
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

PROBING OPTIMISATION IN PHYSICS-INFORMED NEURAL
NETWORKS

Nayara Fonseca ∗, Will Trojak ∗

IBM Research Europe
Daresbury, WA44AD, United Kingdom
{nayara.fonseca,w.trojak}@ibm.com

Veronica Guidetti ∗

University of Modena and Reggio Emilia
Department of Physics, Informatics and Mathematics
Via G. Campi 213/a, 41125, Modena, Italy
veronica.guidetti@unimore.it

ABSTRACT

A novel comparison is presented of the effect of optimiser choice on the accuracy of
physics-informed neural networks (PINNs). To give insight into why some optimisers are
better, a new approach is proposed that tracks the training trajectory curvature and can be
evaluated on the fly at a low computational cost. The linear advection equation is studied
for several advective velocities, and we show that the optimiser choice substantially im-
pacts PINNs model performance and accuracy. Furthermore, using the curvature measure,
we found a negative correlation between the convergence error and the curvature in the op-
timiser local reference frame. It is concluded that, in this case, larger local curvature values
result in better solutions. Consequently, optimisation of PINNs is made more difficult as
minima are in highly curved regions.

1 INTRODUCTION

The idea of solving PDE problems using neural networks (NNs) was put forward by Lagaris et al. (1997;
1998); Lagaris et al. (2000) in the second half of the ’90s and then revised in 2017 by Raissi et al. (2017a;b)
who named the methodology Physics-Informed Neural Networks (PINNs). Relying on the universal ap-
proximation theorem of Cybenko (1989); Hornik (1991); Pinkus (1999), PINNs aim to deliver a universal
regressor that can represent any bounded continuous function and solve any PDE/ODE problems, having
input and output shape as the only limitation. Although the goal of PINNs was to produce a unifying method
of solving PDE/ODEs, satisfactory results could not be achieved in a multitude of cases. The recent works of
Karniadakis et al. (2021); Hao et al. (2022) provide an overview of the state-of-the-art; furthermore, Cuomo
et al. (2022) focus on algorithms and applications and Beck et al. (2020) on theoretical results.
Several studies have analysed the effects of choosing different architectures, loss function formulations, and
treatment of domain and collocation points. However, the effect of the optimiser choice on PINN perfor-
mance needs more attention. Recently, new PINN-specific optimisation methods were developed or applied
to improve poor convergence performance. For example, De Luca & Silverstein (2022) propose a relativis-
tic optimisation algorithm that introduces chaotic jumps and Davi & Braga-Neto (2022) use a metaheuristic
optimisation method, namely, particle swarm optimisation, to eliminate gradient-related problems.
This work aimed to improve the understanding of how PINNs performance is affected by optimiser choice.
Specifically, we considered the following algorithms spanning different optimiser categories: gradient descent
(GD) without momentum, LBFGS (Dennis & Moré, 1973; Goodfellow et al., 2016) (a second order quasi-
Newton method), ADAM (Kingma & Ba, 2014) (an adaptive stochastic GD algorithm), and bouncing Born–
Infeld (BBI) (De Luca & Silverstein, 2022). The first three optimisers are widely used in ML optimisation
problems, whereas BBI is a recent realisation of a frictionless energy-conserving optimiser. See Appendix A
for details.

*Equal contribution.

1

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Moreover, we introduce a new method to study optimisation in neural networks, which provides training
trajectory curvature data at low computational cost. Using this approach, we studied the evolution of different
optimisers through the network parameter space during training. Further discussion is given in Section 2.1.
Specifically, we apply PINNs to solve the linear advection equation as described in Section 2.2. Linear
advection is a simple PDE with a single parameter, i.e., the wave speed β, whose variation can tune the com-
plexity of the PINN landscape (Krishnapriyan et al., 2021). Moreover, to understand how a network adjusts
to different depths and widths, we considered two configurations of multi-layer perceptron architectures with
different numbers of hidden layers and nodes per layer.
The main contributions of this work are:

• We found that the choice of optimisation algorithm significantly impacts the convergence of PINNs
models. Specifically, second-order optimisers that do not directly follow gradient directions, such as
LBFGS, performed better, as shown in Fig. 1a.

