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ABSTRACT

In federated learning, the underlying data distributions may be different across
clients. This paper provides a theoretical analysis of generalization error of feder-
ated learning, which captures both heterogeneity and relatedness of the distribu-
tions. In particular, we assume that the heterogeneous distributions are sampled
from a meta-distribution. In this two-level distribution framework, we character-
ize the generalization error not only for clients participating in the training but
also for unparticipating clients. We first show that the generalization error for
unparticipating clients can be bounded by participating generalization error and
participating gap caused by clients’ sampling. We further establish fast learning
bounds of order (’)(ﬁ + i) for unparticipating clients, where m is the number
of clients and n is the sample size at each client. To our knowledge, the obtained
fast bounds are state-of-the-art in the two-level distribution framework. Moreover,
previous theoretical results mostly require the loss function to be bounded. We de-
rive convergence bounds of order O(ﬁ + \/%) under unbounded assumptions,
including sub-exponential and sub-Weibull losses.

1 INTRODUCTION

In federated learning, a common model is trained based on the collaboration of the participating
clients holding local data samples (McMahan et al., 2017). Typically, the underlying distributions
vary across clients since the data-generating processes are affected by the local environment. Fed-
erated learning is heterogeneous in the scenario where local distributions are different (Wang et al.,
2021). Most existing experimental and theoretical results focus on the convergence of optimization
on training datasets (Li et al.,[2020b; Karimireddy et al.|[2020; Mitra et al.,2021; Mishchenko et al.,
2022} [Yun et al., 2022). The generalization error, which is more natural and important in machine
leanring, seems not to have been carefully examined in heterogeneous federated learning.

As a key performance indicator of the machine learning model, generalization error measures the
performance of a trained model by its population risk with the corresponding distribution. However,
existing generalization results are generally derived for clients participating in the training, which
only captures the performance of the learned model on seen distributions during training (Mohri
et al.,[2019; |Chen et al.,|2021;|Masiha et al.| |[2021)).

In practice, the probability that a client participates in the federated training is affected by many
factors such as the reliability of network connections or the availability of the client. The realistic
participation ratio may be slow and a variety of clients never have a chance to participate during the
training process (Kairouz et al., 2021} |L1 et al.| 2020a; Yuan et al.| 2021). Though the training pro-
cess is operated only on participating clients, the trained model will be used by both unparticipating
and participating clients. Since the data distributions of unparticipating clients are different from
that of participating clients, it is natural and emergent to ask the following question:

Would the unparticipating clients benefit from the model trained by participating clients?
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To answer this question theoretically, we take the participation gap into account in the analysis of
generalization error, which is generally ignored by existing works.

In addition to the ignored participating gap, existing theoretical results on the generalization error
of heterogeneous federated learning have two more limitations to our knowledge. First, all previous

learning rates in probability form are of the order O(ﬁ), where m is the number of clients and n

is the sample size at each client (Mohri et al., 2019). We note that faster rates of order O(ﬁ) are
derived in (Chen et al.,|2021). However, their learning rates are in expectation form. Faster learning
rates in probability form haven’t been derived even only for participating clients. The guarantees
in-expectation form reflect the average performance of the model trained based on the randomly
sampled datasets. The theoretical bounds in probability form, which we focus on in this paper,
reflect the performance of a single sampling on datasets (Klochkov & Zhivotovskiy, [2021; |Kanade
et al.l 2022; Sefidgaran et al., |2022a). Second, most previous generalization bounds are derived
by assuming that the loss function is bounded. However, there are a variety of learning problems
that do not satisfy this assumption. This includes regression problems where unbounded noise is
added to labels (Kuchibhotla & Patra, |2022; |Kuchibhotla & Chakrabortty, 2018} [Zhang & Zhoul
2018)), clustering tasks with heavy-tailed distribution (Paul et al.| 2021} [Vellal et al., [2022), domain
adaptation, and so on. Notable exception works in this direction include (Barnes et al., 2022) and
(Sefidgaran et al.| 2022b). However, their results are established under the assumption that local
clients are homogeneous, which is highly restrictive in the general federated scenario.

In this paper, we assume that data distributions of participating and unparticipating clients are drawn
from a meta-distribution P. We argue that this assumption is reasonable in practice. For instance,
in cross-device federated learning, the number of total clients is generally large and it is natural to
assume that there exists a meta-distribution (Reisizadeh et al., 2020; Wang et al.l 2021). In this
learning scenario, we assume that the total number of clients is M. Among all these M clients, only
m clients have a chance to participate in the training phase, which means that the training process
only involves the m distributions { D;}" ;. Note that the total number M and the number of unpar-
ticipating clients/distributions is generally larger than m (Hu et al.| 2022} | Xu & Wang, 20205 [Yang
et al., [2020). Practically, the model is trained based on datasets {Si};’;’gl, where S; is the dataset
located in client ¢ and is sampled from D;. This two-level framework not only captures the hetero-
geneity of clients’ distributions but also reflects the relatedness of the distributions. Thanks to this
framework, we are allowed to characterize the generalization performance of both participating dis-
tributions and unparticipating distributions. A similar framework has been used by recent literature
(Yuan et al.| 2021} Reisizadeh et al., 2020; Wang et al.| 2021). However, these works mainly focus
on the optimization performance or only involve experimental results on the generalization. The
objective of this work is to provide theoretical results on generalization error in this framework. Our
contributions are summarized as follows.

* We provide a systematic analysis of the generalization error of federated learning in the
two-level framework, which captures the missed participating gap in the existing works.
This two-level framework captures both heterogeneity and relatedness of clients’ distribu-
tions. Moreover, all learning bounds presented in this paper are in probability form instead
of expectation form.

* We derive fast learning rates in the empirical risk minimization setting. The unparticipating
error is bounded by two terms. One is participating error. The other is the participation gap
results from missing clients in the training. Our participating bounds and unparticipating
bounds are of order O(-1-) and O(-L- + 1), respectively.

7;71 mn m
* We study the learning bounds for unbounded loss functions, including sub-gaussian, sub-
exponential, and heavy-tailed losses. Small-ball methods and concentration inequalities for
unbounded random variables are used in the unbounded setting. Our bounds are compara-
ble with the existing results with bounded assumptions.

The rest of the paper is organized as follows. In Section 2, we describe the two-level distribution
framework and provide basic theoretical results in this framework. In Section 3, we derive fast
generalization bounds. In Section 4, we go beyond the bounded assumption and provide the gener-
alization bounds for unbounded losses such as sub-exponential and sub-Weibull losses. In Section 5,
we discuss related work on the generalization analysis of heterogeneous federated learning. Finally,
we conclude this paper in Section 6. All proofs are postponed to the appendix.
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Figure 1: Illustration of the participation gap and participation error.

2 TWO-LEVEL DISTRIBUTION FRAMEWORK

Let X denote the input space and ) C R the output space. For simplicity, we denote Z = (X,Y)
the random variable with support Z = & x ). Let D denote the set of all probability distributions on
Z and P is a meta-distribution on D. The assumption of meta-distribution is reasonable especially
in cross-device federated learning scenario, where the local devices may be a large population of
mobile phones. As shown in Figure[T] in this two-level distribution framework, we assume the total
number of clients is M (may be infinity) and the number of clients participating in training is m. Itis
worth emphasizing that M is generally larger than m owing to unreliable network connections. We
denote by D; the distribution associated to client ¢ and assume {D,--- , D,,} are independently
sampled from D according to P. Data sample S; = {Z} =1 located on participating client ¢
is made of n i.i.d realizations of Z following D;. The global model is trained based on {S;}"
and will be used by all M clients. Two-level distribution framework allows us to measure the
performance of the global model with respect to clients’ distribution P, which quantifies both the
participation gap (caused by client sampling) and participating error (caused by data sampling from
participating distributions). Throughout the paper we denote F by F = {z — £(h,z) : h € H}.
Moreover, we use Z; = (X;,Y;) to represent the random variables across two-level framework.
That is, ]E[Zz] = ]EDZ-NP [EZZ'ND{, [Zzﬂ

Let the hypothesis space H be a family of real-valued functions defined on X'. The loss function
¢:Y x )Y — RT is a non-negative function. We denote the population risk £p(h) by Lp(h) =
Ep,~p [Ez~p, [((h(X),Y)]], where h € H represents the global hypothesis shared by all local
clients. The population risk minimizer h* associated to population risk Lp(h) is define as h* =
argmin, c,, Lp(h). However, it is impossible to minimize £p(h) directly because the exact meta
distribution and client local distributions are unknown to us. We have access to only a finite number
of clients and finite training data at each client. The global objective function defined as population
risk is often optimized by the form of empirical risk minimization (ERM) objective function defined

as: Ls(h) = >0 230, ((h(X7),Y]), where (Xf,Yij_) represents the j-th training data
point at i-th participating client. For simplicity, we denote Z; = (X7/,Y;) the data point. Let
Si = {Z]}}_, denotes the local training set at i-th participating client and S = S;J---U Sm
represent the global training set across all participating clients. The empirical risk minimizer h

condition on dataset S is define as h = arg miny, <, L5(h). To analyze the generalization in our
two-level framework, we further define semi-empirical distribution D and the corresponding semi-
empirical risk Lp(h) by D = L 3" D;and Lp(h) = LY Eyp, [((h, Z)]. We extend the

previous definitions and denote by h* the semi-empirical risk minimizer 2* = arg miny, .4, Lp(h).

The semi-excess risk for participating clients is defined as: £ D(ﬁ) - L D(f;*). Semi-excess risk
indicates the performance of the learned model & on the unseen data associated with semi-empirical

o~

distribution D. The excess risk for unparticipating clients is defined as: Lp(h) — Lp(h*). Excess
risk indicates the performance of the learned model i on the unseen clients distributed according to
P. Note that the the excess risk Lp(h) —Lp(h*) is defined across two-level distribution framework.

o~

It will be shown that, in our analysis, all upper bound of excess risk Lp(h) — Lp(h*) involves semi-
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excess risk Lp (ﬁ) - L D(ﬁ*) or its upper bound. To understand this framework better, we present
our basic results of excess risk as follows.

Definition 1 (VC dimension). Ler (X, H) be a set system that consists of a set and a class H of
subsets of X. A set system (X, H) shatters a set A if each subset of A can be expressed as AN h for
some h in H. The VC-dimension of H is the size of the largest set shattered by H.

Definition 2 (VC subgraph of real valued function). The subgraph of a function h(€ H) : X — R
is the subset of X x R given by {(x,t) : t < h(z)}. Then the V C-dimension of the function class
F is defined as the V C-dimension of the set of subgraphs of functions in H.

Theorem 1 (Generalization error for unparticipating clients). Let F be a family of functions related
to hypothesis space H : F = {z — L(h,z) : h € H}. For the VC subgraph class F with VC
dimension d. If the loss function £ is bounded by b, it follows that with probability at least 1 — 20,

Lp(h) - Lp(h*) < 015\/5 + b\/w—i— @b\/Z—F b\/@,

where c1 and co are constants.

Remark 1. Assume the total number of clients is M and P is a concrete meta-distribution on M
different clients’ distributions. The global model h is trained based on m participating clients. The

excess risk measures the average performance of h on total M clients, which include participating
and unparticipating clients. Theorem[l|indicates that, increasing the number of participating clients

o~

m leads to the decrease of excess risk Lp(h) — Lp(h*). In cross-device federated learning, the
number of participating clients m may be large enough such that the excess risk approaches zero.
Based on these discussions, we can give a positive answer to the question asked in Introduction.
This is, from the perspective of average performance, unparticipating clients would benefit from
the model trained by participating clients.

