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Abstract

The robustness of Text-to-SQL parsers against001
adversarial perturbations plays a crucial role in002
delivering highly reliable applications. Previ-003
ous studies along this line primarily focused004
on perturbations in the natural language ques-005
tion side, neglecting the variability of tables.006
Motivated by this, we propose the Adversarial007
Table Perturbation (ATP) as a new attacking008
paradigm to measure robustness of Text-to-009
SQL models. Following this proposition, we010
curate ADVETA, the first robustness evalua-011
tion benchmark featuring natural and realistic012
ATPs. All tested state-of-the-art models ex-013
perience dramatic performance drops on AD-014
VETA, revealing significant room of improve-015
ment. To defense against ATP, we build a016
systematic adversarial training example gener-017
ation framework tailored for better contextu-018
alization of tabular data. Experiments show019
that our approach brings models best robust-020
ness improvement against ATP, while also sub-021
stantially boost model robustness against NL-022
side perturbations. We will release ADVETA023
and code to facilitate future research.024

1 Introduction025

The goal of Text-to-SQL is to generate an exe-026

cutable SQL query given a natural language (NL)027

question and corresponding tables as inputs. By028

helping non-experts interact with ever-growing029

databases, this task has many potential applications030

in real life, thereby receiving considerable interest031

from both industry and academia (Li and Jagadish,032

2016; Zhong et al., 2017; Affolter et al., 2019).033

Recently, existing Text-to-SQL parsers have034

been found vulnerable to perturbations in NL ques-035

tions (Gan et al., 2021; Zeng et al., 2020; Deng036

et al., 2021). For example, Deng et al. (2021) re-037

moved the explicit mentions of database items in a038

question while keeping its meaning unchanged, and039

observed a significant performance drop of a Text-040

to-SQL parser. Gan et al. (2021) also observed041

Student 
Name

Citizenship Score Semester

A Country X 92 Fall

B Country Y 90 Spring

A Country X 89

B Country Y 85 Fall

C Country Z 97 Spring

Original Table

List names and citizenships of students who 

achieved top 3 scores.

SELECT Student Name, Citizenship FROM Student

ORDER BY Score desc LIMIT 3

SELECT Student Name FROM Student

ORDER BY Score desc LIMIT 3 (Missing Nationality)

SELECT Student Name, Instructor Name, Citizenship

FROM Student ORDER BY Grade desc LIMIT 3
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Figure 1: Adversarial examples based on table pertur-
bations for a Text-to-SQL parser. Leaving the NL ques-
tion unchanged, both replacement of column names
(e.g., replace “Citizenship” with “Nationality”) and
addition of associated columns (e.g., add “Instructor
Name” based on “Student Name”; add “Grade” based
on “Score”) mislead the parser to incorrect predictions.

a dramatic performance drop when the schema- 042

related tokens in questions are replaced with syn- 043

onyms. They investigated both multi-annotations 044

for schema item and adversarial training to improve 045

a parser’s robustness against permutations in NL 046

questions. However, previous works only studied 047

robustness of parsers from the perspective of NL 048

questions, neglecting variability from the other side 049

of parser input – tables. 050

We argue that a reliable parser should also be 051

robust against table-side perturbations because they 052

are inevitably modified in the human-machine in- 053

teraction process. In business scenarios, table main- 054

tainers may (i) rename columns due to business de- 055

mands and user preferences. (ii) add new columns 056

into existing tables when business demands change. 057

Consequently, the extra lexicon diversity intro- 058
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duced by such modifications could harm perfor-059

mance of unrobust Text-to-SQL parsers. To for-060

malize these scenarios, we propose a new attacking061

paradigm, Adversarial Table Perturbation (ATP),062

to measure parsers’ robustness against natural and063

realistic ATPs. In accordance with the two scenar-064

ios above, we consider both REPLACE (RPL) and065

ADD perturbations in this work. Figure 1 conveys066

an intuitive understanding of ATP.067

Ideally, ATP should be conducted based on two068

criterion: (i) Human experts consistently write cor-069

rect SQL queries before and after table perturba-070

tions, yet parsers fail; (ii) Perturbed tables look nat-071

ural and grammatical, and are free from breakage072

of human language conventions. Accordingly, we073

carefully design principles for RPL/ADD and man-074

ually curate the ADVErsarial Table perturbAtion075

(ADVETA) benchmark based on three existing076

datasets. All evaluated state-of-the-art Text-to-077

SQL models experience drastic performance drops078

on ADVETA: On ADVETA-RPL, average relative079

percentage drop is as high as 53.1%, whereas on080

ADVETA-ADD the drop is 25.6%, revealing mod-081

els’ lack of robustness against ATPs.082

Empirically, model robustness can be improved083

by adversarial training, i.e. re-train models with084

training set augmented with adversarial exam-085

ples (Jin et al., 2020). However, due to the dif-086

ferent natures of structured tables and unstruc-087

tured text, well-established text adversarial exam-088

ple generation approaches are not readily appli-089

cable. Motivated by this, we propose an effec-090

tive Contextualized Table Augmentation (CTA)091

approach that better leverages tabular context infor-092

mation and carry out ablation analysis. To summa-093

rize, our contribution is three-fold:094

• To the best of our knowledge, we are the095

first to propose definitions and principles of096

Adversarial Table Perturbation (ATP) as a097

new attacking paradigm for Text-to-SQL.098

• We contribute ADVETA, the first benchmark099

to evaluate robustness of Text-to-SQL mod-100

els. Significant performance drops of state-101

of-the-art models on our benchmark reveals102

that there is much more to be explored beyond103

high leaderboard scores.104

• We design CTA, a systematic adversarial105

training example generation framework tai-106

lored for better contextualization of tabular107

data. Experiments show that our approach108

brings model best robustness gain and least 109

original performance loss, compared with var- 110

ious baselines. Moreover, we show that adver- 111

sarial robustness brought by CTA generalizes 112

well to NL-side perturbations. 113

2 Adversarial Table Perturbation 114

We propose the Adversarial Table Perturbation 115

(ATP) paradigm to measure robustness of Text- 116

to-SQL models. For an input table and its associ- 117

ated NL questions, the goal of ATP is to fool Text- 118

to-SQL parsers by perturbing tables in a natural 119

and realistic manner. That is, human SQL experts 120

are expected to be able to maintain their correct 121

translations from NL questions to SQL with their 122

understanding of language and table context. For- 123

mally, ATP consists of two approaches: REPLACE 124

(RPL) and ADD. In the rest of this section, we first 125

discuss our consideration of table context, then in- 126

troduce conduction principles of RPL and ADD. 127

2.1 Table Context 128

Tables consist of explicit and implicit elements, 129

both of which are necessary for understanding ta- 130

ble context. Explicit elements refer to table cap- 131

tions, columns, and cell values. Implicit elements, 132

from our perspective, contains Table Primary 133

Entity (TPE) and domain. (Relational) Tables 134

are structured data recording domain-specific at- 135

tributes (columns) around some central entities 136

(TPE) (Sumathi and Esakkirajan, 2007). Without 137

explicit annotation, humans could still make correct 138

guesses on them. For example, it’s quite intuitive 139

that tables in Figure 1 can be classified as “educa- 140

tion” domain, and all of the columns center around 141

the TPE “student”. Combining both explicit and 142

implicit elements, people achieve understanding of 143

table context, which becomes the source of lexicon 144

diversity in column descriptions. 145

2.2 REPLACE (RPL) Principles 146

Given a target column, the goal of RPL is to seek 147

an alternative column name that make sense to hu- 148

mans but mislead unrobust models. Gold SQL, as 149

illustrated in Figure 1, should be correspondingly 150

adapted by mapping the original column to its new 151

name. In light of this, RPL should fulfill the fol- 152

lowing two principles: 153

Semantic Equivalency: Under the table con- 154

text of target column, substituted column names are 155

expected to convey equivalent semantic meaning 156

as the original name. 157
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ADVETA Statistics
Spider WTQ WikiSQL