• We introduce a new low-cost method for studying the dynamics of optimisers. This relies on defining a
local reference frame and evaluating the local curvature of the training trajectory in the NN parameter
space.

• We found a negative correlation between PINNs convergence error and the newly introduced training
trajectory curvature which is shown in Fig. 1b. This implies that good PINNs solutions lie in highly
curved regions of the optimiser reference frame. Therefore, making PINNs converge is hard for those
techniques designed to explore shallow landscapes that generalise well under perturbation.

2 BACKGROUND

2.1 TRACKING LOCAL CURVATURE

Solely observing the convergence performance of an optimiser will show which optimiser is the best for a
given task but will give limited information as to why. To move a step towards explaining why one optimiser
is better than another, we analyze the trajectory of every optimiser in their local reference frame.

To begin, let ω be the neural network parameters, the weight update rule for update k is defined as ∆ωk ≡
ωk+1 − ωk = V(ωk,η), where η are the model hyperparameters. Assuming the continuum time limit, the
trajectory in the parameter space during training can be described by:

ω̇ = V(ω,η), (1)
where the overdot corresponds to a time derivative, i.e. ω̇ = dω/dt. When using gradient descent,
Eq. (1) can be interpreted as the equation of motion of a classical particle in a friction-dominated setup and
V(ω, λ) = −λ 1

n

∑
i ∇ω L(x(i),ω). Here, λ is the learning rate, n is the number of samples in the training

set {x(1),x(2), · · · ,x(n)}, and L is the loss function. For other optimisation algorithms, the definition of V
changes and the ODE in Eq. (1) is no longer obtained via the Euler–Lagrange equations. Therefore, it does
not have a dynamic interpretation. However, Eq. (1) can be efficiently used to understand the kinematics of
the optimiser trajectories. This aspect is discussed further in Section 3.

To examine the motion in parameter space described by Eq. (1), we introduce the unit vector tangential to the
training trajectory, defined as

T̂ =
ω̇

∥ω̇∥2
, with ∥ω̇∥2 =

√
⟨ω̇, ω̇⟩. (2)

Here, T̂ is a time-dependent vector in a Nw-dimensional space, for a Nw parameter NN. To track the local
training trajectory curvature in this time-dependent reference frame, we can define the local (time-dependent)
curvature, κt. This is the rate at which the tangent unit-vector changes with respect to time, and is given by:

κt =

∥∥∥∥∥dT̂dt
∥∥∥∥∥
2

=
1

∥ω̇∥2

[
ω̈ · ω̈ −

(
d∥ω̇∥2
dt

)2
]1/2

. (3)

2

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Another parametrisation with a clearer geometric meaning is κω =
∥∥∥dT̂

dω

∥∥∥
2
= κt/∥ω̇∥2. This represents a

local geometric quantity, i.e., the local curvature in the parameter space, removing the effects of time and
trajectory speed1. To calculate the curvature at each training step a first-order approximation is used, details
of which are given in Appendix C.

In comparison with a Hessian-based curvature calculation, the method presented here has a significantly
lower computational cost as it does not require the Hessian of the loss function. Furthermore, in most cases,
an optimiser does not solely follow the gradient loss and it is generally non-trivial to find the function relating
the loss, its derivatives, and the trajectory followed by the optimiser. Therefore, although every optimiser
is constructed with the aim of sharing its minima with the loss function, analyzing the loss Hessian may
not characterise the optimiser trajectories and may not explain why a certain minimum is found. Moreover,
different optimisers are based on different assumptions—such as energy conservation, friction-dominated
motion, or others—further modifying the loss seen by the optimiser. Fig. 2 in Appendix C gives a pictorial
representation of the loss function (or its distorted version seen by the optimiser) and its relationship to the
trajectory in the parameter space.

