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Abstract

Transformer-based pre-trained models have001
demonstrated superior performance on various002
natural language processing tasks. However,003
it remains unclear how the skills required to004
handle these tasks distribute among model pa-005
rameters. In this paper, we surprisingly find006
that after prompt tuning for specific tasks, the007
activations of some neurons within pre-trained008
Transformers are highly predictive of the task009
labels. We dub these neurons skill neurons and010
confirm they encode task-specific skills by find-011
ing that: (1) Skill neurons are crucial for han-012
dling tasks. Performances of pre-trained Trans-013
formers on a task significantly drop when corre-014
sponding skill neurons are perturbed. (2) Skill015
neurons are task-specific. Similar tasks tend016
to have similar distributions of skill neurons.017
Furthermore, we demonstrate the skill neurons018
are most likely generated in pre-training rather019
than fine-tuning by showing that the skill neu-020
rons found with prompt tuning are also crucial021
for other fine-tuning methods freezing neuron022
weights, such as the adapter-based tuning and023
BitFit. We also explore the applications of skill024
neurons, including accelerating Transformers025
with network pruning and building better trans-026
ferability indicators. These findings may pro-027
mote further research on understanding Trans-028
formers. The source code will be released.029

1 Introduction030

Pre-trained language models (PLMs), mostly based031

on Transformer architecture (Vaswani et al., 2017),032

have achieved remarkable performance on broad033

and diverse natural language processing (NLP)034

tasks (Han et al., 2021). However, it remains un-035

clear how the skills required to handle these tasks036

distribute among model parameters. Are there037

specific neurons within pre-trained Transformers038

encoding these skills? Progress on this problem039

may help to understand the working mechanisms040

of pre-trained Transformers (Zeiler and Fergus,041

2014; Karpathy et al., 2015; Bau et al., 2020; Suau042
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Figure 1: Histogram of activation of a neuron within
RoBERTaBASE on positive-label (blue) and negative-
label (orange) sentences in SST-2 validation set.

et al., 2020), intervene model behaviors (Bau et al., 043

2018; Mitchell et al., 2021), and improve model 044

efficiency (Dalvi et al., 2020; Zhang et al., 2021). 045

Prompt tuning (Li and Liang, 2021; Lester et al., 046

2021) prepends some trainable embeddings, i.e., 047

soft prompts, into the inputs and adapts PLMs to 048

handle tasks by only tuning the soft prompts while 049

freezing all the PLM parameters. It has attracted 050

wide attention recently as a promising parameter- 051

efficient fine-tuning methods (Su et al., 2021; Liu 052

et al., 2022). In this paper, we surprisingly find that 053

after prompt tuning for a task, the activations on 054

soft prompts of some neurons within pre-trained 055

Transformers are highly predictive for the task. 056

For instance, Figure 1 shows the activation distribu- 057

tion of a specific neuron within RoBERTaBASE (Liu 058

et al., 2019b). This neuron’s activation is highly 059

predictive of the labels of SST-2 (Socher et al., 060

2013), an established sentiment analysis dataset. 061

When the input sentences express positive senti- 062

ments, the activations on soft prompts of this neu- 063

ron tend to be much higher than when they express 064

negative sentiments. It suggests that this neuron 065

may encode the skill of distinguishing sentiments. 066

We dub these special neurons skill neurons and 067

develop a simple and effective method to find them 068
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for classification tasks via prompt tuning. For a069

