wang et al., 2018),
QNLI (Wang et al., 2018), WNLI (Levesque,
2011) and MNLI (Williams et al., 2018) target at
language inference detection given a sentence pair.
QQP (Iyer et al., 2017) and MRPC (Schick et al.,
2020) are for paraphrase judgment. AG’s News
and DBpedia are used for text theme classification.
Few-NERD is an entity typing dataset. As for
prompt search space, 200 words with top frequency
in English? are gathered and grouped according
to part-of-speech tag with NLTK package (Loper
and Bird, 2002) into nouns, verbs, prepositions,
adjectives and adverbs. The designed prompt
search space is the Cartesian product of three
word sets 7 = NOUNS X VERBS X (PREP U
ADJ U ADV) x {<MASK>}, and |T| = 76725.
We use RoBERTa-large (Liu et al., 2019) and
GPT-2 (Radford et al., 2019) as the backbones.

2.2 The Searching Process

For each dataset, we randomly sample 1000 in-
stances from the training set as Xyain = { (24, vi)}
and apply each prompt 7" € T to each instance and
use the PLM M to produce the prediction. Specif-
ically, a prompt I composed of a noun, a verb and
an adjective may be “it was really”. Applying it to
an instance x: “A fun movie.” will yeild the input
text T'(x): “A fun movie. it was really <MASK>".
For each of such pair 7'(x) € Xjpain X T, the score
for each class can be obtained as

o(z; T, M) = Softmax(V(M(T'(z)))), (1)

where V denotes the projection from output
logits over PLM vocabulary to the class label set.
Specifically, to reduce the impact from the prompt,
we use calibration (Zhao et al., 2021) to rescale
the scores before making the final prediction.
q(T; M) = Softmax(V(M(T()))),

o(z; T, ./\/l)) (2)

o(T; M)

T'(-) means a pure prompt without input x is fed
into the PLM and q is the output probability over
the label set. p is the final calibrated probability
over the class labels. For every (z,y) € Xirain, We
enumerate over each 7' € 7 and see if the output
9y = arg max p will give the correct prediction y.
The specific prompt format and label words used
are shown in Appendix C.

p(z; T, M) = Normalize(
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Datasets #Classes RoBERTa-large GPT-2
SST-2 2 100.00 100.00
Yelp P. 2 100.00 100.00
SNLI 3 100.00 99.90
RTE 2 100.00 100.00
MRPC 2 100.00 100.00
CoLA 2 100.00 100.00
MNLI 3 99.90 99.90
QNLI 2 100.00 100.00
QQpP 2 100.00 100.00
WNLI 2 100.00 100.00
AG’s News 4 100.00 100.00
DBpedia 14 100.00 100.00
Few-NERD 66 100.00 99.70
Table 1: The percentage of instances with lottery

prompts for each dataset’s 1000 randomly sampled data.
WNLI uses the whole training set with 635 instances.

2.3 Results and Analyses

Verification of the Assumption. Table 1 reports
the basic searching results. Each instance z is
considered correctly predicted if there exists
T € 7T such that y = arg max p. It is shown that
for all datasets, a lottery prompt that induces the
correct prediction from M exists for almost all
1000 instances. The assumption is thus validated,
that is, in a finite search space composed of textual
tokens, we can almost always find at least one
combination of common words as a prompt to
make the prediction correct. While it may not be
surprising to see a success on binary classification
tasks, achieving 100% coverage on Few-NERD,
a 66-class dataset for entity typing, is worth noting.
It indicates that the particular semantics distributed
in PLM can be triggered by certain contexts even
without any further fine-tuning.

Naturally, the phenomenon is not observed
when the model is not pre-trained. We conduct
the same searching process for Few-NERD on
a randomly initialized RoBERTa-large, and only
33.1% instances could find the corresponding lot-
tery prompts. This further shows that the existence
of lottery prompts for each instance is not merely
a stroke of luck, but also a unique and consequent
effect along with language model pre-training.

The Cost of the Searching Process. As aforemen-
tioned, the searching space in our pilot experiment
is |T| = 76725, however, the practical cost to get
a lottery prompt for one data point is significantly
lower than the budget. As shown in Figure 1, the
average number of searches for each instance does
not exceed 30 on most datasets for both PLMs. Nat-
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Figure 1: The average search number of each dataset.

urally, searching for a lottery prompt for a multi-
class classification problem is more costly. The
66-class typing dataset Few-NERD requires a sig-
nificantly larger search number than the rest of the
datasets, most of which only contain 2 or 3 classes.
Another reasonable observation is that single sen-
tence classification tasks are generally easier than
tasks involving sentence pairs. Meanwhile, NLI
tasks with mixed domains are probably the most
difficult sentence-pair tasks, given that MNLI, RTE,
and SNLI are more costly than paraphrase tasks
and other domain-specific NLI datasets. In terms
of the genre of models, the auto-regressive model
(GPT-2) generally takes more searches than the
auto-encoding model (RoBERTa-large). Despite
the differences in individual datasets, they show
similar trends, which can roughly reflect how diffi-
cult the dataset is for PLMs.