2.2 LINEAR ADVECTION

The PDE used for the tests in this work was the one-dimensional linear advection equation on the periodic
spatial domain Ω = [0, 2π), given by

∂u

∂t
+ β

∂u

∂x
= 0, for u : T× Ω 7→ R, Ω = [0, 2π),T ∈ [0, 1], (4a)

u(x, 0) = u0(x), (4b)
u(0, t) = u(2π, t), (4c)

where β is the wave speed and u0(x) is the initial condition. The exact solution of this system can be
straightforwardly found using the superposition of Bloch waves. To find approximate solutions to this system
we applied PINNs with loss functions similar to those used by Krishnapriyan et al. (2021), defined as

L(θ) = 1

Nu

Nu∑
i=1

(
û− ui

0

)2
+

1

Nf

Nf∑
i=1

λi

(
∂û

∂t
+ β

∂û

∂x

)2

+
1

Nb

Nb∑
i=1

(û(θ, 0, t)− û(θ, 2π, t))
2
. (5a)

Here û = û(θ, x, t) is the neural network output, parameterised by θ. The initial condition used through out
this work was u(x, 0) = sin(x) and u(0, t) = u(2π, t). For all the experiments we fix λi = 1.

3 RESULTS AND DISCUSSION

Fig. 1a shows the median over 10 samples of the mean squared error (MSE) evaluated on the entire do-
main between the û predicted by the PINN and the analytical solution. Here the samples were formed by
using 10 different random network initialisation. The corresponding training and test losses are shown in Ap-
pendix D.1. During testing, it was observed that the learning rate significantly impacts the final performances;
therefore, a grid search was performed over a range of learning rates to estimate the best configuration for
each optimiser. See Appendix B for the details.
Two multi-layer perception architectures were considered, with layer structures S = [2, 25, 25, 1] and
L = [2, 50, 50, 50, 50, 1] resulting in 751 and 7851 trainable parameters respectively2. The number of
training points was around 2000, as described in Appendix B; therefore, the larger network is in the over-
parameterised regime, i.e. it has more parameters than training data. Fig. 1a shows that the large network

1This is the local curvature of the training trajectory, not the curvature of the space of weights, which is flat.
2These values keep the perturbative behaviour of the NN constant, i.e. depth/width constant (Roberts et al., 2022).

3

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

100 101
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

β

M
ed

ia
n

M
SE

GD
BBI
ADAM
LBFGS

(a) (b)

Figure 1: (a) Median MSE over 10 samples for various optimisers and β values. Solid/dashed lines refer
to small/large (S/L) network architectures. (b) Relation between final values of convergence (MSE) and
curvature (κω) for β = 1 (left) and 5 (right). Dots and crosses refer to small (S) and large (L) networks,
respectively.

generally has a lower error, in agreement with common knowledge in ML3. This effect is most noticeable for
BBI 4. A significant observation is that for all configurations of NN and optimiser, PINNs failed to produce
good approximations for systems with large values of β.
In Fig. 1b, we show the inverse relation between the final values of MSE and the curvature κω . Here, only
β = 1, 5 were considered as they converged to reasonable errors for most of the optimisers, see Appendix D.2.
Significantly, LBFGS achieves the highest values of κω and the lowest error. Moreover, LBFGS has signifi-
cant memory overhead but it typically converges in fewer epochs compared to the other optimisers. Note that
such a negative correlation in Fig. 1b links generalisation (measured by the MSE on the entire domain) with
the curvature κω . Deriving their exact relation is non-trivial and we leave further investigations for future
work. Nevertheless, we would like to stress that the high curvature values is not solely associated with orbit-
ing the final local or global minima. In fact, this is due to κω and MSE being negatively correlated throughout
the whole trajectory, including its initial stages. We show examples of this behavior in Appendix D.2.

OUTLOOK. In contrast to traditional ML tasks such as image recognition and NLP, ML methods applied to
science require more accurate models which, in general, are trained with high-quality data. This suggests
that the training process on data from physical phenomena can be fundamentally different from common
ML applications. A promising future research direction would be exploring the connection between model
generalisation and the flatness of minima for problems requiring high accuracy. For example, the work of
Dinh et al. (2017); Huang et al. (2020) discuss this in the context of traditional ML tasks. Finally, in the
future, it would be insightful to compare Hessian-based methods such as that of Michaud et al. (2023), with
our approach linking accuracy and local trajectory curvature.

3From classical statistical learning, one expects that over-parameterised models over-fit. However, there is over-
whelming evidence that large models generalise well in several cases of interest, e.g. Szegedy et al. (2015); Huang et al.
(2019).

4The total phase space volume for BBI can be analytically estimated and is parametrically large as the objective
function is close to zero with an exponential dependence on the number of dimensions (see Appendix A.3 in De Luca &
Silverstein (2022)).