Orig. RPL ADD Orig. RPL ADD Orig. RPL ADD

Basic Statistics
#Total Tables 81 81 81 327 327 327 2, 716 2, 716 2, 716
#Avg. columns per table 5.45 5.45 5.45 6.31 6.31 6.31 6.41 6.41 6.41
#Avg. perturbed columns per table – 2.62 3.64 – 2.65 3.27 – 3.70 4.44
#Avg. Cand per column – 3.33 3.97 – 2.90 3.55 – 3.32 3.97
#Unique columns 211 911 1, 061 527 1, 656 2, 976 2, 414 10, 787 10, 474
#Unique vocab 199 598 782 596 1, 156 1, 459 2, 414 4, 147 5, 099

Analytical Statistics
#Unique semantic meanings 144 144 683 156∗ 156∗ 702∗ 203∗ 203∗ 818∗

#Avg. col name per semantic meaning 1.35 6.33 1.55 1.59∗ 5.87∗ 1.64∗ 1.67∗ 6.12∗ 1.52∗

Table 1: ADVETA statistics comparison between original and RPL/ADD-perturbed dev set. The ∗ mark denotes
that results are based on at most 100 randomly sampled tables and obtained by manual count.

Phraseology Correctness: Since our ATP158

aims not for worst-case attack but realisticity. Re-159

placed column names are expected to follow lin-160

guistic phraseology conventions: (i) Grammar Cor-161

rectness: Substituted column names should be free162

from grammar errors. (ii) Proper Collocation with163

TPE: New column names should collocate properly164

with TPE. For example, height and tallness both165

collocate well with student (TPE), but convention-166

ally not altitude. (iii) Idiomaticity: New column167

names should sound natural to a native speaker to168

address target columns. For example, runner-up169

means second place, and racer-up is a bad replace-170

ment despite runner is synonymous to racer.171

2.3 ADD Principles172

ADD perturbs tables with introduction of new173

columns. Instead of adding random columns that174

fit well into the table domain, we pertinently add175

adversarial columns with respect to a target column176

for the sake of adversarial efficiency. Gold SQL177

should remain unchanged after ADD perturbations178
1. Below states ADD principles:179

Semantic-association & Domain-relevancy:180

Given a target column and its table context, newly181

added columns are expected to (i) fit nicely into the182

table context; (ii) have high semantic associations183

with the target column yet low semantic equiva-184

lency (e.g. sales vs. profits, editor vs. author).185

Phraseology Correctness: Same as RPL,186

columns should obey human language conventions.187

Irreplaceability: Different from RPL, any188

added columns should be irreplaceable with re-189

spect to any original table columns. In other words,190

ADD requires semantic equivalency to be filtered191

out from highly semantic associations. Otherwise,192

the original gold SQL will not be the only correct193

output, which makes the perturbation unreasonable.194

1We omit cell value alignment in ADD for simplicity.

3 ADVETA Benchmark 195

Following RPL and ADD principles, we manu- 196

ally curate the ADVErsarial Table perturbAtion 197

(ADVETA) benchmark based on three mainstream 198

Text-to-SQL datasets, Spider (Yu et al., 2018), Wik- 199

iSQL (Zhong et al., 2017) and WTQ (Papernot 200

et al., 2017). For each table from original de- 201

velopment set, we conduct RPL/ADD annotation 202

separately, perturbing only table columns. For 203

its associated NL-SQL pairs, we leave the NL 204

questions unchanged and adapt gold SQLs accord- 205

ingly. As a result, ADVETA consists of 3 (Spi- 206

der/WTQ/WikiSQL) ∗ 2 (RPL/ADD) = 6 subsets. 207

We next introduce annotation details and character- 208

istics of ADVETA. 209

3.1 Annotation Steps 210

5 vendors join the annotation process. Each base 211

dev set is split into small chunks and is manually 212

annotated by one vendor and reviewed by another. 213

Annotation inconsistency is resolved to ensure the 214

inter-annotator agreement. Before annotation pro- 215

cess, vendors are first trained to understand table 216

context as described in § 2, then are further in- 217

structed of the following details. 218

RPL: RPL principles are the mandatory require- 219

ments. During annotation, vendors are given full 220

Google access to ease the conception of synony- 221

mous names for a target column. ADD: ADD prin- 222

ciples will be the primary guideline. Unlike free- 223

style RPL annotations, vendors are provided with a 224

list of 20 candidate columns from where they select 225

3-5 based on semantic-association2. Note that we 226

only consider columns that are mentioned at least 227

once across NL questions to avoid vain efforts for 228

both RPL and ADD. In Appendix A, we display 229

2We generate the candidate list with retriever-reranker
combo from § 4. The vast size of our backend database (totally
60k tables) effectively minimizes risks of data leakage.

3



Student

Name
Citizenship Score Age

A Country X 92 19

B Country Y 89 21

Student

Name
Citizenship Score School Term

A Country X 92 Fall

B Country Y 89 Spring

Student

Name
Citizenship Score

Academic 

Year

A Country X 92 Fall

B Country Y 89 SpringCandidate Tables
WDC

Dense Retreival
TAPAS

Reranker
Number-batch

Student

Name
Citizenship Score Semester

A Country X 92 Fall

B Country Y 89 Spring

Caption: School Scores Statistics

Top K Similar Tables
... ... ... ...

Tom P Psychology 2018

Lily F Statistics 2016

School Nation Season Medal

Tom P Psychology 2018

Lily F Statistics 2016

Course ID Title Instructor
School 

Term

Tom P Psychology 2018

Lily F Statistics 2016

Student ID Age Department
Enroll

Year

10086 19 Psychology 2018

12319 21 Statistics 2016

Academic Year

….

Enroll Year

School Term

Age

…

Premise Hypothesis e1 e2

Student semester

(Text).

Student academic year

(Text).
0.65 0.85

Student semester

(Text).

Student school term

(Text).
0.94 0.71

Student semester

(Text).

Student season

(Text).
0.35 0.55

Student semester

(Text).