Remark 2. Our theoretical results show that under some assumptions we are able to bound the
excess risk Lp(h) — Lp(h*). In the cases when every client is completely different, Lp(h*) will be

o~

large. Thus, the generalization error for unparticipating clients Lp(h) will be large. This obser-
vation indicates that, we can not expect one commen model works well when heterogeneity is high.
We provide experimental results on EMINIST ((Cohen et al.| 2017) and synthetic data in appendix.
Though Theoreml[l|is derived for VC class, experiments of neural network justify our theory.

3 FAST LEARNING RATES IN TWO-LEVEL DISTRIBUTION FRAMEWORK

In this section, we present fast learning rates in our two-level distribution framework. Recall that h
is the empirical risk minimizer and h* is the population risk minimizer. Our goal is to bound the

semi-excess risk for participating clients £p (ﬁ) —Lp (ﬁ*) and excess risk for unparticipating clients

L p(ﬁ) — Lp(h*). To get faster learning rates in our two-level distribution framework, we start by
making some assumptions on loss function ¢, hypothesis space H, semi-empirical distribution D,
and meta distribution P.

Assumption 1. Loss function ¢ is L-Lipschitz in its first argument: [£(y1,y) — £(y2,y)] <
Ly — y2l -

Definition 3 (Bernstein condition). Let i be a distribution supported on X x Y and let { be a loss
function with domain Y x Y. The tuple (u,f, H, h*) satisfies the (8, B)-Bernstein condition with
parameter B > 0 if the following holds for any h € H. :

E (h(X) = h*(X))* < BE [((h(X),Y) — (k" (X),Y)]".

It is well known that fast learning rates require extra assumptions. Bernstein condition is widely
used to get fast learning rates in the learning theory community (Xu & Zeevi, [2020; \van Erven et al.}
2015;Wu et al.} 2022)). We emphasize that it is not too restrictive. For example, it is directly implied
by the boundedness property of functions with any probability distribution (Bartlett et al., 2004)).
Moreover, regression problems with strictly convex loss function satisfy the Bernstein condition
if the function class is convex (Lecué & Mendelsonl 2013). Other examples include excess risk
functions with minimizer of population risk when the loss function is strongly convex and Lipschitz
(Klochkov & Zhivotovskiyl 2021).
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Assumption 2. Theoretical analyses in our two-level distribution framework involve different types
of Bernstein conditons:

(a) The tuple (D, ¢, ”H,E*) satisfies the Bernstein condition with parameter B’ > 1,0 < ' <
1. That is, for any h € H, % S ER(XY) = R (XH]? < B'(Lp(h) - Lp(h*)~E.

(b) The tuple (P, ¢, H, h*) satisfies the Bernstein condition with parameter B” > 1,0 < " <
1. That is, for any h € H, Ep. p[Ex~p, [M(X) — h*(X)]2] < B"(Lp(h) — Lp(h*))E".

For our purposes, we need to check that both (a) and (b) in Assumption [2/hold. A typical example
satisfying Assumption[2]is quadratic loss with convex function class H. We provide some examples
satisfying Assumption [2]in appendix. For more details, we refer to (Xu & Zeevil 2020; Wu et al.|
2022; (van Erven et al.,[2015)).

Assumption 3 (Uniform entropy numberﬂ). Let H be a family of bounded functions with uniformly
entropy number log N'(e,H, || - ||2). Assume that there exist positive numbers v, d and p such that
log N'(e,H, | - [[2) < dlog?(v/e) forany 0 < e <.

Assumption [3| is a mild assumption if the function classes are bounded. We list some popular
function classes satisfying Assumption 3} (a) If the VC-dimension of 7 is finite, then H satisfies
assumption [3| For instance, the function class of k-means methods has finite VC dimension. For
more details, we refer the reader to (Devroye et al., 2013)). (b) When we set € € (0, 1), then all the
unit Euclidean ball B C R? satisfy assumption (c) If H is a RKHS with kernel k£ and the rank of
k is d, then H satisfies assumption 3]

3.1 FAST LEARNING RATES FOR PARTICIPATING CLIENTS

In this subsection, we provide fast learning rates for participating clients in high probability. To
obtain faster convergence rates, we focus on semi-excess risk Lp(h) — Lp(h*).

Theorem 2 (Semi-excess risk for participating clients). Let F be a family of functions bounded by
b. Under assumptions [I} [3|and (a) of Assumption [2] when mn > cdlog” (mn), it follows that with
probability at least 1 — 6,

Lo(R)—Lp(h) < e (bg%m) = <1og(1/5)> =4

mn mn
where ¢, and co are constants depending on vy, p, L, 3" and B1,b, 3 respectively.

Remark 3. Theorem 2] shows that the convergence rate of semi-empirical excess risk ranges from
1 1 . ’_ / . . .
O(W) to faster order O(-—), which corresponds to ' = 0 and 3" = 1, respectively. It indicates
that, under Bernstein condition, semi-empirical excess risk convergences faster when we increase
the number of clients m or the size n of local dataset. We emphasize that our bounds in Theorem 2]
is in high probability form, which is more emergent and challenging, when compared to the previous

results in expectation form (Chen et al.| 2021} |Fallah et al.| |2021). The learning bounAds in Theo-
rem |2|are conducted for the empirical risk minimizer h. For the inexact minimizer of h, the proof
technique and the final bounds only involve an extra optimization term. For more details about the
optimization error, we refer to (Wang et al.| 2021} \Su et al.| 2021} |[Khaled et al.| ) 2019).

3.2 FAST LEARNING RATES FOR UNPARTICIPATING CLIENTS

In this subsection we provide fast learning rates for unparticipating clients in high probability. To
the best of our knowledge, this is the first result derived for unparticipating clients in heterogeneous
federated learning.

Theorem 3. Let F be a family of functions bounded by b. Under assumptions and (b) of
Assumption [2| when m > edlog? (m), for any § > 0, it follows that with probability at least 1 — 6,

1

Lp(M)—Lp(h*) < co (/:D(E) - LD(E*)) +o (log;m) = + e (logg/‘s)) o

where cy = K_Lﬁ,, c1 and ¢y are constants depending on vy, p, L, 8" and B, b, 8" respectively.

!The definition of uniform entropy number is provided in appendix
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Remark 4. Theorem [3|is developed across the two-level distribution framework, which brings
extra challenges to the analysisl It is sh/o\wn that the upper bound derived in [3] include semi-
empirical excess risk term Lp(h) — Lp(h*), which is an outcome of excess risk decomposition
across two-level framework. Recall that ' and 8" are constants defined in Assumption [Z] In
the cases where B’ = 1 and 3" = 1, it can be shown that excess risk is of order O(ﬁ + %)
with high probability. To present Theorem [3| we must construct a sub-root function that links the
expected local Rademacher complexity associated with meta-distribution P and uniform entropy
number. However, the conventional Dudley’s integral bounds are built under empirical constraints
(Boucheron et al.| 2013|). We tackle this challenge by extending the techniques developed in (Lei
et al.l |2016) to our two-level distribution framework.

4 LEARNING RATES FOR SUB-WEIBULL LOSSES

In this section, we provide generalization error bounds for unbounded losses in two-level distribution
framework. In particular, we focus on loss functions satisfying sub-Weibull condition.

Definition 4 (Sub-Weibull random variables). A random variable X is said to be sub-Weibull if
there is constant || X ||y, < 0o, such that

P(| X[ >t) < 2exp(—t*/[|X||3, ), forall t > 0.

Sub-Gaussian and sub-exponential random variables are two special cases of Sub-Weibull random
variables, which correspond to o = 2 and o« = 1, respectively.

The learning rates derived in two-level framework for sub-exponential losses are deferred to the
appendices. In the following we use small-ball method to establish learning rates for more heavy-
tailed losses, where two-side concentration inequalities may fail to hold.

This subsection aims at establishing generalization bounds for unbounded losses that have heavier
tails than sub-exponential distribution. Since the two side inequalities for empirical process fail to
hold when the losses are heavy-tailed, the analysis of heavy-tailed losses require new method to
relate empirical risk and population risk. In this subsection, we establish generalization bounds for
heterogeneous federated learning by extending the small-ball method from i.i.d setting to our two-
level distribution framework. We consider the quadratic loss function in this section. The extension
to general losses can be achived by using the techniques presented in (Mendelson, 2018)).

In what follows, we denote by ||h||z,(,) for Banach spaces Lo(X, ). Recall that D is the
semi-empirical distribution and P is meta-distribution. In particular, we have [|hl|z,(p) =
(L3 Exep, [MX)])/2 and ||h||1,(p) = (Ep,~pEx~p,[h(X)]?)'/2. For the sake of clear
exposition, we first introduce the small-ball condition.

Assumption 4 (Small-ball condition). Let H C Lo(D) be a closed and convex class of functions
and H —H:={h—h":h,h € H}.

(a) Let Qumn(7) = infrep—nP(|M(X})| > 7||hl|lLy(p)), where X} represent the random
sample at i-th participating client. There is a T > 0 for which Qmn (7) > 0.

(b) Let Qu (1) = infrep—n P (|E[R(X])]| = 7||hllL,(p)). where X} represent the random
sample at i-th participating client. There is a 7 > 0 for which Q,,, (1, P) > 0.

Assumption [] small-ball condition, has been assumed for i.i.d and dependent data-generating pro-
cess. To obtain high-probability theoretical guarantees, concentration techniques are widely used
in the analysis of generalization error (Boucheron et al., 2013)). Intuitively, empirical risk will con-
centrate around population risk with high probability only when the loss function has well-behaved
moments. However, this condition may fail to hold for heavy-tailed losses (Mendelson, |2015)). As-
sumption []appears first in the work of (Mendelson| [2015)). Losses with any sort of moment equiv-
alence satisfy small-ball condition, which is weaker than concentration condition and can be used to
model heavy-tailedness. For example, even weak condition ||h[|z,p) < ¢||h]|z, (p) yields nontriv-
ial small-ball estimate. Moreover, the equivalence between higher-order moments and second-order
moment such as [|h]|L py < ¢k, (p) also leads to small-ball condition (Lecué & Mendelson,
2016). Based on these observations, condition (b) of Assumption []is generally implied when we
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consider each local distribution D; as a random variable according to client distribution P. Let us
discuss condition (a) of Assumption E]m more detail. Note that the establishment of this assumption
Ionly requ1res ‘H C Lo(D) with high probability, where D is the semi-empirical distribution. This
requirement is not too restrictive since the elements of D are i.i.d sampled from P. To our knowl-
edge, this is the first time that small-ball condition is used under heterogeneous data generating
assumption.

4.1 LEARNING RATES FOR PARTICIPATING CLIENTS WITH SMALL-BALL CONDITION

We first describe the basic idea of generalization analysis for participating clients. Recall that h*
is the minimizer of semi-empirical risk £p(h) in . In this subsection we focus on the measure

[|1h — E*HQLz( py> Which represents the distance between / and h* with respect to semi-empirical
distribution D. For quadratic loss and every h € H, we have

m n

£s(h) - £s(R%) fﬁzz[ — ¥ = (0 (X))~ 7] M)

m

1 - J
= 2 2 +mn;;f (h =F)OD), @
where & = h*(X?) — Y. Since h is the minimizer of empirical risk Lg(h), we have Lg(h) —
Ls(h*) < 0. If on an event [lh— h* | £, (D) is large, then the summation of two terms in (2) is larger
than 0 with high probability. It follows that with high probability ||h — h*| 1, p) is small since
Ls(h) — Ls(h*) < 0.