4

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

ACKNOWLEDGMENTS

We thank Eloisa Bentivegna and Imran Nasim for discussions. NF and WT acknowledge the UKRI support
through the grant MR/T041862/1. The authors acknowledge the IBM Research Cognitive Computing Cluster
service for providing resources that have contributed to the research results reported within this work.

REFERENCES

Foundations of the new field theory. Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character, 144(852):425–451, March 1934. doi: 10.1098/rspa.1934.0059.

Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. An overview on deep learning-
based approximation methods for partial differential equations. arXiv preprint arXiv:2012.12348, 2020.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maizar Raissi, and
Francesco Piccialli. Scientific machine learning through physics-informed neural networks: Where we
are and what’s next. arXiv preprint arXiv:2201.05624, 2022.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

Caio Davi and Ulisses Braga-Neto. Pso-pinn: Physics-informed neural networks trained with particle swarm
optimization. arXiv preprint arXiv:2202.01943, 2022.

Giuseppe Bruno De Luca and Eva Silverstein. Born-infeld (bi) for ai: energy-conserving descent (ecd) for
optimization. In International Conference on Machine Learning, pp. 4918–4936. PMLR, 2022.

John E. Dennis and Jorge J. Moré. A characterization of superlinear convergence and its application to
quasi-newton methods. Mathematics of Computation, 28:549–560, 1973.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications. arXiv preprint
arXiv:2211.08064, 2022.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–
257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)90009-T. URL https://
www.sciencedirect.com/science/article/pii/089360809190009T.

W Ronny Huang, Zeyad Ali Sami Emam, Micah Goldblum, Liam H Fowl, Justin K Terry, Furong Huang,
and Tom Goldstein. Understanding generalization through visualizations. In ”I Can’t Believe It’s Not
Better!” NeurIPS 2020 workshop, 2020.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information processing systems, 32, 2019.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

5

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. Advances in Neural Information Processing
Systems, 34:26548–26560, 2021.

I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural network methods in quantum mechanics. Comput.
Phys. Commun., 104:1–14, 1997. doi: 10.1016/S0010-4655(97)00054-4.

I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou. Neural-network methods for boundary value problems
with irregular boundaries. IEEE Transactions on Neural Networks, 11(5):1041–1049, 2000. doi: 10.1109/
72.870037.

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial differential
equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. ISSN 1045-9227. doi: 10.1109/
72.712178. URL http://dx.doi.org/10.1109/72.712178.

Eric J. Michaud, Ziming Liu, and Max Tegmark. Precision machine learning. Entropy, 25(1):175, January
2023. doi: 10.3390/e25010175.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143–195, 1999.
doi: 10.1017/S0962492900002919.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i): Data-
driven solutions of nonlinear partial differential equations, 2017a.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part ii): Data-
driven discovery of nonlinear partial differential equations, 2017b.

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory. Cambridge
University Press, May 2022. doi: 10.1017/9781009023405.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2015. doi: 10.1109/cvpr.2015.7298594.

A BOUNCING BORN–INFELD (BBI) OPTIMISER

Usual machine learning optimisation algorithms can be naturally described in physics terms as a particle
moving down an irregular hill. Stochastic gradient descent with momentum is a standard example, as it
can be viewed as a noisy and discretised version of a particle motion. Crucially, this is a friction-based
evolution, such that the particle stops when there is insufficient kinetic energy to escape a minimum in the
potential. De Luca & Silverstein (2022) proposed an energy-conserving algorithm in which there is no friction
and where the optimisation process slows down near the minima as this region dominates the phase space
volume of the system. The algorithm of De Luca & Silverstein (2022) is based on the relativistic Born–Infeld
dynamics (Bor, 1934), where the total potential energy (V) depends on the speed limit as V = v2rel, such
that as V → 0 the particle stops. For completeness, we summarise below BBI update rules (De Luca &
Silverstein, 2022):

Πi+1 = Πi −
1

2
∇Vi∆t

(
Vi

E
+

E

Vi

)
, (6a)

Θi+1 = Θi +Πi+1∆t
Vi

E
, (6b)

with the nomenclature

Θi parameter vector with components θi

6

http://dx.doi.org/10.1109/72.712178

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Πi momentum vector with components πi

i optimisation step number
∆t optimisation step size (learning rate)

Vi = V (Θi) the potential of the i-th step
E = V0 + δE constant dependent on the initialisation, and the additional initial energy parameter δE

Π0 the initial momentum, set as − ∇V (Θ0)
|∇V (Θ0)|

√
E2

V0
− V0.