Student age

(Text).
0.05 0.21

… …

Contexturalization 
Matching 

(Top 20 )

Dictionary 
Matching

Synonym Dictionary

Primary Entity Predictor
MNLI

Final Decision Maker
MNLI“Student”

Target

RPL

RPL

Template: {TPE} {Col Name} ({Col Type})

Student from country Y?

Students with score > 90?

Student A’s score?

ADD

ADD

Candidate Column Names

Column Names  

Student

Name
Citizenship Score

Enroll

Year

A Country X 92 2018

B Country Y 89 2016

RPL Perturbed ADD Perturbed

Figure 2: Overview of our CTA framework. In rare cases where TPE is missing, we apply Primary Entity Predictor (addressed
in B.2). Otherwise we simply use annotated TPE. e1 is obtained with premise-hypothesis as input; e2 with hypothesis-premise.

some representative benchmark annotation cases.230

3.2 ADVETA Statistics and Analysis231

We present comprehensive benchmark statistics232

and analysis results in Table 1. Notice that we limit233

the scope of statistics only to perturbed columns234

(as marked by #Avg. perturbed col per table).235

Basic Statistics reflects elementary information236

of ADVETA. Analytical Statistics illustrate high-237

lighted features of ADVETA compared with origi-238

nal dev-sets: (i) Diverse column names for a single239

semantic meaning: each table from RPL subset con-240

tains approximately five times more lexicons which241

are used to express a single semantic meaning3. (ii)242

Table concept richness: each table from ADD sub-243

set contains roughly five times more columns with244

unique semantic meanings.245

4 Contextualized Table Augmentation246

In this section, we introduce our Contextualized247

Table Augmentation (CTA) framework as an ad-248

versarial training example generation approach tai-249

lored for tabular data. The philosophy of adversar-250

ial example generation is straightforward: Pushing251

augmented RPL/ADD lexicon distributions closer252

to human-agreeable RPL/ADD distributions. This253

requires maximization of lexicon diversity under254

the constrains of domain relevancy and clear differ-255

entiation between semantic association & semantic256

equivalency, as stated in ADD principle from § 2.257

3For example, column names {Last name, Family name,
Surname} express a single semantic meaning. In practice, we
random sample at most 100 tables from each split, and obtain
the number of unique semantic meanings by manual count.

Well-established text adversarial example gen- 258

eration approaches, such as TextFooloer (Jin et al., 259

2020) and BertAttack (Li et al., 2020), might fail to 260

meet this objective because: (i) They rely on syn- 261

tactic information (e.g. POS-tag, dependency, se- 262

mantic role) to perform text transformations. How- 263

ever, such information is not available in struc- 264

tured tabular data, leading to poor-quality adversar- 265

ial examples generated by these approaches. (ii) 266

They perform sequential word-by-word transfor- 267

mations, which could narrow lexicon diversity (e.g. 268

written by will not be replaced by author). (iii) 269

They cannot leverage tabular context to ensure 270

domain-relevancy. ATP expects proper modeling 271

of domain-relevancy, but it remains unclear how 272

table domain should be efficiently expressed with 273

text inputs in these approaches. (iv) They generally 274

fail to distinguish semantic equivalency from high 275

semantic association according to our observations 276

(e.g. fail to distinguish sales vs. profits). 277

To solve these challenges, we construct the CTA 278

framework. Given a target column from a ta- 279

ble with NL questions, (i) a dense table retriever 280

properly contextualizes the input table, thereby pin- 281

pointing top-k most domain-related tables (and 282

columns) from a large-scale database while boost- 283

ing lexicon diversity. (ii) A reranker further 284

narrows down semantic-association and produces 285

coarse-grained ADD/RPL candidates. (iii) NLI de- 286

cision maker distinguishes semantic equivalency 287

from semantic association and allocates candidate 288

columns to RPL/ADD buckets. A detailed illustra- 289

tion of our CTA framework is shown in Figure 2. 290

We next introduce each component of CTA. 291
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4.1 Dense Retrieval for Similar Tables292