The Strong Prompts. After searching for lot-
tery prompts for all instances, we are interested
in if there are “strong prompts” among them, i.e.,
prompts that win on the whole X,i,. We measure
the performance of each prompt over X, with
standard metrics on some representative datasets
from each task category. The metric statistics and
variation of all prompts are shown in Figure 2. Dif-
ferent tasks show distinct patterns. Text classifica-
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Figure 2: Prompt performance and variation on each
dataset using RoBERTa-large. The vertical axis repre-
sents the metric of each prompt over Xy,in. MRPC uses
f1 metric, and others use accuracy.

tion tasks with single sentence are more sensitive
to prompt choice and often observe larger perfor-
mance variation over the prompt space. For SST-2,
while the best-performing prompt reaches an ac-
curacy of 0.8, the worst prompts can barely get to
0.3. For NLI tasks, prompt performance is more
stable however mediocre. It should be noted that,
despite having altogether 66 classes, the average
accuracy on Few-NERD is still over 0.1. Many of
the top-performing prompts fit with our language
intuition, both syntactically and semantically. For
example, the top prompts for sentiment analysis
task are compatible with chosen label words. Ad-
verbs that enhance the statement (e.g. just, really,
very) appear frequently in sentiment analysis tasks.
For entity typing, the words like "other" and "such"
naturally lead to noun-like words or category words.
A detailed case study of strong prompts and diffi-
cult instances can be found in Appendix D and E.
The most important indication from the results is
that some strong prompts could yield significant
performance on Xi,in, and such prompts could be
obtained without any optimization process. At this
point, a natural question arises: How to generalize
these strong prompts to unseen (test) data?

3 Generalize Strong Prompts to Test
Dataset

In Section 2, we have empirically verified that con-
ditioned on a pre-trained model and a classification
task, it is possible to find a lottery prompt for al-
most every data point. We also find that a few
strong prompts could perform non-trivially on the
whole dataset X,in. In this section, we attempt
to generalize the strong prompts to unseen (test)

dataset Xjes¢. Our considerations are:

* A strong prompt that performs well on the
training set can naturally be assumed to perform
relatively well on the test set.

* It is empirically difficult to estimate which
prompt will perform well on which instance
for test data. Therefore, we attempt to combine
the predictions of selected strong prompts
T ={T1,Ts,...,T1} € T. Under this circum-
stance, we investigate strategies to select T *
and ensemble the predictions of prompts in 7 *.

3.1 Overview

The objective is to identify a set of feasible prompts
that can perform well on Xi.g;. We divide the pro-
cedure into two stages, where we first find a group
of strong prompts (denoted as 7 *), then use ensem-
bling methods to get the final prediction for Xeg.
Since the choice of 7™ is solely based on inference
results on X.,in, the process uses no validation set.
Formally, given the chosen group of strong prompts
T ={T1,T>,...,T;} C T, the prediction for each
data point x € Xl is obtained by

p($77-*,./\/l) :(I)(plap277pt)7 (3)

where p, = p(x; Ty, M) and is calculated as equa-
tion 2, and & is the ensembling method used. Both
the prompt group 7 * and the ensembling strategy
® would have considerable impact on final predic-
tions on the test dataset Xe.

3.2 The Choice of 7*

As for the choice of 7", two main strategies are
developed: (1) Top-k. With the assumption that
strong prompts over X.in are also expected to per-
form well on Xieq, these best-performing prompts
are regarded as the most reliable for predicting the
unseen data. So we naively take the top-k best per-
forming prompts over the training set as 7 *. In the
experiments, we use k=5, 10, and 20. (2) Greedy
best. Since our final objective is to maximize the
metrics on Xy, it is natural that we should at-
tempt to find a 7 that achieves the highest ensem-
bling results on AXjin. While the combinatorial
optimization problem of evaluating each 7' € T
is intractable, the greedy algorithm is adopted to
approximate the solution. As shown in Algo. 1, at
each iteration the prompt that will boost the perfor-
mance most will be added into 7*, which is mea-
sured by the average of predicted probability, until
no improvement can be made by any new prompt.
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Figure 3: The complete searching process of 7* and ensembling for final prediction.