As E is constant, a particle can be trapped in long-lived orbits in motion. To avoid such stable orbits and
boost chaotic mixing, random bounces are introduced by generating a new random momentum vectors with
the same absolute momentum. There are three additional hyperparameters controlling bouncing: number of
bounces (Nb), fixed timesteps for bounces (T0), and progress-dependent timesteps for bounces (T1). Addi-
tionally momentum can be re-scaled to conserve energy lost due to discretisation effects.

B EXPERIMENTAL DETAILS

B.1 PINN TRAINING SETUP

Networks. We considered both 2-hidden-layer and 4-hidden-layer fully-connect networks with 25 and 50
nodes per layer, respectively. We used hyperbolic tangents as activation functions in order to have a proper
comparison with Krishnapriyan et al. (2021).

Data. The training and test data are obtained by randomly sampling (x, t) points on the domain Ω = [0, 2π)
and T ∈ [0, 1] using a grid of side nx = 256 and nt = 100. We used Nu = 100 (initial conditions),
Nf = 2000 (bulk) and Nb = 80 (periodic boundary conditions). Additionally, for the ADAM optimiser,
we uniformly divide the total dataset into mini-batches of size O(400). For all cases, we split the data into
training (80%) and test (20%) sets.

Hyperparameters. The learning rates and wave speeds (β) used for training are given in Table 1. For the
specialised hyperparameters for ADAM (β1 = 0.9, β2 = 0.999, ϵ = 10−8, weight-decay = 0), GD (no mini-
batches and no momentum) and LBFGS (max-iter = 20, tolerance-grad = 10−7, tolerance-change = 10−9,
history-size = 100), we used the Pytorch default values.5 For BBI, we used ∆V = 0 (objective function
shift), δE = 2 (extra initial energy), Nb = 4 (number of bounces), T0 = 500 (fixed timesteps for bounces),
and T1 = 100 (progress-dependent timesteps for bounces). We trained the models for 1000-5000 epochs
depending on the convergence. Training dynamics (train and test losses) is shown in Appendix D.1.

B.2 LEARNING RATE SEARCH FOR THE LINEAR ADVECTION

Let us start by discussing the criteria used to compare the optimisation algorithms. Naturally, ADAM, BBI,
GD and LBFGS have different hyperparameters. BBI, in particular, has specialised hyperparameters to boost
chaotic mixing via random bounces (see Appendix A). We note empirically that for the linear advection
equation, the learning rate is the hyperparameter that impacts the most in the performances. In Tab. 1 we
show the results for the lowest average test losses using 5 trials with random initialised networks varying
the learning rates in the range [10−4, 1]. We trained the models for the first 300–1000 epochs depending on
the convergence. We note that BBI and GD are numerically unstable for learning rates above ∼ 0.1. By
performing this search, we estimate the best scenario for each optimiser with respect to the learning rate. We
acknowledge, however, that significant changes in the other hyperparameters may impact the performances.

5https://pytorch.org/docs/stable/optim.html

7

https://pytorch.org/docs/stable/optim.html

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 1: Learning rates for the lowest Test Loss.

(a)
[
2 25 25 1

]
β BBI LBFGS GD Adam

1 0.1 0.1 0.01 0.001
5 0.01 0.1 0.01 0.001
15 0.01 0.01 0.0001 0.01
30 0.01 0.01 0.001 0.01

(b)
[
2 50 50 50 50 1

]
β BBI LBFGS GD Adam

1 0.01 0.1 0.01 0.0001
5 0.01 0.1 0.01 0.001
15 0.01 1 0.01 0.001
30 0.01 0.001 0.001 0.001

C FURTHER DETAILS ON THE CURVATURE

C.1 CURVATURE DISCRETISATION

To derive a discretised version of the curvature with respect to the training steps, consider the first-order
approximation of Eq. (1) given by

ω̇k+1 ≈ ωk+1 − ωk = Vk. (7)
To obtain an approximation for the curvature in Eq. (3), the following steps can be taken