binary classification task, we first calculate the em-070

pirical mean activation on a soft prompt token over071

the training set for each neuron and use it as this072

neuron’s baseline activation. If this neuron’s activa-073

tion for an input sample is higher than the baseline,074

we regard it as predicting one label and vice versa.075

We aggregate the prediction accuracies on the vali-076

dation set of multiple soft prompts as the neuron’s077

predictivity score. The neurons with the highest078

predictivity scores are identified as skill neurons.079

For multi-class classification tasks, we decompose080

them into multiple binary classification subtasks081

and aggregate the skill neurons of subtasks as the082

skill neurons of the multi-class task.083

We confirm the skill neurons surely encode task-084

specific skills with a series of experimental find-085

ings: (1) Skill neurons generally and stably emerge.086

For all the 7 investigated tasks and 5 random trials,087

we can consistently find skill neurons with high pre-088

dictivities close to prompt tuning. (2) Skill neurons089

are crucial for handling tasks. When we perturb090

skill neurons by adding random noises to their acti-091

vations, the performances on corresponding tasks092

drop much more significantly than when random093

neurons are perturbed. (3) Skill neurons are task-094

specific. Similar tasks exhibit similar predictivity095

rankings of skill neurons, and skill neurons of same-096

type tasks are more important for handling a task097

than those of different-type tasks. (4) Skill neurons098

are not from shallow word selectivity. The skill099

neurons typically do not selectively activate on key-100

words relating to the task, and their predictivities101

are not significantly influenced by the label words102

used in prompt tuning.103

After showing that skill neurons surely encode104

skills, we further demonstrate that skill neurons105

are most likely generated in pre-training rather106

than manufactured by the fine-tuning process of107

prompt tuning. This is concluded from: (1) Even108

for randomly generated prompts and untuned hard109

prompts, the skill neurons still exhibit much better110

predictivity performance than random guesses. (2)111

Skill neurons are also crucial for other fine-tuning112

methods freezing neuron weights. Performance of113

models trained with adapter-based tuning (Houlsby114

et al., 2019) and BitFit (Ben-Zaken et al., 2022)115

significantly drops when the skill neurons found116

with prompt tuning are perturbed.117

Moreover, we explore the practical applications118

of skill neurons. First, we apply skill neurons to119

network pruning (Anwar et al., 2017; Dalvi et al., 120

2020), which aims at removing redundant param- 121

eters to reduce memory cost and accelerate infer- 122

ence. Experiments show that by only keeping top 123

skill neurons active, we can reduce the pre-trained 124

Transformer to 66.6% of its original parameters 125

and achieve about 1.4 inference speedup. Then 126

we explore to build better prompt transferability 127

indicators following Su et al. (2021). We improve 128

their overlapping rate of activated neurons metric 129

by only taking skill neurons into account, and this 130

achieves significantly better performance. 131

To summarize, our contributions are four-fold: 132

(1) We observe the existence of skill neurons, the 133

special neurons within pre-trained Transformers 134

which are highly predictive for specific tasks, and 135

develop a method to find them via prompt tuning. 136

(2) We empirically confirm that skill neurons do 137

encode the skills required to handle tasks. (3) We 138

show skill neurons are generated in pre-training 139

rather than fine-tuning. (4) We preliminarily ex- 140

plore the applications of skill neurons. We hope 141

these findings could facilitate future research on 142

understanding the mechanism of PLMs. 143

2 Preliminary 144

We introduce prompt tuning (§ 2.1), the definition 145

of investigated neurons (§ 2.2), and the investiga- 146

tion setup (§ 2.3) in this section. 147

2.1 Prompt Tuning 148

Prompt tuning (PT), or soft prompting, is a recently- 149

developed parameter-efficient fine-tuning method, 150

which has attracted wide attention with its capa- 151

bility to effectively adapt PLMs to downstream 152

tasks (Li and Liang, 2021; Lester et al., 2021) and 153

query inner knowledge of PLMs (Qin and Eisner, 154

2021; Zhong et al., 2021). PT prepends some soft 155

prompts into the input sequences to prompt the 156

PLM to decode the desired label words of the train- 157

ing task in the same way as the pre-training objec- 158

tive. For each task, a verbalizer function (Schick 159

and Schütze, 2021) is used to map the specific label 160

words to the labels of the task. Each soft prompt 161

is a virtual token, which is essentially a trainable 162

embedding. During prompt tuning, only the param- 163

eters in soft prompts are tuned, and all the PLM’s 164

original parameters are frozen. 165

Formally, given an input sequence with n to- 166

kens X = 〈w1, w2, . . . , wn〉, prompt tuning 167

prepends l randomly initialized soft prompts P = 168

2



{p1,p2, . . . ,pl} before them, where pi ∈ Rd and169

d is the input dimension of the PLM. Taking the170

PLMs pre-trained with the masked language model-171

ing objective (Devlin et al., 2019) as an example, a172

special [MASK] token is prepended and the prompt173

tuning objective is to maximize the likelihood of174

filling desired label word y into it:175

L = p(y|[MASK], P, w1, . . . , wn). (1)176

Some initial prompt tuning works (Qin and Eis-177

ner, 2021; Zhong et al., 2021) regard soft prompts178

as the relaxation of natural language hard prompts,179

which are initially designed to query inner factual180

knowledge of PLMs (Petroni et al., 2019; Jiang181

et al., 2020). Su et al. (2021) hypothesize that soft182

prompts work by stimulating PLMs’ inner abilities.183

Inspired by these, we observe the inner activations184

of PLMs and surprisingly find skill neurons.185

2.2 Neurons in Transformers186

Transformer (Vaswani et al., 2017) is the state-of-187

the-art NLP model architecture, which is used by188

the majority of PLMs (Devlin et al., 2019; Liu et al.,189

2019b; Brown et al., 2020; Raffel et al., 2020). A190

pre-trained Transformer model is typically stacked191

with multiple identical Transformer layers. Each192

Transformer layer consists of a self-attention mod-193

ule and a feed-forward network (FFN), among194

which the FFN carries two-thirds of the param-195

eters. Previous work has highlighted the impor-196

tance of FFN (Press et al., 2020; Dong et al., 2021)197

and found FFN encodes rich information (Suau198

et al., 2020; Geva et al., 2021; Dai et al., 2021).199

Inspired by these, we study the neurons and activa-200

tions within FFN.201

Formally, the FFN in a Transformer layer is:202

FFN(x) = f(xK> + b1)V + b2, (2)203

where x ∈ Rd is the hidden embedding of a token,204

f(·) is the activation function, K,V ∈ Rdm×d are205