Let {(Xf,Yf)}Em )n)(l ;) be global data samples whose elements {(Xij,Yij)}?:l are i.i.d ran-

dom pairs at i-th client. The analysis of the first term in (Z) involves the following definition of
Rademacher complexity.

Definition 5. We define H — H = {h — h' : h,h' € H} and denote by BY* the Lo(D) unit ball
entered at h*, that is By' = {h € H : |h — h*||1,(py < 1}. For every n > 0, define

3 atnind)| <o

=1 j=1
The quantity wy,, (1) measures the Rademcher complexity of the localized function set {H — H N
sBY'}. Note that wy,,(n) depends only on the hypothesis class H and global input samples are
drawn from semi-empirical distribution D.
Theorem 4. Fix 7 > 0 for which Q,,,(21) > 0 and set n < T2Qumn(27)/32. If every random
variable Vi = & n(X]) — B¢/ (X)) forall h € H — h* is Sub-Weibull. For sufficiently large
mn, with probablllty at least 1 — 8y, — exp (—mnQ?2,, (27)/2) one has

~ o~ _14,
1= 320y < 2max {wpun (rQuun (27)/16), (mn) 57},

Wmn(n) :=inf<s>0:E sup
he(H—H)Ns By

where o] are Rademacher random variables.

con® (mn)*(1/2+20) )}

1 c1 4.
where 0 < v < 7 and 0y, = exp{— (mln mﬂz(;l 1)||V7|| A evem— 7
Remark 5. To the best of our knowledge, Theoremd) provzdes the first result on the generalization
error of heterogeneous federated learning with heavy-tailed losses. It suggests that both hypothe-
sis ‘size’ and noise level play important roles in the generalization error of heterogeneous learning
problems. In Theorem[d) the expression of Oy, dependents on the tail of sub-Weibull random vari-
ables VJ Specifically, the heavier the tail of VJ the larger Oy, will be. Note that in addition to
1V ||, » Omn also depends on (mn)*. That is, the larger mn and v are, the smaller &,,,, will be.
To ensure that Theorem 4| holds with high probability, we must ensure that §,,, is small enough.
Therefore, when mn is fixed, the heavier the tail of Vl-j , the larger v should be. It can be seen from

Theoremthat the larger 1 is, the slower the convergence rate of ||h — h*| ., (p) is.
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Corollary 1. Under the same conditions of Theorem ) for convex function class H and sufficiently
large mn, with probability at least 1 — 0y, — exp (—mnQ?2,,,(27)/2) one has

~ ~ 7_2 )
Lp(h) = Lp(h*) < (2+ 7 Qun(27)) max (w7, (TQumn (27)/16), (mn) =2 *),
where 0 < 1 < %

Remark 6. Corollary|l|provides the convergence rate of semi-empirical excess risk for Sub-Weibull
losses. Compared to Theorem [2] it shows that the convergence rate of excess risk is slower than

O(7a=)-

4.2 LEARNING RATES FOR UNPARTICIPATING CLIENTS WITH SMALL-BALL CONDITION

In the analysis of generalization error for unparticipating clients, we focus on the measure ||h —
h* HQL2 (p)» Which represents the distance between h and h* with respect to meta-distribution P. The
analysis of generalization error for unparticipating clients follows a similar path to the previous anal-
ysis. Let {(X;, Y;)}7 | be dataset whose elements are sampled across the two-level framework, that
is E[(X;,Y:)] = Ep,~pPE(x,,v,)~D,[(Xi, Yi)]. We present the different definitions of Rademacher
complexity terms in the following.

Definition 6. We define H — H = {h — k' : h,h' € H} and denote by By the Lo(P) unit ball
entered at h*. For every n > 0, define

] < ns’}

The quantity w,, () measures the localized complexity of {(H — H) N sBy}.

Theorem 5. Fix 7 > 0 for which Q,,(27) > 0 and set n < 72Q,(27)/32. If forall h € H — h*
the random variable V; = E[¢1h(X})] — E[&;h(X;)] is Sub-Weibull. For sufficiently large m, with
probability at least 1 — 6,,, — exp (—mQ?Z (27)/2) one has

sup
he(H—H)NsBs

i=1

wWm(n) := inf {s >0:E

where o; are Rademacher random variables.

17 = B ) < 2max {wn(7Qum(27)/16),m ™47},

1Pt P o (1/2420) )
=X Vil T maxicicmlIVilly, /S

where 0 < v < } and 6,,, = exp{—(

Remark 7. Theorem|5\provides the first result on the generalization error of unparticipating clients
in heterogeneous federated learning with heavy-tailed losses.

Corollary 2. Assume for all h € H — h* the random variable V! = E[h?(X))] - E[h?(X;)] is Sub-
Weibull and the noise h*(X;) — Y; is independent of X;. Under the same conditions of TheoremE]
for 0 < n < 1and sufficiently large mn, with probability at least 1 —§' —exp (—mnQ?2,,,(27)/2) —
exp (-mQ2,(27)/2) one has

L’P(ﬁ) — Lp(h*) < comax (win(%)’ (mn)f%ﬂ) + 2 max {w%(w%m;ﬂ}

a(1/2420)
S

Yo

2 4. «
2 1 ! _ cinm can®m
where cy = = 0<t<5andd = Omn + 0m + exp{ (; NI i A vS—

m i=1
Remark 8. Corollary|2| provides the convergence rate of excess risk for Sub-Weibull losses. Com-
pared to TheoremE| it shows that the convergence rate of excess risk is slower than O(—A— + ﬁ)

mn

5 RELATED WORK

Generalization Error for Heterogeneous Federated Learning. Several attempts have been made
in the analysis of generalization error for heterogeneous federated learning. We compare our results
with most related works in Table [T] Complexity-based bounds for participating clients are derived
in the work of (Mohri et al., 2019), who present high probability slow rates of order O(ﬁ)
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Table 1: Generalization Bounds for Heterogeneous Federated Learning. SC, Pro, and Exp
denote Strong convexity, In probability, and In expectation. Sub-expon denotes sub-exponential.

Reference Loss Assumption Part Unpart Type
Mohri et al.[(2019)  Bounded Bi-Classifier O(—=) / Pro
Chen et al|(2021) ~ Bounded Smooth, SC o(-1) / Exp
Fallah et al. (2021) ~ Bounded Smooth, SC o(-1) / Exp

Our Results Sub-expon  Lipschitz O( \/%) O( \/Tln—n + \/%) Pro

Our Results Bounded Bernstein Con O( %) OG5 +2) Pro

2.—1 20—1 20—1
Our Results Sub-Weibull ~ Small-ball o ((mn) : ) O((mn)*7+ + m*7)  Pro

for bounded losses. Fast rates bounds are obtained based on stability tools in (Chen et al., 2021}
Fallah et al., [2021). However, their results are in expectation form. Among the existing theoretical
work, different measurements are used to model the heterogeneity of local distributions. These
measurements include gradient dissimilarity and parameter dissimilarity of local optimal models.
Here we argue that it is more natural to make an assumption from the perspective of the data-
generating process. Therefore, in this paper, we assume that the local distributions are sampled from
a higher meta-distribution.

A similar two-level distribution framework has been used in the analysis of meta-learning. However,
the learning scenarios and objectives of federated learning are different from that of meta-learning.
The goal of meta-learning is to choose an optimal hypothesis space H from the hypothesis space
family H. Ideally, the chosen hypothesis H should contain good hypothesis i € H for each dis-
tribution D; sampled from the meta distribution P. In this paper, we focus on the performance of

common model A trained by participating clients. The performance of the common model is mea-
sured by the population risk with respect to meta distribution P. Another line of research closely
related to heterogeneous federated learning is domain adaptation/generalization. In this line, possi-
bly the results in (Li et al.,[2022) are most relevant to ours.

Generalization error for Unbounded losses. The unbounded assumption brings two major chal-
lenges to complexity-based generalization analysis. One is that the two-side concentration inequal-
ities do not hold when the losses are heavy-tailed. The other is that the standard techniques used
to upper bound the complexity of hypothesis space are developed for bounded losses. The straight-
forward way to avoid these two challenges is to assume there exists an envelope function with
respect to the underlying distribution and hypothesis class (Adamczak, [2008; Lecué & Mendelson,
2012). Small-ball method is first proposed to replace the concentration tools for empirical process
in (Mendelson, 2015) and further developed in (Mendelson, 2018). Inspired by the small-ball
method, Offset Rademacher complexity-based method provides another replacement for two-side
concentration inequality (Liang et al. 2015). However, most existing generalization bounds for
unbounded losses are derived in the i.i.d setting. |[Roy et al.[(2021]) extend the small-ball method in
the dependent data setting. In this paper, we focus on the heterogeneous federated learning scenario
with unbounded losses, where the samples are independent but non-identically distributed.

6 CONCLUSION

We present a systematic generalization analysis of heterogeneous distributed learning. Our analysis
captures the generalization performance of the learned model on both participating and unparticipat-
ing clients. To our knowledge, this is the first theoretical analysis under the assumption that the local
distributions are sampled from a meta-distribution. We recover the current state of art guarantees
without using bounded assumptions. Moreover, under the empirical risk minimization setting, we
derive fast generalization rates in our two-level distribution setting.
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A SETTING, DEFINITIONS

We denote the population risk £p(h) by
Lp(h) =Ep,~p [Ez~p, [((M(X), Y]],
where h € H represents the global hypothesis shared by all local clients, £ : ) x ) — R™ is the

non-negative loss function. The population risk minimizer ~* is define as

h* = argmin Lp(h).
heH

In practice, the global objective function is often optimized by the form of empirical risk minimiza-
tion (ERM) objective function, which is defined as:

n

Lslh) = 30 1 S UBCE) YY),

n -
J

where (X I yd ) represents the j-th training data point at i-th participating client. We also use

REaS

ZJ = (X7,Y7) to denote the data point. Let S; = {Z7 7—1 denotes the local training set at i-th

participating client and S = S; | - - - | Sy, be the global training set. The empirical risk minimizer
h is define as

h = argmin Ls(h).
heH

The semi-empirical distribution D is defined as D = % >-i% 1 D;. Moreover, the corresponding
semi-empirical risk Lp (h) is defined as:

Lo(h) = > Equp, (5, 2)].
i=1

We denote by h* the semi-empirical risk minimizer

h* = argmin Lp(h).
heH

The semi-excess risk for participating clients is defined as:
Lp(h) — Lp(h*).
Semi-excess risk indicates the performance of the learned model 1 on the participating clients.

The excess risk for unparticipating clients is defined as:

~

Lp(h) — Lp(h").
Excess risk indicates the performance of the learned model 1 on the unparticipating clients.

In the following, we denote F by F = {z — {(h, z) : h € H}. Moreover, we use Z; = (X;,Y;) to
represent the random variables across two-level framework. That is,

E[Z;] = Ep;~p[Ez~D,[Zi]]-

B PROOF OF THEOREM 1

B.1 PROOF OF THEOREM[I]

o~

We first show that semi-excess risk Lp(h) — Lp(h*) can be upper bounded by supremum of the
empirical process indexed by H:

Lp(h) — Lp(h*) < Lp(h) — Ls(h) + Ls(h*) — Lp(h*) < 2sup [Lp(h) = Ls(h)], ()

where the first inequality follows from the fact that T is the empirical minimizer.
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Next, we decompose excess risk Lp (ﬁ) — Lp(h*) in two-level framework:
Lp(h) — Lp(h*) < 2sup |[Lp(h) — Lp(h)| + 2 sup |Lp(h) — Ls(h)].
heH heH

In details:
Lp(h) — Lp(h*) < Lp(h) — Lp(h*) — (Ls(h) — Ls(h*))
= Lp(h) — Lp(h) + Lp(h*) — Lp(h*) + Lp(h) — Ls(h) + Ls(h*) — Lp(h*)

< 2sup {[Lp(h) = Lp(h)[} +2sup {|Lp(h) = Ls(h)[},
heH heH

where the first inequality uses ,CS (ﬁ) Lg(h*) < 0since T is the minimizer of Ls(h). Note that the

first term sup, <y |Lp(R) — Lp(h)| in the upper bound of excess risk quantifies the participation
gap. The second term sup;, ¢4, |Lp(h) — Lg(h)| quantifies the generalization error for participating
clients.