Algorithm 1 The greedy algorithm for choosing
the best performing prompt group on Xirain. P*)
is the set of scores for each instance (x,y) € Xirain
given T, € 7T, where Pi(k) = p(x;; T, M).
Eval(-, -) calculates the metric for specific dataset.
Input: X, M, T; Output: 7*
T* < 0,P < 0,k* < None, s* < 0
while |[T*| is 0 or k* is not None do
if £* is not None then

| Add(T*, Ty ); Add(P, P*"))
end
k* <+ None; s’ < s*;
for k =1to|7| do
if T, € T* then continue ;
Add(P, P®) Y = arg max(average(P))
if Eval(Y, Xyuin) > ' then

‘ s« Eval(f/, Xirain )3 k* k3
end
Delete(P, P(F)); s* « s

end
end
return 7*

3.3 Ensembling Method ¢

The most naive way of ensembling is simple voting
by predictions of individual prompts in 7%,

®(p1,p2;s - pt) = %th “4)

k=1
However, it is not always true that each prompt
should weigh equally with respect to each instance.
For some data, some prompts may be more reliable,
while for the others the effect may be different.
It will be ideal if we can further select the most

suitable prompt out of 7* for each instance.
Therefore, we devise a more sophisticated method
termed as mutual-information-based choice. In-
tuitively, the more reliable a prompt 7" is, the more
confident the model M will be about instance x.
Inspired by Sorensen et al. (2022), we measure the
confidence with the mutual information between
x and y, T, which is defined by the reduction in
entropy of predicted probability brought by x,

I(x; Ty, M) = H(q|Ty(-)) — H(p|Tk(x))

== (T M) log ¢;(Ti; M)+
- (5)

where ¢ and p are the predicted probability vectors
as in Equation 2, and the subscript i is the class
index. It is expected that if a prompt is reliable for
x, the uncertainty in prediction should be greatly
reduced compared with making a prediction based
on the prompt solely. Specifically, it entails that a
good prompt itself should contain no bias towards
the label set, so ¢ should be a uniform distribution.
On the other hand, a suitable prompt for a specific
instance should induce an almost certain prediction
on the desired class, corresponding to a near
one-hot vector p. So the objective is to find the
most confident prompt 7" € T for each instance
in Aiegt, and produce the prediction p with 7.

T = I(x; T, M),
arg max I (z )
®(p1,p2; -, pt) = p(a; T, M).
4 Experiments

(6)

In this section, we comprehensively evaluate the
generalization of the selected prompts on 7 rep-



resentative datasets. By comparing with other
gradient-based or gradient-free baselines, we find
that our optimization-free method could yield sur-
prising superiority. Further, we investigate the ef-
fect of 7*, ®, and the size of training data.

4.1 Baselines

Given that our method optimizes zero parameters,
few existing methods are directly comparable. We
choose some of the optimization-based methods
that optimize only a small number of parameters
instead. Prompt Tuning (Lester et al., 2021)
optimizes the continuous prompt at the input
level. P-Tuning v2 (Liu et al.,, 2021a) is a
variant of prompt tuning that pre-pends trainable
parameters to each layer of the PLM and optimizes
them in a multi-task setting. Feature-MLP and
Feature-BiLSTM (Peters et al., 2019) both use
pre-trained features output by PLMs and train
a lightweight classifier offline. Black-Box Tun-
ing (Sun et al., 2022) is a gradient-free method that
optimizes the projected extra 500 parameters at
the input layer with Covariance Matrix Adaptation
Evolution Strategy. Manual Prompt is a zero-shot
method that directly uses a hand-crafted textual
prompt for each dataset. Best Prompt uses the
searched Top-1 prompt on training data directly.
In-Context Learning (Brown et al., 2020) is an
optimization-free method that uses a few samples
as demonstrations prepended to the test sample.

4.2 Experimental Settings

We conduct experiments under few-shot settings on
7 datasets: SST-2, Yelp P., AG’s News, DBpedia,
MRPC, SNLI, and RTE. While Sun et al. (2022)
adopts a 16-shot setting and uses the same number
of instances as the validation set, we directly use
32-shot data as the training set as our method
requires no validation set. The total seen labeled
data number is the same across all methods. Specif-
ically, we randomly select 32 instances for each
class from the training set and obtain the predicted
scores combined with each T" € T *. Then different
strategies are applied to choose 7* and obtain the
final prediction and evaluation metrics with specific
® on the test set. The original validation set is used
as the test set following (Sun et al., 2022). For each
dataset, the experiments are run with 5 different
random seeds, and the mean metrics and standard
deviations are reported. The baseline results are
taken from Sun et al. (2022). All methods use
RoBERTa-large (Liu et al., 2019) as the PLM

backbone. The label words used follow (Sun et al.,
2022) and are the same across all methods.