trainable matrices, and b1,b2 are biases.206

For simplicity, let a = f(xK> + b1) ∈ Rdm .207

We regard ai, the i-th element of a, as the activation208

of the i-th neuron on input x. It represents the209

importance of Ki and Vi, the i-th column vectors210

of K and V, respectively. Hence we define Ki and211

Vi as the weights of the i-th neuron in this layer.212

Although they study essentially the same param-213

eters as us, Dai et al. (2021) and Zhang et al. (2021)214

use the term neuron to denote activations in our def-215

inition. Some other works (Dalvi et al., 2019; Dur-216

rani et al., 2020; Hennigen et al., 2020; Antverg217

and Belinkov, 2022) define a dimension in con- 218

textualized representations as a neuron. Since we 219

study how the skills distribute among model param- 220

eters rather than input-dependent representations, 221

we study the neurons defined in this section. 222

2.3 Investigation Setup 223

To comprehensively investigate the skill neuron 224

phenomenon, we use RoBERTaBASE (Liu et al., 225

2019b), a widely-used Transformer model pre- 226

trained with the masked language modeling ob- 227

jective (Devlin et al., 2019), and conduct experi- 228

ments on 7 tasks of 3 types, including: (1) Senti- 229

ment Analysis, including SST-2 (Socher et al., 230

2013), IMDB (Maas et al., 2011), and TweetE- 231

val (Tweet) (Barbieri et al., 2020); (2) Natural 232

Language Inference, including MNLI (Williams 233

et al., 2018) and QNLI (Wang et al., 2019); (3) 234

Topic Classification, including AG News and 235

DBpedia (Zhang et al., 2015). Details about 236

the tasks and prompt tuning implementations are 237

shown in appendices A and B, respectively. 238

3 Finding Skill Neurons 239

Given a pre-trained TransformerM, we use a sim- 240

ple and effective method to find skill neurons for 241

various classification tasks. 242

3.1 Binary Classification Task 243

We first introduce how to find skill neurons 244

for binary classification tasks. Let T be a bi- 245

nary classification task and its dataset be D = 246

{(x1, y1) , (x2, y2) , . . . ,
(
x|D|, y|D|

)
}, which is di- 247

vided into training set Dtrain, development set 248

Ddev, and test set Dtest. The i-th sample (xi, yi) 249

contains an input xi and its label yi ∈ {0, 1}. 250

For a specific neuronN withinM, let a(N , t, x) 251

be the activation of it on token t given the in- 252

put sentence x. We firstly do prompt tuning on 253

M with Dtrain and get a group of l soft prompts 254

P = {p1,p2, . . . ,pl}. Given a soft prompt pi, we 255

calculate the baseline activation of N on pi over 256

the training set as follows: 257

ā(N ,pi) =
1

|Dtrain|
∑

xj ,yj∈Dtrain

a(N ,pi, xj). (3) 258

Intuitively, we can regard that the neuron N pre- 259

dicts positive label 1 for the input sentence x when 260

a(N ,pi, x) > ā(N ,pi). Hence the prediction ac- 261

curacy over the development set is as follows: 262
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Figure 2: Distribution of activations of two neurons on a
soft prompt for samples in MNLI validation set. Dashed
lines indicate baseline activations of the two neurons.

Acc(N ,pi) =

∑
xj ,yj∈Ddev

1[1[a(N ,pi,xj)>ā(N ,pi)]=yj ]

|Ddev|
,

(4)263

where 1[condition] ∈ {0, 1} is the indicator function264

evaluating to 1 iff the condition holds.265

The above way only considers the positive corre-266

lations between the labels and neuronal activations,267

which is also the case of previous work (Geva et al.,268

2021; Dai et al., 2021). However, strong negative269

correlations also suggest that the skills are encoded270

in this neuron, just like the inhibitory neurons in271

brains also contribute to certain functions (Rudy272

et al., 2011). Hence we define the predictivity of273

N on soft prompt token pi as:274

Pred(N ,pi) = max(Acc(N ,pi), 1−Acc(N ,pi)). (5)275

For each group of soft prompts P , the predictiv-276

ity of N on it is defined as the predictivity on the277

best soft prompt token. Considering the skill neu-278

rons shall be consistently predictive, we conduct279

5 random trials of prompt tuning and get 5 groups280

of prompts: P = {P1, P2, . . . , P5}. The overall281

predictivity of neuron N is defined as:282

Pred(N ) =
1

|P|
∑
Pi∈P

maxpj∈Pi(Pred(N ,pj)). (6)283

Then we sort all the neurons within modelM by284

the descending order of their predictivities and use285

the top neurons as the skill neurons in experiments.286

3.2 Multi-class Classification Task287

To find skill neurons for a multi-class classifica-288

tion task, we first decompose it into multiple bi-289

nary classification subtasks. Then we find skill290

Task Prompt
Tuning

Skill
Neuron

SST-2 91.8±0.5 91.6±0.3

IMDB 91.6±0.5 92.0±0.3

Tweet 70.0±0.2 56.0±3.2

MNLI 76.8±1.8 74.7±2.5

QNLI 85.7±0.7 86.0±0.4

AG News 98.8±0.1 98.9±0.1

DBpedia 99.7±0.1 99.8±0.1

Table 1: Accuracies (%) on various tasks of prompt
tuning and skill neurons, along with standard deviations
over 5 random trials. For the binary classification tasks,
the skill neuron performance is the predictivity of the
top-1 skill neuron. For multi-class classification tasks,
the skill neuron performance is obtained by training a
logistic regression model taking only the activations of
the top-1 neurons of decomposed subtasks as inputs.

neurons by ranking the neurons with their predic- 291

tivities of the decomposed subtasks in a similar 292

way as introduced in § 3.1 but use the soft prompts 293

of the original task instead of subtasks. Skill neu- 294

rons of the multi-class classification task consist 295

of equal numbers of subtask skill neurons. For in- 296

stance, MNLI (Williams et al., 2018) task requires 297

to classify the relationships between sentence pairs 298

into ENTAILMENT, NEUTRAL and CONTRADIC- 299

TION. We decompose it into two subtasks: the 300

first one is to classify ENTAILMENT and CONTRA- 301

DICTION samples, and the second one is to clas- 302

sify NEUTRAL and NON-NEUTRAL samples. If 303

we need top-100 skill neurons of MNLI, we will 304

retrieve top-50 unique skill neurons for the two 305

subtasks, respectively. Figure 2 shows the acti- 306

vation distribution of the two top skill neurons 307

within RoBERTaBASE of the two subtasks, respec- 308

tively. The samples of three labels form three distin- 309

guishable clusters, which suggests the effectiveness 310

of this skill-neuron-finding method. More details 311

about how we decompose the investigated tasks are 312

shown in appendix A. 313

4 Do Skill Neurons Encode Skills? 314

We explore whether skill neurons really encode 315

task-specific skills with a series of experiments. 316

4.1 Skill Neurons Generally and Stably 317

Emerge 318

We first confirm that the skill neuron phenomenon 319

is general and stable for various NLP tasks. 320

Generality. To explore whether we can gener- 321

ally find highly-predictive skill neurons for various 322
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Figure 3: Histogram of neuron’s predictvity for IMDB.
Error bars indicate ±1 s.e.m. over 5 random trials.