Based on these observations, we first provide theoretical bounds on the term
suppey |Lp(h) — Ls(h)|. Then we move to the participating gap sup,cy |[Lp(h) — Lp(h)|.

Let o = {J{}ie[mwe[n] be a collection of independent Rademacher variables, this is random
variables taking values uniformly in {41, —1}. We define the generalized rademacher complex-
ity Rynn (F) used in heterogeneous federated learning as is as follows:

Rpn(F)=E |sup — ZZOJZ (h, Z7)

‘7 he?—tm”llj 1

Lemma 1 (Generalization error for participating clinets). Let F be a family of functions related to
hypothesis space H : F = {z — £(h, z) : h € H}. Assume that loss function { is bounded by M.
Then, for any § > 0, with probability at least 1 — §, we have

In (1/5)
- <
21612 |Lp(h) — Ls(h)| < 2Rpn(F) +3M Sy

Lemma (1| provide high probability theoretical guarantees for participating clients under bounded
assumption. Compared to the classical i.i.d setting in learning theory, the results in Lemma [I]in
under independent but non-identically distributed setting.

Since each local distribution D; is sampled independently from P, we regard local population risk
{Ez~p; [€(h, Z)]}ic[m) as a collection of iid random variables. Let o = {0 };c[, be a collection of
independent Rademacher variables, the rademacher complexity used in the analysis of participating
gap is defined as:

m

sup — Z oiEz~p, [((h,Z)]

Rn(F)= E
heH M

Dy, D
o

Lemma 2 (Participation gap). Let F be a family of functions related to hypothesis space H : F =
{z = L(h,z) : h € H}. Assume that loss function { is bounded by b. Then, for any § > 0, with
probability at least 1 — §, we have

sup [Lp(h) — Lp(h)] < 2R (F) + 3b In(1/0)
heH om

The participation gap in Lemma [2| quantifies the error caused by missing clients during training.

The Rademacher complexity term R, (F) indicates the ’size’ of hypothesis class, which can be
future bounded by convering number or VC dimension of the choosen hypothesis.

PROOF OF LEMMA [1]

Proof. We first create sample set S’ from S by changing one sample point. Without loss gener-
ality, we assume the data point Z* in S is changed into Z*. Next we define ®(S) by ®(S) =

16
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suppey | L (h) — Ls(h)|. By the definition of S” and S, we have
@ (') = ®(S) = sup {|Lp(h) — Ls (W[} — sup {|Lp(h) — Ls(h)I}
heH heH

sup {[{£p(h) = Ls:(h)} ={Lp(h) = Ls(h)} [}

IN

1 /
= sup {|£S(h) - ‘CS’ (h)|} = sup |E (ha Z?) -4 (h7 Zek) ‘
heH MmN pen

By assuming that loss function £ is bounded by b, then we have |® (S") — ®(5)| < -2-. We apply
McDiarmid’s inequality and obtain, for any fixed § € (0, 1), it follows that with probablhty at least
1-94§
In(2/0)
P(S)< E [®(S b\ ————
(5) = Sl,w,Sm[ (S + 2mn
Next we consider the expectation of ®(S). By symmetrization, we have

5.8, O = B | s £o(h) - ESW]
[ 1 & 1 n
= E — Eso — hZ’

1
= E sup — E
S1,,Sm P ;S’

Si, S/' L i=1 j=1
[ 1 m n
- E |supE— o; (Mz’f —MZJ)
5 B [op B 2 2w (U 20) — 0. 20)
Si" ’S'lm. L =1 j=1

i=1 j=1

+ E ZZ oijl(h, Z)

<3Sm0 hGH mnz 1=

=2 E Zzaw (h, Z))

Sy mn
e hEH =1 j=1

where Ry (F) = E |suppepy mm Do 1 2 ey Tijb(h, Zj)]. Replacing one data point of S =
S1U- - U Sy, make R, (F) vary at most %, then applying McDiarmid’s inequality again, with
probability at least 1 — § we have

sl,»]g,sn (Ronn(F)] < Ronn(F) + b 1112(31/;)

17
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PROOF OF LEMMA [2]

Proof of Lemmal[2] We create distributions set D’ from D by changing one client distribution. With-
out loss generality, we assume the k-th Dy, in D is changed into Dj, then we define ®(D) by

®(D) = 21615 Lp(h) — Lp(h).

From the definition of D’ and D, we have

® (D) - @(D)
= sup {Lp(h) — Lp/(h)} — sup {Lp(h) — Lp(h)}
heH heH
< sup {{£p(h) = Lp/(h)} = {Lp(h) — Lp(h)}}
= sup {Lp(h) — Ly (W)} = sup — (Bzp, [6(h. 2)] ~ Bz [((h. 2)))
heH heH T

By assuming that loss function f is bounded by b, then we have |® (D’) — ®(D)| < 2. According
to McDiarmid’s inequality, for all § € (0, 1), with probability at least 1 — §, we have

In(2/9)
dD)< E (D b\ ——
(D)<, E_ [2D)]+ o
Now we deal with the expectation of ®(D). By symmetrization, we have

B, [00)]=, £ [swLe() - Lot

D1, ,Dm, D1, ,Dm |heH

= _ E sup (Ep/~pm [Lp/(R)] — ED(h))]
D1, Dm | hen

< R sup (Lp/(h) — ED(h))]
D1,~~- D, _he”r’-t

m

- E sup k= Z (Lp:(h) - ﬁDi(h))]

Dy, Dy | e M =

D{w',Din
= E Sup* § Uz ED’ - ( ))
Dy, Dy | heW T 5
Dia”')Dm
1 m
< sup — g oiLp(h E sup — E —o,Lp,(h)
Dlw- ms0 | heH T2 Di,--nD’m,o heH M —

<2 sup — o, L
<2 E Legmz Lo, ( ]

Thus, we have

1 m
b By 0012, B Loy L3 )
1 m
sup — » o;Ez.p, [((h, Z;
malhegm; z,~p, [((h, Zi)]

3=
Ms

oi [¢(h, Zi)]

<2 E sup
Z1y 3 Zms0 | heH

=1

= 2Z1,~]~:-E,ZmRm(£)

18
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where R, (L) = E [sup,ey = > ivy 0il(h, Z;)]. Replacing one point of Z = {Z;}, make

Rm }Eﬁ) vary at most %, then applying McDiarmid’s inequality again, with probability at least 1 — ¢
we have

Z17.].EZW [RM(L)] < Rm(ﬁ) +b %

O

The goal of Theorem is to present theoretical bounds of excess risk £p (?L) — Lp(h*), it has been
shown that excess risk can be bounded by participation gap sup, <4, {|Lp(h) — Lp(h)|} and partic-
ipating error supj, 4, {|Lp(h) — Ls(h)|} . To show the explicit form of the rademacher complexity
terms in Lemma|[I]and Lemma 2} we take VC class as an example.

PROOF OF THEOREM 1]

Proof. We use subgraph dimension(aka pseudo dimension) and Dudley’s theorem to bound the
empirical rademacher complexity R, (). According to [Dudley| (1978); Pollard| (2012); Haus-
sler| (2018)), the uniform matric entropy of real valued function class F with subgraph dimension
VC(F) = d can be bounded

log NV (&, F, || - ||l2) < cdlog (1/€).

where F' is the envolop function of F. Then by Dudley’s Theorem (Dudley, |1978}; ivan der Vaart &

Wellner, |1996), we have
[ d [ d
Ron(F) < cby/ —, R (F) < cby/ —.
mn m

Combining the results of Lemma |l{and [2|leads to the final results. O

C PROOFS OF FAST RATES WITH BOUNDED LOSSES

Covering number can be used to give tighter estimate on the hypothesis size. Here we provide the
definition of convering number and uniform entropy number.

Definition 7 (Convering number). Let (G, p) be a metric space and F C G. For any ¢ > 0, F. is
an e-cover of F with respect of p if for all f € F, we can find ' € F. such that p(f, f') < e. The
covering number N (e, F, p) is defined as the minimum size of an e-cover:

N(e, F,p) := min{|F| : Fc is an e-cover of F w.r.t p}.

Definition 8 (Uniform entropy number). The entropy number is defined as the logarithm of the
covering number. Let (G, p) be a normed space with p(f, ') = ||f — f'||. Let F be an envelope
function of F such that |f(Z)| < F(Z), for all Z and f. We further define uniform entropy number
of F as: log N (€, F, || - [|l2) = supg log N'(¢, F, || - |, (@)), where Q is taken over all probability
measures with 0 < QF? < oc.

Definition 9. A function o(r) : [0,00) — [0,00) is sub-root function if it is nondecreasing and
r — ©(r)/\/T is nonincreasing for r > 0.

C.1 EXAMPLES SATISFYING ASSUMPTION [2]
C.1.1 EXAMPLE 1

In this subsection, we show that when the hypothesis class contains the h* and h*, Assumption
holds.

x B0 Y) = (), V) = . 2 E “ (X)) =¥’ = (" (x)) - y;fﬂ

L’ [h(X}) - E*(Xl)r :

m <
=1

IN
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Next we show that

B R0 Y) — e (), Y)] = o > [(h0eh) - 27 - (e - v
_ nll S E[nx) - h*(X})r
i=1

Similarly, we can prove that
E(xy)~pll(M(X),Y) = £((h*(X),Y)]* < L*E(h(X;) — h* (X;))?
= L’E(x,y)~p[0(M(X),Y) — ((h*(X),Y)].

Thus, the tuple (P, f, H, h*) satisfies the Bernstein condition with parameter By = 1 such that

E(h(X;) = 1™ (X))* < BiEx )~ p[l(h(X),Y) = £(h"(X),Y)].

C.1.2 EXAMPLE 2

In this example, we show that even when the hypothesis class does not include h* and h*, As-
sumption [2]still holds. If F is a nonempty, closed and convex subset of a Hilbert space with inner

product
<f7 g> = E(X,Y)ND(f(Xa Y)g(X’ Y))a

where h* is the projection of Y in the space F. By the definition we have Yy — n* (X),h(X) —
h* (X)) <O0.

Ex )~ ll((X), V) = €A (X),Y)] = Exyymp [(V = B(X))? = (V = B*(X))?]
LY R0, () — (X))

Lo

= [ neo) =02

2

v

1 S 1 G 1
= F [h(xh) = (x|
Thus, for regression problems with square loss function, where (ﬁ* ¢ H) , we have
E [6(h(X),Y)—t(h*(X),Y)]?> < L f:E [h(xl) —ﬁ*(Xl)r
(X,Y)~D ’ ’ T om & ¢ ¢

<12 B HR00,Y) = 00 (X0, V)],

Similarly, we can prove that
E(x y)~p[l(M(X),Y) = £((h*(X),Y)]* < L*E(h(X;) — h*(X;))?
— L2Ex vy~ p[l(h(X), Y) — £(h*(X), Y)].