The whole framework starts with a dense retrieval293

module to gather most domain-related tables of294

user queries. We utilize the Tapas-based (Herzig295

et al., 2020) dense retriever in this module (Herzig296

et al., 2021), due to its better tabular contextualiza-297

tion expressiveness over classical retrieval meth-298

ods such as Word2Vec (Mikolov et al., 2013) and299

BM25 (Robertson, 2009). Following the original300

usage proposed by Herzig et al. (2020), we retrieve301

top 100 most domain-related tables from the back-302

end Web Data Commons (WDC) (Lehmberg et al.,303

2016) database consisting of 600k non-repetitive304

tables with at most 5 columns.305

4.2 Numberbatch Reranker306

From these retrieved domain-related tables, we307

aim to further narrow down candidate columns308

that are most semantically-associated with the tar-309

get column. This is done by a ConceptNet Num-310

berbatch word embedding (Speer et al., 2017)311

reranker, who computes the cosine similarity score312

for a given column pair. We choose ConceptNet313

Numberbatch due to its advantage of far richer314

(520k) in-vocabulary multi-grams compared with315

Word2Vec (Mikolov et al., 2013), GloVe (Penning-316

ton et al., 2014), and Counter-fitting (Mrkšić et al.,317

2016), which is especially desirable for multi-gram318

columns. We keep top 20 similar as RPL/ADD319

candidates for each column of original table.320

4.3 Word-level Replacement via Dictionary321

Aside from candidates obtained from retriever-322

reranker for whole-column level RPL, we consider323

word-level RPL for a target column as a comple-324

ment. Specifically, we replace each word in a325

given target column with its synonyms recorded in326

the Oxford Dictionary (noise is more controllable327

compared with synonyms gathered by embedding).328

With a probability 25% for each original word to329

remain unchanged, we sample until the max pre-330

defined number (20) of candidates is reached or 5331

consecutively repeated candidates are produced.332

4.4 NLI as Final Decision Maker333

So far we have pinpointed candidate columns334

whose domain relevancy and semantic association335

are already guaranteed. The final stage is to deter-336

mine which one of RPL/ADD candidates is more337

suitable for based on its semantic equivalent against338

target column. Therefore, we leverage RoBERTa-339

MNLI (Liu et al., 2019; Williams et al., 2017), the 340

expert in differentiating semantic equivalency from 341

semantic association4. Practically, we construct 342

premise-hypothesis by contextualized columns and 343

judge semantic equivalency based on output bidi- 344

rectional entailment scores e1 and e2. 345

NLI Premise-Hypothesis Construction The 346

Quality of premise-hypothesis plays a key factor 347

for NLI’s functioning. We identify three potentially 348

useful elements for contextualizing columns with 349

surrounding table context: TPE, column type, and 350

column cell value. Through manual experiments, 351

we observe that: (i) Adding cell value significantly 352

hurt decision accuracy of NLI models. (ii) TPE is 353

the most important context information and cannot 354

be ablated. (iii) Column type information can be a 355

desirable source to for word-sense disambiguation. 356

Thus the final template for premise-hypothesis con- 357

struction as python formatted string is expressed 358

as: f“{TPE} {CN} ({CT}).”, where CN is 359

column name, and CT is column type. 360

RPL/ADD Decision Criterion In practice, we 361

observe a discrepancy in output entailment 362

scores between premise-hypothesis score e1 and 363

hypothesis-premise score e2. Thus we take scores 364

from both direction into consideration. For RPL, 365

we empirically choose min(e1, e2) >= 0.65 366

(Figure 2) as the final RPL acceptance criterion 367

to reduce occurrences of false positive entail- 368

ment decision. For ADD, the criterion is instead 369

max(e1, e2) <= 0.45 to reduce false negative en- 370

tailment decisions5. 371

5 Experiments and Analysis 372

5.1 Experimental Setup 373

Datasets and Models The five original Text-to- 374

SQL datasets involves in our experiments are: Spi- 375

der (Yu et al., 2018), WikiSQL (Zhong et al., 376

2017), WTQ (Shi et al., 2020)6, CoSQL (Yu et al., 377

2019a) and SParC (Yu et al., 2019b). Their corre- 378

sponding perturbed tables are from our ADVETA 379

benchmark. WikiSQL and WTQ are single-table, 380

while Spider, CoSQL and SParC have multi-tables. 381

CoSQL and SParC are known as multi-turn Text-to- 382

4We highly recommend reading our pilot study in B.1.
5To avoid semantic conflict between a new column c̃ and

original columns c1, · · · , cn, we apply to each pair of (c̃, ci).
6Note that we use the version with SQL annotations pro-

vided by Shi et al. (2020) here, since the original WTQ (Pasu-
pat and Liang, 2015) only contains answer annotations.
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Dataset Baseline Dev RPL ADD

Spider
DuoRAT 69.9 23.8± 2.1

(-46.1)
36.4± 1.3

(-33.5)
ETA 70.8 27.6± 1.8

(-43.2)
39.9± 0.9

(-30.9)

WikiSQL
SQLova 81.6 27.2± 1.3

(-54.4)
66.2± 2.3

(-15.4)
CESQL 84.3 52.2± 0.9

(-32.1)
71.2± 1.5

(-13.1)

WTQ SQUALL 44.1 22.8± 0.5
(-21.3)

32.9± 0.8
(-11.2)

CoSQL
EditSQL 39.9 13.3± 0.7

(-26.6)
30.5± 1.1

(-9.4)
IGSQL 44.1 16.4± 1.2

(-27.7)
32.8± 2.1

(-11.3)

SParC
EditSQL 47.2 30.5± 0.9

(-16.7)
40.2± 1.2

(-7.0)
IGSQL 50.7 34.2± 0.5

(-16.5)
42.9± 1.7

(-7.8)

Table 2: Results on original dev and ADVETA (RPL
and ADD subsets). Red fonts denote absolute percent-
age performance drop compared with original dev.

SQL datasets, sharing the same tables with Spider.383

Dataset statistics are shown in Appendix Table 11.384

We evaluate open-source Text-to-SQL models385

that reach competitive performance on the afore-386

mentioned datasets. DuoRAT (Scholak et al., 2021)387

and ETA (Liu et al., 2021) are baselines for Spider;388

SQUALL (Shi et al., 2020) is the baseline for WTQ;389

SQLova (Hwang et al., 2019) and CESQL (Guo390

and Gao, 2019) are baselines for WikiSQL; For391

the two multi-turn datasets (CoSQL & SParC),392

baselines are EditSQL (Zhang et al., 2019) and393

IGSQL (Cai and Wan, 2020). Exact Match (EM)394

is employed for evaluation metric across all set-395

tings. Training details are shown in C.2.396

5.2 Attack397

Attack Details All baseline models are trained398

from scratch on corresponding original training399

sets, and then independently evaluated on origi-400

nal dev sets, ADVETA-RPL and ADVETA-ADD.401

Since columns have around 3 manual candidates402

in ADVETA-RPL/ADD, the number of possible403

perturbed tables scales exponentially with col-404

umn numbers for a given table from original dev405

set. Therefore models are evaluated on ADVETA-406

RPL/ADD by sampling perturbed tables. For each407

NL-SQL pair and associated table(s), we sample408

one RPL-perturbed table and one ADD-perturbed409

table in each attack. Each column mentioned from410

gold SQL is perturbed by a randomly sampled man-411

ual candidate from ADVETA. For performance412

stability and statistical significance, we run five413

attacks with random seeds for each NL-SQL pair.414

Attack Results Table 2 presents the performance 415

of models on original dev sets, ADVETA-RPL and 416

ADVETA-ADD. Across various task formats, do- 417

mains and model designs, state-of-the-art Text-to- 418

SQL parsers experience dramatic performance drop 419

on our benchmark: by RPL perturbations, relative 420

percentage drop is as high as 53.1%, whereas on 421

ADD the drop is 25.6% on average7. Another 422

interesting observation is that RPL consistently 423

lead to higher performance drop than ADD. This 424

is perhaps due to models’ heavy reliance of lex- 425

ical matching, instead of true understanding of 426

language and table context. Conclusively, Text- 427

to-SQL models are still far less robust than desired 428

against variability from the table input side. 429

Attack Analysis To understand the reasons for 430

parsers’ vulnerability, we specifically analyze their 431

schema linking modules which are responsible for 432

recognizing table elements mentioned in NL ques- 433

tions. This module is considered a vital compo- 434

nent for Text-to-SQL (Wang et al., 2020; Scholak 435

et al., 2021; Liu et al., 2021). We leverage the 436

oracle schema linking annotations on Spider (Lei 437

et al., 2020) and test ETA model on ADVETA us- 438

ing the oracle linkings. Note that we update the 439

oracle linkings accordingly when testing on RPL. 440

Table 4 compares the performance of ETA with or 441

without the oracle linkings, from which we make 442

two observations: (i) When guided with the oracle 443

linkings, ETA performs much better on both RPL 444

(27.6% → 55.7%) and ADD (39.9% → 71.3%). 445

Therefore, the failure in schema linking is one of 446

the essential causes for the vulnerability of Text- 447

to-SQL parsers. (ii) Even with the oracle linkings, 448

the performance of ETA on RPL and ADD still 449

lags behind its performance on the original dev set, 450

especially on RPL. Through a careful analysis on 451

failure cases, we find that ETA still generates table 452

elements that have a high degree of lexical match- 453

ing with NL questions, even though the correct 454

table elements are specified in the oracle linkings. 455

5.3 Defense 456

Defense Details We carry defense experiments 457

with SQLova, SQUALL and ETA on WikiSQL, 458

WTQ and Spider, respectively. We compare CTA 459

with three baseline adversarial training approaches: 460

Word2Vec (W2V), TextFooler (TF) (Jin et al., 461

2020), and BERT-Attack (BA) (Li et al., 2020) 462

(details found in D.). Models are trained from 463

7Average relative performance presented in Appendix C.3.
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Approach
WikiSQL WTQ Spider