tasks, we apply the skill-neuron-finding method in323

§ 3 to 7 NLP tasks introduced in § 2.3. The perfor-324

mances of the top-predictivity found skill neurons325

and prompt tuning are shown in Table 1. For all the326

tasks, we can find single skill neurons achieving327

comparable performance to prompt tuning, which328

demonstrates specific skill neurons generally exist329

in pre-trained Transformers for various tasks.330

Stability. To rule out the possibility that the skill331

neurons are just from randomness and confirm the332

stability of this phenomenon, we conduct 5 random333

trails (with different data orders and prompt ini-334

tializations) to find skill neurons for all the tasks.335

Figure 3 shows the distributions of neuron predic-336

tivities within RoBERTaBASE for SST-2 task. Dis-337

tributions for the other tasks are left in appendix C.338

We can see that our method can stably find substan-339

tial skill neurons with high predictivities. Previous340

methods use average (Dai et al., 2021) and maxi-341

mum (Suau et al., 2020) activations on input tokens342

instead of activations on prompts to find selective343

neurons, which are shown as the “Avg.” and “Max.”344

results in Figure 3, respectively. The experimen-345

tal results indicate that previous methods hardly346

find highly-predictive neurons, which suggests that347

prompt tuning is crucial for finding skill neurons.348

We encourage future work to explore the reason349

why prompt tuning can help for this.350

4.2 Skill Neurons are Crucial for Handling351

Tasks352

A natural hypothesis is that if the skill neurons353

really encode skills, they shall be more important354

for PLMs to handle various tasks. To verify this,355

we perturb the skill neurons and see whether PLM’s356

performance drops more than perturbing random357

neurons. Specifically, the perturbation is to add358
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Figure 4: Accuracy on Tweet drops along with the
neuron perturbation rate. Error bars indicate ±1 s.e.m.
over 5 random trials. The perturbations are conducted in
descending orders of neurons’ predictivities for different
tasks or in random order (the “Random” curve).

a Gaussian noise (µ = 0 and σ = 0.1) into the 359

neurons’ activations (Arora et al., 2018), so that 360

the neurons cannot function properly, and then we 361

observe the PLM’s prompt tuning performances. 362

The perturbation results on Tweet task are 363

shown in Figure 4, from which we observe that 364

when we perturb top skill neurons of this task, the 365

PLM’s performance drops much more significantly 366

than when we perturb neurons in random order. It 367

indicates that the highly-predictive skill neurons 368

are indeed crucial for handling tasks and supports 369

that skill neurons encode skills. Perturbation re- 370

sults on the other tasks are shown in appendix D.1, 371

and they all exhibit similar phenomena. 372

4.3 Skill Neurons are Task-specific 373

We further study whether skill neurons are task- 374

specific, i.e., do skill neurons encode task-specific 375

high-level skills like distinguishing sentiments for 376

sentiment analysis, or do they just encode some 377

task-general low-level skills like recognizing parts 378

of speech, which are also helpful for handling tasks. 379

First, if skill neurons are task-specific, we shall 380

find similar skill neurons for similar tasks. To ver- 381

ify this, we rank neurons in descending orders of 382

their predictivities for different tasks and see the 383

Spearman’s rank correlations (Spearman, 1987) be- 384

tween the orders of different tasks. The average 385

results over all the 12 layers of RoBERTaBASE are 386

shown in Figure 5. We can see that the correla- 387

tions between similar tasks of the same type are 388

obviously higher, which confirms that similar tasks 389

have similar skill neurons. The layer-wise correla- 390

tions are shown in appendix C, from which we can 391

see skill neurons tend to be more task-specific in 392
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Figure 5: Spearman’s rank correlations between the
neuron predictivity orders of different tasks. Results are
averaged over all the layers.

higher layers, which is in agreement with previous393

probing findings (Liu et al., 2019a).394

Moreover, if skill neurons are task-specific, the395

skill neurons of same-type tasks shall be more im-396

portant for handling a specific task. This has been397

supported by Figure 4, which shows that the ac-398

curacy on Tweet drops much more significantly399

when we perturb neurons in the predictivity orders400

of same-type tasks (SST-2, IMDB). To qualify this401

effect and comprehensively show this phenomenon402

in all tasks, we define the neuronal importance of403

a source task to an evaluation task as the area be-404

tween the accuracy curves obtained by perturbing405

neurons in the predictivity order of the source task406

and in random order. For instance, in Figure 4, the407

neuronal importance of SST-2 to Tweet is the408

area between the blue curve and the gray curve.409

The overall neuronal importances are shown in Fig-410

ure 6, from which we can see the skill neurons411

of same-type tasks are obviously more important,412

which strongly supports that the found skill neurons413

encode task-specific skills again.414

4.4 Skill Neurons are not from Word415

Selectivity416

Previous works (Dai et al., 2021; Suau et al., 2020)417

show that neurons in Transformers may selectively418

activate on some words or concepts. To confirm419

that skill neurons encode skills, we show that skill420

neurons are not from these selectivities.421

We first do case studies on the related words422

of the top skill neurons, including the words with423

top and bottom cosine similarities with the neuron424

weights (Dai et al., 2021), and the words with top425

and bottom average activations (Suau et al., 2020).426

The results of SST-2 are shown in Table 2. We can427

see these related words do not convey sentiments,428
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Figure 6: Neuronal importances of different task pairs.
Results are averaged over 5 random trials. For an evalu-
ation task, the neuronal importances of different source
tasks are normalized as z-scores.