20
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C.2 PROOF OF THEOREM

Lemma 3 (Theorem 2.1 in (Bartlett et al., [2005)). Let F be a family of functions satisfying ¥ f €
FNZ € Z,|f(Z) < b Ifsupser o >imy B[f(Z:)]* < r, then, for any 6 > 0 and any o > 0,
with probability at least 1 — 0,

)

<201+ QB[R (F)] + ) 2 00/0) 4 (1 n l) bln(1/9)

m m 3 « m

=1

o [1 S Bl (2] - £(20)

where Ry (F) = E [supjer = .00 00 f(Zi)].
Lemma 4 (Theorem 1 in (Yousefi et al., [2018)). Let F be a family of functions satisfying Vf €
FNZ e Z|f(Z)] <b Ifsuper ﬁ 2111 Z?:l E[f(Z])]* < r, then, for any 6 > 0 and any
« > 0, with probability at least 1 — 9,

<21+ @)E[Rmn(F)] +

mn o mn

8rln(1/4) N (1 . g) 4bIn(1/4)

where Ron(H) = E {supfe; % Dy Z;Zl Uff(Zf)}
Lemma 5 (Lemma B.1 in (Yousefi et al.} 2018)). Let c¢1,co > 0 and s > q > 0. Then the equation
x® — c129 — co = 0 has a unique positive solution x satisfying

1

= sco |*
9 < [cf‘l+ 2 ] )
§—4q

Moreover, for any © > xg, we have x° > c1x + co.
Lemma 6 (Corollary 1 in [Lei et al. (2016)). Let F be a function class with supscx || fllo < 0.

Assume that there exist three positive numbers vy, d, p such that log N (e, F, || - [|2) < dlog?(v/€)
forany 0 < € < ~, then for any 0 < r < v? and n > v~ 2 there holds that

—-1/2
drlog? (2yr—1/2) N dlog” (2’YT / ))

n n

1/2
(dlogp (2711 / ) N rdlog? (2'yn1/2)>]

ER, {fe]—‘:Pf2 Sr} < ¢(b, p,y) min [(

n n

Proof of Theorem [B} First we define F* := {f : (X,Y) = L(h(X),Y) — £(h*(X),Y), h € H}.
Step One: Combining Assumption for any f € F* we derive that

Y B[ROV = SB[, v - e (xh, v
i=1 i=1
< %2 S E [h(xg)fﬁ*(xg)r

i=1

m B
<B'I? (wli > E [an(xh), v - K(WX?W”D |

Let V(f) 1= & S0 B [e(h(X2), V) — e (x1). v B = B2,

m
Consider the function class G,. associated with F*and r >0:

rf

6= {9 = v €5 )
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We denote V,* by

V+—sup—ZZ[ Zf)}

mn
9€G, i=1j

Let K > 1,0 < 3 < 1and B > 1. We first prove that, if V,* < r " then

g
Vf e F, ;E Zl)]g = K % zj:z::[ 23}4—7/.
If V(f) < r, then g = f. It follows that with the assumption V, < 722~ we have
;gmﬂzmgm;;[ N+
< Wwiz_j [f<25>] T
IfV(f) >r theng =rf/V(f). < 222 we have
;iww})} <L ig [rzn)] + = ;]V((f :

IN

(1
<SS s+ B mEh - B

4)

®)

(6)

(7

®)

9

where the second inequality follows from Bernstein Condition and the third inequality follows from

Lemma
The obtained inequality can be rewritten as
— ;Emz NS G =5 gg D]+ ey
K m n ; %
< G 2 [F@)] +

2_2 < gforc<b§a.
Step Two: By the construction of G,, it can be varified that
— > > Elg(Z)
mn < :
=1 j=1
In details:
If V(f) <r, wehave g = f. It follows that
o 1
—ZZ]E ()] ZE (ZD)) = — D B (Z)P < V(f) <
=1 j=1 i:l
IfV(f) > r, wehave g = rf/V(f). It follows that

m 2 m 2

1 v J 2_l e _ ™ 1y12 " r
o 2 2 Bl (Z = 03 Bl (2N = e 2 BN < iy <

i=1 j=1 i=1

22

(10)

(1)

12)

13)
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Combining the boundness of G, and Lemma E|, with probability at least 1 — 9,V > 0,Va > 0, we

have
Sggp[ ZZ[ _QZJ)] < 2(1 + @)E[Romn(Gr)] + %&/6)

where Rmn(gr) = |:SU‘pq697 mn ZZ 1 Z]

10% g(ZJ)}

+(1+2)

4bIn(1/6)

Next we apply “peeling” technique to bound E[R ., (G, )]. Given A > 1, let F*(u,v) := {f € F* :
u < V(f) < v} and denote k as the smallest integer such that rAkt1 > BB Then

mmn g’r - 0 g
[<n&”%m;;
< J J
g | m L3S a@)
fE]'—*(OT) =1 j5=1
< J J
cp| L3
fE]'—*(OT) =1 j5=1
< J J
cx| LSS
fEF*(0,r) i=1 j=1
k j+1
Y(r) )
< AT
<3 +j;) 5

By the property of sub-root function it follows that we have v (6r)

<1+ﬁ§k:wﬁ> <

v(r)

B[R (97)) <

k .
A7 E

S,o
7=0

+ZAJH«:[

sup

sup
FEF(0,rai+1) T

< 034)(r)
¥(r)

AT B =N
F* =1 j=1

g | ii: joti(z)
50 | peF*(r,Bbs) M -

|:f€.7:* (rXd, r/\JJrl)

BRI

1=1 5=1

o Sz

i=1 j=1

for any 6 > 1. Then,

B

(145

Taking A = 4 it follows that E[Rn,n(gT)] < 51/1(1")/B.

Combining with the property ) (r
obtained with probability at least 1 — 0,V

n

b [mln > [Eloz -

where r* is the fixed point of sub-root function

9(2])]

\/r/r P(r

< 10(1B+ «) Yt

8rin(1/9)

mn

e(r).

Step Three: Recall that the condition we get inequality (@) is

Vi-1

).

= +/rr*. The following inequality can be

4bIn(1/96)

2
Y )
« mn

1/8
VI = sup — [ (ZJ)} L
s ;; BE
We denote A and C' by
10(1 In(1 2\ 4bIn(1
a0 co RO oy, 2) demit
B mn « mn
Next, we need to solve Ay/r + C < = Tl;? ,
that is
— ABKri — BKC =0, (14)
Then by Lemma [5] we have
1
rd < (ABK)?% + 223 f(ﬁc
2
=8 [/100+a)\TF, , 2 81n(1/6)\ =7 8BKbIn(1/6)
<m0t | ()T gyt (B 1+ 3) S
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where the second inequality follows from (x + y)P < 2P~ (2P + yP) for z,y > 0,p > 1.

1/p
If r* < rg, we can take » = rg. Then we have VTJOr <ASro+C = Tg,K . Combining inequality
we get

K
*ZE NS G ® =)

K
— (mn)(K - pB)

S [r20)] + i

E

N
I
-
<.
I
-

1

£(2])] + 2K) 77 (101 + )77 ()77

.MS
NE

N
Il

-
Il

-

. (2ﬂ+3321{%>216 (1+ (iéa))g)ig:l(l/é)'

. Combining inequality

mn

If * > rg, we can take r = r*. Then we have Vﬁ' <AV +C = )1/

[l we get

m m

=SB < i 3 [+ 070/

i=1 i=1 j=1
Step Four:
Note that 1)(r) is set to satisfy the following conditon,
¥(r) = BRmn(]?*(O,r)),
where B = By L? and
Clearly G, C {f € F* : Tyun(f) < 7}, where Tpn(f) = £ 37 Ezop, [f(Z)] . Thus,

m n

E[Rmn(gr)] = s ES Sélgp 7220’ g Z]
TTIme? | g€Gy i=1 j=1

E sup ZZJJf XJ YJ

S1,038m, mn
! 7 m"(f <T =1 j5=1
feF*

IN

= Rpn(F*, 7).
Lemma [6]implies that the sub-root function can be chosen as

dlog? (2v(mn)'/?) rdlog? (2y(mn)t/?)
mn * mn

P(r):=c

In a similar way to [Let et al.[(2016), let 7}, be its fixed point then we know that

. |dlog” (27(mn)1/2) N i ,dlog? (27(mn)1/2)
Tmn = € mn mn

< cd(mn)~tlog? (mn).

mn —

Solving this equality gives 7"

Combining the fact that - " 2?21 [E(?L(Xg)7 Y/ — é(ﬁ* (x7), yzﬂ)} < 0 and the result of
step three, we get the following results

L)~ Lo(*) = — S OB[AR(X),¥7) 00 (X)), V)]
i=1

< (2K)77 (10(1+ )7 max((r') 77, (") )

. <2B+3B2K5m)215 (1+ (2(204_));5271?(1/5).

mn
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When mn > cdlog? (mn), we have max((r*) 77, (r*)%) = (r*)ﬁ. Thus,

Lo(h)—Lp(h*) < e (mmm> e <1g<1/5>>

mn mn

C.3 PROOF OF THEOREM [3]

Proof. First we define 7* := {f : (X,Y) — (h(X),Y) —(h*(X),Y),h € H}.
Step One: Combining Assumption 2J(b)} for any f € F*, we have

Ep,~p[Exy)un: [F(X, Y)]]? = Ep,~p [Ex v)op, [((R(X),Y) — €(h*(X),Y)]
< Ep,~pE(x y)op, L(h(X),Y) — L(h*(X),Y)]”
— E[(h(X1), Y1) — £(h*(X1), )]
< L*E[h(X1) — h*(X1))?
< B"L*(Lp(h) — Lp(h)"".

Let V(f) = Ep,~pE(x.yvyop, [((A(X), Y) — £h*(X),V)]?, B = B"L?.
Consider the function class G, associated with F* and r > 0:

[ rf .
G == v €7 )
We denote V. by
+ _ l .- N — 1
Vit = swp ; [Elg(Z:)] - Elg(Z)]] -

#1/8
BK’

Let K > 1,0 < 3 < 1and B > 1. We first prove that, if V,* < then
178

. K 1 &
VfeF, E[f(Zl)]Sma;E[f(Z})] +

#1768

=7 » We have

If V(f) < r,then g = f. It follows that with the assumption V,F <

il y1/8
E[f(2)] < ;gws [F(Zh] + S

K— m
SmZ[Ef(Zil)]+7~

i=1

#1768

r s We have

IfV(f) > r,then g =rf/V(f). It follows that with the assumption V,* <

el < £ 3w ] + )

INA
\
]
=
=
N
=

< LS E[f(Zh) + %E[f(zl)] +

5)

(16)

a7

(18)

(19)

(20)

where the second inequality follows from Bernstein Condition and the third inequality follows from

Lemma
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The obtained inequality can be rewritten as

Ef(2)] < =g 2 m @1
1

m

<.

f: . 22)

i=1

Step Two: By the construction of G,., it can be varified that

IN

1 m

— ZEDWP[EzuDi [g(ZD])? <.
mi4 '

In details:

First, we have

m m

L —> EprBzip, [o(ZD) < — ZED ~p[Ezip,9(Z})]] = %ZE[g(Zi)P. (23)

21 zl =1

If V(f) < r, we have g = f. It follows that

m

— ZE Elg(Z:)]* = B[f(Z)* <V(f) <. (24)

IfV(f) > r,wehave g = rf/V(f). It follows that

<r. (25)

Combining the boundness of G, and Lemma |3| with probability at least 1 — 6,V > 0,Va > 0, we
have

p 3 ) - El)] <2000, s 3 ks 2

2rin(1/9) , (1 . ) bln(1/6)

m 3 m

Thus, we get

sup 5 [Elg(20)] - Bly(ZD)] £ 201+ B[R (6] + 2D 4 (14 1) PRC/D),

m

where R, (G,) = [supgegr Ly oig(Z)]

By “peeling” technique and similar following steps in the proof of Theorem [2] it follows with
probability at least 1 — §,Vd > 0

sup Ljn >3 [Bloz) - o(2)]

9EGr i—1 j—1

3 m

10(1 + @) " 2rIn(1/4) 1 1\ bln(1/6)
M) o, TR (1, 1) o0

where 7* is the fixed point of sub-root function ¥ (r).
Step Three: Then by Lemma [5] we have
(10(1 + a)> 5 " 4 (21n(1/5)>2iﬁ

v < (BK)727 2%
0 = B mn

N <1 1) 2BKbIn(1/6)

3 a) 2-B)mn -
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Let F be the loss function class. We consider the functional T'(f) := Pf? here. The structural
result on covering numbers implies that

log N (6, F, || - [|l2) < log N (e/ L, H, || - [|2) < dlogP(vL/e).