4.3 Results and Analysis

Overall Results Table 2 shows the main results
on each dataset. The reported results use Top-
10 prompts as 7* and mutual-information-based
choice as ®. Overall the proposed method performs
the best among all methods. It points to the fact
that with a reasonable prompt search space and a
few training instances, strong prompts can be iden-
tified and generalized effectively to unseen data.
Best prompt on 32-shot data surprisingly overtakes
other baselines. This, jointly with the mediocre
performance of manual prompts, indicate that a
human-comprehensible prompt may not always be
the best choice for PLMs and may fail to probe
a considerable amount of intrinsic knowledge in
PLMs. Meanwhile, the success of our method over
best prompt (where a single prompt is used) shows
that ensembling a set of strong prompts is bene-
ficial. Comparing across datasets, our method is
more advantageous over black-box tuning in harder
tasks, including natural language inference (SNLI
and RTE) and paraphrasing (MRPC). For single-
sentence classification tasks, the improvement is
minor. This finding fits with our intuition, as tasks
involving two sentences often require more abstract
abilities like reasoning and the contexts are more di-
verse across instances. Designing or optimizing for
one unified prompt for such datasets is admittedly
harder. Above all, it is exciting that ensembling a
proper set of prompts composed of textual tokens
may surpass network optimization on a dataset in
an era of pre-trained language models and points
to the values of mining and tapping into an optimal
usage of plain textual prompt.

Comparison of 7* and ® To compare different
strategies in choosing 7* and ensembling meth-
ods @, we run experiments with 1000 instances as
the training set on each of the 7 datasets. The full
training set is used to ensure stability. Figure 4
shows metrics for each combination of 7* and ®.
In terms of 7%, generally, a larger k£ will produce
better performance for the top-k strategy. For most
datasets, £k = 10 is already good enough. The
magnitude of increase brought by larger k is also
closely related to the distribution of strong prompts.
In reference to Figure 2, datasets with a large num-
ber of strong prompts (Yelp P. and MRPC) observe
little impact from the strategies chosen. While for



Method #Tunable SST-2 Yelp P. AG’s News DBpedia MRPC SNLI RTE A

etho Param. Acc. Acc. Acc. Acc. F1 Acc. Acc. Ve
Gradient-based Methods
Prompt Tuning 50K 6823 £3.78 61.02+6.65 84.81+0.66 87.75+1.48 51.61+£8.67 36.13+1.51 54.69+3.79 63.46
P-Tuning v2 1.2M 6433+£3.05 92.63+1.39 8346+1.01 97.05+041 68.14+389 36.89+0.79 50.78+228 7047
Gradient-free Methods

Feature-MLP IM 64.80+1.78 79.20+2.26 70.77+0.67 87.78£0.61 68.40+0.86 42.01+0.33 5343+1.57 66.63

Feature-BiLSTM 17M 65.95+£0.99 74.68+0.10 77.28+2.83 90.37+3.10 71.55+7.10 46.02+0.38 52.17+0.25 68.29

Black-Box Tuning 500 89.56 £0.25 91.50+£0.16 81.51+£0.79 87.80+1.53 61.56+4.34 46.58+1.33 5259+221 73.01

Optimization-free Methods

Manual Prompt? 0 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56

In-Context Learning? 0 79.79 £3.06 8538+3.92 6221+13.46 3483+7.59 4581+£6.67 47.11+0.63 60.36+1.56 59.36

Best Prompt’ 0 86.40+4.28 885+1.65 77.06+0.19 82.70+0.00 73.63+3.53 51.26+1.75 64.64+0.00 74.88

Ours! 0 89.52+1.73 91.85+042 79.67+1.73 89.26+0.77 73.97+3.75 50.61+0.98 58.70+1.32 76.23

Table 2: Performance on datasets under few-shot setting. ¥ means using 32-shot data as training set and no extra
data as validation set.  means no labeled data are used for training or validation. Other methods use 16-shot data as
training and validation set. The baseline results follow Sun et al. (2022).
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Figure 4: Performance of different choices of 7* and ®. 1000 training instances are used for each dataset.

datasets like RTE, where most prompts perform
badly, ensembling with larger k will greatly boost
the prediction accuracy. It is surprising that despite
having a higher performance on training sets, the
greedy strategy performs even worse on most test
sets. It indicates that the boost in training sets is
often linked to some corner cases, which is hard to
generalize to test set. As for &, distinct patterns are
observed for different datasets. Measuring predic-
tion confidence with mutual information tends to
be more reliable for single-sentence classification
tasks. This also reflects the difficulty of the tasks
to some extent.

