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Abstract

Whole organ segmentation in biomedical images continues to be an important problem. Re-
cently deep learning based methods have produced convincing results. Taking into account
limited sample sizes and inconsistent spacing on devices, many solutions are designed to
work patch-wise, with networks trained on sub-volumes with a certain stride, rather than
on the whole 3D image. The binarized segmentation probability map of the whole volume
image is then computed by mapping back stacked sub-volume predictions using a threshold.
As may be expected, the performance is highly sensitive to the threshold chosen, as well
as issues such as low probabilities on object boundary region, missing voxels or distortions
on corners of sliding windows and unexpected components. In this work, we analyse and
test the performance of a commonly used thresholding method, and introduce learning
based methods to address these issues. In addition, a simple shape prior from a size-based
shape heat map is introduced to improve overall performance. Experiments were carried
out on the open MICCAI PROMISE12 challenge dataset for prostate segmentation. With
the learning based method, the average performance increased by 1.65% on Dice Simi-
larity Coefficient(DSC) compared to the thresholding method. On challenging cases, the
improvement was more than 6.55% on DSC. Since proposed method produces convincing
results with only modifications of the reconstruction step, this approach may be adopted
in other patch-wise deep learning networks too.
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1. Introduction

Accurate prostate segmentation enables better visualization and localization of suspicious
lesions, which helps in diagnosis, treatment planning and disease prognosis. Most prostate
segmentations are manually annotated by physicians slice by slice, which is tedious, time-
consuming, and subject to inter- and intra-reader variations. Many attempts(Liu et al.,
2019; Lei et al., 2019; Liu et al., 2020; Gillespie et al., 2020)have been made to achieve au-
tomatic segmentation of the prostate. In biomedical image segmentation, encoder-decoder
structures are widely utilized, from the simple Unet(Ronneberger et al., 2015) to the more
complex Resnet(Yu et al., 2017) and Densenet(Yuan et al., 2019). Modifications and ex-
tensions, such as Znet(Zhang et al., 2019) and cascade dense Unet(Li et al., 2019) have
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been developed to improve the overall performance. Moreover, shape models are combined
with deep learning architectures(Cheng et al., 2016) to enhance global features. However,
the necessary sample size increases with network complexity. Generally this problem is
addressed by training the network on smaller patches and adding more samples with data
augmentation methods. Taking into account the limited sample sizes and inconsistency of
spacing from different devices, many models are designed to work patch-wise(Qin, 2019;
Jia et al., 2019). Whenever a new test sample is to be predicted in a patch-wise deep
learning network, four steps are required, as shown in Figure 1. Firstly, the original input
is scanned and divided into several sub-volumes with a certain stride. Then predictions
on the sub-volume images are generated from a well-trained deep learning network. After
that, the sub-volume predictions are mapped back to reconstruct an overall prediction for
the test data. Finally the overall prediction is binarized to produce the final output for
segmentation prediction. Commonly the binarization is performed by using a thresholding
method, which is highly sensitive to the threshold value chosen. Since the overall prediction
is obtained by binarizing the reconstruction of overlapping small patches, it may be affected
by issues such as low probability on object boundary region, missing or distorted part on
corners of the sliding window and unexpected particles.

Figure 1: The workflow of predicting a new test sample in patch-wise deep learning networks

To deal with these issues, this work is aimed at finding a more robust method to handle
the binarization of a reconstructed probability map from a patch-wise deep learning network.
Our main contributions are threefold:

1. the first discussion of binarization issues in the reconstruction step of patch-wise deep
learning networks with thresholding method;

2. proposal of a learning-based method to deal with the binarization procedure as a
coarse to fine problem;

3. introduction of a simple size-based shape prior to improving overall performance.

2. Methods

This research is based on the output from a 3D Unet trained on the MICCAI PROMISE12
challenge dataset(Litjens et al., 2014) with a small patch size of 96*96*32. In the inference
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phase, each MR image is scanned with sub-volumes of the same size (96*96*32) and a fixed
stride of 32*32*8. The overall probability map is acquired by normalizing the summation
of the patches to 0 ∼1. Our work focuses on analysis and improvement of the issues
encountered in the reconstruction step.

2.1. Problem Statement

Figure 2: Several samples of predictions from the thresholding method: (a) one slice from
overall reconstructed probability map (the brighter the more likely to be the
target); (b) unexpected particles; (c) distortion of boundary region; (d) distortion
from sliding window corner; and (e) missing and isolated parts.

Generally, a binarized output volume is simply acquired using a threshold T, however
this may give rise to some issues. In Figure 2, some bad cases of binarization with threshold
T=0.3 are shown. In Figure 2(b), an unexpected small particle is visible at the bottom of
the image. In Figure 2(c), distortions in boundary regions with a higher probability value
than the threshold are shown. In Figure 2(d) the distorted part is caused by the sliding
window. In Figure 2(e), the missing parts that have a smaller probability value than the
threshold are demonstrated. There are mainly four reasons why the results are sensitive to
the threshold chosen, which may be ascribed to the incoherence of the probability values
for voxels. First, the probability values for challenging cases are much lower than the more
normal common cases. Secondly, the voxel probability values on boundary regions(light
blue region) are much lower than in the centre zones(yellow region) as shown in Figure
2(a). Thirdly, the patch-wise network may ignore the target(red rectangle in Figure 2(a)),
if it is located at the corner of the sliding window and occupies only a small part of the
sliding window. Fourth, some unexpected small particles with local features similar to the
target object may be mistakenly judged as the target.