Lemma [6]implies that the sub-root function can be chosen as

dlog? (2ym1/?) N \/rdlogp (2ym1/2)

Y(r):=c

m m

In a similar way to [Lei et al.[(2016)), let 7, be its fixed point then we know that

. dlog? (2ym'/?) N \/r*dlog” (2ym1/2) 7
=c

m m

Solving this equality gives 7%, < cdm ™" logP (m).
In a similar way to the proof of Theorem 2} we have
1 1
K “ log?(m) Y 25" log(1/8)\ 2-#7
E[f(Z1)] € ——sr z} — — .6
S gy 22 L1 e (25 b (1220 26)
That is,

Lol -Lrlh') < =

Using the fact that
Lp(h) — Lp(h*) = Lp(h*) — Lp(h*) + Lp(h) — Lp(h*) < Lp(h) — Lp(h*),

we get
1 1
> . K > o log?(m) "\ 2=57 log(1/6)\ 2"
£r)-Lo() < 22 (£0) — Lo +er (2] by (08U
Combining with Theorem 2] we complete the proof. O

D PROOFS OF THE RESULTS WITH SUB-EXPONENTIAL LOSSES

D.1 LEARNING RATES FOR SUB-EXPONENTIAL LOSSES

We state our results on the convergnece rate of generalization error for sub-exponential losses. First,
m,n)
ij=1,1)

Si = {Zf }7—1 include i.i.d random variables at i-th client.

we consider the participating clients. Let S = { Zf }E be global data samples whose subsets

Theorem 6 (Participating error for sub-exponential losses). Suppose Zij take valued in a Banach
space (Z,|| - ||) and each || Z}|| is sub-exponential distributed. We denote by F = {Z — ((h,Z) :
h € H} such that, Vf € F andVz,2' € Z,|f(z) — f(Z')| < L||z — 2'||. Forany § > 0, if
mn > 1n(1/6) > In2, then with probability at least 1 — ¢, we have

21n(1/6)

sup |Lp(h) = Ls(h)] < 2E[Ronn(F)] + max 16eL[|Z} |||y, \| ——
heH i1€[m] mn

where R (F) = E [supfef e DN DU aff(Zf)}

Remark 9. Theorem [6] can be used to bound semi-empirical excess by applying standard uni-
formly supremum of h € M. It is worth emphasizing that the bounds derived in Theorem [0]
include Rademacher complexity term and ||| Z} |||y, measuring the tails of input data samples

{Zl-j }Eznjz)l 1) Intuitively, in regression problems, as the noise added to the lables increases, it is
expected that participating error increase as well. This phenomenon is ignored under the previous

bounded assumption on losses.
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Example 1 (Linear regression with unbounded loss). Let Z = (X, R), where X is a Hilbert-space

with norm || - ||g. We denote by (X;],Y;) each sub-exponential random variables in H and R
respectively. Let loss function £ be a 1-Lipschitz function (absolute function or Huber loss) and
F=A(z,y) = flz,y) = L({w,z) —y) : |lw||lg < L} Ifmn >1n(1/6) > In2, it follows with
probability at least 1 — §

e

1
Lp(h) — Ls(h)] < L|x} + y;! >1+61.
sggl p(h) — Ls( )I_m(gﬁ (12 ] irg[%ll\l i Il € n((;)

Theorem 7 (Participation gap with unbounded loss). Under the same conditons as Theorem [6land
Example [I| we have

8
sup [Lp(h) = Lp(h)] < —=
her vm
where X, is random vector with expectation across two-level distribution. This is, E[|| X1]|] =
Ep,~pPEx,~p, || X1]l. Similarly, E[[|Y1] = Ep,~pEy,~p,[IV1].

Remark 10. Combining the results of Theorem[6land Theorem[]} it can be shown that upper bound

of excess risk is of order O( \/;W + %) Though this bound is derived under the unbounded

assumption, its order is comparable with basic results derived in Theorem[I| Note that the upper
bounds in Theorem [7] include terms such as || X1 | and ||Y1|, whose underlying distributions are
across our two-level framework. This reflects that the participation gap captures the generalization
error caused by client sampling.

Lemma 7 (Theorem 3.1 in Maurer & Pontil| (2021)). Let f : X™ - Rand X = (X4,...,X,) be
a random vector whose elements are independent and take values in a space X. Then for anyt > 0

1
(Xl gy + Y, ) (1 + 3e ln(5)> ;

—t2
+ 2e maxi || f(X)ll,,

P{f(X)—E[f(X")] >t} <exp )

e}

12 ||, 1O,

PROOF OF THEOREM

Proof. We first define a vector space

B = {g:f—>R:sup|g(f)| Soo}.
fer

By definition, B is a normed space with norm ||g||s = sup ¢ = |g(f)|. For each Z! € Z, we define
Z1(£) by (mn)~ (£(Z]) — E[f(Z0))). Thus, E[Z]] = 0, and

S| = s LSS BN

i s € i

From Lemma [7} we have
Yy -El|loyz) | < xra-s|yy

i 7 7 % 7

B B

B

< max 8ev/mnl[| 2} |5l v/21n(1/5).

Observe that
o ) ) 1 ) )
218l = —— |sup |B [£(2]) — (27) 1 2| < —||lsw B [|£(2) - £(27)] 1 2]
mn\\fer L T ifer "
L ; ; 2L
< e[|z -z 14| <Zqzil,,
mn v omn Y1
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Therefore, we get max;e [, ||||Zl||3||7¢,1 < max;e () = 2L “NZHN] . and

2.2 4| B4
i g 5 i 5
By symmetrization, we have
E Z ZJ: Z| | <2, B [Run(F)] =2

B

PROOF OF EXAMPLE [

Proof.
Royn(F) =E |sup — oii f(Z
mnlF) v fefm”;; K
[ n
<E — w, 045X,
? |
[ n m
=K —w, ;X
7 HwHH<Lmn ;;
m
< —
_mnIc[;: ”22%)( | +E
i=1j

Next, using Jensen’s inequality we can see that

1> oy X|lu

i=1 j=1

=E
g
i=1 j=1

By the assumption that oy 1, ...

=E

n m )
1D o X] 1%

21n(1/6
< s 16612, 2L
1€m

E
S1,-e

E bup—ZZU”f (Z7)

Sm mn
fer =1 j=1

2 j j
e | SHu<Lm ;;UU ’LUX }/7,)
. . . -
] +IE‘ %;;UW |
. ) . -
] +I¢[:: n;;UUYzJ-
m
R ST
1=15=1
3 o 3
<|E 1> ou X1

i=1 j=1

,Om,n are independent, then we have

(m,n) (m,n) '
(|| ] - > opoulX) XD
=1 j=1 L (4,5)=(1,1) (s,k)=(1,1)

i (m,n)

=E| Y oyouX/XD|+E| Y of(X],X])
) (i.)=(1,1)
[ (mm)

=E| > on(xLx))| = 1X]E
_(i7j):(171) (4,5)

Thus, we have

n m .
1YY ou X/l | <

i=1 j=1

Similarly, we have

n m
VI
ENN SN oy,
g
i=1 j=1

ST 3
(4,9)
< DoFPR
(4,9)
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Therefore,

L , ,

Rinn(F) < o Z 1X711% + Z Y72
(4,4) (4,9)

Since X{,---, X" are independent and || - |2 < 2| - ||, , we get

2L

E [Rimn(H)] < X} v
[Romn(H)] < max WHH i llly + max FIIII [

PROOF OF THEOREM [7]

Proof. We first define a vector space
B=qg:F—R:suplg(f)|<o0,p.
feF

By definition, 3 is a normed space with norm ||g|[5 = supc# [g(f)|. Let f(D;) = Ez1.p, [f(Zh)]
and E[f(D;)] = Ep,~p[Ezip,[f(Z})]]. Foreach Z} € Z, we define Z: by (1/m)([f(D;)] —
E[f(D;)]). Thus, E[Z;] = 0, and

>

= sup |- S (F(D) —E[f(D;>]>|.
B [

feF
13 S Z-E|Y 2
B A i

< 8ev/ml|[| Zil|slly, /2 In(1/9).

From Lemma [7]} we have

> 37

%

B

Observe that
. 1
1 Zillslly, = — ||sup [E[f(D:) — f(D;) | DI|} < — |lsup E[|f(D;) — f(D;)| | D]
fer mi\fer
Y1 P1
1 / 1 /
< —|[E [sup [f(Di) = f(D)I | D||| < — ||sup |f(Ds) — f(D))]
m fer " mlifer "
P P
E | |sup |f(D:) — f(D))I| | <E l sup |f(Z:) — F(Z)I] | <E[IL1Zi— Z|I]-
feF feF
Therefore ||sup ;e 7 [ f(Ds) = f(D)I||, < 1L 1Z: = Z{|lll, and [[supsc# |f(D:) = F(DI,, <
IL11Z: = Z|lll,5, - Then we get || Zi]|5lly, < 201 Zilllls, , and
- A 21n(1/96)
‘ZZZ' - Zzl < 16eL ||| Zil[l 4, —

i B % B
By symmetrization, we have

7. < _—

;Zﬁ ol 2D1,-E,Dm Lsflelg mn Zo—@f H
<2 E sup — oif
Z17 ',Z.m (e |j€]-' zzl
8
<2, E [Rn(F)s< T (LA gy = YL, ) -
O
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E PROOFS OF SMALL-BALL BASED METHOD

Definition 10. Let H C Lo(D) be a closed and convex class of functions and H — H := {h — b’ :
h,h' € H}.

1. Let Qy(7) = infren P(|W(X})| > 7||hl|Ly(p)), where X} represent the random sample
at i-th participating client.

2. Let Qu(7, P) = infren P (|E[R(X})]| = 7||h||L,(p)). where X} represent the random
sample at i-th participating client.