Impact of Training Data Size To further explore
the property of our method, experiments are con-
ducted under few-shot settings ranging from 8 shots
to 256 shots. Each is run 5 times, and metrics on the
test sets are reported in Figure 5. We can see that
performance varies a lot when different instances
are sampled as the training set under low-shot set-
tings. It suggests the importance of choosing the
proper training data for our method. When more
shots are provided, metrics get higher and variance
gets smaller. As the volume climbs up to 128 shots
and 256 shots, the increase in metrics becomes mi-
nor for most datasets. It can also be concluded that
for low-shot settings, mutual information can yield

higher results on the test set. But as more training
data are available, the gap is narrowed and the two
ensembling strategies converge to similar levels.

Task Setting Metrics
Sentiment SST-2 — YelpP.  90.27 (1.58 |)
Analysis  Yelp P. — SST-2  84.15(5.37 )
RTE — SNLI 40.48 (10.13 ])
Language SNLI — RTE 54.51 (4.19 ])
Inference  MNLI — SNLI 47.96 (2.65 )
MNLI — RTE 55.81(2.89 )

Table 3: Transferability test of 7* across datasets with
similar tasks. Prompts are searched on 32-shot training
data from source dataset and evaluated on test set of
target dataset. Top-10 prompts are used as 7* and
mutual-information-based choice is used as ®.

Transferability Test We test the prompt transferbil-
ity across datasets with similar tasks under 32-shot
setting. Experiments are conducted on sentiment
analysis and language inference tasks. We also
use MNLI as the source dataset as many previ-
ous works do. Table 3 shows that prompts chosen
by our method can be transferable. While SST-2
and Yelp observe mutual transferability, transfering
RTE to SNLI is relatively hard. MNLI is shown to
be a robust dataset for NLI task and the searched
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Figure 5: Average performance and standard deviation of the simple vote and mutual information under few-shot
settings. We use 8, 16, 32, 64, 128, and 256-shot settings for training data. Top-10 prompts over each training set
are adopted as 7 *. For each setting, the experiments are run with 5 random seeds.

prompts perform satisfyingly on both RTE and
SNLI even with only a few training instances. It
is also in line with previous research findings that
using prompts pretrained on MNLI could greatly
boost performance on other NLI datasets. Above
all, the results demonstrate that our proposed strat-
egy for choosing and ensembling prompts can ef-
fectively extract representative prompts for a spe-
cific kind of task, which can be further utilized to
reduce search cost.

5 Related Work

Prompting, as an alternative to standard finetuning,
is originally inspired by GPT-3 (Brown et al., 2020)
and knowledge probing (Petroni et al., 2019; Jiang
et al., 2020). With a similar form to pre-training
tasks, it stimulates the intrinsic knowledge in PLMs
more efficiently. Following several of the earliest
works (Schick and Schiitze, 2021a,b), promoting
has been applied in various NLP tasks (Han et al.,
2021b; Li and Liang, 2021; Sainz et al., 2021;
Ding et al., 2021a). It is also discovered that the
specific prompt used has a great impact on task
performance. Therefore, efforts have been devoted
to prompt engineering and automatic prompt
generation. Optimizing for a good prompt has been
conducted at both discrete token level (Shin et al.,
2020; Gao et al., 2021) and continuous embedding
level (Li and Liang, 2021; Zhang et al., 2021; Liu
et al., 2021b). Some also focus on the choice and
representation of label words (Schick et al., 2020;
Hu et al., 2021; Zhang et al., 2021). Experiments
show that a well-optimized or pre-trained (Gu
et al., 2022) prompt can be beneficial.

Given the striking performance of prompting
under few-shot settings especially, recently, more
works are focusing on more efficient tuning of
PLMs based on prompts. Prompt tuning (Lester
et al., 2021) tunes the pre-pended token embedding
only. Other works enhance PLMs’ zero-shot learn-

ing ability with prompts. Studies show that large
PLMs with proper prompts (Wei et al., 2021) and
training with diverse prompts (Sanh et al., 2021)
can advance zero-shot performance. This line of
works emphasizes the efficient tuning and steering
process of large PLMs. Black-box tuning (Sun
et al., 2022) optimizes the pre-pended continuous
prompt in a projected low-dimensional space with-
out PLM gradient information.