Cosine Similarity

Top AGES, GES, ITIES, ause, UNCH,
AGE, ORK, STE, TING, FE

Bottom sham, Nicol, bogus, Rox, Nay, contro,
guy, uneven, arbitrarily, unnatural

Average Activation

Top starters, village, oster, iddled, af,
mafia, aley, tired, dep, ophobic

Bottom
official, repression, illegal,
called, ensible, regime, abusers,

should, creation, refuse

Table 2: Related words for SST-2’s top skill neuron.

which demonstrates the skill neurons are not from 429

keyword selectivities. Results of the other tasks are 430

shown in appendix F. 431

Furthermore, considering the prompt tuning 432

method does predictions by decoding label tokens, 433

we need to check whether skill neurons depend on 434

the label words used. If so, it indicates that the skill 435

neurons do not encode the skills for handling tasks 436

but encode the skills for selectively decoding some 437

words. We rule out this possibility by finding that if 438

we use different random words as label words, the 439

achieved predictivity orders of neurons are pretty 440

consistent. Specifically, for all the tasks, the av- 441

erage Spearman’s correlation between the neuron 442

predictivity orders of 5 random label words is 0.87. 443

5 Where do Skill Neurons Come from? 444

In § 4, we confirm that skill neurons do encode task- 445

specific skills. Then a natural question is where do 446

skill neurons come from, i.e., do skill neurons ac- 447

quire these skills in pre-training or prompt tuning? 448

We find that skill neurons are most likely gener- 449

ated in pre-training with empirical evidence. 450
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Task Random
Guess

Random
Prompt

Hard
Prompt

SST-2 50.0 78.1±0.4 83.3
IMDB 50.0 76.7±2.0 75.1
Tweet 33.3 48.2±1.8 48.6
MNLI 33.3 39.8±1.1 40.5
QNLI 50.0 69.5±0.5 65.2
AG News 50.0 96.0±0.3 95.9
DBpedia 50.0 98.8±0.1 99.2

Table 3: Accuracies (%) on various tasks of top skill
neurons found with random prompts and untuned hard
prompts. We also report standard deviations over 5
random trials for random prompts.
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Figure 7: BitFit accuracy on IMDB drops along with the
neuron perturbation rate. Error bars indicate ±1 s.e.m.
over 5 random trials. The perturbations are conducted
in predictivity orders obtained with prompt tuning.

We first try to find skill neurons with tuning-451

free prompts, including random prompts, which452

are randomly generated embeddings, and human-453

written hard prompts. The predictivities of the454

found neurons are shown in Table 3. We can see455

that even without tuning, we can still find neurons456

with non-trivial predictivities. This implies that the457

skill neurons have been generated after pre-training,458

and prompt tuning only serves as an effective tool459

to observe the specificity of these neurons.460

To provide stronger evidence, we explore461

whether the skill neurons found with prompt tun-462

ing are also important for other fine-tuning meth-463

ods with different dynamics. We explore two464

parameter-efficient fine-tuning methods keeping465

neuron weights fixed, including adapter-based tun-466

ing (Houlsby et al., 2019) and BitFit (Ben-Zaken467

et al., 2022). BitFit model’s performances on IMDB468

when neurons are perturbed in the descending or-469

ders of predictivities obtained with prompts are470

shown in Figure 7, and the results for other tasks471

and adapter models are shown in appendix D. We472

can see the highly-predictive skill neurons of same-473
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Figure 8: Average neuronal importances over models
trained with adapter-based tuning and BitFit.

type tasks found with prompts are still crucial for 474

models fine-tuned with other methods. To compre- 475

hensively show this effect, similar to § 4.3, we visu- 476

alize the average neuronal importances over models 477

trained with adapter-based tuning and BitFit in Fig- 478

ure 8. The skill neurons found with prompt tuning 479

exhibit task-specific importances, which again sup- 480

ports that skill neurons are generated in pre-training 481

rather than manufactured by prompt tuning. 482

6 Application 483

We further explore the applications of our skill neu- 484

ron finding. We show two preliminary use cases: 485

network pruning and transferability indicator. 486

6.1 Network Pruning 487

First, we apply our skill neuron finding to network 488

pruning (Anwar et al., 2017; Dalvi et al., 2020), 489

which is to reduce memory cost and accelerate in- 490

ference by removing redundant parameters in neu- 491

ral networks. Existing works have explored prune 492

PLMs with weight magnitude (Han et al., 2015; 493

Gordon et al., 2020) and loss attribution (Michel 494

et al., 2019). Here we explore prune PLMs by 495

only keeping the top 2% skill neurons active for 496

each task and set the activations of the 98% frozen 497

neurons always as their baseline activations. Con- 498

sidering that the frozen neurons are fixed, we merge 499

them into bias terms. We apply this pruning method 500

to the top 9 layers of RoBERTaBASE and reduce it 501

to 66.6% of its original parameters. The perfor- 502

mances of prompt tuning on pruned models and 503

vanilla prompt tuning on original model are shown 504

in Table 4. Our pruning based on skill neurons gen- 505

erally performs comparably to vanilla prompt tun- 506

ing and can achieve about 1.4 inference speedup. 507
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Task Prompt
Tuning

Pruned
Model Speedup

SST-2 91.8±0.5 89.3±2.0 1.34
IMDB 91.6±0.5 87.6±3.0 1.34
Tweet 70.0±0.2 69.0±0.9 1.34
MNLI 76.8±1.8 70.0±1.1 1.38
QNLI 85.7±0.7 81.0±1.0 1.36
AG News 98.8±0.1 99.8±0.1 1.32
DBpedia 99.7±0.1 99.0±0.1 1.33

Table 4: Accuracies (%) on various tasks of vanilla
prompt tuning and prompt tuning on pruned models,
along with standard deviations over 5 random trials.
We also report the achieved inference speedups on the
tasks. Speedups are evaluated on a single CPU since it
is widely used for model inference (Mittal et al., 2021).