ω̈k+1 ≈ Vk −Vk−1, (8a)

|ω̇k+1| ≈
√
⟨Vk,Vk⟩, (8b)

d

dt
|ω̇k+1| ≈

⟨Vk,Vk⟩ − ⟨Vk,Vk−1⟩√
⟨Vk,Vk⟩

, (8c)

κt,k+1 ≈ 1√
⟨Vk,Vk⟩

[
⟨Vk−1,Vk−1⟩ −

⟨Vk−1,Vk⟩2

⟨Vk,Vk⟩

]1/2
. (8d)

C.2 LOCAL CURVATURE AND THE LOSS FUNCTION

Here we comment on the relation between κω , i.e. the time-independent local curvature of the training
trajectory in the parameter space, and the loss function. Following a physics intuition, given an objective
function, L(ω), we tend to see it as a potential and assume that our trajectory lies on the hypersurface
described by L(ω). This is not true, as different optimisers follow different theories that modify the loss
landscape and the regime (e.g. energy-conserving and friction-dominated motion). Nevertheless, given the
form of Eq. (1), we can reinterpret the optimiser as if it were a friction-dominated classical algorithm, such
as GD. This gives us a hint about how large a gradient should be to induce that step in the GD algorithm, and
it tells us how curved the distorted loss landscape, seen by the optimiser, is.

Fig. 2 shows a pictorial view of the relation between the loss function, or its distorted version seen by the
optimiser, and the trajectory in the parameter space. The path followed on the loss hypersurface is depicted
with a red curve, while its projection on the parameter space is in orange. The orange curve is precisely the
focus of this study. Indeed, comparing trajectories living on different loss—or distorted loss—hypersurfaces
is an ill-defined problem. On the other hand, monitoring the projected trajectories and their local curvature,
κω , tells us how curved is the fictitious loss landscape seen by each optimiser.

8

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Figure 2: Pictorial view of the relation between the loss function (or its distorted version seen by the opti-
miser). The orange curve on the plane ω1 − ω2 represents the trajectory followed by the optimiser on the
parameter space.

D ADDITIONAL PLOTS

D.1 TRAINING AND TEST LOSSES

Based on the performances in Fig. 1a in the main text, we can divide the optimisers into two groups:

• LBFGS and ADAM are the optimisers that obtain the best results. Although LBFGS converges
faster, ADAM has the smallest error for the highest β among all optimisers. Comparing train and
test losses (Figs. 3 and 5), we note that in both cases the generalisation errors (difference between
test and train errors) become larger as β increases. Also, for large β, their losses are dominated by
the periodic boundary contribution (last term in Eq. 5a), and test losses tend to overfit.

• The optimiser that performs worst is GD, followed by BBI. In particular, there is no learning for
β = 15 and 30. In these cases, the losses are dominated by the initial conditions (first term in
Eq. 5a), see Figs. 4 and 6. The GD’s poor performance is expected: it has no momentum to be able to
overcome saddle points and no mini-batches as a source of stochasticity that helps in escaping from
local minima. On the other hand, explaining BBI’s low performance requires further investigation as
BBI’s specialised hyperparameters offer a broad range of tuning possibilities (De Luca & Silverstein,
2022). In particular, training BBI for a longer time and exploring different strategies to trigger the
bounces are possibilities worth exploring.

9

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s
Total
IC
Bulk
BC

(a) β = 1, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(b) β = 1, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(c) β = 5, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(d) β = 5, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(e) β = 15, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(f) β = 15, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(g) β = 30, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(h) β = 30, Network 2

Figure 3: Median loss versus epoch over 10 samples when using ADAM. Solid line is the total, and the other
lines show the separate contributions. dashed for initial condition, dotted for the bulk, and dash-dotted for
the periodic boundary.

10

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s
Total
IC
Bulk
BC

(a) β = 1, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(b) β = 1, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(c) β = 5, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(d) β = 5, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(e) β = 15, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(f) β = 15, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(g) β = 30, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(h) β = 30, Network 2

Figure 4: Median loss versus epoch over 10 samples when using BBI. Solid line is the total, and the other
lines show the separate contributions. dashed for initial condition, dotted for the bulk, and dash-dotted for
the periodic boundary.