This work is among the first few efforts (Jin
et al., 2022; Wu et al., 2022) in mining instance-
level prompts, and is the first to propose and prove
the existence of a lottery prompt composed of a few
textual tokens for each instance. In contrast to tun-
ing a small number of parameters or tuning without
gradients, an optimization-free method is proposed
to generalize the searched prompts to the test sets.

6 Conclusion

In this work, we emphasize on the existence of
a lottery prompt for every single instance and the
adaptation of them in various classification tasks in
an optimization-free manner. We propose a large
prompt space composed of common words as the
search space, devise multiple strategies to choose
a set of prompts based on the training set, and
demonstrate the effectiveness of ensembling the
set of chosen prompts on the test set. Our proposed
optimization-free method achieves satisfactory
results on various NLP tasks under few-shot
settings. It is also found that the specific training
instances used and the ensembling strategy adopted
is crucial to the generalization effect. Above
all, this work illuminates the fact that the great
potential of PLMs can be successfully harnessed
and prompted by plain textual prompts mined from
PLM vocabulary without parameter optimization
and thus points to the need for future efforts in
more efficient ways in mining lottery prompts.



Ethical Considerations

This work shows that with proper plain textual
prompts, instance-level desired results can be
prompted from PLMs. This inherent feature of
PLMs means attacks can be launched to produce
rude or discriminated words. On the other hand,
however, we believe it can also be a technique used
for debiasing a PLM. Overall, this effect depends
on the intention of the users and the pre-training
corpus of the corresponding PLMs. The analysis of
this study can be used to facilitate the community to
develop more specifications for the rational use of
PLMs (especially the super-large ones), and more
approaches to effectively prevent potential ethical
issues. For example, we can use this technique to
analyze which outputs that may have ethical issues
are easily triggered by which contexts (prompts),
and develop a set of intervention methods to make
these
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A Experimental Details

RoBERTa-large contains 354 million parameters
and GPT-2 has 1.5 billion parameters. There is
no extra parameter added in our method. All ex-
periments are conducted on NVIDIA A100 and
GeForce RTX 3090 GPUs with CUDA. The search
process in § 4 with 32-shot data takes about 2
hours with 40 GB maximum memory. The test
process takes 5~30 minutes depending on the size
of 7% and Xleg;. The detailed training and test
set statistics for experiments in Table 2 are shown
in Table 4. Our method is developed by Open-
Prompt (Ding et al., 2022), an open-source prompt-
learning framework based on PyTorch (Paszke
et al., 2019). The models are obtained from the
Huggingface Transformers library (Wolf et al.,
2020).

Datasets | Xtrain| | Xtest|
SST-2 64 872
Yelp P. 64 38000
AG’s News 128 7600
DBpedia 448 70000
MRPC 64 1725
SNLI 96 10000
RTE 64 277

Table 4: Statistics of the training and test set for experi-
ments in Table 2.

B Efficiency Analysis

The results reported in § 4 all search through the
whole prompt space 7, i.e. every combination
of an instance and a prompt is covered. Since it
would require up to 4 hours with a single NVIDIA
A100, we seek to optimize the process by prun-
ing the search space. Our strategy is as follows:
(1) randomly sample a batch of valid prompts (in
our experiments we use batch size 16) from 7T*
and apply them to the whole training set Xiqin; (2)
record the performance of each prompt word, i.e.
if a prompt is “it was really” and achieves 0.8 ac-
curacy on Xjpin, then for each word in the prompt
(“it”, “was”, “really”) 0.8 is recorded; (3) update
the set of valid prompts; (4) repeat until there is
no remaining valid prompt. A valid prompt means
the average score of the three words is over a pre-
defined threshold. In our experiments, the thresh-
old is set to 0.7 on SST-2 dataset and achieves a
mean test accuracy of 87.6%.
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As shown in Table 5, with the pruning strategy,
the average time cost can be greatly reduced to 10
minutes with a still satisfying performance on test
data. In our experiments, prompts are randomly
sampled and grouped into batches. We believe a
better-designed and heuristically informed batch-
ing strategy will further boost the searching effi-
ciency and test performance.

Method Time Cost
Prompt Tuning 15.9 mins
Feature-MLP 7.0 mins
Feature-BiLSTM 9.3 mins
Black-box Tuning | 10.1 mins
Ours 10.3 mins

Table 5: Training and searching time cost on SST-2.
Following Table 2, our method searches on 32-shot
training data and other baselines are trained on 16-shot
training data and evaluates on 16-shot validation data.
The max sequence length is set uniformly to 47. Our
method is run for 5 times on a single NVIDIA A100
and the mean time cost is reported.