Dev RPL ADD Dev RPL ADD Dev RPL ADD

Orig. 81.6 27.2±1.3 66.2±2.3 44.1 22.8±0.5 32.9±0.8 70.8 27.6±1.8 39.9±0.9
BA 80.1±0.2 56.8±0.8 77.9±0.5 43.9±0.3 33.6±0.4 42.8±0.7 68.1±0.5 26.9±1.1 43.1±0.7
TF 80.5±0.3 57.7±0.7 77.7±0.4 43.7±0.4 35.2±0.5 42.6±0.6 67.9±0.6 28.4±1.2 42.2±0.6
W2V 80.8±0.1 60.7±1.1 78.2±0.6 43.4±0.1 36.8±0.6 42.2±0.9 68.3±0.2 30.1±1.3 43.3±1.4
MAS – – – – – – 69.1±0.3 27.3±0.7 35.3±0.5

CTA 81.2± 0.1 69.2± 0.5 79.9± 0.3 44.1± 0.1 41.8± 0.3 44.6± 0.5 69.8± 0.1 35.8± 0.5 50.6± 0.1
w/o Retriver 81.0±0.2 68.1±0.2 78.1±0.5 44.0±0.2 40.6±0.2 42.1±0.3 69.7±0.3 34.7±0.5 43.0±0.8
w/o MNLI 80.6±0.3 61.3±0.5 78.6±0.2 43.8±0.1 36.9±0.3 43.1±0.2 69.6±0.2 29.8±0.2 47.8±0.2

Table 3: Defense results on ADVETA (RPL and ADD subsets). Avg. EM and fluctuations of 5 runs are reported.
Orig. denotes performance without defense from Table 2.

Schema Linking Dev RPL ADD

w/o oracle 70.8 27.6
(-43.2)

39.9
(-30.9)

w/ oracle 75.2 55.7
(-19.5)

71.3
(-3.9)

Table 4: Schema linking analysis of ETA on Spider.

scratch on corresponding augmented training sets.464

Specifically, for each NL-SQL pair, we keep the465

original table while generating one RPL and one466

ADD adversarial example. As a result, augmented467

training data is three times as large in the sense468

that each NL-SQL pair is now trained against469

three tables: original, RPL-perturbed, and ADD-470

perturbed. In addition to the adversarial training de-471

fense paradigm, we also include Multi-Annotation472

Selection (MAS) by Gan et al. (2021) on Spider,473

using their released data. Finally, we repeat the474

same evaluation process as attack.475

Defense Results Table 3 presents model perfor-476

mance through various defense approaches. Two477

major observations can be made from the table: (i)478

CTA consistently brings better robustness. Com-479

pared with other approaches, CTA-augmented mod-480

els have best performance across all ADVETA-481

RPL/ADD settings, as well as on all original dev482

sets. These results demonstrate CTA can effec-483

tively improve robustness of models against RPL484

and ADD perturbations, while introducing less485

noises into original training sets. Interesting, we486

observe that textual adversarial example genera-487

tion approaches (BA, TF) are outperformed by the488

simple W2V approach. This verifies our analysis489

stated in § 4. A case study on characteristics of490

various baselines is included in Appendix B.3.491

(ii) CTA fails to bring models back to their orig-492

inal dev performance. Even if trained with high-493

quality data augmented by CTA, models could still494

be far worse than their original performance. This495

gap is highly subjected to the similarity of lexicon496

distribution between train and dev set. Concretely,497

Method ColP ColR ColF TabP TabR TabF

ETA 85.4 36.8 51.4 61.3 63.4 62.3
W2VRPL 86.1 40.2 54.8 70.4 72.6 71.5
CTARPL 88.1 50.8 64.4 80.1 85.4 82.7

ETA 86.3 60.2 70.9 71.2 75.8 73.4
W2VADD 86.5 63.7 73.4 75.9 82.1 78.9
CTAADD 88.1 70.2 78.2 83.6 89.5 86.4

Table 5: The schema linking analysis of attacking with
ETA and two defense approaches, namely W2V and
CTA on Spider; Col as column and Tab as table. P, R, F
is short for precision, recall and F1 score, respectively.

on WikiSQL and WTQ where train and dev set 498

have similar domain, both RPL performance and 499

ADD performance are brought back closer to origi- 500

nal dev performance when augmented with CTA. 501

On the contrary, on Spider where train-dev domains 502

overlap less, there is still a notable gap between per- 503

formance after adversarial training and the original 504

dev performance. As a conclusion, more effective 505

defense paradigms are yet to be investigated. 506

Defense Analysis In accordance with attack anal- 507

ysis, we conduct schema linking analysis with ETA 508

model augmented with top 2 approaches (i.e. W2V 509

& CTA) on Spider. We follow metric calculation 510

of (Liu et al., 2021) and details are shown in § C.4. 511

As shown in Table 5, both approaches improve the 512

schema linking F1. Specifically, CTA improves col- 513

umn F1 by 3% ∼ 8%, and table F1 by 13% ∼ 20%, 514

compared with compared with vanilla ETA. This 515

reveals that improvement of robustness can be pri- 516

marily attributed to better schema linking. 517

5.4 CTA Ablation Study 518

We carry out ablation study to understand roles of 519

two core components of CTA: dense retriever and 520

RoBERTa-MNLI. Results are shown in Table 3. 521

CTA w/o Retriever RPL candidates are gener- 522

ated merely from dictionary; ADD generation is 523

same as W2V baseline. Compared with full CTA, 524

models augmented with this setting experience 525

1.1% ∼ 1.2% and 1.8% ∼ 7.6% performance drop 526
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Model Spider Spider-Syn

RAT-SQLBERT (Wang et al., 2020) 69.7 48.2
RAT-SQLBERT+MAS (Gan et al., 2021) 67.4 62.6

ETA (Liu et al., 2021) 70.8 50.6
ETA+CTA 69.8 60.4

Table 6: EM on Spider/Spider-Syn dev-sets.