11

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 200 400 600 800 1,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s
Total
IC
Bulk
BC

(a) β = 1, Network 1

0 200 400 600 800 1,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s

(b) β = 1, Network 2

0 200 400 600 800 1,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s

(c) β = 5, Network 1

0 200 400 600 800 1,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s

(d) β = 5, Network 2

0 500 1,000 1,500 2,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s

(e) β = 15, Network 1

0 500 1,000 1,500 2,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s

(f) β = 15, Network 2

0 500 1,000 1,500 2,000

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Epoch

L
os

s

(g) β = 30, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

10−6

Epoch

L
os

s

(h) β = 30, Network 2

Figure 5: Median loss versus epoch over 10 samples when using LBFGS. Solid line is the total, and the other
lines show the separate contributions. dashed for initial condition, dotted for the bulk, and dash-dotted for
the periodic boundary. Note the changing number of epochs for convergence.

12

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

Total
IC
Bulk
BC

(a) β = 1, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(b) β = 1, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(c) β = 5, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(d) β = 5, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(e) β = 15, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(f) β = 15, Network 2

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(g) β = 30, Network 1

0 1,000 2,000 3,000 4,000 5,000

100

10−1

10−2

10−3

10−4

10−5

Epoch

L
os

s

(h) β = 30, Network 2

Figure 6: Median loss versus epoch over 10 when using GD. Solid line is the total, and the other lines show
the separate contributions. dashed for initial condition, dotted for the bulk, and dash-dotted for the periodic
boundary.

13

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

D.2 INTERPRETING AND VISUALIZING TRAINING DYNAMICS

This appendix aims to facilitate the understanding of the results shown in the main text, also providing a
visualization when possible. Specifically, to better understand the behaviour of the trajectories, we calculate
the Spearman correlation, ρ, between κ and the MSE evaluated on the grid points. Spearman’s correlation
allows us to evaluate whether these quantities move together without fixing a functional form between the
two. Furthermore, to understand the directions taken by the trajectory, we calculate the cosine similarity
between two consecutive speeds:

cos(θk) =
ω̇k · ω̇k−1

∥ω̇k∥∥ω̇k−1∥
for k = 1, . . . , nepochs . (9)

The graphs in Table 2 show that the correlation between MSE and ρ remains strongly negative (mainly
< −0.5) in cases where the training reaches convergence (see, for example, the results where MSE < 0.01).
The third column in Table 2 shows an example of the relation between κω and MSE for β = 1 on the small
(S) network. The colour of the dots varies from pale to intense following the number of evolution epochs.
These examples show that the correlation between the curvature κω and convergence remains negative even
during the first stages of training. Therefore, the value of ρ cannot be attributed only to some final spiralling
in the last minimum of convergence. The rightmost column of Table 2 shows an example (the same as the
third column) of the relationship between the ratio in magnitude and the cosine similarity of consecutive
speed vectors. We see that while some optimisers show a preferred behaviour (θSGD tends to π in the last
stage of training, θAdam is nearly 0 before random dynamics kicks in, θBBI is always nearly 0), LBFGS does
not show a preferred alignment with the gradient direction.

Finally, in Table 3, we show the relationship between the final values of curvature and MSE for each optimiser
and β value. In general, especially for gradient-based methods, it is possible to see an increase in the final
intrinsic curvature value as the convergence increases (as MSE decreases).

14

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 2: Relation between convergence (MSE) and ρ(κω,MSE) or ρ(κt,MSE). Representative trajectory
in κω/κt and MSE space. Cosine similarity between consecutive speed vectors vs increase in magnitude in
consecutive speeds. The colour of the dots varies from pale to intense following the number of evolution
epochs.

κω κt κ vs. MSE Trajectory

GD

BBI

Adam

LBFGS

15

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 3: Effect of optimiser on the relation between final values of MSE and curvatures κω and κt

GD BBI Adam LBFGS

κω

κt

16

	Introduction
	Background
	Tracking local curvature
	Linear Advection

	Results and Discussion
	Bouncing Born–Infeld (BBI) optimiser
	Experimental Details
	PINN training setup
	Learning Rate search for the Linear Advection

	Further details on the Curvature
	Curvature discretisation
	Local curvature and the loss function

	Additional Plots
	Training and Test Losses
	Interpreting and visualizing training dynamics