C Details of Prompts and Label Words

Table 6 displays the specific prompt format and la-
bel words used for searching for lottery prompt for
each dataset. Note that for auto-regressive PLMs
like GPT-2, the “<mask>" token should be placed
at the end of the input.

D Analysis of Strong Prompts

Table 7 shows the top-5 prompts for each dataset
and their corresponding metrics on the training set
of 1000 instances. It can be seen that some words
are especially contributive to correct predictions.
For example, “just” and “find” for SST-2, “think”
and “like” for RTE, “very” and “had” for MRPC,
etc. We also get the 100 best prompts out of 7
for SST-2, and visualize the frequent words at each
position, as shown in Figure 6. From the number of
unique words at each position, we can conclude that
words more adjacent to the “<mask>" token has a
larger impact on the prediction. Most of the strong
prompts for both PLMs fit with language intuition,
as words like “even” and “really” naturally go with
adjectives like “good” and “bad”. GPT-2 demon-
strates better fluency and interpretability compared
to RoBERTa-large, as some high-frequency words
found for RoBERTa-large like “without” are hard
to comprehend.
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Figure 6: Frequent words of 100 top-performing
prompts at each position on SST-2. The 3 positions are
[NOUN], [VERB], [PREPIADJIADV] from left to right.

E A Case Study of Hard Instances

Though a lottery prompt can be found for most
instances in § 2, some individual cases still fail to
match such prompts and some instances require
a relatively large number of searches. We gather
the 5 instances that require the most search num-
bers or observe a failure in searching from both
PLMs. The examples in 3 datasets are presented in
Table 8. It can be seen that for SST-2, the presented
cases are intuitively difficult. Many of them involve
complex logic, so naively identifying keywords
will lead to definite failure in prediction. On the
other hand, the hard cases in MNLI and SNLI seem
more counter-intuitive. Most “entailment” cases
have considerable vocabulary overlap between the
first and the second sentence. The three cases that
fail to match a lottery prompt among 7 are short
sentences with almost identical expressions. We
believe it is the negative effect from prompt tem-
plate and label word chosen. For MNLI, both the
two high-lighted cases contain negation auxiliaries
that rarely follow a “Yes” statement. This tendency
drives the PLMs to always favor the choice of “No”,
which leads to error prediction.

F Limitations

The current method works with a large prompt
search space 7, which means a tremendous num-
ber of inference API calls are required. Though
Figure 1 shows that the average cost of finding a lot-
tery prompt for each instance is low, the searching
process is highly randomized and there is no guar-
antee of the performance of searched prompts over
the test dataset. Therefore, finding strong prompts
over the training set can still be laborious. How
to use PLM inference calls more efficiently and
leverage the generalization ability of 7 within a
reasonable cost is of future research interest. Our
acceleration strategy can be found in Appendix B.
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Dataset Prompt Label words

SST-2 <Text> [Prompt] <mask> good, bad

Yelp P. <Text> [Prompt] <mask> good, bad

CoLA <Text> [Prompt] <mask> reasonable, unreasonable

SNLI <Textl> [Prompt]? <mask>, <Text2> Yes, Maybe, No

RTE <Textl> [Prompt]? <mask>, <Text2> Yes, No

MNLI <Textl> [Prompt]? <mask>, <Text2> Yes, Maybe, No

QNLI <Text1> [Prompt]? <mask>, <Text2> Yes, No

WNLI <Textl> [Prompt]? <mask>, <Text2> Yes, No

MRPC <Text1> [Prompt]? <mask>, <Text2> Yes, No

QQP <Textl> [Prompt]? <mask>, <Text2> Yes, No

AG’s News <Text> [Prompt] <mask> world, sports, business, technology
company, school, artist, athlete,

DBpedia <Text> [Prompt] <mask> pf)htlcs, tre}nsportatlon, building, river,
village, animal, plant, album,
film, book
water, law, broadcast/program, media/newspaper,
restaurant, artist/author, film, award, park,
event, government/agency, person, educational/degree,
education, director, game, sports/facility,
protest, car, language, airport, organization,
building, location, athlete, show/organization,
sports/league, geopolitical, scholar/scientist, library,

Few-NERD  <Text> <Entity> [Prompt] <mask>  hotel, road/railway/highway/transit, painting, hospital,

election, written/art, religion, company,

train, ship, attack/battle/war/military/conflict, sports/event,
disaster, currency, weapon, living, sports/team,

politician, god, political/party, music,

art, actor, theater, biology, software, island,

medical, disease, chemical, product,

airplane, food, mountain, astronomy, soldier

Table 6: The prompt format and label words used for each dataset. [Prompt] represents the sequence of “[NOUN]
[VERB] [PREPIADJIADV]”. For GPT-2, “<Text1> [Prompt]? <mask>, <Text2> " is changed into “<Textl> <Text2>
[Prompt]? <mask>".