on RPL and ADD, respectively. We attribute RPL527

drops to loss of real-world lexicon diversity, and528

ADD drops to loss of domain-relevancy.529

CTA w/o MNLI RPL and ADD candidates are530

generated in the same way as CTA, but without531

denoising of MNLI. RPL/ADD decisions are made532

solely based on ranking of reranker semantic simi-533

larity. Compared with full CTA, models augmented534

by this setting experience significant performance535

drops (4.9% ∼ 7.9%) on all RPL subsets, and536

moderate drops (1.5% ∼ 2.8%) on all ADD sub-537

sets. We attribute these drops to the inaccurate538

differentiation between semantic equivalency and539

semantic association due to lack of MNLI, which540

results in noisy RPL/ADD adversarial examples.541

5.5 Generalization to NL Perturbations542

Beyond CTA’s effectiveness against table-side per-543

turbations, a natural question follows: could re-544

training with adversarial table examples improve545

model robustness against perturbations from the546

other side of Text-to-SQL input (i.e. NL ques-547

tions)? To explore this, we directly evaluate ETA548

(trained with CTA-augmented Spider train-set) on549

Spider-Syn dataset (Gan et al., 2021), which re-550

places schema related tokens in NL question with551

its synonym. We observe an encouraging 9.8% EM552

improvement compared with vanilla ETA (trained553

with Spider train-set). This verifies CTA’s general-554

izability to NL-side perturbations, with comparable555

effectiveness as previous SOTA defense approach556

MAS (who fails to generalize to table-side pertur-557

bations on ADVETA (Table 3).558

6 Related Work559

Robustness of Text-to-SQL As discussed in § 1,560

previous works (Gan et al., 2021; Zeng et al., 2020;561

Deng et al., 2021) exclusively study robustness of562

Text-to-SQL parsers against perturbations in NL563

question inputs. Our work instead focuses on vari-564

ability from the table input side and reveals parsers’565

vulnerability to table perturbations.566

Adversarial Example Generation Existing567

works on adversarial text example generations can568

be classified into three categories: (1) Sentence- 569

Level. This line of work generates adversarial 570

examples by introducing distracting sentences or 571

paraphrasing sentences (Jia and Liang, 2017; Iyyer 572

et al., 2018). (2) Word-Level. This dimension of 573

work generates adversarial examples by flipping 574

words in a sentence, replacing words with their 575

synonyms, and deleting random words (Li et al., 576

2020; Ren et al., 2019; Jin et al., 2020). (3) 577

Char-Level. This line of work flips, deletes, 578

and inserts random chars in a word to generate 579

adversarial examples (Belinkov and Bisk, 2018; 580

Gao et al., 2018). All the three categories of 581

approaches have been widely used to reveal 582

vulnerability of high-performance neural models 583

on various tasks, including text classification 584

(Ren et al., 2019; Morris et al., 2020), natural 585

language inference (Li et al., 2020) and question 586

answering (Ribeiro et al., 2018). Previous work on 587

robustness of Text-to-SQL and semantic parsing 588

models primarily adopt word-level perturbations 589

to generate adversarial examples (Huang et al., 590

2021). For example, the Spider-Sync adversarial 591

benchmark (Gan et al., 2021) is curated by 592

replacing schema-related words in questions with 593

their synonyms. 594

Despite these methods’ effectiveness in generat- 595

ing adversarial text examples, they are not readily 596

applicable for structural tabular data, as we dis- 597

cussed in § 4. Also, previous work on table pertur- 598

bations (Cartella et al., 2021; Ballet et al., 2019) 599

focuses on table cell values, while we focus on ta- 600

ble columns. Thus, we propose an effective CTA 601

framework that better leverages tabular context in- 602

formation for adversarial example generation. 603

7 Conclusion 604

We introduce Adversarial Table Perturbation 605

(ATP), a new paradigm for evaluating model ro- 606

bustness on Text-to-SQL, and define its conduction 607

principles. We curate the ADVETA benchmark, on 608

which all state-of-the-art models experience dra- 609

matic performance drop. For defense purpose, we 610

design the CTA framework tailored for tabular ad- 611

versarial training example generation. While CTA 612

outperforms all baseline methods in improving the 613

performance of model, there is still an unfilled gap 614

from original performance. This calls for future 615

exploration on robustness of Text-to-SQL parsers 616

against ATP. 617
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Ethical Considerations618

Our ADVETA benchmark presented in this work is619

a free and open resource for the community to study620

the robustness of Text-to-SQL models. We col-621

lected tables from three mainstream Text-to-SQL622

datasets, Spider (Yu et al., 2018), WikiSQL (Zhong623

et al., 2017) and WTQ (Papernot et al., 2017),624

which are also free and open datasets for research625

use. For the table perturbation step, we hire profes-626

sional annotators to find suitable RPL/ADD candi-627

dates for target columns. We pay the annotators at628

a price of 10 dollars per hour. The total time cost629

for annotating our benchmark is 253 hours.630

All the experiments in this paper can be run on631

a single Tesla V100 GPU. Our benchmark will be632

released along with the paper.633
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A Benchmark Examples961

We display some representative benchmark annota-962

tion cases for to convey readers a intuitive feeling963

on our RPL and ADD subsets. As reflected in Fig-964

ure 3, RPL reflects the following characteristics965

beyond RPL principles: (i) Abbreviation of com-966

mon words. e.g. Cell number vs. Tel. (ii) Idiomatic967

transformation e.g. Air date vs. Release time (iii)968

Part of speech structure transformation e.g. Written969

by vs. Author. ADD perturbations faithfully obey970

ADD principles and additions demonstrate high971

coherency with respect to original domain.972

B CTA Details973

B.1 NLI-based Substitutability Verification974

Approach e1 e2 ∆e1 ∆e2

Roberta-RTE
human 48.5 48.1 0.65 0.46
embedding 45.7 45.6 0.26 0.30
ranodm 43.0 42.8 0.53 0.70

Roberta-SNLI
human 74.5 74.1 0.48 0.61
embedding 56.7 66.0 0.75 0.37
ranodm 31.2 30.9 0.78 0.64

Roberta-MNLI
human 77.1 76.4 0.86 0.36
embedding 52.2 58.7 0.34 0.69
ranodm 16.5 14.8 0.50 0.49

Table 7: Average foward entailment score e1, backward
entail e2, and corresponding standard deviations across
9 settings. In all human annotation cases, higher entail-
ment is better. In all random replacement cases, lower
is better.

Implementation Details For each pair of target975

column and candidate column, we contextualize the976

each column with template as described in Premise-977

Hypothesis Construction from section § 4. Then978

contextualized target column as premise and RPL979

candidate as hypothesis are feed into NLI models 980

for forward entailment score e1 (RPL candidate 981

as premise and target column as hypothesis for 982

backward score e2). We obtain entailment scores 983

from both direction because of the observed score 984

fluctuation caused by reversion in practicable cases. 985

Pilot Study for Model Ability We carry out a 986

pilot study to test NLI models’ capability in verify- 987

ing substitutability between a target column and its 988

candidates. RoBERTa (Liu et al., 2019) is chosen 989

as the backbone model due its outstanding perfor- 990

mance and computational efficiency across various 991

NLI datasets. Fine-tuned RoBERTa on three well- 992

known NLI datasets: RTE (Dagan et al., 2013), 993

SNLI (Bowman et al., 2015), and MNLI (Williams 994

et al., 2017) are compared to demonstrate model 995

ability difference due to training data,. 996

We considers three levels of substitutability, 997

from highest to lowest: human manual substitu- 998

tion (human-annotated replacements sampled from 999

benchmark RPL subsets), embedding-based sub- 1000

stitution (top-10 similar multi-grams from Con- 1001

ceptNet Numberbatch word embedding (Speer 1002

et al., 2017)), and random substitution (randomly 1003

sampled columns across benchmark(Speer et al., 1004

2017)). Practically, we sample 1000 pairs of data 1005

each time and repeat each setting for five times. 1006

We report the both average forward e1 and back- 1007

ward entailment scores e2, as well their standard 1008

deviations for each setting across five runs (table 1009

8). Clearly, RoBERTa-MNLI correlates best with 1010

true degree of substitutability. We therefore con- 1011

clude that MNLI-finetued models own better lex- 1012

ical knowledge compared with others, due to the 1013

massive scale and diversity of MNLI dataset. 1014

Approach ρ

Word2Vec (Mikolov et al., 2013) 0.37
Glove (Pennington et al., 2014) 0.41
Glove + Counter-fitting (Mrksic et al., 2016) 0.58
NMT Emedding (Hill et al., 2015a) 0.58
aragram-SL999 (Wieting et al., 2015) 0.69
RoBERTa-MNLI (ours) 0.70

Table 8: Results on SimLex-999. ρ ( Perason correla-
tion) is used as the primary metric.