6.2 Transferability Indicator508

Previous works (Su et al., 2021; Vu et al., 2021)509

explore improve prompt tuning with cross-task510

prompt transfer. Su et al. (2021) propose that the511

overlapping rate of activated neurons (ON) be-512

tween soft prompts can serve as a prompt trans-513

ferability indicator, which has good correlations514

with zero-shot prompt transferability and can help515

to qualify task similarities and improve prompt516

transfer. Su et al. (2021) take all neurons into ON517

calculation, but the redundant neurons without task-518

specific skills may bring noisy signals. Here we519

only take the top 20% skill neurons of the target520

tasks into calculation. This improves the average521

Spearman’s correlation between ON and prompt522

transferability over our tasks from 0.53 to 0.71.523

7 Related Work524

Selective Neurons in Artificial Neural Networks525

There have long been findings about selective neu-526

rons in artificial neural networks. Many computer527

vision works (Coates et al., 2012; Le et al., 2013;528

Zeiler and Fergus, 2014; Agrawal et al., 2014; Zhou529

et al., 2015; Bau et al., 2020) find that both su-530

pervised and unsupervised models can have units531

selectively respond to specific visual objects and532

concepts. Radford et al. (2017) also find neurons533

corresponding to sentiments in unsupervised long534

short-term memory networks. Interestingly, there535

are similar selective neurons in human brains (Bar-536

low, 1972; Quiroga et al., 2005; Sun et al., 2020).537

The widespread emergence of these neuronal selec-538

tivities implies that there may be a common learn-539

ing mechanism among intelligent systems, which540

is extremely worthwhile to explore in the future.541

Bau et al. (2017) and Mu and Andreas (2020) 542

find that selective neurons are more important, 543

which is consistent with our findings. However, 544

Morcos et al. (2018) draw opposite conclusions. 545

We discuss this with experiments in appendix G. 546

Analyzing Pre-trained Transformers After the 547

success of Transformer-based PLMs (Devlin et al., 548

2019; Yang et al., 2019; Raffel et al., 2020), many 549

efforts have been devoted to analyzing how PLMs 550

work, such as probing the knowledge of PLMs (Liu 551

et al., 2019a; Hewitt and Manning, 2019; Petroni 552

et al., 2019) and understanding the behaviors of 553

PLMs’ parameters (Voita et al., 2019; Clark et al., 554

2019). Among which some works (Dalvi et al., 555

2019; Durrani et al., 2020; Antverg and Belinkov, 556

2022) find that individual neurons capture linguistic 557

properties, but they define neurons as dimensions in 558

contextualized representations. Other works (Suau 559

et al., 2020; Geva et al., 2021; Dai et al., 2021) 560

study the same group of neurons as us and find that 561

some neurons encode specific information like con- 562

cepts, facts, and word patterns. Inspired by them, 563

we study whether neurons encode high-level skills 564

for handling tasks in this work and demonstrate 565

that we can observe skill neurons with the help 566

of prompts. We believe it is promising to explore 567

whether and how do skill neurons collaborate with 568

the neurons encoding information in future works. 569

8 Conclusion and Future Work 570

In this paper, we find some special neurons in 571

pre-trained Transformers whose activations on soft 572

prompts are highly predictive of the task labels of 573

inputs. We dub these neurons skill neurons and 574

develop a method to find them via prompt tun- 575

ing. With extensive experiments, we confirm that 576

skill neurons encode task-specific skills required 577

to handle these tasks and find empirical evidence 578

showing that skill neurons are most likely gener- 579

ated in pre-training rather than fine-tuning. We also 580

demonstrate some practical applications of our skill 581

neuron finding. In the future, we will extend our 582

prompt-based skill neuron finding method to more 583

scenarios, such as covering non-classification tasks 584

and other parameters in Transformers like atten- 585

tion heads. We will also explore more fundamen- 586

tal problems about skill neurons and the working 587

mechanisms of PLMs, including how the skill neu- 588

rons emerge in pre-training as well as the relation- 589

ships between skill neurons and neurons encoding 590

specific information found in previous works. 591
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Appendices889

A Details about Investigated Tasks890

In experiments, we use 7 established public English891

NLP datasets, which are licensed and intended for892

research use. These datasets are all created with893

public texts, and we believe they do not involve per-894

sonal information and are well anonymized. The895

details about the datasets are as follows:896

A.1 Sentiment Analysis897

SST-2 (Socher et al., 2013) requires to classify898

the sentiments expressed in movie reviews into899

POSITIVE and NEGATIVE sentiments.900

IMDB (Maas et al., 2011) requires to classify the901

sentiments expressed in reviews from the Internet902

Movie Database1 into POSITIVE and NEGATIVE903

sentiments.904

TweetEval (Barbieri et al., 2020) is a collection of905

7 Twitter-specific classification tasks. Here we use906

its sentiment analysis subtask, which is originally907

from SemEval 2017 Task 4 (Rosenthal et al., 2017).908

It requires to recognize if a tweet is POSITIVE,909

NEGATIVE or NEUTRAL. We decompose it to two910

subtasks: POSITIVE vs. NEGATIVE, and NEURAL911

vs. NON-NEUTRAL.912

A.2 Natural Language Inference913

MNLI (Williams et al., 2018) requires to recog-914

nize the relationship between sentence pairs as915

ENTAILMENT, NEUTRAL and CONTRADICTION.916

We decompose it to two subtasks: ENTAILMENT917

vs. CONTRADICTION, and NEURAL vs. NON-918

NEUTRAL.919

QNLI (Wang et al., 2019) requires to classify920

whether a context sentence contains the answer921

to a question.922

A.3 Topic Classification923

AG News (Zhang et al., 2015) requires to classify924

the 4 topics of news articles in the AG’s corpus2.925

DBpedia (Zhang et al., 2015) requires to classify926

the 14 topics of articles in DBpedia (Auer et al.,927

2007).928

Since recognizing different topics requires essen-929

tially different skills, we use the only two similar930

labels of the two tasks. They are BUSINESS and931

SPORTS in AG News, and COMPANY and ATH-932

LETE in DBpedia.933

1https://www.imdb.com
2http://groups.di.unipi.it/~gulli/AG_

corpus_of_news_articles.html

Task Training Validation Test

SST-2 53, 879 13, 470 872
IMDB 20, 000 5, 000 25, 000
Tweet 45, 615 2, 000 12, 284
MNLI 314, 161 78, 541 9, 815
QNLI 83, 794 20, 949 5, 463
AG News 47, 966 12, 034 3, 800
DBpedia 63, 899 16, 100 9, 999

Table 5: Data statistics of the 7 used datasets.