Definition 11. We denote by BY* the Lo(D) unit ball entered at h*, that is By ={h € H:
|h — h*|| oDy < 1}. For everyn > 0, define
7 } < ns,}
where ag are Rademacher random variables.
Definition 12. We denote by Bs the Lo(P) unit ball entered at h*. For every n > 0, define

Z 0'1 S ns, }
where o; are Rademacher random variables.

i=1
Lemma 8 (Theorem 1 in (Zhang & Wei, 2022)). If {X;}!_, are independent centralized random
variables such that HXina < ooforalll <1 < nandsomel > a > 0, then for any weight vector

w = (wy,...,w,) € R, the following bounds holds true:

P IIZn:w'X»II>t < 2exp ol A s
=R S w? I1Xlly, - maxicisnwi [ Xl ) [

J=1

1 m n
mn(H,n) := inf E _ Th(X
Wmn(H,n) :=in {s>0 |: sup mn;;(r’h(

heHNsBy

sup
hEHNsBa

wWm (H,n) ;= inf {s >0:E

E.1 PROOF OF THEOREM [4]

Proof. Step One:

Loh) = £5(0) = - 33 [0 = ¥2)? - (R () = 7] &)

1 m n ; i j
:%ZZ(;L )2 (X7) +—ZZ§ (h— ") (X)), (28)

i=1j=1 i=1 j=1
The second term of the RHS of is determined by the underline semi-empirical distribution D
and the hypothesis space H, therefore we focus on the first term in the following.

For any h € H and v > 0,

{(i,5) : h(X]) > u}| = ZZWX]M

=1 j=1

Also,

m n

1 1
— > Mtz = ;E [Locxtyiz2u]

i=1 j=1
§ § 1 Xj § EXND |:IL h(X1H)>2

i=1j=1
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Let ¢, : R — [0, 1] be the function

0 t < u,
Pu(t) =4 L -1 uw<t<2u, (29)
1 t > 2u.

Note that for every ¢ € R, ¢, (t) > 19,1 and ¢y, (t) < Ly>y). Thus,

1 m n 1 m
mn Zzﬂ{mmfnm = EZE {1{\}1(&1)\2%}}
=1 j=1 =
m

+ *ZZ% Ih(X7)]) - —ZE [6u((R(XD)])]

i=1 j=1 i=1

> i )| >
> jnf P(h(X})] > 2u)

= sup | == 33" 6, (MK - = 3" Bxen, [Bu(AXD]|
=1

heH ==

Since function ¢, (t) is bounded by 1, using Mcdiarmid’s inequality, we get that, for every § > 0,
with probability at least 1 — 2 exp(—252),

sup [ =33 oK) = = Y [6uh(XH))]
i=1 j=1 i=1

heH

J

< E sup - ZZqSu (Jh(X Z [¢u(|h( )|)] +
mi4

heH Pt

f

By the Lipschitz property of ¢,,(]t|) and the symmetrization theorem, we have
m

E sup %ZZ@L B — = S E [su(h(XDD]| < B sup |- 373" on(x))

heH i=1j=1 i=1 heH i=1j=1

Therefore, for every h € H, it follows that with probability at least 1 — 2 exp(—252), we have

§
%221{|h(xj)l> y = inf P(Jh(X )\>2u)—7Esup mnzz ol h(X7) _\/7' (30)

heH ==

Step Two:

The first term on the RHS can be bounded by small ball condtion. Let H* = H — h*. We first prove
that H* is star-shaped around 0. For every h — h* € H* and 0 < A < 1, we have A(h — ﬁ*) =
Ah + (1 — A)h* — h*. Since H is convex, it follows that Ak + (1 — A\)h* € H. Then the claim
follows because A(h — h*) € H — h*.

Assume that these exsits 7 > 0 for which Q4+ (27) > 0. The for every s > w(H*, 7Q«~(27)/16),
we have

E . ZZO’J}LXJ SM&

« m 16
hE’H ﬂeB i=1 j=1

Let G be a function class associated with H*

h
Qz{s:heH*mng’L}cB;’l,
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where BJ" is the unit ball with respect with Lo (D) and D is the semi-empirical distribution.

L SN- iy S]] TQu-(27) _ 7Qg(27)
[ / IV = <
E sup ngZJZg(Xz) E sup - ZZ < 16 < T

9€9 Pt hGH*ﬂsB’” ==

where the last inequality follows from Qg (27) > Q= (27).

By equation applied to the function class G, it follows that with probability at least 1 —
2 exp(—242)

1 & 4 1 &2 . . )
_ _ _Fg _ J IV - ——
o Z§_:J§7:]l{|g(XJ)|>u} = inf P(lg(X DI > 2u) U]EZIGHQ) . ;:1 JEZlaig(Xi) T

>QG(2u)—éEsup—E g olg(X7)| - 0
- U geg |mn it vmn
47’Qg(27') §
> Qc(2u) — = - .
= Qa2u) = 3 =g Jmn
Now, setting
2
w1 b= Lngg(ﬂ

it follows that with probability at least 1 — 2 exp(—mnQg(27)/2)

1 & Qo(21) _ Qg(27) _ Qg(27)
o 22 2 Ljgxtyzny = Qa(27) = g4 - g2 - g4 '

i=1 j=1

Using the condition Qg (27) > Q= (27), for every s > w(H*, 7Qx~(27)/16), it follows that with
probability at least 1 — 2 exp(—mnQy~(27)/2), we get

m n

2 «(2
0 {(6:7) 9O > T = 30 0y 2 RO QBT
i=1 j=1

For every h — h* € H* that satisfies [1h — h* |l o(p) > s, since H — h* is star-shaped around 0, we
have (s/||h - E*||L2(D)) (h—h*) € H* (1 sBY. Thus, (h — *)/|lh — h*|| 1.y € G.

Combining equation (31)), if s > w(H*, 7Q-(27)/16), then for every h € H that satisfies ||h —
h*[|L,(py > s, if follows that with probability at least 1 — 2 exp(—mnQy~(27)/2), one has

. SN ~ mnQy- (27)
() 1 =B XD > b =By} = T
Therefore, on that event, we get
1 m n
— (h— h* X] L Q- (27)||h— h* 32
i 2 2= ) > T Qw@n)llh - 12, o) ()

Note that H* C H — H, the same conclusion holds with Q _# (27) replacing the larger Q. That
is, if s > w(H*, 7Q3_#(27)/16), then for every h € H that satisfies [|h—h*||,py > s, if follows
that with probability at least 1 — 2 exp(—anH_H(%') /2), one has

1 - *
ZZ h—1*)2(X7) > —QH 1@ =113, p)-

mn
=1 j=1

Step Three:

Combining equation (2), with the same conditions we get

=R 9 m n ] = . 2 =N
Ls(h) = Ls(h) 2 =SS el (h =W)X + L Quon2)h =) (33

i=1j=1
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Since L 3" E [¢ [ (h— E*)(Xil)] > 0, then we have

%Zzgh W Xl] ZngZSJh h i _7ZEX~D{ h_ﬁ*)(X) .

=1 j=1 =1 j=1

According to Lemma[7] we have

P ZZfJ (h—1*)(X7) ——ZEXND [ hfﬁ*)(X)} > nllh = B3,y

=1 5=1
< exp c177(2)(mn)||h—h*||‘i D) . cans (mn)®||h — h*||L (D)
- o TS 9
mn Zz 127 1 ’ max(lvl)g(ivj)f(ma") ij b

where ‘ R ‘ ‘ R ‘
=&l (h—)(X]) E [&l(h = B)(x)] -
We denote C1, C5 by
L 2|V MAX(1,1)< (i,5) < (m,n)

C] — wa , 02 — wa .
Cc1 C2

TYel
J

Then we have

P ZZ@ (h—h*) (X)) ——ZEXND [ h—ﬁ*)(X)} > nllh = h°(13, )

11]1

mn)||h — h* h—h*
SQCXP{_(( )”01 Iy *0mm >02 ||L2D)>}_

To make sure that the probability tends to zero as mn increase, we could chose ||h — n* 22Dy =
K = (mn)~it, where 0 < ¢ < 1.

Then with probability at least

2 4 I 70‘(1;4”
5:1—2exp{—<n(gm) /\77(77””2 )},
1 2

LSS - B(XD) — -3 B, [6h - BYX)] | < alh - ) GY
i=1

we have

mn =1 j=1
Combining (2) and , if ||h — E*H Lo(D) = max(k, s), it follows that with probability at least
1—0—2exp(—mnQy-(27)/2),

L) = £5(07) 2 1= T, oy (T Qnon(2) — 10)
Consider < 72Q_#(27)/16, we get
Ls(h) — Ls(h*) 20
On the same event, we have

HE — E*HLQ(D) < max(k,s) = max((mn)_%+ﬂw(7-l — H,7Qu—(27)/16)).
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PROOF OF COROLLARY[I]

Proof. Lets = w(H —H,7Qp_#(27)/16) and & = (mn) "3, where 0 < 1 < % 7- By theoreml
we have
1B = 3l gy < max(, s).

Therefore, it suffices to show that for quadratic loss we have

Lolh) — £o(h) = = 3" S B[ — 1) = (b (x7) = V7] 3)

i=1 j=1
1 v I ’ 2 K& j ~, g
:%;;E[(hfh)2(Xi)]+%;;ﬁ2[§i(h—h)(Xi)], (36)

Note that for h € H either

Lo(h) — Lp(h*) gm—gz; [h ) )],
or
~ 4 2 ) ~ )
Lo(h) = L) < — 3" S B[ (h—h)(x])] -
i=1 j=1
For the first case, we have
£D( ) — ﬁD(h*) <2\|h h*||L <2max(/{2 s2).

For the second case,

NE
NE

Ls(h) = Ls(h*) = ((n(x]) = Y72 = (e (x)) - 7]

«
Il
-

<.
Il
-

(h—T)? %ZZfi(h%*><X§>

E [¢f (h— ) (x)]

«
Il
-

<.
Il
—

NE
NIE

v

I
e 2l g
2 Bl
NE

©
Il
—

<.
Il
—

n

€ (h — ") f—ZZE{éh ) xh] .

1j=1 =1 j=1

S‘M
Ms

n

<.
I

For convex function class #, we have E[¢ (h —h) (X 7)] > 0. On the same condition that inequality
(34) holds, we get

Ls(h) ~ Ls(i*) > - S S E[e (h - F)(x7)]

i=1 j=1

. 2
ngZgh n*)(X?) m—

nMs

Z": [gjh ) xd)

i=1 j=1
> Hep(h - £p(ir)) — T G
> Lo — o) - T i )
Since Ls(h) — Ls(h*) < 0, it follows that
T2 Qy—1(27) 2

(Lp(h) — Lp(h*)) <

1 max(k?, s%).
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E.2 PROOF OF THEOREM[3

Proof. For quadratic loss, we have

Lo ~ Lo(') = - S E[(h(X)) - Y1) = (B (X)) - ¥

; (37)
m 1=1
1 = Tk s Tk
= > El(h—h")* (XD + > E[g (h—h")(X))], (38)
i=1 i=1
Step One:
For any h € H and u > 0,
[{i ¢ [E[R(X))]| > u}| = Z]l{m[h(x,-l)]lzu}
1=1
Also,
1 m
o Z; Lenaeize = B, {M\E[h(xt-l)uzzu}}
1 m
+ Z} Lemecnze = LB, []l{m[h(X}mzzu}
Let ¢, : R — [0, 1] be the function
0 t <wu,
Pu(t) =4 L -1 u<t<2u, (39)
1 t > 2u.