Table 1: Results of Dice similarity coefficient on several cases under different thresholds

T 0.1 0.2 0.3 0.4 T 0.1 0.2 0.3 0.4

Case8 79.70 88..07 88.97 83.65 Case18 87.04 85.81 83.68 79.92
Case23 85.10 79.31 72.71 70.66 Case31 79.14 85.43 85.77 88.67
Case35 87.85 88.52 88.62 87.27 Case46 81.89 84.27 85.75 86.72
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In Table 1 the DSC changes with different Threshold values on 6 cases are shown,
which implies that the performance is highly sensitive to the threshold T. Observing that
the best threshold value differs case by case, we tested the data on the Otsu Threholding
method(Yousefi, 2011) which is self adaptive. Even though the adaptive threshold method
handles probability incoherence from different cases, it is unable to deal with the problems
caused by sliding windows and unexpected particles caused by patch-wise learning.

Figure 3: Our proposed learning-based method for refined reconstruction of global prostate
segmentation: (a) the thresholding method; (b) the learning-based binarization
method; and (c) the extraction of shape prior as parts of inputs in this study.

2.2. The Learning-based Method

Since a simple thresholding method is unable to deal with the binarization problem ef-
ficiently, learning-based methods are introduced in our work. Assuming the patch-wise
probability to be a coarse prediction, the problem to be solved can be seen as a coarse to
fine model. To avoid the patch-wise issues mentioned in section 2.1, learning based methods
are designed to work globally, therefore the whole target will be included as input. With
limited sample number in the 3D domain, we trained our networks on 2D slices.To keep
the input size coherent, an ROI of size 192*192 is extracted from the image center. A
light-weight network inspired by ShapeMask(Kuo et al., 2019) and a 2D Unet with average
pooling are tested separately. In order to make full use of the data, the original T2 MRI
image is deployed as another channel, and a size-based shape prior is introduced as the
third channel to improve the overall performance. The learning based methods are shown
as Figure 3. The T2 MR image and overall probability map are downsampled to 2D slices
along the axial axis. Then a shape prior is used as the third channel. Therefore, each input
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is a 2D image of size 192*192 and the 3 channels(192*192*3) include the T2 image, the
reconstructed probability map and the shape prior. For Method 1, a combination of conv
and deconv layers with limited feature maps are used. For Method 2, a widely used Unet
with average pooling instead of Max pooling is used. Finally, the 3D result is created by
stacking the 2D slice results from a learning based method.

2.3. Shape Prior

Common encoder-decoder networks focus more on local features. Many efforts have been
made to add shape information to encoder-decoder networks. Mirikharaji et al.(Mirikharaji
and Hamarneh, 2018) introduced the star shape prior into a common CNN to improve
performance. An auto-encoder is used to combine the CNN prediction and anatomical shape
prior in other work(Oktay et al., 2017). In our case, a coarse prediction is obtained from
a patch-wise deep learning network, which helps to fix an approximate size and position.
Besides, the size and shape of the prostate differs considerably at the top, middle and lower
parts of the organ.Taking these properties into account, a size-based atlas set would be
appropriate. The ground truth for all patients in the training set is checked slice by slice to
decide on the number and range of the subsets,including below 20,20*20,30*30...90*90 and
above 90. Afterwards the Shape Prior heat-map is obtained by taking the average of all
slices of the particular size, 70*70 for instance in Figure 3(c), which shows how to obtain
a shape prior as the third channel of input for a new sample. First, we extract the centre
and size of the coarse prediction. Afterwards the original image is replaced by a shape prior
heat-map corresponding to its centre and size.

3. Experimental Results and Discussion

The experiments were carried out on the MICCAI PROMISE12 challenge dataset. The
training dataset contains 50 transversal T2-weighted MR images of the prostate and the
corresponding segmentation ground truth. The test dataset consists of 30 MR images,
however the ground truth is held by the organiser for independent evaluation. Since the
images were acquired from four different hospitals, using different devices and different
acquisition protocols, there are large variations in voxel intensity, dynamic range, position,
field of view and anatomical appearance. Therefore some simple preprocessing was applied
to the original data, including voxel spacing unification to a fixed size of 0.625*0.625*1.5mm
and intensity normalization into zero mean and unit variance. For visual comparison, in this
work experiments were only carried out on the training dataset. Ten fold cross-validation
was applied to generate training and test subsets for our experiments. For the patch-wise
deep learning network, the widely used 3D Unet was trained with sub-volumes of size
96*96*32. In the inference phase, each MR image was scanned with sub-volumes of the
same size (96*96*32) and a fixed stride of 32*32*8. Quantitative results from 10-fold cross
validation are shown in upper part of Table 2. To further validate the effect of our proposed
method on different patch-wise networks, the results from first fold among 10-folds using
3D Resnet(Yu et al., 2017) as another patch-wise deep learning network is shown in lower
part of Table 2. The results were evaluated with Dice similarity Coefficient (DSC), Hausdoff
Distance (HD) and absolute Relative Volume Difference (aRVD).
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(a) (b) (c) (d) (e)