We obtain the datasets from Huggingface’s 934

dataset platform (Lhoest et al., 2021). For the 935

datasets included in the GLUE collection (Wang 936

et al., 2019), since we cannot get their test set, 937

we use the released validation set as our test set, 938

80% random samples from the original training set 939

as our training set, and the other 20% samples as 940

our validation set. The detailed data statistics are 941

shown in Table 5. 942

B Implementations Details 943

We implement the prompt tuning method intro- 944

duced in § 2.1 with l = 127 soft prompts. We 945

randomly initialize each soft prompt using normal 946

distribution with standard deviation as 0.03. We 947

then train the model using Adam (Kingma and Ba, 948

2015) as the optimizer. We set the learning rate 949

as 0.001 and the batch size as 8. We do evalua- 950

tion on the validation set every 2, 000 iterations 951

and early stop the training if the validation accu- 952

racy does not rise for 6 times. We use label words 953

Negative, Positive for binary classification 954

tasks and Negative, Neutral, Positive 955

for multi-class classification tasks. For random 956

label words experiment in § 4.4, we uniformly 957

sample the label words from the vocabulary of 958

RoBERTa (Liu et al., 2019b). 959

We conduct all experiments on RoBERTaBASE 960

model, which has 110M parameters, and we use 961

Huggingface’s Transformers library (Wolf et al., 962

2020) to implement the experiments. We run the 963

experiments on NVIDIA GeForce RTX 2080 Ti 964

and NVIDIA GeForce RTX 3090 GPUs, and it 965

takes about 1000 GPU hours. 966

C More Predictivity Distributions 967

We report the predictivity distribution for IMDB 968

in § 4.1 and show the distributions for the other 4 969

binary classification tasks in Figure 9. We can see 970

our method can stably find many highly-predictive 971

skill neurons for all the tasks. For the multi-class 972
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classification tasks, since the predictivities are for973

decomposed subtasks, we cannot draw distribu-974

tions for the original tasks and do not include them975

in the results here.976

D More Neuron Perturbation Results977

Here we demonstrate more neuron perturbation978

experimental results.979

D.1 Performance Dropping Trends for980

Prompt Tuning981

In Figure 4, we show the performance dropping982

trend on Tweet task. The results on the other983

tasks are shown in Figure 10.984

D.2 Performance Dropping Trends for985

Adapter-based Tuning986

The performance dropping trends of adapter-based987

tuning models on various tasks are shown in Fig-988

ure 11.989

D.3 Performance Dropping Trends for BitFit990

The performance dropping trends of BitFit models991

on various tasks are shown in Figure 12.992

E Layer-wise Correlations between993

Neuron Predictivity Orders of Different994

Tasks995

Figure 5 shows the overall Spearman’s rank corre-996

lations between the neuron predictivity orders of997

different tasks, which is averaged over the 12 lay-998

ers of RoBERTaBASE. Here we further present the999

layer-wise correlations in Figure 13, from which1000

we can see the skill neurons are more and more1001

task-specific from the bottom layer to the top layer,1002

which is consistent with the probing findings (Liu1003

et al., 2019a) showing that PLMs tend to learn gen-1004

eral skills in the lower layers and learn specific1005

skills in the higher layers. These results suggest1006

that our neuron-finding method can find both neu-1007

rons encoding general skills in the lower layers and1008

neurons encoding specific skills in the lower layers,1009

but the found top skill neurons are task-specific in1010

general (Figure 5). In this work, we focus on the1011

task-specific top skill neurons, and leave careful1012

study for the neurons encoding general skills in1013

future work.1014

F More Word Selectivity Results1015

In Table 2, we show the related words for SST-2.1016

Here we further show the results for the other tasks1017

in Table 6. We can see these related words gener- 1018

ally do not convey clues about solving the tasks. 1019

1020

G Experiments following Morcos et al. 1021

(2018) 1022

Some previous works (Bau et al., 2017; Mu and 1023

Andreas, 2020) suggest that selective neurons con- 1024

tribute more to model accuracies. In § 4, we also 1025

find that perturbing selective skill neurons leads to 1026

more performance drop. However, Morcos et al. 1027

(2018) draw opposite conclusions and find that se- 1028

lective and non-selective neurons are similarly im- 1029

portant. These pose questions about why these 1030

conclusions are inconsistent. 1031

We find that except experimental setups, the 1032

main difference between Morcos et al. (2018) and 1033

ours lies in the definition of neuronal selectivity. 1034

Morcos et al. (2018) define a "selectivity index" 1035

and we use the predictivity score introduced in § 3. 1036

To check whether these different definitions lead to 1037

inconsistent results, we do experiments under our 1038

setup and also try to perturb neurons in descending 1039

orders of their "selectivity indexes". The results 1040

are shown in Figure 14. We can see that when us- 1041

ing the "selectivity indexes", the found neurons are 1042

surely not more important than random neurons as 1043

reported by Morcos et al. (2018). But our predic- 1044

tivity metric can find significantly more important 1045

neurons for all the tasks. 1046

H Limitations and Potential Risks 1047

As mentioned in § 8, our designed method to find 1048

skill neurons can only cover classification tasks, 1049

and the investigated neurons are limited in feed- 1050

forward layers. Moreover, the investigated datasets 1051

are all in English. We will explore extending our 1052

method and evaluations to cover more scenarios. 1053

As a fundamental work studying the working 1054

mechanisms of pre-trained Transformers, we do 1055

not see explicit misuse risks for our work. A po- 1056

tential risk is that attacks targeting the found skill 1057

neurons may be more dangerous, and we encourage 1058

to explore this in future works. 1059
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Figure 9: Histograms of predictivity for various tasks on neurons within RoBERTaBASE. Error bars indicate ±1
s.e.m. over 5 random trials.