Performance on SimLex-999 SimLex-999 (Hill 1015

et al., 2015b) is a gold standard resource for measur- 1016

ing how well models capture similarity, rather than 1017

relatedness or association between a input pair of 1018

words (e.g. cold and hot are closely associated but 1019
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Date of birth Abandoned yes or no Date arrived Date departed

Birthday
Born day
Born time

Abandoned ?
Is abandoned

When reached
Time of arrival

Arrived at

Time left
Time of Departure

Left at

First name Last name Cell number Homepage

Given name
Forename

Family name
Surname

Tel.
Mobile #

Phone No.

Website
Webpage

Personal site URL

Movie name Air date Directed by Written by

Movie Title
Title

Release time
Initial release day

First show time

Director
Conductor

Conducted by

Author
Authored by

Writer

Singer name Album name Citizenship Net work millions

Composer name
Director name

Artist manager name

Song name
Genre name

Song number

Issue region
Home address
Passport type

Total downloads
Best sale amounts

Total works

Country Code Continent Population GNP

Government code
State name

Zipcode

Industry
Geographical measure

Longitude

Households
Density

Core city population

Currency
Total oil consumption

Net oil export

Venue Home team Opponent High points

Country
Final position

Round

Home or away
Home team score

Home stadium

Opponent score
Opponent avg. rank

Champion

Point per game
Average points
Goal per game

RPL Annotations ADD Annotations 

Figure 3: RPL and ADD annotation examples from our ATP benchmark. Rows with shallow colors are original
headers, whereas those deep-shaded ones are our human annotations.

definitely not similar). Thus it is especially suitable1020

for our purpose test ability of semantic equivalency1021

discrimination of RoBERTa-MNLI. We treat entail-1022

ment score produced by the model as its judgement1023

of semantic similarity, and report its Pearson corre-1024

lation against ground truth similarity score. Results1025

suggests that RoBERTa-MNLI is quite competitive1026

at discriminating association and relatedness from1027

similarity.1028

Case Study To test hard case performance of1029

RoBERTa-MNLI, we come up with some tricky1030

examples as shown in Table 9. The upper half of1031

the table presents hard replaceable cases that em-1032

phasize idiomatic transformations or word-sense1033

disambiguation. The lower half contains hard irre-1034

placeable cases in which phrases have high degree1035

of conceptual association, yet still not semantically1036

equivalent. Results reveal the surpsingly abun-1037

dant and accurate lexicon knowledge condensed1038

in RoBERTa-MNLI.1039

B.2 Zero-shot TPE Classification1040

Previous premise-hypothesis construction in § 4.41041

is done on the assumption of availability of TPE,1042

which is frequently not true. Thus our goal is to1043

make a reasonable prediction on TPE for those1044

missing cases. Practically, we make use Hugging-1045

Face (Wolf et al., 2020) implementation of zero-1046

shot text classification (Yin et al., 2019) to classify1047

missing TPE into 48 pre-defined categories with1048

input of concatenated table caption, columns and1049

cell values.1050

Premise Hypothesis ENT NON-ENT

Replaceable
Runner-up. Second place. 97.1 2.9
First name. Given name. 93.7 6.3
Airline code. Airline number. 82.3 17.7
Cartoon air date. Cartoon release time. 91.4 8.6
Book author. Book written by. 97.8 2.2

Irreplaceable
Student height. Student altitude. 26.9 73.1
Company sales. Company profits. 1.9 98.1
People killed. People injured. 2.1 97.9
Population number. Population code. 37.1 62.9
Political party. Political celebration. 27.5 72.5

Table 9: Hard cases we come up with to explore
upper-bounds of Roberta-MNLI ability. ENT as entai-
ment score, NON-ENT as contradiction + neutral score.
Score of expected label is bolded.

Implementation Details Based on the 60+ fine- 1051

grained categories defined in Few-NERD (Ding 1052

et al., 2021), We modify and integrate them into 1053

48 classes as candidate labels (|L| = 48). With a 1054

Roberta-MNLI as the workhorse model, our overall 1055

modeling process is modeled as 1056

c̃t = arg max
i

exp(fθ(Li | d; c;v; d)ent)∑
j∈|L| exp(fθ(Lj | d; c;v)ent)

where c is column names, v is a randomly selected 1057

column values affiliated with a given column, and 1058

d is table captions for a given table. Roberta-MNLI 1059

(annoted as fθ) outputs raw logits of contradiction, 1060

neutral, and entailment scores. Softmax is finally 1061

applied entailment logits across 48 categories, with 1062

the top 1 label as final the primary entity prediction. 1063
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Human evaluation We randomly sample 100 ta-1064