Figure 4: Qualitative comparison of different binarization methods: (a) different delin-
eations of the prostate; (b) T=0.3(blue); (c) Method 1(yellow); (d) Method
2(green); and (e) Ground Truth(red).
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Table 2: Quantitative comparisons of different binarization methods under widely used eval-
uation metrics using two patch-wise networks

Patch-wise Network Method DSC(%) HD(mm) aRVD (%)

T=0.2 85.44±13.66 12.15±13.48 16.24±18.74
T=0.3 86.57±13.03 9.34±8.72 13.13±13.70

3D Unet T=0.4 84.79±14.89 11.26±10.33 13.97±14.14
Otsu 86.04±12.67 9.75±7.52 13.07±8.34

Method 1 87.48±7.22 7.75±3.23 8.89±6.35
Method 2 88.22±6.83 6.52±2.87 7.12±6.02

T=0.2 87.13±5.58 7.95±5.87 11.86±12.86
T=0.3 86.53±8.91 8.42±7.58 10.15±15.02

3D Resnet T=0.4 85.05±13.68 11.70±11.24 11.46±17. 94
Otsu 87.35±5.59 7.34±4.12 8.61±10.86

Method 1 88.77±2.92 4.53±2.73 6.93±6.24
Method 2 89.01±2.72 4.36±2.45 5.45±4.68

From the results, we can see that the adaptive thresholding(Otsu) method does not
always outperform the manually chosen best threshold, however it provides a relatively
better solution than a randomly selected threshold. Among the learning based methods,
Method 1 inspired by ShapeMask and Method 2 based on a deep learning network both
improve the overall performance. Our proposed reconstruction framework, can be easily
migrated to other patch-wise deep learning networks, such as Resnet.

In order to better evaluate the performance, we extracted 6 slices as shown in Figure 5.
Among them, rows 1, 2 and 3 denote the top, middle and lower slices of one patient. Row
4 shows a common case on another patient, and rows 5, 6 indicate challenging slices. From
the results, we can observe that both ShapeMask and 2D Unet networks improve the overall
performance. While the ShapeMask based Method 1 attempts to sharpen the image edges,
the 2D Unet network based Method 2 attempts to find a balance between sharpening and
compensation, as shown in row 6 of Figure 4.

Table 3: Results of Dice similarity coefficient with different inputs

Input Channels P P+ S P+S+T

Method 1 86.84±12.87 87.23±11.32 87.48±7.22
Method 2 87.12±10.58 87.58±11.27 88.22±6.83

To evaluate the contributions of the proposed shape prior, we tested the reconstruction
system with different inputs, as shown in Table 3. The second column(P) shows the result of
using only the coarse prediction as our input. The third column(P+S) indicates the result of
adding Shape Prior as another channel of input. The inputs of the fourth column(P+S+T)
cover all three channels, including coarse prediction, Shape Prior and T2 Image. From the
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results, we can see that the newly proposed Shape prior helps to enhance the accuracy of
the proposed methods.
In order to get a better understanding of the problem, histograms of probability map are
extracted from the patch-wise network, as shown in Figure 5. For easy cases, such as Case
14 and Case 22, most voxels are distributed on both sides and their ratios of uncertain
voxels in the threshold sensitive region (red rectangle) are quite low. For Case 34, the
threshold can be shifted to the valley with Otsu thresholding method to improve the overall
performance. However, when it comes to the challenging Case 23, the problem cannot
be handled with only a thresholding method. Instead, our learning based method, which
includes global features and shape prior, helps to significantly improve the accuracy on Case
23. Furthermore, Table 4 shows the DSC changes of the four cases listed in Figure 5. For
challenging cases such as Case 16, Case 37 and Case 23, our proposed method dramatically
improves the performance by more than 6.55% on DSC for each case.

Figure 5: Histograms of voxel probability map on several test cases

Table 4: Results of Dice similarity coefficient on particular cases with different methods

Method Case16 Case37 Case23 Case34 Case14 Case22

T=0.3 80.79 82.44 72.71 86.63 89.47 89.37
Otsu 80.53 81.88 68.41 89.14 88.65 88.86

Method 1 87.16 86.71 82.39 86.85 92.42 89.30
Method 2 87.45 88.99 85.93 86.73 92.48 89.13

4. Conclusion

In this paper, we have addressed the binarization issues with thresholding methods in the
reconstruction step of patch-wise deep learning networks. Then learning based methods,
including Method 1 based on ShapeMask and Method 2 based on Unet, are introduced to
deal with the binarization procedure as a coarse to fine problem. Besides this, a size-based
shape prior is proposed to improve overall performance. Experimental results demonstrate
that our proposed methods further improve the performance of different patch-wise deep
learning networks for prostate segmentation. Since the refinement is applied only at the
reconstruction step, it can be easily migrated to other patch-wise deep learning networks.
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