Note that for every ¢t € R, ¢, (t) > 1{;>24) and ¢y (t) < 1gy>,3. Thus,

~

1 m
oy 2_; Lemecnze 2 JE {ﬂ{wh(X;)szu}]

S GBI — B | [pu(ERCC])]
> inf P(E[R(X)]| > 20)

= Gu(BIRCXDI) - E [%(IE[h(X})]I)]‘ -

— sup
heH

Since function ¢, (¢) is bounded by 1, using Mcdiarmid’s inequality, we get that, for every 6 > 0,
with probability at least 1 — 2 exp(—252),

RS 1 1
sup e D u(EBCXDI) - LB , [6.(E(X: )]I)]‘
RS 1 1 §
<Esup |03 ou(ERXDID - B [ouERCDID]| + 2
By the Lipschitz property of ¢,,(|t|) and the symmetrization theorem, we have
1 w— L L 4 I~ v
Bsup D u(EBCEID - LB, [6.(BRCEDD]| < JEsup |03 S oin(x) .

where X; is the random sampled across two-level distribution framework.

Therefore, for every h € H, it follows that with probability at least 1 — 2 exp(—252), we have
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m

1
— 1 N>, > inf P(|E > 2u) — fE
m; {|E[A(XD)]|>u} _}igﬂ (JE[R(X )]| u) w 21612

(40)

WS

The first term on the RHS can be bounded by small ball condtion. Let H* = H — h*, we have
proved that 7{* is star-shaped around 0.

5“’“

Assume that these exsits 7 > 0 for which Qu«(27,P) > 0. Then for every s >
Wi (H*, TQy~ (27, P)/16), we have

L TQu (2. P)
- 16 '

Y ax

Let G be a function class associated with H*

E sup
heH*NsBy,

h
G = {S:he’H,*ﬁsBm} C By,
where B,,, is the unit ball with respect with Lo(P) and P is the population distribution.

Zozg < TQ'H* (2T7 P) < TQQ(Z]—? P)7

16 - 16
where the last inequality follows from Qg (27, P) > Q#~ (27, P). By applylng inequality (40) to
the function class G, it follows that with probability at least 1 — 2 exp(—242)

m

1 h(X;
L h

m
=1

Esup |—
9€g

sup
h€7—l* NsBm

4 1 0
— 1 1 u>1anP’E > 2u) — —Esup |— 0i9(X;)| — —.
;}UEXHP} (ELG(XD]| > 20) - ﬁng; ()| - 7=
1)
> Qg(2u, P) — fIEsup o:9(X —
o ) 9€g Z \/7
471Qg (27, P 1)
> Qg(2u, P) — *% - ﬁ
Now, setting »
Vi 2
u=7 0= 7ng2( ik )’

it follows that with probability at least 1 — 2 exp(—mQg (27, P)/2)

RS Qg(271,P) Qg(2m,P)  Qg(27,P)
= gz > Qo2 P) — 50 — S = e

=1

Using the condition Qg (27, P) > Q+ (27, P), forevery s > wy, (H*, 7Q«~ (27, P)/16), it follows
that with probability at least 1 — 2 exp(—mQ-~ (27, P)/2), we get

ng(2Ta P) > mQH* (27—7 P)
4 - 4 '

inf [{i+ [Elg(X)]| > 7H = > Tggeryeenizn = @1
i=1

For every h — h* € H* that satisfies ||h — h*||,(p)y > s, since H — h* is star-shaped around 0, we

have (s/[|h — h*||1,(py) (h — h*) € H* N sBp,. Thus, (h — h*)/|[h — h*|| 1Py € G.

Combining equation (@1)), if s > w,,,(H*, 7Q3- (27, P)/16), then for every h € H that satisfies

| — h*||L,(py > s, if follows that with probability at least 1 — 2 exp(—mQ%- (27, P)/2), one has

. * * mQH* (27—7 P)
i [EB[(h = A)(XD] > 7llh = ey} 2 =
Therefore, on that event, we get
2
* * T *
—}ﬁEh ) >—§nEh ) 2 T Que 27, Pl — B2,y (42)
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Note that H* C H — H, the same conclusion holds with Q3 (27, P) replacing the larger
Q- (27, P). That is, if s > wn(H*, 7Qu_w (27, P)/16), then for every h € H that satisfies
| — h*|| L,y > s, if follows that with probability at least 1 — 2 exp(—mQ (27, P)/2), one
has

1 — . 2 .
- Y E[(h—h) (X)) > 5 Q@ P)Ih =71, )
With the same conditions we get

2
Lp(h) — Lp(hY) >—ZlE (h — h* )(Xil)]+TZQH,H(QﬂP)Hh—h*||2L2(P). (43)

Since Ep,~pE(x1 y1)~p, [& (B —h*)(X})] > 0, then we have

_ * 1 l - 1 p* 1
Z(Xl B [EG-mED 2 05 B 60— O0)
—Ep,~pPE(x, vi)~p, [§i (h = h)(X)] .

According to Lemma[7] we have

'

an®*m|h — h* con*m®||h — h*
§2exp{—< wad| ||L2(P A 27 | ||L2 P))}7

m

1
—> b, (& (h = h*)(X])] = Ep,~PE(x, v~ [€(h — h*)(X5)]
=1 i

> nllh — h*||2L2(P)>

=D HVi”wa maxi <i<m ||VZ||%
where
V= (X1, XE)~D (& (h = ) (X])] = Ep,~PE(x, vi)~p, [§(h = h*)(X3)]-

We denote C, C by

w S Vil maxi<i<m [ Vill3
Cy = m 2171 ” Hwa’ Cy = 1<i< H ||¢a'
C1 C2
Then we have
1« 1 * 1 * *|2
P ( EZ(XI E)ND & (h = h*)(X])] = EpinpEx, viy~n, (R = h*)(X)]| > nllh —h ||L2(P)>

n m”h*h*”iz(p) nm*||h — h*|L2(p)
< 2exp — c A .

To make sure that the probability tends to zero as m increase, we could chose ||h —h*|| 1, (p)y > K =
m~ it where 0 < 1 < %.

If [[h — h*||p,py > max(k,s), it follows that with probability at least 1 — d,, —
2exp(—mQy- (27, P)/2),

2
£o(0) = Lo(h) 2 10~ 11,y ( T Quon(2r, P) = 40).

o a(1/2+420)

cin?m? can e )} Consider < 72Qu -3 (27, P)/16, we

A
= Villy, T maxicicm Vi,

Lp(h) — Lp(h*) > 0.

where d,,, = exp{—(
get

On the same event, we have
1h = h*[|Ly(py < max(x, 5) = max(m ™5+, wy (H — H, 7Qa—2(27)/16)). (44)
O
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PROOF OF COROLLARY [2]

Proof. Since excess risk is defined across our two-level framework, the steps in the proof of Corol-
lary [I] can not be applied directly to derive Corollary 2} The key step to derive Corollary [2] is to

bound |1 — h* ||2L2( p)- First, this term can be decomposed as
1 =112, py < 2lh = R*|IZ,py + 200" = B7|1L,p).

Note that ||h* — h* 17, (p) has been bounded by Theorem To bound |[7 — h* 17, (p): We use the
following decomposition:

Ih = k¥, py = I = B Z, 0y = b= h* L0y + B = h* |1, -

Note that ||ﬁ — B H%Q( py has been bounded by TheoremEI

m

1

According to Lemma[7] we have
— E _[(h=0")2(X0)| — Ep,urEx,yp, |(h—B)3(X0)]
o> B [0 B 0] B pEce e, [(h - A7)

]P (
=1

c th_ﬁ*4 con®me h—/h\* 2c
< 2exp{—< e m| ||L2(P) A 21 | ||L2(1D)>}7

> n||h — h*||%2(P)>

i HVZ'H?pa maxi <i<m || Villy,
where ~ A

We denote C1, Cs by

2
m iz [Villis,
)

maxj<;<m HVZHza

Cl =T =
C1 C2
Then we have
P lz E {(h*E*F(Xi) —Ep,~PE(x, v))~D; {(h*?ﬁ)z(Xi)} > nlh = h*[13,p
mi (Xi,Y3)~D; ‘ o ‘ o 2(P)

2 Tx||4 (2
n“m|lh —h n“m®||h — h*||5¢
§2exp{—< | - I, P A | - IT5p) _

To make sure that the probability tends to zero as m increase, we could chose [|h — h*||z,p) >
m~it, where 0 < 1 < %.

By following the similar steps of proof of Theorem 3] it can be proved that with probability at least

a(1440)
1—expq— Cln2m4b N Canm_ >
b)
LS i, maxicicm Vi,

one has ~ o ~
[h =R (7, py — 1B =R I7, 0y < nllh = R¥(L,(py-
Thus,
N T 1 0 T
[h = |7, k) < m”h—h 17, (-
Moreover,

~ % 2 -~ Tx Tx *
[ = ﬂllh = P|[T,py + 200" = h* )12, -
If & = h*(X;) — Y; is independent of X, then E[¢;(h — h*)(X;)] = 0.
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Lo(h) — Lp(h') = = SR [(h(X:) — ¥ - (0" (X:) - ¥i)?] 45)
=1
e i 2] 4 2SR e o X
= E (=Y x)]+ = >E [6:(h ) (X0)] 46)
_ 1 Ui T\ 2 X
= a;E [(hf ) (XZ)] . @7)
Thus,
Lo(h) ~ Lp(h) = = S E[(h—~ B")A(X,) (48)
=1
= [h = h"[|Z,cp) (49)
2 T Tk Tk *
< 7ot = Wllkao) + 2007 = AL o) (50)

Combining inequality (50) with Theorem [ and Theorem [5] we complete the proof.

F EXPERIMENTAL RESULTS

F.1 CONVOLUTIONAL NEURAL NETWORKS FOR EMNIST TASK

To check the validity of our theory for over-parameterized models, we train convolutional neural
network for EMINIST task (Cohen et al.,[2017). In particular, we use FedAdam (Reddi et al.| [2020)
with server momentum = 0.9. The participating and unparticipating clients are split based on the
methods proposed in (Yuan et al.,2021)). We set the unparticipating rate as 0.2. Our experiments are
based on Tensorflow Federated (TFF) (Alex & Krzys, |2019).

MNIST MNIST
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0.99  oxmmmmem =TT e
0.20
 0.15 o 0.98
w %)
o IS
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0.05 0.96
0.00 0.95
1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0
log (#participating clients) log (#participating clients)
—e— participating training participating validation W unparticipating

Figure 2: Generalization error versus the number of participating clients.

In Figure 2} we show how generalization errors for unparticipating clients and participating clients
convergence when we increase the number of participating clients m. Here we fix n = 100. It can be
seen that the convergence rate of participating error is slower than that of unparticipating error. This
phenomenon matches our theretical results in Theorem[T|well. In our results, the convergence rate of
unparticipating error is of order O(ﬁ + ﬁ) Compared to the convergence rate of participating

1

error, which is of order O( o

), unparticipating error is expected to have faster convergence rate.

In Figure[3] we show how generalization errors for unparticipating clients and unparticipating clients
convergence when we increase n. Here we fix m = 20. It can be seen that the convergence rates
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Figure 3: Generalization error versus the number of samples per participating client.

of participating error and unparticipating error are similar. This phenomenon matches our theretical
results in theorem 1 as well. When m is fixed, the order of O(—— + ﬁ) is same as the order of

().

F.2 FEDERATED LINEAR REGRESSION WITH SYNTHETIC DATA

In Figure [d] we show the numerical experiments results based on the linear regression model. We
first describe our linear regression setting as follows. For client ¢ € [m], the dataset is given as

S = {Xf , Yij } with n samples. Let d be the dimensionality of the input space. We focus on the
setting:

Yz’j \Xj,@NN(XfTHZ—,a?), Vi=1,...,n,

where o7 is a noise parameter. In our experiments, we set o; = 0.05. For excess risk, we fix n = 20.
For semi-excess risk we fix m = 40.

Excess risk Semi-excess risk
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Figure 4: Excess risk versus m and Semi-excess risk versus n.
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