Dataset Top-5 Prompts Metrics

SST-2 he work just, I find very, I find really, help are for, she work just 85.9, 85.6, 85.2, 84.6, 84.0
Yelp P. look place really, you place also, look was also, I were very, they place also 92.0,91.3,91.3,91.2,91.2
SNLI I get really, I like through, I said always, keep love through, you found that 56.9, 56.0, 55.8, 55.8, 55.7
RTE keep like always, way think such, life think same, end think such, end like always 60.0, 59.7, 59.6, 59.6, 59.4
MRPC money had very, something had very, I been very, help had very, life had very 70.9, 70.5, 70.4, 70.4, 70.2
AG’s News lot say on, I said other, time think other, state say on, you think other 79.7,78.8,78.1,78.0,77.3

DBpedia you said such, something know then, life make of, home said such, information is that 87.5, 86.6, 86.0, 85.9, 85.8

Table 7: An example of Top-5 prompts over 1000 training instances for each dataset and their individual performance

on training sets.
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Datasets Instance Text Label
it falls far short of poetry , but negative
will be best appreciated by those willing to endure its extremely languorous rhythms , .
i, . negative
waiting for happiness
SST-2 expiration date negative
gut-wrenching , frightening war scenes since “ saving private ryan ” positive
sit through — despite some first-rate performances positive
largely flat and uncreative negative
all of dean ’s mannerisms and self-indulgence , but negative
if oscar had a category called best bad film you thought was going to be really awful but was n’t positive
It would be nice if more of the newcomers
were artists, artisans, and producers, ..
. I 1 f th -
rather than lawyers and lobbyists, but head for head, twould be m?e 1f there we.r e. contradiction
, . y . more lawyers instead of artistic people.
I’ll stack up Washington’s intellectual capital
against any competitor’s.
MNLI i just couldn’t watch that much TV I couldn’t watch that much TV entailment
yeah uh well we did well we did you know
we really did i mean i just don’t understand these e 1 e .

. . . I don’t think it’s camping .
people that think taking an RV and parking it if vou hane out in an RV, entailment
and sitting inside and watching TV and having your y £ ’
microwave it’s not camping
Of course Maybe. contradiction
I think not! I do not think so. entailment
Exhibit 10 Adjustment Factors Used to See Exhibit 10 for Adjustment Factors Used to
Account for Projected Real Income Growth Account for Projected Real Income Growth neutral
through 2010 and 2020 through 2010 and 2020
In the dark of night, their aim must be true. Their aim mus.t be accurate in the dark, neutral

or else they will not succeed.
now we quit that about two years ago no three years ago  We stopped doing that three years ago, .
. . entailment
when we got China mugs for everybody after we got everyone China mugs.
TWO. men arf: playing a game .0 f (f‘héss’ A crowd watches a concert. contradiction
one is standing and the other is sitting.
A green jeep with men who are manning guns, . . e
. . fi spl fits.
with a crowd in the background on the street. Video game fans in cosplay outfits contradiction
SNLI A man has a pink ribbon around his arm. A guy with a strip of cloth around his bicep. entailment
Large amounts of people walk around near L .
. . . People are singing. contradiction
a large, silver, reflective display.
Man playing the accordion on a sidewalk during the day. The Pope speed dials. contradiction
People walk and bike in front of a box office. People are carrying about their business entailment
nearby a box office
Three naked little boys are playing
in a river and are covered in mud; the boys had no clothes on in the river entailment
one is standing up.
A person wearing a dark blue covered up
attire from head to toe, with a mask and vest, Someone with a sword entailment
holding a thin sword.
Four children are in an industrial kitchen
looking at a recipe with the ingredients Four people are in the kitchen entailment
on the table in front of them.
Two guys getting a drink at a store counter. two guys get a drink entailment

Table 8: The most difficult instances for RoBERTa-large and GPT-2, measured by number of searches required
to get the lottery prompt out of 7. Instances in purple indicate failure to find a lottery prompt for GPT-2, and

instances in blue are failure instances for RoOBERTa-large.
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