14



0 5 10 15
Pertubation Rate (%)

75

80

85

90

Ac
cu

ra
cy

 (%
)

SST-2
IMDB
Tweet
QNLI
MNLI
AG News
DBpedia
Random

(a) On SST-2

0 5 10 15
Pertubation Rate (%)

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

SST-2
IMDB
Tweet
QNLI
MNLI
AG News
DBpedia
Random

(b) On IMDB

0 5 10 15
Pertubation Rate (%)

65

70

75

Ac
cu

ra
cy

 (%
)

SST-2
IMDB
Tweet
QNLI
MNLI
AG News
DBpedia
Random

(c) On MNLI

0 5 10 15
Pertubation Rate (%)

75

80

85

Ac
cu

ra
cy

 (%
)

SST-2
IMDB
Tweet
QNLI
MNLI
AG News
DBpedia
Random

(d) On QNLI

0 5 10 15
Pertubation Rate (%)

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

 (%
)

SST-2
IMDB
Tweet
QNLI
MNLI
AG News
DBpedia
Random

(e) On AG News

0 5 10 15
Pertubation Rate (%)

98.5

99.0

99.5

Ac
cu

ra
cy

 (%
)

SST-2
IMDB
Tweet
QNLI
MNLI
AG News
DBpedia
Random

(f) On DBpedia

Figure 10: Accuracies on various tasks drop along with the neuron perturbation rates. Error bars indicate ±1 s.e.m.
over 5 random trials. The perturbations are conducted in descending orders of neurons’ predictivities for different
tasks or in random order (the “Random” curve).
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Figure 11: Adapter-based tuning accuracies on various tasks drop along with the neuron perturbation rates. Error
bars indicate ±1 s.e.m. over 5 random trials. The perturbations are conducted in predictivity orders obtained with
prompt tuning. 16
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Figure 12: BitFit accuracies on various tasks drop along with the neuron perturbation rates. Error bars indicate ±1
s.e.m. over 5 random trials. The perturbations are conducted in predictivity orders obtained with prompt tuning.
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Figure 13: Spearman’s rank correlations between the neuron predictivity orders of different tasks on different layers.
Layer 1 is the bottom layer near the inputs, and layer 12 is the top layer near the outputs.
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IMDB

Cosine Similarity
Top legged, turnout, ladder, heid, flexible, Quite, contrary, runs, Reference, enqu
Bottom qq, qa, Capture, Import, Tripoli, hereby, eus, ,, rip, Lima

Average Activation
Top success, Kund, Sanctuary, Lim, Wave, dele, Crystal, flung, Kerala, .............

Bottom vation, goodbye, concludes, bye, Congratulations,
Congratulations, Fare, farewell, BY, ceremony,

Tweet

Cosine Similarity
Top atican, uras, isman, anan, Luck, Merit, Character, alth, atching, character,
Bottom Register, enzymes, elsen, Registrar, tasting, regist, soils, µ, Chambers, LINE,

Average Activation
Top dh, Titan, utable, exited, iOS, chel, loophole, acious, 520, Harmony,
Bottom spike, unbelievably, Toxic, prov, RIS, resulting, risks, rising, ues, reapp,

MNLI

Cosine Similarity

Top trigger, Pis, deadlines, Launch, mares,
PROGRAM, Congratulations, Success, Congratulations, Gig,

Bottom minim, xt, spoof, dism, avoid, asive, WN, offset, inter, antiqu,
Average Activation

Top nickel, grun, cluded, 91, handled, secure, very, dairy, gent, Roses,
Bottom ayed, disl, ect, wipes, screwed, resistance, aw, ruin, shrinking, spite,

QNLI

Cosine Similarity
Top otyp, disemb, sidel, melanch, unint, outwe, umbnails, precedence, unfl, Sym,
Bottom 314, 223, 313, 234, ,, 316, 341, 463, 238, 261,

Average Activation
Top eds, adding, apocalypse, strawberry, apopt, Kid, leaf, Silent, technical,
Bottom entrepreneurial, Econom, Columb, prime, roleum, Trade, rounded, isner, enz, 158,

AG News

Cosine Similarity
Top aukee, erity, lambda, ropolitan, roxy, LAN, ylon, incinn, oslav, coni,
Bottom Gross, Villa, Uri, ende, Summary, Gallup, Temp, Rog, RP, Ram,

Average Activation
Top fight, desert, Merge, Mail, Mid, Rankings, istic, **, berries, Pen,
Bottom ETS, 107, Line, 106, observers, Ranked, EB, ido, Bass, alf,

DBpedia

Cosine Similarity
Top ming, umbered, hind, utter, pepper, scr, increment, usher, empt, atmospheric,
Bottom Chron, kan, Div, Case, Thread, Role, Crash, Mode, Tank, Apps,

Average Activation
Top Bubble, mailed, Ari, razen, Perspective, ogical, Gin, Disney, icons, Huang,
Bottom Jacob, Boss, Dad, trough, Shiny, carn, Gravity, toolbar, Sword, temple,

Table 6: Related words for various tasks’ top skill neurons.
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Figure 14: Prompt tuning accuracies on various tasks drop along with the neuron perturbation rates. Error bars
indicate ±1 s.e.m. over 5 random trials. The perturbations are conducted in descending predictivity orders (Ours),
random orders (Random) and descending "selectivity index" (Morcos et al., 2018) orders (Selectivity Index).
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