bles from our benchmark, and ask three vendors to1065

rate the reasonability of each predicted TPE from1066

scale 1− 5. 1 as totally unreasonable, 3 as mildly1067

acceptable, and 5 as perfectly parallel with human1068

guess. We average out the rating from all three1069

vendors, and get a result of 4.13. This indicates the1070

practicability of zero-shot TPE classification.1071

B.3 Perturbation Case Study1072

In this section we present a case study on adver-1073

sarial training examples generated by CTA and1074

baseline approaches in Table 10. We can make the1075

following observations: (i) CTA tend to produce1076

less low-frequency words (e.g. padrone, neosurre-1077

alist) in both RPL and ADD i.e. lower perplexity.1078

(ii) Specificity of CTA generations are more ap-1079

propriate for column headers. For example, RPL1080

pair (region, sphere) is a overly broadened, where1081

as names such ballads denomination, superman-1082

ager, thespian might be overly specified to fit into1083

table headers. (iii) CTA incurs least semantic drift1084

in RPL. In all baseline methods, there is a good1085

chance to observe semantic-distinctive pairs such1086

as (region, member), (type, number), (type, guy).1087

With CTA, such risk is minimal.1088

C Experimental Details1089

C.1 Original Datasets statistics1090

The detail statistics of five Text-to-SQL datasets1091

are shown in Table 11. According to CoSQL (Yu1092

et al., 2019a) and SParC (Yu et al., 2019b) paper,1093

the two multi-turn Text-to-SQL datasets share the1094

same tables with Spider (Yu et al., 2018).1095

C.2 Baseline Details1096

SQLova For all defense result of WikiSQL1097

dataset, we employ the SQLova model, whose offi-1098

cial code is released by (Hwang et al., 2019). We1099

use uncased BERT-large as the encoder. The learn-1100

ing rate is 1× 10−3 and the learning rate of BERT-1101

large is 1 × 10−5. The training epoch is 30 with1102

a batch size of 12. The training process lasts 121103

hours on a single 16GB Tesla V100 GPU.1104

SQUALL We employ the SQUALL model, fol-1105

lowing (Shi et al., 2020), to get all defense result1106

of WTQ dataset. The training epoch is 20 with1107

a batch size of 30. The dropout rate is set to 0.2.1108

The training process lasts 9 hours on a single 16GB1109

Tesla V100 GPU.1110

ETA We implement the ETA model following 1111

(Liu et al., 2021). We use uncased BERT-large 1112

whole word masking version as the encoder. The 1113

learning rate is 5× 10−5 and the training epoch is 1114

50. The batch size and gradient accumulation step 1115

are 6 and 4. The training process lasts 24 hours on 1116

a single 32GB Tesla V100 GPU. 1117

C.3 Attack Performance Calculation Details 1118

Table 12 shows the attack performance of RPL and 1119

ADD perturbations. In this section, we show the 1120

calculation details of average attack relative per- 1121

formance drop. For example, on Spider dataset, 1122

the relative performance drop of DuoRAT model 1123

against RPL perturbation is 65.9%, and 61.0% for 1124

ETA model. For RPL perturbation, we average the 1125

relative performance drop of 9 models, and get the 1126

average relative percentage drop which is 53.1%. 1127

Same as RPL, we get the average relative percent- 1128

age drop which is 25.6% for ADD perturbation. 1129

C.4 Schema Linking Calculation 1130

We follow the work of Liu et al. (2021) to measure 1131

the performance of ETA schema linking predic- 1132

tions. Let Ωcol be a set {(c, q)i|1 ≤ i ≤ N} which 1133

contains N gold (column-question token) tuples. 1134

Let Ωcol be a set {(c, q)j |1 ≤ j ≤ M} which 1135

contains M predicted (column-question token) tu- 1136

ples. We define the precision(ColP ), recall(ColR), 1137

F1-score(ColF ) as: 1138

|Γcol|∣∣Ωcol

∣∣ , |Γcol||Ωcol|
,

2ColPColR
ColP + ColR

1139

where Γcol = Ωcol
⋂

Ωcol. The definitions of TabP , 1140

TabR, TabF are similar. 1141

D Baseline Approach Details 1142

W2V To generate candidates for a given column, 1143

W2V randomly samples 5 candidates from the top 1144

15 cosine-similar (Numberbatch word embeddings) 1145

for RPL, and from 15-50 for ADD. Textfooler and 1146

BERT-Attack also follow this hyper-parameter set- 1147

ting. For both TextFooler and BERT-Attack, we 1148

skip their word importance ranking (WIR) modules 1149

while only keeping the word transformer modules 1150

for candidate generation8. 1151

8Columns are contextualized with templates that addition-
ally considers cell values and POS-tag consistency.
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Perturbation Table Context BA TF W2V CTA

RPL

club id
region
name

member
regional
district

districts
zones
sphere

regionary
location
regions

place
location
district

author id
type
title

types
number
style

guy
genus
categories

typeful
example
sort

category
genre
kind

singer id
song name
country

songs title
singer name
chorus name

ballads denomination
ballads appointments
song designation

name
polynymous
folk-song name

music name
song title
music designation

ADD

course id
semester
section id

classes
honors
session

sophomore
majoring
freshman

studential
intersession
undergraduate

school
enrollment
university

artist id
artist
age

composition
creator
design

musicianship
thespian
arranger

tachiste
neosurrealist
creative person

publisher
album
genre

movie id
director
year

designer
operator
composer

officers
padrone
guide

corporate leader
supermanager
executive

producer
scenarist
writer

Table 10: Adversarial training examples generated by CTA and baseline approaches. Words with red color font are
target columns.

Datasets
Train Dev

#T #Q #Avg. Col #T #Q #Avg. Col

WTQ 1, 290 9, 030 6.39 327 2, 246 6.41
WikiSQL 18, 590 56, 355 6.40 2, 716 8, 421 6.31
Spider 795 6, 997 5.52 81 1, 034 5.45
CoSQL 795 9, 478 5.52 81 1, 299 5.45
SParC 795 12, 011 5.52 81 1, 625 5.45

Table 11: Original datasets statistics. #T represents
total number of tables in a dataset (#Q for questions).
#Avg. Col stands for avg. number of columns per table.
Spider, CoSQL and SParC share the same tables.

TextFooler TextFooler is the one of the state-1152

of-the-art attacking framework for discriminative1153

tasks on unstructured text. We skip its word impor-1154

tance ranking (WIR) step, since our target column1155

has already been located. Its word transformer1156

module is faithfully re-implemented to generate1157

candidates for a target column. Counter-fitted word1158

embedding (Mrksic et al., 2016) are used for sim-1159

ilarity computation, and modified sentences are1160

constrained by both POS-tag consistency and Sim-1161

CSE (Gao et al., 2021). distance.1162

BERT-Attack BERT-Attack is another represen-1163

tative text attacking framework. Similar to our1164

adaptation of TextFooler, we skip WIR and only1165

keep the core masked language model based word1166

transformation. Following original work, low-1167

quality or sub-word tokens predicted by BERT-1168

Large are discarded and sentence similarity is guar-1169

Dataset Baseline Dev RPL ADD

Spider
DuoRAT 69.9 23.8± 2.1

(-46.1 / -65.9%)
36.4± 1.3
(-33.5 / -47.9%)

ETA 70.8 27.6± 1.8
(-43.2 / -61.0%)

39.9± 0.9
(-30.9 / -43.6%)

WikiSQL
SQLova 81.6 27.2± 1.3

(-54.4 / -66.7%)
66.2± 2.3
(-15.4 / -18.9%)

CESQL 84.3 52.2± 0.9
(-32.1 / -38.1%)

71.2± 1.5
(-13.1 / -15.5%)

WTQ SQUALL 44.1 22.8± 0.5
(-21.3 / -48.3%)

32.9± 0.8
(-11.2 / -25.4%)

CoSQL
EditSQL 39.9 13.3± 0.7

(-26.6 / -66.7%)
30.5± 1.1
(-9.4 / -23.6%)

IGSQL 44.1 16.4± 1.2
(-27.7 / -62.8%)

32.8± 2.1
(-11.3 / -25.6%)

SParC
EditSQL 47.2 30.5± 0.9

(-16.7 / -35.4%)
40.2± 1.2
(-7.0 / -14.8%)

IGSQL 50.7 34.2± 0.5
(-16.5 / -32.5%)

42.9± 1.7
(-7.8 / -15.4%)

Table 12: The Exact Match Accuracy on the develop-
ment set and our adversarial attack benchmark. Red
font denotes the absolute(left) and relative(right) per-
formance drop percentage compared with original dev
accuracy.

anteed by Sim-CSE. 1170
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